
Mixing in deterministic and random PDE: lecture notes
for the Santa Barbara Kinetic summer school

Lenya Ryzhik∗

June 13, 2016

1 Introduction

We will discuss evolution problems of the form

∂φ

∂t
= iLφ− εΓφ. (1.1)

Here, L and Γ are two operators, and we think of (1.1) as a perturbation of the background
dynamics

∂φ

∂t
= iLφ. (1.2)

The parameter ε� 1 is small. The operator L is self-adjoint, so that (1.2) is non-dissipative.
The basic question is how a combination of the mixing or dissipative properties of L and Γ
leads to a non-trivial behavior of the solutions of (1.1) on long time scales that is very different
both from the dynamics of (1.2) and that of

∂φ

∂t
= −Γφ. (1.3)

The perturbation Γ may be either random or deterministic.
We will focus on two complementary situations. The first regime is when L is very mixing

but non-dissipative, while Γ is dissipative. Their interaction leads to a dramatically increased
dissipation, that can not be achieved by either of them alone. This phenomenon is known as
relaxation enhancement. The second set of problems involves random perturbations Γ of a
simple deterministic background operator L. Here, the long time dynamics leads to diffusive
limits that are a result of the interaction of the deterministic dynamics generated by L and
the random dynamics coming from Γ. We will look at several examples of such diffusive
behavior, in the order of increasing difficulty.

In this introductory section, we will consider two simple examples of each of these two
classes of problems, just to illustrate what one may expect.
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An example of relaxation enhancement: the Dirichlet eigenvalues

The eigenvalues of the Laplacian

Before we explain how relaxation enhancement comes about, let us first recall some very basic
facts about the principal Dirichlet eigenvalues for the Laplacian on a bounded domain [14]. For
any smooth bounded domain Ω there exists an eigenvalue λ1 (called the principal eigenvalue)
that corresponds to a positive eigenfunction φ1 > 0 in Ω:

−∆φ1 = λ1φ1, x ∈ Ω, (1.4)

φ1 = 0 on ∂Ω.

Moreover, λ1 is the smallest of all eigenvalues of the Dirichlet Laplacian on Ω, λ1 is a simple
eigenvalue and all other eigenfunctions of the Laplacian change sign in Ω. For example, if Ω
is an interval (0, 1), the eigenvalues of the operator Lu = −u′′ with the Dirichlet boundary
conditions u(0) = u(1) = 0 are λn = n2π2, and the corresponding eigenfunctions are

un(x) = sin(nπx).

In this case, the principal eigenvalue is λ1 = π2.
In general, the principal eigenvalue of the Laplacian is given by the variational formula:

λ1 = inf
ψ∈H1

0(Ω)

‖ψ‖2=1

∫
Ω

|∇ψ|2dx. (1.5)

The principal eigenvalue determines the long time decay of solutions of the parabolic initial
value problem in the following way. Consider the initial value problem

ψt = ∆ψ, t > 0, x ∈ Ω, (1.6)

ψ(t, x) = 0 on ∂Ω,

ψ(0, x) = g(x).

As φ1(x) > 0 in Ω, and, as follows from the Hopf lemma, ∂φ1/∂ν < 0 on ∂Ω, we can find
a constant C > 0 so that |ψ(t = 1, x)| ≤ Cφ1(x) – we can not quite have such estimate at
t = 0 since the initial condition g(x) may not satisfy the Dirichlet boundary conditions. The
maximum principle implies that

ψ(t, x) ≤ Ce−λ1(t−1)φ1(x), (1.7)

for t > 1, and, similarly,
−ψ(t, x) ≤ Ce−λ1(t−1)φ1(x), (1.8)

so that
|ψ(t, x)| ≤ Ce−λ1(t−1)φ1(x), t ≥ 1. (1.9)

Therefore, all solutions of the Cauchy problem decay at the exponential rate determined by λ1

as t→ +∞.
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The Dirichlet eigenvalues with a drift

Let us now consider the Dirichlet principal eigenvalue problem in a smooth bounded domain Ω,
for a diffusion with a strong incompressible flow:

−∆φ+
1

ε
u · ∇φ = λ1(ε)φ, φ(x) > 0 in Ω, (1.10)

φ = 0 on ∂Ω.

This is an example of a problem like (1.1), with Γ = −∆, and iL = u · ∇. We assume that u
is an incompressible flow: ∇ · u = 0, and that it does not penetrate the boundary:

u · ν = 0 on ∂Ω. (1.11)

The effect of the positive parameter ε > 0 will become clear very soon.
The operator in (1.10) is not self-adjoint (so that its eigenvalues are not necessarily real),

and its eigenvalues do not obey an integral variational principle such as (1.5). Nevertheless,
the Krein-Rutman theory for positive operators (see Chapter VIII of [11]) implies that it has
a unique eigenvalue λ1(ε) that corresponds to a positive eigenfunction φ1(x). This eigenvalue
is real and simple, has the smallest real part of all eigenvalues, and is called the principal
eigenvalue. As for the Laplacian, the maximum principle implies that the principal eigenvalue
determines the long time decay of the solutions of the corresponding Cauchy problem:

ψt +
1

ε
u · ∇ψ = ∆ψ, t > 0, x ∈ Ω, (1.12)

ψ(t, x) = 0 on ∂Ω,

ψ(0, x) = g(x),

that is,
ψ(t, x) ∼ e−λ1(ε)tφ1(x), as t→ +∞. (1.13)

Note that when u = 0 (or, in our general terminology, L = 0) the exponential rate of decay
for the solutions of (1.12) is simply the principal eigenvalue of the Laplacian. On the other
hand, solutions of the Laplacian-less problem

ψt +
1

ε
u · ∇ψ = 0 (1.14)

do not decay at all – their L2 norm is preserved, as are all Lp-norms for p ≥ 1. This is because
the flow u is incompressible and parallel to ∂Ω on the boundary.

Let us now understand whether it is possible that solutions of the ”combined” Cauchy
problem (1.12) decay much faster in time than when u = 0 despite the fact that solutions
of (1.14) have no decay whatsoever. To quantify this questions, let us ask if it is possible that

λ1(ε)→ +∞ as ε→ 0. (1.15)

The above considerations make it clear that such phenomenon may only come from an inter-
action of the drift and the Laplacian.
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Let us recall the probabilistic interpretation of the solutions of the Cauchy problem (1.12).
Consider the stochastic differential equation

dXt = −1

ε
u(Xt)dt+

√
2dWt, X0 = x, (1.16)

starting at a point x ∈ Ω, and let τ be the first time that the process Xt hits the boundary ∂Ω.
Then solution of the Cauchy problem (1.12) can be expressed in terms of the diffusion Xt as

ψ(t, x) = Ex[g(Xmin(t,τ))], (1.17)

with the convention that
g(Xτ ) = 0. (1.18)

When would we expect ψ(t, x) to be small as ε→ 0? As one sees from (1.18), this would be
true if, with a high probability we have τ < t – the particle hits the boundary before a given
time t. Intuitively, if the trajectories of the incompressible flow are “sufficiently mixing”,
then, for any starting point x0 in the interior of Ω, the trajectory of (1.16) that starts at x0

eventually comes close to the boundary ∂Ω. Therefore, such flow, when sufficiently fast, will
force solutions of (1.17) very quickly to pass very close to ∂Ω, and at that time diffusion term
in (1.16) will force Xt to exit Ω with a very high probability. Hence, when ε > 0 is sufficiently
small, the exit time τ of the solutions of (1.16) should be smaller than a given time t > 0
with a high probability. As we have mentioned, this makes ψ(t, x) given by (1.17) very
small because of (1.18). Physically, this means that a sufficiently mixing flow, together with
diffusion, should dramatically increase the cooling of the interior by the boundary. A natural
questions is what ”mixing” means in this context, and how one can quantify such property.
Usually, the mixing properties of a flow are defined in terms of the dynamic properties of
the ODE

Ẋ = u(X),

behave. Here, we are asking a PDE question – hence, the first problem is to define what
“mixing” means for us. This is quantified by the following beautiful result due to Berestycki,
Hamel and Nadirashvili [4]. We denote by I0 the set of all first integrals of u, solutions of

u · ∇φ = 0 a.e. in Ω, (1.19)

in the space H1
0 (Ω).

Theorem 1.1 The principal eigenvalue λ1(ε) of (1.10) tends to +∞ as ε→ 0 if and only if
the flow u has no first integral in H1

0 (Ω). Moreover, if u has a first integral in H1
0 (Ω), then

λ1(ε)→ λ̄ := min
w∈I0

∫
Ω
|∇w|2dx∫

Ω
|w|2dx

as ε→ 0, (1.20)

and the minimum in the right side is achieved.

A couple of comments are in order. First, notice that the only information about the Laplacian
operator in (1.10) that survives in the statement of the theorem is in the condition that the
first integral lies in H1

0 (Ω). This regularity requirement comes exactly from the presence of the
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Laplacian in (1.10), as irregular first integrals do not prevent strong decay of the solutions
of the Cauchy problem. Second, the strong flow essentially forces the eigenfunction to be
close to a first integral, and then the variational principle (1.6) for the Laplacian operator is
replaced by essentially the same expression (1.20) except that the set of allowed test functions
is restricted to the first integrals.

Proof of Theorem 1.1

The proof of this Theorem is nicely short. First, we claim that if u has a non-zero first
integral w in H1

0 (Ω), normalized so that

‖w‖L2 = 1,

then we have

0 ≤ λ1(ε) ≤
∫

Ω

|∇w(x)|2dx, (1.21)

for any ε ∈ R. In order to show that (1.21) holds, we take any w ∈ I0, and multiply (1.10)
by w2/(φ+ δ) with δ > 0 fixed:

−
∫

Ω

w2∆φ

φ+ δ
dx+

∫
Ω

w2

φ+ δ
(u · ∇φ)dx = λ1(ε)

∫
Ω

w2

φ+ δ
φ dx. (1.22)

Integrating by parts in the first term gives

−
∫

Ω

w2∆φ

φ+ δ
dx =

∫
Ω

∇φ · ∇
(

w2

φ+ δ

)
dx =

∫
Ω

2w(φ+ δ)∇φ · ∇w − w2|∇φ|2

(φ+ δ)2
dx

≤
∫

Ω

|∇w|2dx.

The second term in the left side of (1.22) vanishes because ∇ · u = 0 and w is a first integral:∫
Ω

w2

φ+ δ
(u · ∇φ) dx =

∫
Ω

w2(u · ∇(log φ+ δ)) dx = −
∫

Ω

2w log(φ+ δ)(u · ∇w)dx = 0.

The boundary terms above vanish since w ∈ H1
0 (Ω) (it vanishes on the boundary). We

conclude that

λ1(ε)

∫
Ω

w2

φ+ δ
φdx ≤

∫
Ω

|∇w|2dx, (1.23)

for any w ∈ I0. Passing to the limit δ → 0 gives (1.21). Thus, existence of a first integral
implies that λ1(ε) are uniformly bounded for all ε ∈ R.

On the other hand, if there exists a sequence εn → 0 such that λ1(εn) are bounded, then∫
Ω

|∇φn(x)|2dx = λ1(εn)

∫
Ω

|φn(x)|2dx = λ1(εn). (1.24)

Here, φn(x) are the associated positive eigenfunctions φn(x) normalized so that ‖φn‖L2(Ω) = 1.
Then, there exists a subsequence nk so that the sequence φnk converges weakly in H1

0 (Ω) and
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strongly in L2(Ω) to a function w̄(x) ∈ H1
0 (Ω). Moreover, multiplying (1.10) by εnk and

passing to the limit k → +∞ gives

u · ∇w̄ = 0, weakly in H1
0 (Ω),

and
‖w̄‖L2(Ω) = 1. (1.25)

Hence, w̄ is a first integral of u in H1
0 (Ω). Thus, the non-existence of the first integral in H1

0 (Ω)
implies that

lim
ε→0

λ1(ε) = +∞. (1.26)

Finally, to show that (1.20) holds, let us assume, once again, that there exists a se-
quence εn → 0 such that λ1(εn) are bounded. As the convergence of the subsequence φnk to
the first integral w̄ is strong in L2(Ω) and weak in H1

0 (Ω), it follows from (1.24), (1.25) and
Fatou’s lemma that

lim inf
n→+∞

λ1(εn) ≥
∫

Ω

|∇w̄(x)|2dx. (1.27)

It remains to notice that (1.27) and (1.21) together imply the Rayleigh quotient formula (1.20),
finishing the proof of Theorem 1.1.

When do things happen in a weakly random medium?

Before turning to an example of the second set of problems of the type (1.1), with a random
perturbation Γ, let us illustrate when one can expect a weak random fluctuation to have a
non-trivial effect. Probably, the simplest such situation is evolution of a particle in a random
time-dependent velocity field:

dX(t)

dt
= εV (t), X(0) = 0, (1.28)

that is,

X(t) = ε

∫ t

0

V (s)ds. (1.29)

One can think of (1.28) as (1.1) with the background L = 0.
We need to make some assumptions on V (t): we assume that it is a statistically homoge-

neous in time random field. Intuitively, it means that the statistics of V (t) is “the same at
all times” – which is a reasonable model for “unknown complex environments”. On a more
formal level, this condition holds if given any collection of times t1, t2, . . . , tN , and a shift h,
the joint law of the random variables V (t1 +h), V (t2 +h), . . . , V (tN +h) does not depend on h.
This means, in particular, that the expected value V̄ = 〈V (t)〉 does not depend on t, and that
the two-point correlation matrix Rij(t, s) = E[Vi(t)Vj(s)] depends only on the difference t−s.
Accordingly, we define

Rij(t) = E[Vi(0)Vj(t)],

and the power-spectrum matrix as the Fourier transform of the two-point correlation matrix

R̂ij(ω) =

∫
e−itωRij(t)dt.
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The stationarity condition can be relaxed to local stationarity – so that the random medium
characteristics can vary on a macroscopic or mesoscopic scale but we will not discuss this
direction here.

Going back to the particle trajectory (1.29), we see that its average position is

X̄(t) = E[X(t)] = εV̄ t,

where V̄ = 〈V (0)〉 is the mean velocity. Therefore, if V̄ 6= 0, then the particle moves by
a distance O(1) after a time t ∼ ε−1, which is by no means a surprising result. If V̄ = 0,
then X̄(t) = 0 for all t > 0, and the way to find out if the particle performs a non-trivial
motion is to look at its variance:

〈Xi(t)Xj(t)〉 = ε2

∫ t

0

ds1

∫ t

0

ds2E(Vi(s1)Vj(s2)) = ε2

∫ t

0

ds1

∫ t

0

ds2Rij(s1 − s2)

= ε2

∫ t

0

ds1

∫ s1

0

ds2Rij(s1 − s2) + ε2

∫ t

0

ds1

∫ t

s1

ds2Rij(s1 − s2)

= ε2

∫ t

0

ds1

∫ s1

0

ds2Rij(s2) + ε2

∫ t

0

ds1

∫ t−s1

0

ds2Rij(−s2) (1.30)

= ε2

∫ t

0

(t− s2)[Rij(s2) +Rij(−s2)]ds2 = ε2[Dijt+O(1)], as t→ +∞.

with the diffusivity matrix

Dij =

∫ ∞
−∞

Rij(s)ds = R̂ij(0). (1.31)

Expression (1.30) tells us (at least) two things: first, we should expect a non-trivial behavior
for the particle at times of the order t ∼ ε−2, and, second, that the particle behavior at
this time scale should be a Brownian motion BD(t) with the correlation matrix Dij. Strictly
speaking, we have only computed that its variance agrees with that of BD(t) but it is not
difficult to make this rigorous.

Theorem 1.2 Let V (t) be a stationary in time random process with mean zero and correlation
function

E(V (s)V (t)) = R(t− s).

Assume that the function R(t) is of the Schwartz class. Then the process

Yε(t) = ε

∫ t/ε2

0

V (s)ds

converges in law to Y (t) = DB(t). Here, B(t) is the standard Brownian motion, and the
diffusion coefficient

D =

∫ ∞
−∞

R(s)ds. (1.32)

That is, we have the following result: if X(t) solves (1.28) with a mean-zero statistically
time homogeneous random field V (t) then the process Xε(t) = X(t/ε2) converges, as t→ +∞,
to a Brownian motion with the covariance matrix Dij. The main observation here is that
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“mean-zero randomness of size ε has a non-trivial effect on the time scales of the order ε−2”
– something that any probabilist knows very well from the classical central limit theorem,
going at least as far back as de Moivre and 1733.

It is instructive to observe that the diffusivity matrix Dij is positive-definite (otherwise,
the above claim would make no sense). This is a consequence of Bochner’s theorem that
asserts that for any statistically time homogeneous process V (t) ∈ Rn the power-spectrum
matrix R̂ij(ω) is nonnegative-definite for each ω ∈ R.

Of course, in order for the above discussion to make sense, the diffusivity matrix Dij

needs to be finite – otherwise, obviously, the conclusion can not hold. This imposes a decay
condition on the two-point correlation matrix Dij. What happens if it is violated, that
is, if the matrix Dij is infinite? This tells us that by the times of the order t ∼ ε−2 the
particle is “already at infinity”, hence something non-trivial happens before the “classical’
times scale t ∼ ε−2 – this has very interesting implications beyond the scope of these notes.

A toy example: advection equation with a random potential

Let us now give an extremely simple example of dynamics (1.1) with a random operator Γ
and L 6= 0, where everything can be computed quite explicitly. One of the ”real” examples is
the Schrödinger equation

iφt + ∆φ− εV (x)φ = 0 (1.33)

with a random potential iV (x). This is an instance of (1.1) with L = ∆, and Γ the multi-
plication operator by the random function V (x). Instead, as a toy model, let us consider a
linear advection equation with the same perturbation:

∂φ

∂t
+ ū · ∇φ+ iεV (x)φ = 0, φ(0, x) = φ0(x). (1.34)

Here, ū 6= 0 is a constant drift, and V (x) is a spatially homogeneous random field. For the
moment, we will not make the assumptions on V (x) very precise, except that its mean is zero:

EV (x) ≡ 0. (1.35)

The two-point correlation function of V (x) depends only on the displacement between x and y:

E(V (x)V (y)) = R(x− y). (1.36)

This follows from spatial homogeneity of V (x). We assume that the function R(x) is of the
Schwartz class for now. Equation (1.34) is easy to solve explicitly:

φ(t, x) = φ0(x− ūt) exp
(
− iε

∫ t

0

V
(
x− sū

)
ds
)
. (1.37)

In order for the integral in the exponential to have a non-trivial effect, we need to wait until
times of the order t ∼ O(ε−2). Hence, we define

φε(t, x) = φ(
t

ε2
, x), (1.38)
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so that

φε(t, x) = φ0(x− t

ε2
ū) exp

(
− iε

∫ t/ε2

0

V (x− sū)ds
)
. (1.39)

The first term is simply the solution of the ”fast” homogeneous problem (1.34) with V = 0,
and the second factor

ζε(t, x) = exp
(
− iε

∫ t/ε2

0

V (x− sū)ds
)

(1.40)

comes from the ”slow” random dynamics. Its limit can be computed from Theorem 1.2, which
implies that ζε(t, x) converges in law to

ζ̄(t, x) = exp(−i
√
DB(t)). (1.41)

The diffusion coefficient D is

D =

∫ ∞
−∞

R(ūs)ds. (1.42)

Let us formulate this result as a theorem.

Theorem 1.3 Let V (x) be a spatially homogeneous mean-zero random field with a correlation
function R(t) ∈ S(R). Let φ(t, x) be the solution of (1.34), φε(t, x) = φ(t/ε2, x), and φ̄(t, x)
the solution of (1.34) with V = 0. Then φε(t, x) can be decomposed as

φε(t, x) = φ̄(
t

ε2
, x)ζε(t, x). (1.43)

The function ζε(t, x) converges in law, as ε→ 0 to ζ̄(t, x) given by (1.41).

This example is very simple but it has the main features that are much harder to prove in
even slightly more complicated situations. In particular, the dynamics can be decomposed
into a fast deterministic part that does not have a limit but is quite explicit, and the ”slow”
component that converges in law to a stochastic limit. As we have noticed before, the back-
ground dynamics is crucial for the limit theorem here: if ū = 0, the conclusion of Theorem 1.3
fails. Thus, the long time dynamics of the solutions of (1.34) involves a non-trivial interaction
of the background dynamics and the random fluctuations.

Organization of the notes

The notes will be organized one day.

2 Relaxation enhancement

Relaxation enhancing flows

As we have discussed, one interpretation of the eigenvalue enhancement estimate in Theo-
rem 1.1 is in terms of the long time decay rate of the solution of the Cauchy problem

ψt +
1

ε
u · ∇ψ = ∆ψ, t > 0, x ∈ Ω, (2.1)

ψ(t, x) = 0 on ∂Ω,

ψ(0, x) = g(x),
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in Ω with the Dirichlet boundary condition. Its solution has the long time asymptotics

ψ(t, x) ∼ e−λ1(ε)tφ(x) (2.2)

for t� 1. Here, φ(x) is the principal eigenfunction of the operator

−∆φ+
1

ε
u · ∇φ = λ1(ε)φ, (2.3)

with the Dirichlet boundary conditions. We have seen in Theorem 1.1 that the principal
eigenvalue, or the exponential rate of decay in (2.2), satisfies

λ1(ε)→ +∞ as ε→ 0 (2.4)

if and only if the flow u has no first integrals in H1
0 (Ω).

Here, we focus on similar questions in the case of a compact manifold without boundary
or the Neumann boundary conditions. Then, the principal eigenvalue is simply zero and
corresponds to the constant eigenfunction. One may instead study the second eigenvalue
but that is not simple since we do not even know a priori that the second eigenvalue is
real, and finding estimates for the real part of a complex eigenvalue that corresponds to
an eigenfunction that also need not be real would not be an easy task. Moreover, even if
the spectral gap estimate were available, generally it only provides a long time dynamical
information, and how fast the long time limit is achieved may depend on ε, since the operator
in the left side of (2.3) is neither self-adjoint nor normal: it does not commute with its formal
adjoint operator

L∗φ = −∆φ− 1

ε
∇ · (uφ).

On the other hand, our general interest is in the speed of convergence of the solution to
its average, the relaxation speed, and there are other ways to measure than in terms of the
spectrum. Therefore, rather than try to address the spectral behavior, we will reformulate
our questions purely in terms of the Cauchy problem.

Let Ω be a smooth compact n-dimensional Riemannian manifold. We consider solutions
of the passive scalar equation

φεt +
1

ε
u(x) · ∇φε −∆φε = 0, φε(0, x) = φ0(x). (2.5)

Here, ∆ is the Laplace-Beltrami operator on Ω, u is a divergence free vector field, ∇ is
the covariant derivative, and ε > 0 is a parameter regulating the strength of the flow. For
the sake of concreteness we will assume that Ω is a torus, and (2.5) is supplemented by
periodic boundary conditions but the results of this section apply verbatim to advection-
diffusion equations on a compact manifold without boundary, or with the Neumann boundary
conditions on a compact domain Ω ⊂ Rn, and with very slight modifications to the Robin
boundary conditions on such domains – see [8] for the full cornucopia.

As time tends to infinity, the solution φε(t, x) tends to its average,

φ(t) ≡ 1

|Ω|

∫
Ω

φε(t, x) dµ =
1

|Ω|

∫
Ω

φ0(x) dx. (2.6)
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Here |Ω| is the volume of Ω. To see that, first, integrating (2.5) over M and using incom-
pressibility of u gives

d

dt

∫
Ω

φ(t, x)dx = 0,

hence φ̄(t) = φ̄(0) is preserved in time. Next, multiplying (2.5) by φε(t, x) − φ̄, and using
incompressibility of u(x), we have

1

2

d

dt

∫
Ω

|φ(t, x)− φ̄|2dx = −
∫

Ω

|∇φε(t, x)|2dx. (2.7)

The Poincaré inequality implies that

1

2

d

dt

∫
Ω

|φ(t, x)− φ̄|2dx ≤ −Cp
∫

Ω

|φε(t, x)− φ̄|2dx, (2.8)

whence
‖φ(t, ·)− φ̄‖L2(Ω) ≤ e−Cpt‖φ0 − φ̄‖L2(Ω). (2.9)

Exercise 2.1 Strengthen this result to show that

‖φ(t, ·)− φ̄‖L∞(Ω) → 0 as t→ +∞. (2.10)

We would like to understand how the speed of convergence to the average in (2.10) depends
on the properties of the flow and determine which flows are particularly efficient in enhancing
the relaxation process. We will use the following ”fixed time” (no long time limit!) definition
as a measure of the flow efficiency in improving the relaxation of the solution to a uniform
state.

Definition 2.2 An incompressible flow u is relaxation enhancing if for all τ > 0 and δ > 0,
there exists ε(τ, δ) such that for any ε < ε(τ, δ) and any φ0 ∈ L2(Ω), with ‖φ0‖L2(Ω) = 1, we
have

‖φε(τ, ·)− φ‖L2(Ω) < δ, (2.11)

where φε(t, x) is the solution of (2.5) and φ the average of φ0.

Exercise 2.3 Show that the choice of the L2 norm in the definition is not essential and
can be replaced by any Lp-norm with 1 ≤ p ≤ ∞, without changing the class of relaxation
enhancing flows.

Let us mention that there are various results on Gaussian and other estimates on the heat
kernel corresponding to the incompressible drift and diffusion on manifolds such as in the work
of Norris [41] and Franke [20], but these estimates lead to upper bounds on the convergence
rate to the equilibrium which essentially do not improve as ε → 0, and thus do not quite
address the effect of a strong flow. Such general estimates often deteriorate as the flow gets
stronger, which is exactly the opposite of what interests us.

The original motivation for this definition came from the work of Fannjiang, Nonnemacher
and Wolowski [15, 16, 17], where relaxation enhancement was studied in the discrete setting
(see also [33] for related earlier references). In these papers, a unitary evolution step (a
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certain measure preserving map on the torus) alternates with a dissipation step, which, for
example, acts simply by multiplying the Fourier coefficients by damping factors. The absence
of sufficiently regular eigenfunctions appears as a key for the enhanced relaxation in this
particular class of dynamical systems. In [15, 16, 17], the authors also provide finer estimates
of the dissipation time for particular classes of toral automorphisms – they estimate how many
steps are needed to reduce the L2 norm of the solution by a factor of two if the dissipation
strength is ε.

To understand why and when we expect relaxation enhancement, let us first look at the
time-splitting approximation for (2.5), in the spirit of [15, 16, 17]. Assume that ψ(t, x) solves
the advection equation

ψt +
2

ε
u · ∇ψ = 0, nτ ≤ t ≤ (n+ 1/2)τ, (2.12)

followed by the heat equation

ψt = 2∆ψ, (n+ 1/2)τ ≤ nτ, (2.13)

and then again (2.12) followed by (2.13), and so on. As the time step τ → 0, the solution
of this time-splitting scheme converges to the solution of (2.12). However, the smallness of τ
that is required to make the error small depends on ε in a way that is very difficult to control
efficiently. If we, in a cavalier fashion, instead fix the size of τ that is independent of ε, then
solution of the very first step is

ψ(τ/2, x) = φ0(X(τ/ε, x)), (2.14)

where X(t, x) is the trajectory

Ẋ(t) = −u(X), X(0) = x. (2.15)

If the flow of (2.15) is sufficiently complex and ε is sufficiently small, the points X(τ/ε, x)
and X(τ/ε, x′) may be very far apart, even if x and x′ are very close. This would make
the difference ψ(τ/2, x) − ψ(τ/2, x′) large, so that the function ψ(τ/2, x) given by (2.14)
would have a large gradient. This means that the initial condition for the second step in the
time-splitting scheme

ψt = 2∆ψ, τ/2 ≤ τ, (2.16)

has a very large gradient. On the other hand, the dissipation identity for (2.16)

1

2

d

dt

∫
Ω

|ψ − ψ̄|2 = −2

∫
Ω

|∇ψ|2dx (2.17)

tells us that solutions with a large gradient and zero average decay very fast. Therefore, we
would deduce that for ”sufficiently mixing” flows u(x) solutions of this time splitting scheme
converge to their average very fast if ε is small. The problem with making this argument
rigorous is that, as we have mentioned, for the convergence of the time-splitting scheme to
the true solution we would need to take τ not fixed but τ � ε, making the interaction of
advection and diffusion non-trivial and very difficult to account for carefully. Neverthless,
this intuition is correct. Here is the main result of this section.
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Theorem 2.4 ([8]) A Lipschitz continuous incompressible flow u ∈ Lip(Ω) is relaxation
enhancing if and only if the operator u · ∇ has no eigenfunctions in H1(Ω), other than the
constant function.

The ”sufficiently mixing” property of u is encoded in this theorem in the requirement that
it does not have an eigenfunction in H1(Ω). The reason for that condition can also be seen
from the time-splitting scheme (2.14)-(2.16). The operator u · ∇ is skew-symmetric when u
is divergence free: ∫

Ω

(u · ∇η(x))η(x)dx = 0, (2.18)

for all η ∈ H1(Ω). Therefore, all its eigenvalues λ = iω are purely imaginary, and if w ∈ H1(Ω)
is an eigenfunction, then solution of (2.14)

ψt +
2

ε
u · ∇ψ = 0, 0 ≤ t ≤ τ/2 (2.19)

with the initial data ψ(0, x) = w(x) satisfies

ψ(t, x) = e2iωt/εw(x).

Therefore, ‖ψ(τ/2, x)‖H1(Ω) = ‖w‖H1(Ω) does not increase, hence the advection step does not
prepare an irregular initial data for the heat equation in the second step, and there is no
intuitive reason to expect relaxation enhancement when ε→ 0.

Furthermore, as in the eigenvalue enhancement in Theorem 1.1 the way the Laplacian
operator (that is responsible for dissipation) enters the statement of Theorem 2.4 is in the
requirement that the eigenfunction lies in the space H1(Ω) – rough eigenfunctions (outside
of H1(Ω)) do not prevent a flow u(x) from being relaxation enhancing.

The discrepancy between Theorems 1.1 and 2.4 may seem surprising – after all, on the
physical level the conditions for the relaxation enhancement and eigenvalue enhancement need
not be very different but the eigenvalue enhancement (with the Dirichlet boundary conditions)
requires that the operator u · ∇ does not have first integrals while relaxation enhancement
(with the periodic or Neumann boundary conditions) requires that this operator does not
have eigenfunctions in H1(Ω) with any eigenvalue (the first integral corresponds to a zero
eigenvalue). This issue is resolved by the following

Proposition 2.5 Let u ∈ Lip(Ω). If φ ∈ H1(Ω) is an eigenfunction of the operator u · ∇
corresponding to an eigenvalue iω, ω ∈ R, then |φ| ∈ H1(Ω) and it is the first integral of u,
that is, u · ∇|φ| = 0.

Proof. The fact that |φ| ∈ H1 follows from the well-known properties of Sobolev functions
(see, for example, [14]). If φ(x) satisfies

u · ∇φ = iωφ

then
u · ∇|φ|2 = u · ∇(φφ̄) = φ(u · ∇φ̄) + φ̄(u · ∇φ) = −iωφφ̄+ iωφφ̄ = 0,

hence u · ∇|φ| = 0. �

13



Therefore, in the case of the Dirichlet boundary conditions, if φ ∈ H1
0 (Ω) is an eigenfunc-

tion of the operator u·∇ then |φ| is its first integral. Naturally, |φ| can not be equal identically
to a constant since φ satisfies the Dirichlet boundary conditions, as it lies in H1

0 (Ω), and φ 6≡ 0.
Moreover, if φ ∈ H1

0 (Ω) is a first integral: u ·∇φ = 0 then it is an eigenfunction corresponding
to eigenvalue λ = 0. Hence, for the Dirichlet boundary conditions the requirement that u · ∇
does not have a first integral in H1

0 (Ω) is equivalent to the condition that it does not have
eigenfunctions in H1

0 (Ω).
On the other hand, existence of mean zero H1(Ω) eigenfunctions, without imposing the

Dirichlet boundary condition, need not guarantee the existence of a mean zero first integral,
as can be seen from the following well-known example. Let α ∈ Rn be a constant vector gen-
erating an irrational rotation on the n-dimensional torus Ω, in the sense that the components
of α are independent over the rationals. The operator α · ∇ has eigenvalues 2πi(α · k), with
any k ∈ Zn. The corresponding eigenfunctions are

wk(x) = e2πik·x.

Their absolute value is 1, which is a first integral of α ·∇ but there are no other first integrals
since α is irrational. Indeed, if there exists a function ψ ∈ L1(Ω) such that

ψ(x+ αt) = ψ(x), for all x ∈ Ω and all t ∈ R,

then the Fourier coefficients of the function ψ, defined by

ψ(x) =
∑
k∈Zn

e2πik·xψ̂k, ψ̂k =

∫
Ω

e−2πik·yψ(y)dy,

should satisfy
ψ̂k = e2πik·αtψ̂k, for all k ∈ Zn, and all t ∈ R.

Therefore, either all ψ̂k = 0 for k 6= 0, or there exists k 6= 0 such that

k · α = 0.

The latter, however, is impossible since α is irrational. Hence, ψ̂k = 0 for all k 6= 0, and
the only first integrals of α · ∇ for an irrational α are constant functions. Thus, this flow is
not relaxation enhancing, since it has eigenfunctions in H1(Ω), even though it has no first
integrals other than a constant function.

Mixing and weakly mixing flows

An important class of relaxation enhancing flows is given by mixing and weakly mixing flows.
Let us recall how they are defined. An incompressible flow u ∈ Lip(Ω) generates a unitary
evolution group U t on L2(Ω), defined by

U tf(x) = f(X(t;x)).

Here, X(t;x) is the measure preserving map associated with the flow, defined by (2.15):

dX

dt
= −u(X), X(0;x) = x. (2.20)
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The group U t is a convenient tool to set up everything in L2(Ω) rather than at the level of
trajectories. For example, a function f is a first integral of u if

U tf(x) = f(x), for all x ∈ Ω and all t ∈ R. (2.21)

We say that a flow u is ergodic if its only first integrals are constant functions.
A flow is mixing if the following condition holds: for any two functions f, h ∈ L2(Ω) we

have

lim
t→+∞

∫
Ω

f(X(t;x))h(x)dx =

∫
Ω

f(x)dx

∫
Ω

h(x)dx. (2.22)

The mixing condition (2.22) can be interpreted as follows. Let us start (2.20) at a random
point x, equally distributed over the set Ω. The Lebesgue measure on Ω is invariant under
the dynamics (2.20) since u is incompressible: for any measurable set A we have

P(X(t) ∈ A) =

∫
Ω

χA(X(t;x))dx =

∫
Ω

χA(x)dx = |A|.

Consider two measurable sets A ⊂ Ω and B ⊂ Ω, and the corresponding characteristic
functions h(x) = χA(x) and f(x) = χB(x). Then (2.22) says that

P (X(t) ∈ B and X(0) ∈ A)− |A| · |B| → 0, as t→ +∞, (2.23)

that is, the events {X(0) ∈ A} and {X(t) ∈ B} become asymptotically (as t → +∞)
independent – the fact that you end up in B does not depend on where you start.

Mixing implies ergodicity: if U tf(x) = f(x) for all t ∈ R then∫
Ω

f(X(t;x))h(x)dx =

∫
Ω

f(x)h(x)dx, for all t > 0, (2.24)

for all h ∈ L2(Ω) which is incompatible with mixing unless f is a constant function.
A function f ∈ L2(Ω) is an eigenfunction of the flow u if for any t ∈ R there exists c(t) so

that
U tf(x) = c(t)f(t). (2.25)

This definition is equivalent to the condition that

u · ∇f = λf. (2.26)

Indeed, the function g(t, x) = U tf(x) satisfies the advection equation

gt + u · ∇g = 0, g(0, x) = f(x). (2.27)

therefore, if (2.26) holds then
f(X(t, x)) = eλtf(x).

On the other hand, if (2.25) holds then the solution of (2.27) has the form

g(t, x) = c(t)f(x).
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Inserting this expression into (2.27) gives

ċ(t)f(x) + c(t)u(x) · ∇f(x) = 0.

Separation of variables now implies that there exists λ ∈ C such that (note that c(0) = 1
automatically)

c(t) = e−λt,

and
u(x) · ∇f(x) = λf(x).

Moreover, as the map x → X(t;x) is measure preserving for all t ∈ R, |c(t)| = 1 for all t,
whence λ is purely imaginary: λ = iω with a real number ω.

An incompressible flow u is called weakly mixing if the corresponding operators U t have
only continuous spectrum, that is, the only eigenfunctions of U t are constants. An equivalent
definition is that (2.22) holds on average, that is:

lim
T→+∞

1

T

∫ T

0

∣∣∣∣∫
Ω

f(X(t;x))h(x)dx−
∫

Ω

f(x)dx

∫
Ω

h(x)dx

∣∣∣∣ dt = 0, (2.28)

and the convergence in (2.23) holds for a set of times of density one.
Weakly mixing flows are ergodic: first integrals are eigenfunctions with eigenvalue zero

but weakly mixing flows are not necessarily mixing (see, for instance, [9]). On the other
hand, mixing flows are weakly mixing: essentially for the same reason that mixing flows are
ergodic – if

U tf = c(t)f, for all t ∈ R,

then ∫
Ω

f(X(t;x))h(x)dx = c(t)

∫
Ω

f(x)h(x)dx, for all t > 0, (2.29)

for all h ∈ L2(Ω) which is also incompatible with mixing unless f is a constant function.
A direct consequence of Theorem 2.4 is the following Corollary.

Corollary 2.6 Any weakly mixing incompressible flow u ∈ Lip(Ω) is relaxation enhancing.

There exist fairly explicit examples of weakly mixing flows [2, 18, 19, 35, 44, 40], some of
which we describe below but delving into the detailed constructions would take us too far
outside of the PDE realm.

Examples of relaxation enhancing flows

Before embarking on the proof of Theorem 2.4 we present in this section some examples of
relaxation enhancing flows on a torus so as to assure the reader that this class is not empty.
We first describe flows that have no eigenfunctions – they are weakly mixing, and then flows
with very rough eigenfunctions none of which lie in H1(Ω).
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Weakly mixing incompressible flows on a torus

According to Theorem 2.4, a flow u ∈ Lip(Ω) is relaxation enhancing if and only if it has
no eigenfunctions in H1(Ω). As we have mentioned, a natural class satisfying this condition
is weakly mixing flows – which have no eigenfunctions in L2(Ω) at all. Examples of weakly
mixing flows on T2 go back to von Neumann [40] and Kolmogorov [35]. The flow in von
Neumann’s example is continuous, in the construction suggested by Kolmogorov the flow is
smooth. The technical details of Kolmogorov’s construction have been carried out in [44],
a good review of these results is [27]. More recently, Fayad [18] generalized this example to
show that weakly mixing flows are generic. To describe the result of [18] in more detail, let
us recall that a vector α ∈ Rn is called β-Diophatine if there exists a constant C such that
for each k ∈ Zn \ {0} we have

inf
p∈Z
|〈α, k〉+ p| ≥ C

|k|n+β
.

The vector α is Liouvillean if it is not Diophantine for any β > 0. The Liouvillean numbers
(and vectors) are the ones which can be very well approximated by rationals.

In order to construct a weakly mixing flow on a torus Tn+1 we start with a very simple
flow that is a local time change of a linear translation flow:

dX

dt
=

α

F (X, Y )
,
dY

dt
=

1

F (X, Y )
, X(0) = x, Y (0) = y, (2.30)

with a smooth positive function F (x, y), x ∈ Tn, y ∈ T. Such flows have a unique invariant
measure

dµ = F (x, y)dxdy.

Indeed, for any smooth function f(x, y) set

g(t, x, y) = U tf(x, y) = f(X(t, x, y), Y (t, x, y)),

so that ∫
Tn+1

U tfdµ =

∫
Tn+1

f(X(t, x, y), Y (t, x, y))dµ =

∫
Tn+1

g(t, x, y)dµ.

This function satisfies the first order advection equation

∂g

∂t
− α

F (x, y)
· ∇xg −

1

F (x, y)

∂g

∂y
= 0, g(0, x, y) = f(x, y). (2.31)

Using this equation, we compute:

d

dt

∫
Tn+1

U tfdµ =
d

dt

∫
Tn+1

g(t, x, y)dµ =

∫
Tn+1

[
α

F (x, y)
· ∇xg(x, y)) +

1

F (x, y)

∂g(x, y)

∂y

]
dµ

=

∫
Tn+1

[
α · ∇xg(t, x, y) +

∂g(t, x, y)

∂y

]
dxdy = 0. (2.32)

Therefore, µ is, indeed, an invariant measure for the flow (2.30). Let us denote by Cr
+(Td)

the set of positive Cr functions on the torus. Fayad’s result is
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Proposition 2.7 ([18]) Assume that the irrational vector α ∈ Rd is not β-Diophantine, for
some β > 0. Then, for a dense Gδ set of functions F in Cβ+n

+ (Tn+1) the flow (2.30) is weakly
mixing (for the unique invariant measure F (x, y)dxdy).

The flows given by this proposition have an invariant measure F (x, y)dxdy and not the
Lebesgue measure dxdy – they are not quite divergence free, rather they satisfy

∇ · (Fu) = 0.

To obtain examples of relaxation enhancing flows, we need to modify these flows so that the
resulting flow is divergence-free but the weakly mixing property is preserved. Obviously, if
the flow (2.30) is weakly mixing for some F then it is also weakly mixing for all positive
multiples of F – multiplication of F by a constant amounts to a simple rescaling of time by
the same constant. Thus, we may assume that F given by Proposition 2.7 is normalized so
that ∫

Tn+1

F (x, y)dxdy = 1. (2.33)

As Tn+1 is the unit torus, a theorem of Moser [39] says that then there exists a measure
preserving invertible transformation

Z : Tn+1(F (x, y)dxdy)→ Tn+1(dpdq),

that is as smooth as the function F . If we denote by

w(x, y) = (α/F (x, y), 1/F (x, y))

the vector field in (2.30), then the vector field

u(p, q) = Z ◦ w ◦ Z−1

is going to be incompressible (with respect to the standard Lebesgue measure dpdq). More-
over, the unitary evolutions generated by w and u in L2(F (x, y)dxdy) and L2(dpdq), respec-
tively, are unitary equivalent and so have the same spectra. Therefore, the flow u(p, q) is
weakly mixing and thus relaxation enhancing.

Flows with rough eigenfunctions

We now describe an example of a different class of flows to which Theorem 2.4 applies. Namely,
we will sketch a construction of a smooth incompressible flow u(x, y), ∇·u = 0, on a torus T2

that has a purely discrete spectrum but none of the eigenfunctions are in H1(T2). The idea
of the construction goes back to Kolmogorov [35]. We only sketch the construction, without
presenting the full technical details [2, 27].

As before, we denote by U t the flow on L2(T2) generated by u:

U tf(x) = f(X(t;x)),

and by X(t, x) the trajectory of

dX

dt
= −u(X), X(0;x) = x.
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Proposition 2.8 There exists a smooth incompressible (with respect to the Lebesgue measure)
flow u(x, y) on a two-dimensional torus T2 so that the corresponding unitary evolution U t has
a discrete spectrum on L2(T2) but none of the eigenfunctions of U t are in H1(T2).

Proof. The example will be given by a flow of the type (2.30):

dX

dt
=

α

F (X, Y )
,
dY

dt
=

1

F (X, Y )
, X(0) = x, Y (0) = y, (2.34)

with d = 2 and appropriately chosen α ∈ R and F (x, y). The idea of the construction is to
find a flow of this form which can be mapped to a constant flow (α, 1) by a measure preserving
map S with very low regularity properties. Since the eigenfunctions of the constant flow are
explicitly computable, we can compute the eigenfunctions of the original flow. Due to the
roughness of S, these will be highly irregular. To obtain an incompressible flow, rather than a
flow that preserves the measure F (x, y)dxdy, we will then proceed as in the previous example.

It would be very convenient to take F (x, y) in the form

F (x, y) = Q(x− αy), (2.35)

so that F (x, y) would be constant on each trajectory of the flow (2.34). However, for F (x, y)
as in (2.35) to be 1-periodic both in x and y, the function Q(x) has to be both 1-periodic
and α-periodic. If α is irrational, this is impossible unless Q(x) ≡ 1.

Thus, instead of trying (2.35), we take a 1-periodic function Q(x) > 0, and choose m > 0
so that m < minQ(s). We also take a smooth cut-off function ψ(y) ≥ 0 such that∫ 1

0

ψ(y)dy = 1, (2.36)

and

ψ(y) = 0 for 0 ≤ y ≤ y0 and y1 ≤ y ≤ 1 with y0 close to zero and y1 close to one. (2.37)

The choice of m ensures that the function

F (x, y) = m+ ψ(y)(Q(x− αy)−m), 0 ≤ x, y ≤ 1 (2.38)

is positive. Next, we extend F (x, y) periodically in both variables to the whole plane R2.
The periodicity of Q(x) and (2.37) imply that the extension is smooth. In addition, because
of (2.42), it has total mass over the torus equal to one:∫ 1

0

∫ 1

0

F (x, y)dxdy = 1.

In order to map the flow (2.34) to a constant speed flow (α, 1) moving along the same
straight lines, it is natural to attempt to define the transformation S : (x, y)→ (X, Y ) as

X(x, y) = x+ α(Y (x, y)− y), Y (x, y) = T (x− αy, y), (2.39)

with T (x, y) defined by

T (x, y) =

∫ y

0

F (x+ αz, z)dz.
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The transformation (2.39) satisfies x−αy = X−αY, thus it preserves the flow trajectories. In
addition, T (x, y) is simply the time it takes for the particle to move from the point (x−αy, 0)
to the point (x, y). Hence, the particle would move with a constant speed in the new variables,
and the speed in the y-direction would equal to one. However, the transformation (2.39) is
not well-defined: X(x, y) and Y (x, y) are not 1-periodic (even modulo 1) in x and y, so this
is not a map of the torus T2 to itself. Thus, we modify (2.39) as [35, 45]

X(x, y) = x+ α(Y (x, y)− y), Y (x, y) = T (x− αy, y) +R(x− αy), (2.40)

adding a shift R(x− αy) that is constant on each trajectory.
We claim that if we choose the 1-periodic function R(x) that satisfies the homology equa-

tion
R(ξ + α)−R(ξ) = Q(ξ)− 1, ξ ∈ S1, (2.41)

then the map (2.40) is well-defined on T2. Note that for (2.41) to have a measurable solution
the function Q(ξ) should satisfy the normalization [2]∫ 1

0

Q(ξ)dξ = 1. (2.42)

The shift in x is simple: the function T (x, y) is clearly 1-periodic in x since F (x, y) is
periodic in x, thus

Y (x+ 1, y) = Y (x, y), (2.43)

while
X(x+ 1, y) = 1 +X(x, y). (2.44)

To verify what happens under the shift y → y+1, we first make some preliminary observations.
The normalization (2.36) implies that the functions F and Q are related by∫ 1

0

F (ξ + αz, z)dz =

∫ 1

0

[m+ ψ(z)(Q(ξ)−m)]dz = Q(ξ), 0 ≤ ξ ≤ 1, (2.45)

while for ξ ≥ 1 we have ∫ 1

0

F (ξ + αz, z)dz = Q({ξ}), (2.46)

where {ξ} = ξ − [ξ] is the fractional part of ξ, and [ξ] is the integer part of ξ. Furthermore,
we have ∫ n+1

n

F (ξ + αz, z)dz =

∫ 1

0

F (ξ + nα + αz, z)dz = Q({ξ + nα}). (2.47)

Now, it follows that

T (x, y + 1) =

∫ 1+y

0

F (x+ αz, z)dz =

∫ 1

0

F (x+ αz, z)dz +

∫ y+1

1

F (x+ αz, z)dz

= Q(x) +

∫ y

0

F (x+ α + αz, z)dz = T (x+ α, y) +Q(x) (2.48)
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because of (2.45). Using this identity, and the homology equation (2.41) for the function R
gives

Y (x, y + 1) = T (x− αy − α, y + 1) +R(x− αy − α) (2.49)

= T (x− αy, y) +Q(x− αy − α) +R(x− αy)−Q(x− αy − α) + 1

= T (x− αy, y) +R(x− αy) + 1 = Y (x, y) + 1.

Finally, for X(x, y) we have

X(x, y+1) = x+α(Y (x, y+1)−y−1) = x+α(Y (x, y)+1−y−1) = x+α(Y (x, y)−y) = X(x, y).
(2.50)

We conclude from (2.43), (2.44), (2.49) and (2.50) that S is a well-defined mapping of T2 to
itself.

A key observation is that solutions R(x) of the homology equation (2.41) can be very
rough even if the function Q ∈ C∞(S1) is smooth. To see that, let us go back to the homology
equation

R(ξ + α)−R(ξ) = Q(ξ)− 1, ξ ∈ S1. (2.51)

Note that it can be solved explicitly using the Fourier transform:

R(ξ) =
∑
n∈Z

R̂ne
2πinξ, (2.52)

with the Forueri coefficients

R̂n =
Q̂n

exp(2πiαn)− 1
. (2.53)

The denominators in (2.53) can be dangerously small if αn can be very close to an integer,
that is, if α is a Liouvillean irrational number. The following Proposition is a particular case
of Theorem 4.5 of [27].

Proposition 2.9 Let α be a Liouvillean irrational number. There exists a C∞(S1) func-
tion Q(ξ) so that the homology equation (2.41) has a unique (up to an additive constant)
measurable solution R(ξ) : S1 → R such that for any λ ∈ R\{0}, the function Rλ(ξ) = eiλR(ξ)

is discontinuous everywhere.

Without loss of generality we may assume that Q(ξ) given by Proposition 2.9 is positive –
otherwise we choose M so that Q(ξ) +M > 1 and consider a rescaled function

QM(ξ) = (M +Q(ξ))/(M + 1).

Then, the function

RM(ξ) =
R(ξ)

M + 1

is the solution of (2.41) with QM in the right side and, of course, RM(ξ) has the same set
discontinuities as R(ξ).

Let us see what happens to the flow (2.34) under the map (2.40):

dx

dt
=

α

F (x, y)
,
dy

dt
=

1

F (x, y)
, x(0) = x0, y(0) = y0. (2.54)
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Note that
x(t)− y(t) = x0 − αy0,

hence Y (t) is given by

Y (t) = T (x(t)− αy(t), y(t)) +R(x(t)− αy(t)) = T (x0 − αy0, y(t)) +R(x0 − αy0), (2.55)

so that

dY

dt
=
∂T (x0 − αy0, y(t))

∂y
ẏ(t) = F (x0 − αy0 + αy(t), y(t))

1

F (x(t), y(t)
(2.56)

= F (x(t)− αy(t) + αy(t), y(t))
1

F (x(t), y(t)
= 1.

On the other hand, for X(t) we have

dX

dt
= ẋ(t) + α(Ẏ (t)− ẏ(t)) =

α

F (x(t), y(t)
+ α− α

F (x(t), y(t)
= α. (2.57)

Therefore, the image of the flow (2.34) under S is simply the uniform flow:

dX

dt
= α,

dY

dt
= 1, (2.58)

as we desired. We will denote wunif = (α, 1).
Note that S is invertible with a measurable inverse. Indeed, we have

X − αY = x− αy, (2.59)

so that
Y = T (X − αY, y) +R(X − αY ). (2.60)

As the function F is positive, the function T (x, y) is strictly increasing in y so that (2.60) has
a unique solution y(X, Y ), and then (2.59) defines x(X, Y ) uniquely.

In addition, S is measure preserving in the following sense:∫
[S∗f ](x, y)F (x, y)dxdy =

∫
f(S(x, y))F (x, y)dxdy =

∫
f(X, Y )dXdY (2.61)

for any function f ∈ C(T2). In order to see that, let us introduce intermediate changes of
variables: S = S3 ◦ S2 ◦ S1, with S1 : (x, y)→ (z, y1) with

z = x− αy, y1 = y,

followed by S2 : (z, y1)→ (Z, y2)

Z = z, y2 = T (z, y1) +R(z),

and finally S3 : (Z, y2)→ (X, Y ), with

X = Z + αy2, Y = y2.
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The corresponding Jacobians are:

J1 = J3 = 1, J2 =
∂T

∂y1

(z, y1) = F (z + αy1, y1) = F (x, y).

Therefore, the Jacobian of S is, indeed,

J = J1J2J3 = F (x, y),

hence (2.61) holds and S is measure-preserving.
Hence, S∗ may be extended as an operator L2(dxdy) → L2(dµ) with the preservation of

the corresponding norms. It follows that the unitary evolutions U t
w and U t

unif generated by
the flow w given by (2.54) and the uniform flow wunif , respectively, are conjugated by means
of the unitary transformation

S∗ : L2(T2, dXdY )→ L2(T2, dµ),

that is, we have
U t
unif = [S∗]−1U t

wS
∗.

Therefore, U t
w and U t

unif have the same spectrum:

λnl = 2πinα + 2πil, l, n ∈ Z.

It also follows that the eigenfunctions of the operator Uw may be written as

ψwnl(x, y) = e2πinX(x,y)+2πilY (x,y) = e2πin(x−αy+αY (x,y))+2πilY (x,y) (2.62)

= e2πin(x−αy)e(2πinα+2πil)(T (x−αy,y)+R(x−αy)) = ζ(x, y)e(2πinα+2πil)R(x−αy)

with a smooth function ζ(x, y) ∈ C∞([0, 1]2). Note that the function

ζ(x, y) = e2πin(x−αy)e(2πinα+2πil)T (x−αy,y)

is not periodic in y even though the function ψwnl(x, y) is periodic. In order to verify that ψwnl
are not in H1(T2) it suffices to check that the function

Θλ(x, y) = eiλR(x−αy) = Rλ(x− αy)

is not in H1([0, 1]2) for any real λ 6= 0. Here, Rλ(s) is as defined in Proposition 2.9. Since the
function Θλ(x, y) is constant on the lines

x− αy = const,

if it were in H1([0, 1]2), it would force the function Rλ(s) to be in H1(S1) and hence contin-
uous. However, Rλ is discontinuous everywhere according to Proposition 2.9. Therefore, the
eigenfunctions ψwnl cannot be in H1(T2) unless n = l = 0.

Finally, to obtain an incompressible flow (with respect to the standard Lebesgue measure)
with rough eigenfunctions, we introduce a smooth transformation of the torus

S̄ : (x, y)→ (p, q)
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by setting

p =

∫ x

0

F̄ (s)ds, q =
1

F̄ (x)

∫ y

0

F (x, z)dz, where F̄ (x) =

∫ 1

0

F (x, z)dz.

Note that F̄ (x) is periodic, and

p(x+ 1, y) =

∫ x+1

0

F̄ (s)ds = p(x, y) +

∫ 1

0

F̄ (s)ds = p(x, y) + 1.

We also have q(x+ 1, y) = q(x, y) and

q(x, y + 1) =
1

F̄ (x)

∫ y+1

0

F (x, z)dz = q(x, y) + 1.

Therefore, indeed, S̄ is a mapping of T2 to itself. Since F (x, y) is positive, S̄ is one-to-one.
It is immediate to verify that it maps the measure dµ onto the Lebesgue measure dpdq – the
Jacobian of S̄ is F (x, y). Hence, the evolution group generated by the image u(p, q) of the
flow w(x, y) will have the same discrete spectrum as Uw. In addition, the eigenfunctions ψwnl
of Uw are the images of the eigenfunctions ψunl of u under S̄∗:

ψwnl(x, y) = (S̄∗ψunl)(x, y) = ψunl(S̄(x, y)).

As the functions ψwnl are not in H1(T2) and the map S̄ is smooth, it follows that all the
eigenfunctions of the incompressible flow u(p, q) are not in H1(T2). This finishes the proof of
Proposition 2.8. �

An abstract criterion for relaxation enhancement

Theorem 2.4 follows from a rather general abstract criterion, which connects us back to
the abstract set-up of (1.1). We start with a self-adjoint, positive, unbounded operator Γ
with a discrete spectrum on a separable Hilbert space H. In the setting of Theorem 2.4, Γ
corresponds to −∆, with H the subspace of mean zero functions on L2(Ω). We denote by

0 < λ1 ≤ λ2 ≤ . . .

the eigenvalues of Γ, and by ej the corresponding orthonormal eigenvectors forming a basis
in H. The (homogenous) Sobolev space Hm(Γ) associated with Γ is formed by all vectors

ψ =
∑
j

cjej ∈ H,

such that
‖ψ‖2

Hm(Γ) ≡
∑
j

λmj |cj|2 <∞.

Note that H2(Γ) is the domain D(Γ) of Γ. The crucial assumption is that λn → +∞ – this
makes the set where the dissipation by Γ is not too large a compact subset of H.
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The analog of the operator u · ∇ in Theorem 2.4 (or, to be precise, of the self-adjoint
operator generating the unitary evolution group U t which is equal to iu · ∇ on H1(Ω)) is a
self-adjoint operator L such that, for any ψ ∈ H1(Γ) and t > 0 we have

‖Lψ‖H ≤ C‖ψ‖H1(Γ) and ‖eiLtψ‖H1(Γ) ≤ B(t)‖ψ‖H1(Γ) (2.63)

with both the constant C and the function B(t) <∞ independent of ψ and B(t) ∈ L2
loc[0,∞).

Here eiLt is the unitary evolution group generated by the self-adjoint operator L. Consider a
solution φε(t) of the rescaled in time version of (1.1):

d

dt
φε(t) =

i

ε
Lφε(t)− Γφε(t), φε(0) = φ0. (2.64)

Theorem 2.10 Let Γ be a self-adjoint, positive, unbounded operator with a discrete spectrum
and let a self-adjoint operator L satisfy conditions (2.63). Then the following two statements
are equivalent:

(i) For any τ, δ > 0 there exists ε0(τ, δ) such that for any 0 < ε < ε0(τ, δ) and any φ0 ∈ H
with ‖φ0‖H = 1, the solution φε(t) of (2.64) satisfies ‖φε(τ)‖2

H < δ.

(ii) The operator L has no eigenvectors in H1(Γ).

Theorem 2.10 provides a sharp answer to the general question of when a combination
of fast unitary evolution and dissipation produces a significantly stronger dissipative effect
than dissipation alone. It can be useful in any model describing a physical situation which
involves fast unitary dynamics with dissipation (or, equivalently, unitary dynamics with weak
dissipation). The proof of Theorem 2.10 uses ideas from quantum dynamics, in particularly
the RAGE theorem (see e.g., [10]) describing the evolution of a quantum state belonging to
the continuous spectral subspace of a self-adjoint operator.

Exercise 2.11 Show that neither of the two conditions in (2.63) implies the other.

The proof of Theorem 2.10

The general idea of the proof is quite straightforward. The dissipation balance for our problem
is

1

2

d

dt
(‖φε‖2

H) = −〈Γφε, φε〉 = −‖φε(t)‖2
H1(Γ). (2.65)

Therefore, if ‖φ‖H1(Γ) is large on a time interval [t1, t2] then ‖φε(t)‖H will drop significantly
over this time. On the other hand, we will show that if ‖φε(τ)‖H1(Γ) is small at some time τ
then, as L does not have H1(Γ)-eigenfunctions, the free evolution

dφ0

dt
=
i

ε
Lφ0, φ0(τ) = φε(τ), t ≥ τ, (2.66)

will make the H1(Γ)-norm of φ0 very large in a time so short that the free evolution is close
to the true evolution over this short time interval. This means that the H1(Γ)-norm of φε(t)
will also he very large. Hence, even if the H1(Γ)-norm of φε drops, it will go back up again
very quickly, forcing the dissipation to be large most of the time, and reducing ‖φε(t)‖H very
efficiently. Making this argument careful will take us some time, no pun intended. A crucial
role is played by the fact that the unit ball in the H1(Γ)-norm is compact in H.
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Preliminaries

We first collect some elementary facts and estimates for equation (2.64). For simplicity, we
will denote the norm in the Hilbert space H by ‖ · ‖, the inner product in H by 〈·, ·〉, the
Sobolev spaces Hm(Γ) simply by Hm and the norms in these Sobolev spaces by ‖ · ‖m. We
have the following existence and uniqueness result.

Proposition 2.12 Assume that for any ψ ∈ H1, we have

‖Lψ‖ ≤ C‖ψ‖1. (2.67)

Then for any T > 0, there exists a unique solution φ(t) of the equation

dφ(t)

dt
= (iL− Γ)φ(t), φ(0) = φ0 ∈ H1.

This solution satisfies

φ(t) ∈ L2([0, T ], H2) ∩ C([0, T ], H1), φ̇(t) ∈ L2([0, T ], H). (2.68)

Exercise 2.13 Proposition 2.12 can be proved by standard methods using Galerkin approx-
imations and then establishing uniqueness and regularity. Fill in the details of the argument.

Next we establish a few properties that are more specific to our particular problem. It will
be more convenient, in terms of notation, to rescale the time back by the factor ε−1, arriving
at the equation

dφ̃ε(t)

dt
= (iL− εΓ)φ̃ε(t), φ̃ε(0) = φ0. (2.69)

Lemma 2.14 Assume that (2.67) holds, then for any initial data φ0 ∈ H, ‖φ0‖ = 1, the
solution φ̃ε(t) of (2.69) satisfies

ε

∫ ∞
0

‖φ̃ε(t)‖2
1dt ≤

1

2
. (2.70)

Proof. Recall that if φ ∈ H1(Γ), then Γφ ∈ H−1(Γ) and 〈Γφ, φ〉 = ‖φ‖2
1. The fact that L is

self-adjoint allows us to compute

d

dt
‖φ̃ε‖2 = 〈φ̃ε, φ̃εt〉+ 〈φ̃εt , φ̃ε〉 = −2ε‖φ̃ε‖2

1. (2.71)

Integrating in time and taking into account the normalization of φ0, we obtain (2.70). �
An immediate consequence of (2.71) is the following result, that we state here as a separate

lemma for convenience.

Lemma 2.15 Suppose that for all times t ∈ (a, b) we have ‖φ̃ε(t)‖2
1 ≥ N‖φ̃ε(t)‖2. Then the

following decay estimate holds:

‖φ̃ε(b)‖2 ≤ e−2εN(b−a)‖φ̃ε(a)‖2.
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Next we need an estimate on the growth of the difference between solutions corresponding
to ε > 0 and ε = 0 in the H-norm.

Lemma 2.16 Assume, in addition to (2.67), that for any ψ ∈ H1 and t > 0 we have

‖eiLtψ‖1 ≤ B(t)‖ψ‖1 (2.72)

for some B(t) ∈ L2
loc[0,∞). Let φ0(t), φε(t) be solutions of

dφ0(t)

dt
= iLφ0(t),

dφ̃ε(t)

dt
= (iL− εΓ)φ̃ε(t),

satisfying φ0(0) = φε(0) = φ0 ∈ H1. Then we have

d

dt
‖φ̃ε(t)− φ0(t)‖2 ≤ 1

2
ε‖φ0(t)‖2

1 ≤
1

2
εB2(t)‖φ0‖2

1. (2.73)

Proof. Note that φ0(t) = eiLtφ0 by definition. Assumption (2.72) says that this unitary evo-
lution is bounded in the H1(Γ) norm. The regularity guaranteed by conditions (2.67), (2.72)
and Proposition 2.12 allows us to multiply the equation

d

dt
(φ̃ε − φ0) = iL(φ̃ε − φ0)− εΓφ̃ε

by φ̃ε − φ0. We obtain

d

dt
‖φ̃ε − φ0‖2 ≤ 2ε(‖φ̃ε‖1‖φ0‖1 − ‖φ̃ε‖2

1) ≤ 1

2
ε‖φ0‖2

1,

which is the first inequality in (2.73). The second inequality follows simply from the assump-
tion (2.72). �
The following corollary is immediate.

Corollary 2.17 Assume that (2.67) and (2.72) are satisfied, and the initial data φ0 ∈ H1.
Then the solutions φ̃ε(t) and φ0(t) defined in Lemma 2.16 satisfy

‖φ̃ε(t)− φ0(t)‖2 ≤ 1

2
ε‖φ0‖2

1

∫ τ

0

B2(t) dt

for any time t ≤ τ.

Eigenvectors in H1(Γ) preclude relaxation enhancement

One direction in the proof of Theorem 2.10 is much easier: existence of H1(Γ) eigenvectors of
the operator L ensures existence of τ0, δ0 > 0 and φ0 with ‖φ0‖ = 1 such that ‖φε(τ0)‖ > δ0

for all ε – that is, if such eigenvectors exist, then the operator L is not relaxation enhancing.
Assume that the initial condition φ0 ∈ H1 for

d

dt
φε(t) =

i

ε
Lφε(t)− Γφε(t), φε(0) = φ0 (2.74)
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is an eigenvector of L corresponding to an eigenvalue E, normalized so that ‖φ0‖ = 1. Take
the inner product of (2.74) with φ0. We arrive at

d

dt
〈φε(t), φ0〉 =

iE

ε
〈φε(t), φ0〉 − 〈Γφε(t), φ0〉.

This and the assumption φ0 ∈ H1 lead to∣∣∣∣ ddt (e−iEt/ε〈φε(t), φ0〉
)∣∣∣∣ ≤ 1

2

(
‖φε(t)‖2

1 + ‖φ0‖2
1

)
.

Note that the value of the expression being differentiated in the left side equals to one at t = 0.
By Lemma 2.14 (with a simple time rescaling) we have∫ ∞

0

‖φε(t)‖2
1 dt ≤ 1/2.

Therefore, for t ≤ τ = (2‖φ0‖2
1)−1 we have |〈φε(t), φ0〉| ≥ 1/2. Thus, ‖φε(τ)‖ ≥ 1/2, uniformly

in ε. �

The RAGE theorem and the time spent in high modes

The proof of the other direction in Theorem 2.10, that the absence of eigenfunctions implies
relaxation enhancement, is more subtle, and will require some preparation. We switch to
the equivalent formulation (2.69), and drop the tilde (hoping that this will not cause any
confusion). We need to show that if L has no H1 eigenvectors, then for all τ, δ > 0 there
exists ε0(τ, δ) > 0 such that if ε < ε0, then ‖φε(τ/ε)‖ < δ whenever ‖φ0‖ = 1. Recall that
the main idea of the proof can be naively described as follows. If the operator L has a purely
continuous spectrum or its eigenfunctions are rough, then the H1-norm of the free evolution
(with ε = 0) is large most of the time. On the other hand, we will show that for small ε the
full evolution is close to the free evolution for a sufficiently long time. This clearly leads to
dissipation enhancement.

Our first task is to get good control of the free evolution eiLt. The first ingredient that we
need to recall is the so-called RAGE theorem, first proved by Ruelle [43] and later generalized
by Amrein and Georgescu in [1], and by Enss in [13].

Theorem 2.18 (RAGE) Let L be a self-adjoint operator in a Hilbert space H. Let Pc be the
spectral projection on its continuous spectral subspace, and C be any compact operator. Then
for any φ0 ∈ H, we have

lim
T→∞

1

T

T∫
0

‖CeiLtPcφ0‖2 dt = 0.

The result can be equivalently stated for a unitary operator U , replacing eiLt with U t.
The proof of the RAGE theorem can be found, for example, in [10]. This theorem is a
generalization of the following classical theorem by Wiener.
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Theorem 2.19 Let dµ be a finite measure on R with the Fourier transform

F (t) =

∫
R
e−ixtdµ(x).

Then

lim
T→+∞

1

T

∫ T

0

|F (t)|2dt =
∑
x∈R

|µ({x})|2. (2.75)

Note that the sum in the right side of (2.75) is finite since µ is a finite measure.
A direct consequence of the RAGE theorem is the following lemma. Recall that we denote

by 0 < λ1 ≤ λ2 ≤ . . . the eigenvalues of the operator Γ and by e1, e2, . . . the corresponding
orthonormal eigenvectors. Let us also denote by PN the orthogonal projection on the subspace
spanned by the first N eigenvectors e1, . . . , eN and by

S = {φ ∈ H : ‖φ‖ = 1}

the unit sphere in H. The following lemma shows that if the initial data lies in the continuous
spectrum of L, then the L-evolution will spend most of time in the higher modes of Γ.

Lemma 2.20 Let K ⊂ S be a compact set. For any N, σ > 0, there exists Tc(N, σ,K) such
that for all T ≥ Tc(N, σ,K) and any φ ∈ K, we have

1

T

T∫
0

‖PNeiLtPcφ‖2 dt ≤ σ. (2.76)

The key observation of Lemma 2.20 is that the time Tc(N, σ,K) is uniform for all φ ∈ K.
Proof. Since PN is compact, RAGE theorem implies that for any vector φ ∈ S, there exists

a time Tc(N, σ, φ) that depends on the function φ such that (2.76) holds for T > Tc(N, σ, φ).
To prove the uniformity in φ, note that the function

f(T, φ) =
1

T

T∫
0

‖PNeiLtPcφ‖2 dt

is uniformly continuous on S for all T (with constants independent of T ):

|f(T, φ)− f(T, ψ)| ≤ 1

T

T∫
0

∣∣‖PNeiLtPcφ‖ − ‖PNeiLtPcψ‖∣∣ (‖PNeiLtPcφ‖+ ‖PNeiLtPcψ‖
)
dt

≤ (‖φ‖+ ‖ψ‖) 1

T

T∫
0

‖PNeiLtPc(φ− ψ)‖dt ≤ 2‖φ− ψ‖.

Now, existence of a uniform Tc(N, σ,K) follows from compactness of K by standard argu-
ments. �
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H1-norm of free solutions with rough eigenfunctions

We also need a lemma which controls from below the growth of the H1 norm of free solutions
corresponding to rough eigenfunctions. We denote by Pp the spectral projection on the pure
point spectrum of the operator L.

Lemma 2.21 Assume that not eigenvectors of the operator L belong to H1(Γ). Let K ⊂ S
be a compact set. Consider the set K1 ≡ {φ ∈ K : ‖Ppφ‖ ≥ 1/2}. Then for any B > 0 we
can find Np(B,K) and Tp(B,K) such that for any N ≥ Np(B,K), any T ≥ Tp(B,K) and
any φ ∈ K1, we have

1

T

T∫
0

‖PNeiLtPpφ‖2
1 dt ≥ B. (2.77)

Note that unlike in (2.76), we have the H1 norm in (2.77).
Proof. The set K1 may be empty, in which case there is nothing to prove. Otherwise, let

us denote by Ej the eigenvalues of L (distinct, without repetitions) and by Qj the orthogonal
projection on the space spanned by the eigenfunctions corresponding to Ej. First, let us show
that for any B > 0 there is N(B,K) such that for any φ ∈ K1 we have∑

j

‖PNQjφ‖2
1 ≥ 2B (2.78)

if N ≥ N(B,K). It is clear that for each fixed φ with Ppφ 6= 0 we can find N(B, φ) so
that (2.78) holds, since by assumption Qjφ does not belong to H1 whenever Qjφ 6= 0. Assume
that N(B, φ) cannot be chosen uniformly for φ ∈ K1. This means that for any n, there
exists φn ∈ K1 such that ∑

j

‖PnQjφn‖2
1 < 2B.

Since K1 is compact, we can find a subsequence nl such that φnl converges to φ̄ ∈ K1 in H
as nl →∞. For any N and any nl1 > N we have∑

j

‖PNQjφ̄‖2
1 ≤

∑
j

‖Pnl1Qjφ̄‖2
1 ≤ lim inf

l→∞

∑
j

‖Pnl1Qjφnl‖2
1. (2.79)

The last inequality follows by Fatou’s Lemma from the convergence of φnl to φ̄ in H and the
fact that

‖Pnl1Qjψ‖1 = λ1/2
nl1
‖Qjψ‖ ≤ λ1/2

nl1
‖ψ‖,

for any nl1 . The expression in the right hand side of (2.79) is less than or equal to

lim inf
l→∞

∑
j

‖PnlQjφnl‖2
1 ≤ 2B.

Thus, we have ∑
j

‖PNQjφ̄‖2
1 ≤ 2B for any N,
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a contradiction since φ̄ ∈ K1. As a consequence, there exists N(B,K) so that (2.78) holds for
all N ≥ N(B,K) and all φ ∈ K1.

Next, take φ ∈ K1 and consider

1

T

T∫
0

‖PNeiLtPpφ‖2
1 dt =

∑
j,l

ei(Ej−El)T − 1

i(Ej − El)T
〈ΓPNQjφ, PNQlφ〉. (2.80)

In (2.80), we set
ei(Ej−El)T − 1

i(Ej − El)T
≡ 1 if j = l.

Notice that the sum in (2.80) converges absolutely. Indeed,

PNQjφ =
N∑
i=1

〈Qjφ, ei〉ei,

and 〈Γei, ek〉 = λiδik, therefore

〈ΓPNQjφ, PNQlφ〉 =
N∑
i=1

λi〈Qjφ, ei〉〈Qlφ, ei〉.

Hence, the sum in the right side of (2.80) does not exceed

N∑
i=1

λi
∑
j,l

|〈Qjφ, ei〉〈Qlφ, ei〉| ≤ λN

N∑
i=1

∑
j,l

‖Qjφ‖‖Qlφ‖|〈Qjφ/‖Qjφ‖, ei〉〈Qlφ/‖Qlφ‖, ei〉|

≤ λN

N∑
i=1

∑
j,l

‖Qlφ‖2|〈Qjφ/‖Qjφ‖, ei〉|2 ≤ λNN. (2.81)

The second step above is obtained using the Cauchy-Schwartz inequality, and the third
since ‖φ‖ = ‖ei‖ = 1. Then for each fixed N, it follows from the dominated convergence
theorem that the expression in (2.80) converges to∑

j

‖Γ1/2PNQjφ‖2 =
∑
j

‖PNQjφ‖2
1

as T →∞.
Now assume N ≥ Np(B,K) ≡ N(B,K), so that (2.78) holds. We claim that we can

choose Tp(B,K) so that for any T ≥ Tp(B,K) we have∣∣∣∣∣ 1

T

∫ T

0

‖PNeiLtPpφ‖2
1 dt−

∑
j

‖PNQjφ‖2
1

∣∣∣∣∣ =

∣∣∣∣∣∑
l 6=j

ei(Ej−El)T − 1

i(Ej − El)T
〈ΓPNQjφ, PNQlφ〉

∣∣∣∣∣ ≤ B

(2.82)
for all φ ∈ K1. Indeed, this follows from convergence to zero for each individual φ as T →∞,
compactness of K1, and uniform continuity of the expression in the middle of (2.82) in φ for
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each T (with constants independent of T ). The latter is proved by estimating the difference
of these expressions for φ, ψ ∈ K1 and any T by∑

l 6=j

|〈ΓPNQjφ, PNQl(φ− ψ)〉|+ |〈ΓPNQj(φ− ψ), PNQlψ〉|,

which is then bounded by 2λNN‖φ − ψ‖ using the trick from (2.81). Combining (2.78)
and (2.82) proves the lemma. �

Tracking the full dynamics with free evolution

We can now complete the proof of Theorem 2.10. Recall that given any τ, δ > 0, we need to
show the existence of ε0 > 0 such that if ε < ε0, then solution of the rescaled problem

dφε(t)

dt
= (iL− εΓ)φε(t), φ̃ε(0) = φ0. (2.83)

satisfies ‖φε(τ/ε)‖ < δ for any initial datum φ0 ∈ H, ‖φ0‖ = 1. Let us outline the idea of the
proof. Lemma 2.15 tells us that if the H1 norm of the solution φε(t) is large, relaxation is
happening quickly. If, on the other hand, ‖φε(τ0)‖2

1 ≤ λM‖φε(τ0)‖2, where M is to be chosen
depending on τ and δ, then the set of all unit vectors satisfying this inequality is compact,
and so we can apply Lemma 2.20 and Lemma 2.21. Using these lemmas, we will show that
even if the H1 norm is small at some moment of time τ0, it will be large on average in some
time interval after τ0. Enhanced relaxation will follow.

We now provide the details. Since Γ is an unbounded positive operator with a discrete
spectrum, we know that its eigenvalues λn → ∞ as n → ∞. Let us choose M large enough,
so that

e−λM τ/80 < δ.

Define the sets
K = {φ ∈ S : ‖φ‖2

1 ≤ λM} ⊂ S,

and as before,
K1 = {φ ∈ K : ‖Ppφ‖ ≥ 1/2}.

It is easy to see that K is compact. Choose N so that N ≥ M and N ≥ Np(5λM , K) from
Lemma 2.21. Define

τ1 ≡ max
{
Tp(5λM , K), Tc(N,

λM
20λN

, K)
}
,

with Tp from Lemma 2.21, and Tc from Lemma 2.20. Finally, choose ε0 > 0 so that τ1 < τ/2ε0,
and

ε0

τ1∫
0

B2(t) dt ≤ 1

20λN
, (2.84)

where B(t) is the function from condition (2.72).
Take any ε < ε0. If we have

‖φε(s)‖2
1 ≥ λM‖φε(s)‖2
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for all s ∈ [0, τ ], then Lemma 2.15 implies that

‖φε(τ/ε)‖ ≤ e−2λM τ ≤ δ,

by the choice of M and we are done. Otherwise, let τ0 be the first time in the interval [0, τ/ε]
such that

‖φε(τ0)‖2
1 ≤ λM‖φε(τ0)‖2 (2.85)

(it may be that τ0 = 0, of course). We claim that the following estimate holds for the decay
of ‖φε(t)‖ on the interval [τ0, τ0 + τ1]:

‖φε(τ0 + τ1)‖2 ≤ e−λMετ1/20‖φε(τ0)‖2. (2.86)

For the sake of simplicity, we will denote φε(τ0) = φ0. On the interval [τ0, τ0 + τ1], consider
the function φ0(t) satisfying

d

dt
φ0(t) = iLφ0(t), φ0(τ0) = φ0.

Note that by the choice of ε0, (2.84), (2.85), and Corollary 2.17, we have

‖φε(t)− φ0(t)‖2 ≤ λM
40λN

‖φ0‖2 (2.87)

for all t ∈ [τ0, τ0 + τ1]. Split
φ0(t) = φc(t) + φp(t),

where φc,p also solve the free equation

d

dt
φc,p(t) = iLφc,p(t),

but with initial data Pcφ0 and Ppφ0 at t = τ0, respectively. We will now consider two cases.
Case I. Assume that

‖Pcφ0‖2 ≥ 3

4
‖φ0‖2,

or, equivalently, ‖Ppφ0‖2 ≤ 1
4
‖φ0‖2. Note that since φ0/‖φ0‖ ∈ K by the hypothesis, we can

apply Lemma 2.20. Our choice of τ1 implies that

1

τ1

τ0+τ1∫
τ0

‖PNφc(t)‖2 dt ≤ λM
20λN

‖φ0‖2. (2.88)

By elementary considerations,

‖(I−PN)φ0(t)‖2 ≥ 1

2
‖(I−PN)φc(t)‖2−‖(I−PN)φp(t)‖2 ≥ 1

2
‖φc(t)‖2−1

2
‖PNφc(t)‖2−‖φp(t)‖2.

Taking into account the fact that the free evolution eiLt is unitary, λN ≥ λM , our assumptions
on ‖Pc,pφ0‖ and (2.88), we obtain

1

τ1

τ0+τ1∫
τ0

‖(I − PN)φ0(t)‖2 dt ≥ 1

10
‖φ0‖2. (2.89)
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Using (2.87), we conclude that

1

τ1

τ0+τ1∫
τ0

‖(I − PN)φε(t)‖2 dt ≥ 1

40
‖φ0‖2. (2.90)

This estimate implies that
τ0+τ1∫
τ0

‖φε(t)‖2
1 dt ≥

λNτ1

40
‖φ0‖2. (2.91)

Combining (2.91) with (2.71) yields

‖φε(τ0 + τ1)‖2 ≤
(

1− λNετ1

20

)
‖φε(τ0)‖2 ≤ e−λNετ1/20‖φε(τ0)‖2. (2.92)

This finishes the proof of (2.86) in the first case since λN ≥ λM .
Case II. Now suppose that ‖Ppφ0‖2 ≥ 1

4
‖φ0‖2. In this case φ0/‖φ0‖ ∈ K1, and we can

apply Lemma 2.21. In particular, by the choice of N and τ1, we have

1

τ1

τ0+τ1∫
τ0

‖PNφp(t)‖2
1 dt ≥ 5λM‖φ0‖2. (2.93)

Since (2.88) still holds because of our choice of τ0 and τ1, it follows that

1

τ1

τ0+τ1∫
τ0

‖PNφc(t)‖2
1 dt ≤

λM
20
‖φ0‖2. (2.94)

Note that the H-norm in (2.88) has been replaced in (2.94) by the H1-norm at the expense
of the factor of λN . Together, (2.93) and (2.94) imply

1

τ1

τ0+τ1∫
τ0

‖PNφ0(t)‖2
1 dt ≥ 2λM‖φ0‖2. (2.95)

Finally, (2.95) and (2.87) give

τ0+τ1∫
τ0

‖PNφε(t)‖2
1 dt ≥

λMτ1

2
‖φ0‖2 (2.96)

since ‖PNφε − PNφ0‖2
1 ≤ λN‖φε − φ0‖2. As before, (2.96) implies

‖φε(τ0 + τ1)‖2 ≤ e−λMετ1‖φε(τ0)‖2, (2.97)

finishing the proof of (2.86) in the second case.
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Summarizing, we see that if ‖φε(τ0)‖2
1 ≤ λM‖φε(τ0)‖2, then

‖φε(τ0 + τ1)‖2 ≤ e−λMετ1/20‖φε(τ0)‖2. (2.98)

On the other hand, for any interval I = [a, b] such that ‖φε(t)‖2
1 ≥ λM‖φε(t)‖2 on I, we have

by Lemma 2.15 that
‖φε(b)‖2 ≤ e−2λMε(b−a)‖φε(a)‖2. (2.99)

Combining all the decay factors gained from (2.98) and (2.99), and using τ1 < τ/2ε, we find
that there is τ2 ∈ [τ/2ε, τ/ε] such that

‖φε(τ2)‖2 ≤ e−λMετ2/20 ≤ e−λM τ/40 < δ2

by our choice of M. Then (2.71) gives ‖φε(τ/ε)‖ ≤ ‖φε(τ2)‖ < δ, finishing the proof of
Theorem 2.10. �

3 Dynamics in randomly perturbed problems

We now describe some results for equations of the form (1.1) when the perturbation is random,
and the background operator L is not mixing at all, so mixing comes from the interplay of
the simple deterministic dynamics, and randomness, as in toy example in Theorem 1.3.

Avergaging or homogenzation?

Let us briefly discuss the “general philosophy” in this class of problems. Most of the examples
we will consider are in a general form

φt = iLφ+ εV φ. (3.1)

Think of L as the (linear) deterministic background problem, and εV as an (also linear) ran-
dom perturbation. As the randomness is weak, its effects will not be seen in the leading order
at “short” times t ∼ O(1), but eventually the random fluctuations will manifest themselves in
the leading order, on some long time scale, which we will call Tε. The most basic questions are
how large the “non-trivial behavior time” Tε is, in terms of ε, that is, “how long do we have to
wait to see anything interesting”, and what the effect of randomness on φ will be on this time
scale, in other words, what is it that we will see at the time Tε. A typical answer is given by
the central limit theorem: if the random fluctuations in the physical parameters have mean
zero, then Tε ∼ ε−2, and there is some sort of diffusive limit for some observable. A simple
example of such behavior is in Theorem 1.2. This answer is not absolutely universal, and
depends on the nature of the random fluctuations, so that in systems with slowly decaying
spatial correlations, the non-trivial observation time will depend on the physical observable
– various observables are affected in a non-trivial way on different time-scales. Thus, a more
specific formulation of the above questions is: (1) when will a particular physical observ-
able deviate from its deterministic behavior, and (2) how will it behave after it does that?
There is an obvious necessary condition for this problem to be of any “practical” interest: the
operator L has to be non-dissipative, so that the solutions of the unperturbed problem

φt = iLφ (3.2)
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would not essentially vanish at large times, long before Tε. Otherwise, the random fluctuations
would be acting on something that is probably too small to be of interest, though, in principle,
the above questions can still be asked. In addition, it greatly helps if the dynamics of the
unperturbed problem (3.2) is very well understood (preferably, very simple) so that we know
very well what we are perturbing. The no-dissipation requirement is not an issue for a large
class of interesting physical systems, but the second requirement is a big restriction on the
class of problems we can analyze.

These questions are broadly similar to what is usually understood by random homoge-
nization, even though the random fluctuations are typically not weak in the latter context.
For example, the classical random diffusion homogenization problem

φt = ∇ · (a
(x
ε

)
∇φ) (3.3)

φ(0, x) = φ0(x),

with a (not weakly) random, or periodic, diffusion matrix a(x), comes from the microscopic
problem with slowly varying initial data

ψt = ∇ · (a(x)∇ψ) (3.4)

ψ(0, x) = φ0(εx),

with a simple rescaling

φ(t, x) = ψ(
t

ε2
,
x

ε
).

That is, we start the microscopic problem (3.4) with an initial condition which is locally
very close to an equilibrium (a constant). Hence, we need to wait for a “long” time, of the
order t ∼ ε−2, to observe a non-trivial deviation from the trivial deterministic dynamics for
that underlying equilibrium solution. However, here the time scale t ∼ ε−2 is not really due
to the random nature of a(x) – the same result holds in the periodic case. This is really the
law of large numbers rather than a central limit theorem type of a result.

The commonality between these two problems seems to be that in order to get a macro-
scopic description at the ”large” time Tε, one needs to know quite precisely the dynamics of
the unperturbed system: be it (3.2) in the weak randomness case, or the trivial dynamics
of the constant state in (3.4). The techniques in the analysis are, however, quite different.
There is one important “poetic” difference between the ”weak randomness” and homogeniza-
tion set-ups. The non-trivial observation time Tε is dictated by the medium in the former but
by the initial condition in the latter, and is therefore beyond our control in the first problem
but is controlled by the input in the second. Another obvious difference is that the underlying
dynamics in the homogenization problem is trivial until the time t ∼ ε−2, while in the “weak
randomness” case the dynamics of (3.2) is (hopefully) simple but non-trivial, and will have
to be taken into account.

The fast/slow dynamics decomposition

A useful way to look at the general dynamics (3.1)

φt = iLφ+ εV φ (3.5)
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is to factor out the fast dynamics, making the interaction of the fast dynamics of L and the
slow dynamics of V more visible. This is what leads to a non-trivial behavior of φ. Let us
rescale the time variable t→ t/ε2, so that (3.5) becomes

φt =
i

ε2
Lφ+

1

ε
V φ. (3.6)

In some sense, the leading order term is

ψ̃t =
i

ε2
Lψ̃, (3.7)

that is,
ψ̃(t) = eiLt/ε

2

ψ0. (3.8)

As the operator L is self-adjoint (or otherwise non-dissipative), one would expect ψ(t) to
converge weakly to zero as ε→ 0 but not strongly. It is convenient to write

φ(t) = eiLt/ε
2

ψ(t). (3.9)

The function ψ(t) satisfies

ψt =
1

ε
B
( t
ε2

)
ψ, (3.10)

with the operator
B(t) = e−iLtV eiLt. (3.11)

When the operators L and V do not commute, their interaction in (3.11) often leads to a
non-trivial limit for the function ψ(t). Studying the ”compensated” solution ψ(t) is often an
instructive approach.

Particle motion in a random velocity field

Maybe the simplest example of a non-trivial weakly random dynamical system is particle
motion in a weekly random velocity field:

dX(t)

dt
= ū+ εv(X(t)), X(0) = x. (3.12)

The corresponding first order linear PDE is

φt + (ū+ εv(x)) · ∇φ = 0. (3.13)

Here, ū is a non-zero mean flow, and v(x) is a mean-zero random fluctuation. We will see
that appropriately re-centered particle position converges to a diffusive limit. More precisely,
the process

Yε(t) = Xε

( t
ε2

)
− ū t

ε2
, (3.14)

converges to a Brownian motion. Notice that if ū = 0 this result can not hold without
some extra miracles or hard work – the particle would be stuck close to the zeros of v(x).
Thus, the diffusive limit is a combination of the background dynamics (with ε = 0) and the
random fluctuation that together lead to the diffusive limit, a recurrent theme in many of
such problems.
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Perturbed particle motion in a 2D Hamiltonian flow

The next example is a particle moving in weakly perturbed two-dimensional Hamiltonian
flow, described by a stochastic differential equation

dXt = −∇⊥H(Xt)dt+ εdBt. (3.15)

Here, Xt = (xt, yt) is the particle position, Bt is the standard two-dimensional Brownian mo-
tion, and H(x) is a background Hamiltonian. We use the notation ∇⊥H(x, y) = (Hy,−Hx).
Think of H(x, y) as a function growing at infinity, with finitely many non-degenerate critical
points, and there is at most one critical point on each level set of H. If one would like to
avoid the language of the stochastic differential equations, the corresponding ODE analog is

dX

dt
= −∇⊥H(Xt)dt+ εv(t), (3.16)

with a random flow v(t). The results would be very similar to those for (3.15).
If ε = 0, then the Hamiltonian is constant along the flow trajectories: H(X(t)) = H(X(0)).

However, as can be immediately seen both from (3.15) and (3.16), when ε > 0, the Hamilto-
nian is not preserved by the perturbed dynamics, and is slowly changing in time. One has to
wait for a long time for the evolution of the Hamiltonian to become non-trivial, and we will
show that the process

hε(t) = H
(
X(

t

ε2
)
)
, (3.17)

converges to a certain diffusion process on the Reeb graph of the function H(x).
If H(x, y) has many critical points on the same level set, such as the function

H(x, y) = cos x cos y,

then the dynamics is quite different – particles perform a diffusion process between various
cells (invariant regions) of the flow.

Particle in a weakly random Hamiltonian flow

The next example is a particle moving in a weakly random Hamiltonian field. The simplest
example is a classical particle in a weak random potential force field:

dX(t)

dt
= K(t),

dK(t)

dt
= −ε∇V (X(t)), (3.18)

in dimensions d ≥ 3. This is the motion corresponding to the classical Hamiltonian

Hε(x, k) =
k2

2
+ εV (x). (3.19)

One may consider more general Hamiltonians of the form

Hε(x, k) = H0(k) + εH1(x, k), (3.20)

with a deterministic background Hamiltonian H0(k) and a random perturbation H1(x, k), but
we will not do this here.
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As in (3.15) and (3.16), if ε = 0 in (3.18), the Hamiltonan H0(k) = k2/2 is preserved
along the trajectories, and the process K(t) stays on the sphere |K(t)| = |K(0)|. Of course,
when ε = 0 in (3.18) we actually have K(t) = K(0) but that is beside the point. Now, unlike
for (3.15) or (3.16), the perturbation of the Hamiltonian H0(k) in (3.20) is time-independent
and Hamiltonian, thus the full Hamiltonian Hε(x, k) is preserved by the dynamics for ε > 0.
Hence, you do not expect to see the diffusion across the level sets of the Hamiltonian H0(k)
as the limit process, which is what we obtained for (3.15). Rather, as K(t) is a process on the
level sets of Hε(x, k), in the limit ε → 0, we expect it to converge to a diffusion on the level
set H0(K(t)) = H0(K(0)). For the classical mechanics Hamiltonian (3.19), this is simply the
sphere |K(t)| = |K(0)|.

Thus, we will consider the process

Kε(t) = K
( t
ε2

)
, (3.21)

and we will see that it converges to a Brownian motion K̄(t) on the sphere |K(t)| = |K(0)|,
with a certain diffusivity matrix D(k). If we were to consider a more general background
Hamiltonian than H0(k) = k2/2, we would see in the limit a diffusion process on its level set
rather than on the sphere {|k| = const}, which is a level set of H0(k) = k2/2. As we are
dealing with long times, and Ẋ(t) = K(t) is not small, by the times of the order O(ε−2) the
particle will be ”very far” in space. Accordingly, the spatial component needs to be re-scaled:
the process

Xε(t) = ε2X
( t
ε2

)
(3.22)

converges to

X̄(t) =

∫ t

0

K̄(s)ds. (3.23)

In terms of PDEs, the Hamiltonian dynamics corresponds to the Liouville equation

φt + k · ∇xφ− ε∇V (x) · ∇kφ = 0. (3.24)

The above result says that

φε(t, x) = E(φ(
t

ε2
,
x

ε2
, k))

converges to φ̄(t, x, k), solution of

φt + k · ∇xφ−
∂

∂kj

(
Djm(k)

∂φ̄

∂km

)
= 0. (3.25)

Note, again, that the background dynamics is very important here: if we would consider
the (very artificial) Hamiltonian

Hε(x, k) = εV (x),

with a random function V (x), then the dynamics would be

dX

dt
= 0,

dK

dt
= ε∇V (X).

Its solution is trivial: X(t) = X(0), and

K(t) = ε∇V (X(0))t.

Thus, the long time limit of K(t) would not be diffusive at all.
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The Schrödinger equation

The last example we will consider in this family is the Schrödinger equation with a weak
random potential:

iφt +
1

2
∆φ− εV (x)φ = 0. (3.26)

One may think of this equation as an example of the infinite dimensional Hamiltonian dy-
namics with the Hamiltonian

H[ψ] =
1

2

∫ (
|∇ψ(x)|2 + εV (x)ψ2(x)

)
dx,

and view it as an infinite-dimensional version of (3.18). However, we will use completely
different tools for the analysis here, that are on the surface much less natural. The ”good”
tools are missing at the moment.

The Liouville-Green (Wentzel-Kramers-Brillouin) approximation

One natural way to look at weakly perturbed non-dissipative problems is provided by the
WKB approximation developed originally, and independently from each other, by Liouville
and Green in 1837. The idea is very simple, and we illustrate it for the Schrödinger equation
with a slowly varying potential

iψt +
1

2
∆ψ − V (εx)ψ = 0. (3.27)

Rescaling time and space as t→ t/ε and x→ x/ε leads to

iεψt +
ε2

2
∆ψ − V (x)ψ = 0. (3.28)

Let us seek an oscillatory solution of the wave equation in the form

ψ(t, x) = A(t, x)eiS(t,x)/ε.

Here, A(t, x) is the wave amplitude and S(t, x) is its phase. Note that the amplitude and the
phase vary on the macroscopic scale (independent of ε) but, for ε � 1, the function ψ(t, x)
oscillates on the scale ε, which is the original microscopic scale in (3.27). Inserting this ansatz
for ψ(t, x) into (3.28), we get, in the leading order the eikonal equation

St +
|∇S|2

2
+ V (x) = 0. (3.29)

The next order of powers in ε gives the amplitude equation

(|A|2)t +∇ · (|A|2∇S) = 0. (3.30)

Let us make the following observation: consider the measure

W (t, x, ξ) = |A(t, x)|2δ(ξ −∇S(t, x)),
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with A(t, x) and S(t, x) which solve the eikonal equation (3.29), and the amplitude equa-
tion (3.30). Then, a direct computation shows that W (t, x, ξ) satisfies the Liouville equation
of the classical mechanics

∂W

∂t
+ ξ · ∇xW −∇xV · ∇ξW = 0. (3.31)

The corresponding characteristics are

dX

dt
= K,

dK

dt
= −∇V (X),

which is nothing but Newton’s equations of motion. This is probably the simplest connection
between the classical and quantum mechanics. We can think of W (t, x, ξ) as the phase space
energy density of the quantum particle: note that

ρ(t, x) := |A(t, x)|2 =

∫
W (t, x, ξ)dξ,

and if we think of (3.30) as the fluid equation

ρt +∇ · (ρv) = 0,

with the velocity v(t, x) = ∇S(t, x), then the support of W (t, x, ξ) is exactly at ξ = v(t, x).

A caustic: seductiveness of the kinetic approach

Let us now explain how we can see the formation of a caustic in terms of the Liouville equation.
To be concrete and simple, consider the Schrödinger equation with V = 0, and let us take
the initial phase as S0(x) = −x2/2 with a smooth initial amplitude A0(x). Solution of the
eikonal equation

St +
1

2
S2
x = 0,

is given explicitly by S(t, x) = −x2/(2(1− t)) – a caustic appears at t = 1. The corresponding
characteristics for the amplitude equation satisfy

Ẋ = − X

1− t
, X(0) = x

and are given by X(t) = x(1− t) – hence all characteristics arrive to the point x = 0 at the
time t = 1. This is the caustic point. At this time the geometric optics approximation breaks
down and is no longer valid.

On the other hand, the Liouville equation (3.31) is linear, and its solutions should not
break down. Let us see what happens: as V = 0, the Liouville equation is

Wt + k · ∇xW = 0, W (0, x, k) = W0(x, k). (3.32)

Its solution is W (t, x, k) = W0(x−kt, k) and clearly exists for all time. Since the initial phase
is S0(x) = −x2/2, at t = 0 we have

W0(x, k) = |A0(x)|2δ(k + x),
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so that the solution of (3.32) is

W (t, x, k) = |A0(x− kt)|2δ(k + x− kt).

This means that at the time t = 1 the solution

W (t = 1, x, k) = |A0(x− k)|2δ(x)

is no longer singular in momenta k but rather in space, being concentrated at x = 0. On the
other hand, the solution of the Liouville equation exists beyond this time, unlike that of the
eikonal equation, and from the Liouville point of view nothing particularly dramatic happens
at t = 0.

Anticipating the need to study problems in a random medium, a natural question then is
the following: suppose that the initial condition for the eikonal equation is S0(x) = k0 · x –
this is a plane wave, and the medium is weakly random. How long will it take for the solution
to form a caustic? If it happens very quickly, then the geometric options ansatz in a random
medium can not be used for too long – this is a very important point, as it gives the need to
very interesting mathematics!

A stochastic caustic

Let us now make a jump of more than a hundred years and look at the question of when a
caustic would appear in a weakly random medium. This is the work of Kulkarny and White
in 1982 in 2D, and White in 1984 in 3D. Assume that the sound speed in the medium is
weakly fluctuating: it has the form

c(x) = 1 + εµ(x),

where µ(x) is a mean zero random process, stationary in space, and ε� 1 is a small parameter
measuring the strength of the fluctuations. Typically, a mean zero random fluctuation of size ε
will produce a non-trivial effect on a time scale Tε ∼ ε−2 – this is the central limit theorem,
bringing us back to the 18th century (de Moivre (1667-1754) stated it in 1733). White (and
with Kulkarny) considered the ray equations in such medium, and in 2D it was shown (after
lengthy calculations) that on the time scale t ∼ ε−2/3 the ray curvature behaves as the solution
of the stochastic differential equation

dZ = −Z2dt+ dBt.

Solutions of this stochastic differential equation blow up in a finite (but random) time, almost
surely. This means that (in the original time variables), a caustic will form at a random
time of the order T ∼ O(ε−2/3) which is much shorter than the ”interesting” central limit
time scale O(ε−2). Thus, a caustic happens relatively quickly, before one would expect the
macroscopic observables to be affected. This time is even much shorter than the naive “non-
trivial effect” time O(ε−1). Thus, a straightforward geometric optics ansatz in a weakly
random medium can be expected to hold only for times which are much shorter than times of
”real” interest. A different description has to be used if we want to understand what happens
on longer time scales, and this is accomplished by the kinetic theory.
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The kinetic models of wave propagation in heterogenous media

We will not discuss much about the kinetic models in these notes but some comments are in
order.

We have at least three basic length scales in wave propagation problems: L – the overall
propagation distance from the source to our observation point, λ – the scale on which the
initial source is localized, and lc – the typical scale of variations of the medium. The latter two
scales are often not defined in a precise way, and we will explain later what exactly we mean
by them. Generally, we will be interested in the situations when the propagation distance L
is much larger than both λ and lc, giving even small variations in the microstructure a chance
to have a strong effect on the macroscopic features of the wave. This brings us to the next
important parameter: ε � 1 is the relative strength of the microscopic fluctuations in the
parameters of the medium. We will always assume that this strength is small.

Note that λ can often be chosen – this is, essentially, the wave length of the probing
signal, and we may modify it to suit a particular application. The propagation distance L
can also be chosen – this is the observation scale, that the observer can often (but not always)
control. On the other hand, the scale of the medium variations lc is typically outside of
our control – the medium is usually given to us, and we can not modify it. The same is true
for ε – this parameter is a feature of the medium and not of a particular setting of the physical
experiment. A typical question we will be facing is “Given the strength of the microscopic
fluctuations ε � 1, and the medium variations scale lc, as well as the probing signal wave
length λ, how large can the propagation distance L be, so that we can still have an effective
macroscopic model for the wave, and what will that model be?” The answer will, broadly
speaking, depend on two factors: the relative size of lc and λ, and on the statistics of the
small scale fluctuations of the medium. The three regimes we would ideally describe in some
detail are random geometric optics, radiative transport, and random homogenization. It is
not very likely we will have time for all of them in these lectures.

The macroscopic models are often written in terms of the energy density in the phase
space. The underlying premise is that the multiple scattering of the waves by the medium
inhomogeneities will create “waves going in all directions at each point”. Thus, the primary
object is now not the wave field but the (empirical) wave energy density W (t, x, ξ) at the
time t > 0, at a position x ∈ Rn, with the wave vector ξ ∈ Rn. The wave energy evolution is
described in terms of the kinetic equation

∂W (t, x, ξ)

∂t
+∇ξω(ξ) · ∇xW (t, x, ξ) = LscW (t, x, ξ). (3.33)

Here, ω(ξ) is the dispersion relation of the wave and depends on the particular type of the
wave. The left side of (3.33) has nothing to do with the inhomogeneities of the medium1

and represents the free transport of the wave energy along the characteristics Ẋ = ∇ξω(ξ)
(which are straight lines). On the other hand, the scattering operator Lsc incorporates the
macroscopic effects of the small scale inhomogeneities, and involves the possibility for waves
to scatter in different directions at a given point. Its exact form depends on the physical
regime of the problem, and the task of modeling is typically two-fold: to find the relation of

1Strictly speaking, this statement assumes that the fluctuations are sufficiently weak so that they do not
modify the wave dispersion relation.
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the phase space energy density W (t, x, ξ) to the underlying wave field that can be directly
measured (pressure, electric and magnetic fields, elastic displacements, and so on, depending
on the problem), and to identify the scattering operator Lsc for a particular physical problem.

4 A limit theorem for a particle in a random flow

We now go just one level up in difficulty compared to the toy problem (1.33), and consider
the same background dynamics: a uniform flow but instead of somewhat artificially adding
a random potential, we add a random fluctuation to the flow itself. That is, we look at a
particle moving in a random flow with a large mean:

dX

dt
= ū+ εv(X), (4.1)

with the corresponding first order PDE

φt + (ū+ εv(x)) · ∇φ = 0. (4.2)

Rescaling the time variable t→ t/ε2 gives

φt +
1

ε2
(ū+ εv(x)) · ∇φ = 0. (4.3)

As in the previous example, the background dynamics is very simple:

φ̄t +
1

ε2
ū · ∇φ̄ = 0, (4.4)

or

φ̄(t, x) = φ0(x− ū t
ε2

).

Accordingly, we take out the background dynamics, as in the fast/slow dynamics decomposi-
tion (3.9):

φ(t, x) = ψ(t, x− ū t
ε2

). (4.5)

The function ψ(t, x) satisfies

ψt +
1

ε
v(x+ ū

t

ε2
) · ∇ψ = 0. (4.6)

A convenient approach to this problem is via understanding the general problem of the
behavior of a particle in a rapidly varying in time random flow:

Ẋ =
1

ε
V

(
t

ε2
, X

)
, X(0) = x, (4.7)

with a random field V when ε � 1. When the random flow is spatially uniform, V = V (t),
then

X(t) =
1

ε

∫ t

0

V (
s

ε2
)ds = ε

∫ t/ε2

0

V (s)ds. (4.8)
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Thus, X(t) converges in law to a Brownian motion, according to Theorem 1.2. In the general
case, when V (t, x) is not spatially uniform, this question goes back to the papers by Khas-
minskii [32] from the 60’s with subsequent contributions by various authors: without any
attempt at completeness we mention the work of Papanicolaou and Kohler [42], and Kesten
and Papanicolaou [30]. We present a version of the limit theorem due to T. Komorowski [36].

Let us explain where the scaling in (4.7) comes from – why the time dependence of the
particle velocity is ”fast” and the space-dependence is ”slow”. To see that let us start with a
dynamical system

dY

dT
= v0V

(
T

t0
,
Y

x0

)
with a random time-dependent field V (s, x) and introduce non-dimensional space-time vari-
ables X = Y/x0, s = T/t0:

dX

ds
= εV (s,X) , ε =

v0t0
x0

.

Let us now assume that ε � 1 is a small parameter – physically, this means that the time
it takes the particle to pass one spatial correlation length is much larger than the correlation
time of the random fluctuations. Therefore, in this regime the temporal randomness of V (s, x)
“dominates” the spatial variations. If we now introduce a slow time t so that t = ε2s, then
in the variables (t, x) the particle obeys (4.7). The limit ε→ 0 now corresponds to observing
the particle at times much larger than the correlation time of the random fluctuations and
on the spatial scale of the order of the correlation length of the medium.

The first order equation corresponding to (4.7) is

∂φ

∂t
− 1

ε
V

(
t

ε2
, x

)
· ∇φ = 0, φ(0, x) = φ0(x). (4.9)

Its solution is φ(t, x) = φ0(X(t;x)), where X(t;x) is the solution of (4.7).
When does one expect the trajectories of (4.7) to behave diffusively? First of all, V has to

have mean zero so that the mean displacement would not be clearly biased. Second, V should
“mix things around” which means that the flow should be incompressible. It helps if dynamics
at “far away” points is nearly independent: this is formalized by the mixing assumption below
that eliminates the memory effect. Finally, there should be no distinguished times – this
requires stationarity of V in time.

Assumptions on the random field

We now list the formal assumptions on the random field that we will use to prove the diffusive
limit.

Stationarity. The random field V (t, x) is strictly stationary in time and space. This
means that for any t1, t2, . . . , tm ∈ R, x1, . . . , xm ∈ Rn, and each h ∈ R and y ∈ Rn the joint
distribution of

V (t1 + h, x+ y), V (t2 + h, x+ y), . . . , V (tm + h, x+ y)

is the same as that of
V (t1, x), V (t2, x), . . . , V (tm, x).
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We will denote by Rnm(t, x) the two-point correlation tensor of V (t, x):

Rnm(t, x) = E {Vn(s, y)Vm(t+ s, y + x)} . (4.10)

The spatial stationarity of V (t, x) is not necessary but it allows to simplify a few expressions
in what follows. It can, however, be dropped and we adopt it here simply for convenience.
On the other hand, stationarity in time is essential for the limit theorem.

Mixing: attempt 1. We will assume that the field V (t, x) is mixing. Roughly speaking,
this means that the values of V (t, x) are sufficiently independent at different times. One
possible way to formulate this assumption is to say that V (t, x) and V (t + h, y) are nearly
independent if the time increment h is large enough, no matter what x and y are. This is
formalized in terms of the σ-algebras Ṽba generated by the sets of the form

{ω : V (t, x, ω) ∈ A},

where a ≤ t ≤ b, x ∈ Rn, and A is a Borel set in Rn. The corresponding mixing coefficient is

β̃(h) = sup
t≥0

sup
A∈Ṽ∞t+h,B∈Ṽ

t
0

|P (A ∩B)− P (A)P (B)|
P (B)

.

The mixing assumption would be that or any m ≥ 0 the mixing coefficient satisfies

hmβ̃(h) ≤ Cm for all h ≥ 0.

Heuristically, this means that events in Ṽ t0 and Ṽt+h are basically independent.
The problem with this definition of mixing is that it would not apply to random fields of

the form
V (t, x) = v(x+ ūt), (4.11)

with ū 6= 0, and a random field v(x), which is our original motivation. Indeed, for such V (t, x),
we have

V (t, x) = V (t+ h, y − hū), (4.12)

for all x and y such that y = x− hū. Thus, the assumption that V (t, x) and V (t + h, y) are
nearly independent for all x, y ∈ Rn can not hold for V (t, x) given by (4.11). On the formal
level, this is reflected in the fact that all σ-algebras Ṽba are the same in this case, no matter
what a, b are.

Mixing: attempt 2. Thus, to allow for random fields as in (4.11), we need to modify the
definition of the mixing coefficient. One natural way is to assume that V (t, x) and V (t+h, y)
are nearly independent only for ”nearby” x and y if h is large. Identity (4.12) hints that it
suffices to have ”near independence” of V (t, x) and V (t+h, y) for x and y such that |x−y| � h.

To make this formal, we fix C > 0 and, given a time interval Iab = a ≤ t ≤ b, consider the
sets

Sba = {(t, x) : a ≤ t ≤ b, |x| ≤ C(1 +
√
t)}.

We denote by Vba the σ-algebra generated by the sets of the form {ω : V (t, x, ω) ∈ A},
with(t, x) ∈ Sba, and A is a Borel set in Rn. The mixing coefficient is now defined as

β(h) = sup
0≤t≤1+h3/2

sup
A∈V∞t+h,B∈V

t
0

|P (A ∩B)− P (A)P (B)|
P (B)

, (4.13)
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and our mixing assumption is that it satisfies

hmβ(h) ≤ Cm for all h ≥ 0.

Let us see why this mixing condition is reasonable for velocity fields of the form (4.11), and
why we have the restriction

0 ≤ t ≤ 1 + h3/2

in the supremum in (4.13). Consider two space-time points (s1, x1) ∈ St0, and (s2, x2) ∈ S∞t+h,
with 0 ≤ t ≤ 1 + h3/2, then

V (s1, x1) = v(x1 + s1ū), V (s2, x2) = v(x2 + s2ū), (4.14)

and

d = |x2 + s2ū− (x1 + s1ū)| ≥ (s2 − s1)|ū| − |x2| − |x1| (4.15)

≥ (s2 − s1)|ū| − C(1 +
√
s2)− C(1 +

√
s1) ≥ (s2 − s1)|ū| − 2C(1 +

√
s2).

Now, if s2 ≤ Ch5/3, then
d ≥ h|ū| − C(1 + h5/6) ≥ ch,

for h > C. On the other hand, if s2 ≥ Ch5/3, then, as s1 ≤ t ≤ C(1 + h3/2), we have

d ≥ cs2 − C
√
s2 ≥ cs2 ≥ ch5/3.

Thus, the distance between the points entering V (s1, x1) and V (s2, x2) in (4.14) is large, and
spatial decorrlation of v(x) would imply that our mixing assumption on V (t, x) holds.

Exercise 4.1 Formulate carefully a mixing condition on the field v(x) that would imply the
mixing assumption on V (t, x). See [30] for the precise details.

Boundedness. We assume that the random field V (t, x) has three spatial derivatives and
there exists a deterministic constant C > 0 so that with probability one we have

|V (t, x)|+
∣∣∣∣∂V (t, x)

∂xj

∣∣∣∣+

∣∣∣∣ ∂2V

∂xi∂xj

∣∣∣∣+

∣∣∣∣ ∂3V

∂xl∂xi∂xj

∣∣∣∣ ≤ C < +∞

for all 1 ≤ i, j, l ≤ n. This assumption can be weakened considerably.
Incompressibility. The field V is divergence free, that is, almost surely

∇ · V (t, x) =
n∑
j=1

∂Vj
∂xj

= 0.

The reason this assumption is made is to avoid sinks and sources that may exist in non-
divergence free flows. Random incompressible flows, on the other hand, act more like measure-
preserving random rearrangements.
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The limit theorem

Let us define the diffusion matrix

apq =

∫ ∞
0

E {Vq(t, 0)Vp(0, 0) + Vp(t, 0)Vq(0, 0)} dt =

∫ ∞
0

[Rpq(t, 0) +Rqp(t, 0)] dt

and its symmetric non-negative definite square-root matrix σ: σ2 = a. Then the following
theorem holds.

Theorem 4.2 Suppose that the random field V (t, x) satisfies the assumptions above, and that
the matrix apq is strictly positive definite. Then the process Xε(t), which satisfies

Ẋε =
1

ε
V

(
t

ε2
, Xε

)
, Xε(0) = x, (4.16)

converges weakly as ε→ 0 to the limit process X̄(t) = x+ σB(t). Here, B(t) is the standard
Brownian motion.

The main result of [36] is actually much more general – it applies also to non-divergence
free velocities and allows for a mean drift. Then the large time behavior is a sum of a large
(order 1/ε) deterministic component that comes from the flow compressibility and an order
one diffusive process. One can also account for the possible small scale variations of the
random field looking at equations of the form

dX

dt
=

1

ε
V

(
t

ε2
,
X(t)

εα

)
with 0 ≤ α < 1. We will not describe these generalizations in detail here. We should also
mention that when α = 1 a new regime arises – the time it takes the particle to pass one
spatial correlation length is no longer much larger than the correlation time of the random
fluctuations. This seriously changes the analysis.

5 Basic facts on weak convergence in C and D

Weak convergence

Before we present the proof of Theorem 4.2, we recall in this section basic facts from [6] on
weak convergence of probability measures. All the proofs of the results of this section can
be found there as well as a wealth of other information. Recall that a sequence of Borel
measures Pn defined on a space Ω converges weakly to a Borel measure P on Ω if for every
bounded continuous real function f we have∫

Ω

fdPn →
∫

Ω

fdP.

Equivalently, for every set A with P (∂A) = 0 we have Pn(A)→ P (A). A family F of (Borel)
probability measures on Ω is relatively weakly compact if every sequence Pn of elements
in F contains a weakly convergent subsequence Pnk which converges weakly to a probability
measure Q.
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Weak convergence in C

An effective way to verify weak compactness in the space C = C([0, T ];Rn) of continuous
functions (paths) is provided by Prokhorov’s theorem. Recall that a family F of probability
measures is tight if for every ε > 0 there exists a compact set K so that P (K) > 1− ε for all
measures P ∈ F .

Theorem 5.1 If a family F is tight then it is relatively compact.

As a corollary we have the following basic criterion for weak convergence.

Corollary 5.2 Let Pn and P be probability measures on C. If the finite-dimensional distirbu-
tions of Pn converge weakly to those of P and {Pn} is a tight family then Pn converge weakly
to P .

It is important to note that convergence of finite-dimensional distributions in C in it-
self does not imply weak convergence and tightness assumption in Corollary 5.2 can not be
dropped. Indeed, consider a sequence of piece-wise linear functions zn which increase from 0
to 1 on the interval [0, 1/n], decrease from 1 to 0 on the interval [1/n, 2/n] and are equal to
zero for t ≥ 2/n. Set the measure Pn = δzn and let P = δ0, the delta-function concentrated
on the function z = 0. Suppose that A is a finite-dimensional subset of C, that is, there
exists a finite set of times t1, . . . , tk so that if a path x(t) lies in A then so do all paths y(t)
such that x(ti) = y(ti) for all 1 ≤ i ≤ k. Then, as soon as n is so large that 1/n < ti for
all i = 1, . . . , k such that ti > 0 we have Pn(A) = P (A) simply because zn(tj) = z(tj) for
all j = 1, . . . , k (including the time ti = 0 if there is such an i) and thus zn lies in A if and
only if z ∈ A. On the other hand, if we define f(x) = min[2, ‖x‖] with the uniform norm

‖x‖ = sup
0≤t≤1

|x(t)|

then f is a continuous function on C but∫
fdPn = 1

while ∫
fdP = 0.

Therefore Pn does not converge weakly to P . This example shows that convergence of finite-
dimensional distributions is not sufficient for weak convergence.

The advanatage of tightness is that it is a verifiable notion by means of various moduli of
continuity. The usual modulus of coninuity of a function x(t), t ∈ [0, 1] is defined as

wx(ε) = sup
|t−s|≤ε

|x(s)− x(t)|, 0 < ε ≤ 1.

The Arzela-Ascoli theorem implies that a set A is relatively compact in C if and only if both

sup
x∈A
|x(0)| < +∞,

and
lim sup
ε→0

sup
x∈A

wx(ε) = 0.

The following theorem (Theorem 7.3 in [6]) is the most basic criterion for tightness in C.
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Theorem 5.3 A sequence of probability measures Pn on C is tight if and only if the following
two conditions hold: (i) for each η > 0 there exist n0 and a > 0 so that

Pn[x : x(0) ≥ a] ≤ η for all n ≥ n0, (5.1)

and (ii) for each δ > 0 and η > 0 there exists 0 < ε < 1 and n0 so that

Pn [x : wx(ε) ≥ δ] ≤ η for all n ≥ n0. (5.2)

Condition (5.1) is usually easy to verify, especially so when we the measures Pn are generated
by solutions of differential equations (with coefficients that depend on the parameter n) with
a prescribed initial point – then x(0) does not depend on n. On the other hand, verifying (5.2)
is the heart of the proof of many limit theorems. Some criteria for (5.2) to hold will be given
in the next section.

The space D

It is quite common that one has to deal with convergence of processes that have jumps but
are “nice” otherwise. The appropriate space to work with is of functions that have limits on
the left and are continuous on the right:

(i) For 0 ≤ t < 1 the right limit x(t+) = lims→t+ x(s) exists and x(t) = x(t+).

(ii) For 0 < t ≤ 1 the left limit x(t−) = lims→t− x(s). (5.3)

Such functions are often called cadlag functions (“continu á droite, limites á gauche”).
Cadlag functions can not be too bad: for instance, it is easy to check that for any cadlag

function x(t) and any ε > 0 one can find a finite partition 0 = t0 < t1 < · · · < tn = 1 of the
interval [0, 1] such that the oscillation wx[ti−1, ti) < ε. Here the oscillation of a function x(t)
on a set S is defined as

wx(S) = sup
s,t∈S
|x(s)− x(t)|. (5.4)

It follows that any cadlag function x(t) is uniformly bounded and, moreover, has at most
countably many discontinuities since the number of points where the jump magnitude ex-
ceeds 1/n is finite for all n ∈ N. We will continue to denote the usual uniform norm by

‖x‖ = sup
0≤t≤1

|x(t)|.

The usual uniform topology is too rigid to work in the space D. If we think of functions
in D as, for instance, realizations of a random jump process, then we would like to think of
two realizations as close even if the jumps occur not at exactly the same time but rather at
close times. The uniform norm does not capture this idea. Instead, for two functions x and y
in D we define the distance d(x, y) as the smallest number ε > 0 so that we may find an
increasing continuous function (“time change”) λ(t) such that λ(0) = 0, λ(1) = 1 and both

sup
t∈[0,1]

|λ(t)− t| < ε
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and
sup
t∈[0,1]

|x(t)− y(λ(t))| = sup
t∈[0,1]

|x(λ−1(t))− y(t)| < ε. (5.5)

This metric defines the Skorohod topology.
Let Λ be the set of increasing continuous functions λ(t) such that λ(0) = 0, λ(1) = 1. A se-

quence xn(t) converges to x(t) in the Skorohod topology in D if there exists a sequence λn ∈ Λ
such that x̃n(t) = xn(λn(t)) converges to x(t) and λn(t) converges to t – both in the uniform
topology of [0, 1]. In particular, the usual uniform convergence implies convergence in the
Skorohod topology – simply take λn(t) = t. Moreover, as

|xn(t)− x(t)| ≤ |xn(t)− x(λn(t))|+ |x(λn(t))− x(t)|, (5.6)

it follows that xn(t) converges pointwise to x(t) at the points where x(t) is continuous.
Since x(t) is continuous for all but countably many points, the Skorohod convergence im-
plies pointwise convergence except on a countable set of points. In addition (5.6) implies that
if the limit x(t) is continuous on [0, 1] (and hence uniformly continuous) then the Skorohod
convergence implies the uniform convergence.

The problem is that the space D is not complete under the metric d as can be seen on the
following example. Let xn(t) = 1 for 0 ≤ t ≤ 1/2n and xn(t) = 0 otherwise. Let λn ∈ Λ be a
(piecewise) linear function:

λn(t) =
t

2

on the interval [0, 1/2n] and

λn(t) =
1

2n+1
+

1− 1
2n+1

1− 1
2n

(
t− 1

2n

)
on the interval [1/2n, 1] so that λn maps [0, 1/2n] onto [0, 1/2n+1]. Then xn+1(λn(t)) = xn(t)
and |λn(t) − t| ≤ 1/2n+1. This means that d(xn, xn+1) ≤ 1/2n+1 and the sequence xn(t) is
Cauchy in the metric d. On the other hand, xn(t) converges pointwise to x(t) = 0 for all t > 0.
Therefore, if xn converges in the Skorohod topology the only possible limit function is x(t) = 0
(because the Skorohod convergence implies pointwise convergence except on a countable set).
However, the distance from each xn(t) to x = 0 is equal to one (simply because x(λ(t)) ≡ 0
for all λ ∈ Λ and xn(0) = 1 for all n) and thus xn(t) does not converge in the Skorohod
topology.

The way to make the space D complete is to introduce a different metric d0 defined as
follows. For λ ∈ Λ define

‖λ‖0 = sup
s<t

∣∣∣∣log
λ(t)− λ(s)

t− s

∣∣∣∣ .
This means that the slopes of λ are bounded away from zero and infinity if ‖λ‖0 < ∞. The
distance d0(x, y) for x, y ∈ D is the smallest number ε ≥ 0 so that there exists λ ∈ Λ such
that ‖λ‖0 < ε and (5.5) holds. This is more restrictive than d: it requires that not only λ is
close to identity in the uniform norm but the slopes of λ are all close to one. In particular,
the above example of a non-converging Cauchy sequence involves λn which are not close to
identity in this norm. We have the following proposition.
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Proposition 5.4 The metrics d and d0 are equivalent on D in the sense that d(xn, x) → 0
if and only if d0(xn, x) → 0. Moreover, the space D is separable under both d and d0 and
complete under d0.

There is no contradiction in this proposition to the above example of a sequence xn which
is d-Cauchy in D but does not converge. This sequence is simply not d0-Cauchy:

d0(xn, xn+1) = ‖λn‖0 = log 2.

Compactness in D

Modulus of continuity is not a right notion for a function in D as wx(δ) does not vanish in
the limit δ → 0. An alternative modulus which allows for jumps is defined as follows. We
have mentioned that for any function x(t) ∈ D and any ε > 0 one can find a finite partition

0 = t0 < t1 < · · · < tn = 1,

such that on each sub-interval the oscillation wx[ti−1, ti) < ε. We say that a partition {ti}
is δ-sparse if ti − ti−1 > δ for all i. Define the modulus

w′x(δ) = inf
{ti}

max
1≤i≤n

wx[ti−1, ti)

with the infimum taken over all δ-sparce partitions {ti}. The previous argument shows that

lim
δ→0

w′x(δ) = 0,

for any cadlag function x ∈ D. It is straightforward to check that we always have

w′x(δ) ≤ wx(2δ).

There can be no inequality in the opposite direction because the usual modulus of continu-
ity wx(δ) does not go to zero as δ → 0 for a discontinuous function from D. However, for a
continuous function x(t) we do have an inequality wx(δ) ≤ 2w′x(δ) so for continuous functions
the two moduli are equivalent.

The most basic criterion for compactness in D is the following analog of the Arzela-Ascoli
theorem.

Theorem 5.5 A necessary and sufficient condition for a set A to be relatively compact in
the Skorohod topology is that supx∈A ‖x‖ <∞ and limδ→0 supx∈Aw

′
x(δ) = 0.

Since the space D is separable and complete, an immediate consequence of this theorem is
the following tightness criterion.

Theorem 5.6 A necessary and sufficient condition for a sequence Pn of probability measures
on D to be tight is that

(i) lim
a→∞

lim sup
n

Pn [x : ‖x‖ ≥ a] = 0,

and
(ii) lim

δ→0
lim sup

n
Pn [x : w′x(δ) ≥ ε] = 0 for all ε > 0.
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Another useful generalization of the modulus of continuity is the following modulus

w′′x(δ) = sup
0≤u−s≤δ

[
sup
s≤t≤u

(min [|x(u)− x(t)|, |x(t)− x(s)|])
]
.

This is yet another relaxation as it is not hard to see that w′′x(δ) ≤ w′x(δ). However, once
again, there is no inequality in the opposite direction: for the functions

xn(t) =

{
1, for 0 ≤ t < 1/n,
0, for 1/n ≤ t ≤ 1

,

we have w′′xn(δ) = 0 while w′xn(δ) = 1 for δ > 1/n because any δ-sparse partition will still
contain an interval [0, t1) with t1 > δ > 1/n where the oscillation is equal to one. This is an
end-point phenomenon which also happens for the functions

yn(t) =

{
0, for 0 ≤ t < 1− 1/n,
1, for 1− 1/n ≤ t ≤ 1

.

Nevertheless, this is the only obstacle for a compactness criterion in terms of w′′x(δ) alone.
The following result takes this problem into account.

Theorem 5.7 A necessary and sufficient condition for a set A to have a compact closure in
the Skorohod topology is that supx∈A ‖x‖ <∞, limδ→0 supx∈Aw

′′
x(δ) = 0 and

lim
δ→0

sup
x∈A
|x(δ)− x(0)| = 0, and lim

δ→0
sup
x∈A
|x(1−)− x(1− δ)| = 0.

A direct analog of Theorem 5.6 is then the following.

Theorem 5.8 A necessary and sufficient condition for a sequence Pn of probability measures
on D to be tight is that

(i) lim
a→∞

lim sup
n

Pn [x : ‖x‖ ≥ a] = 0,

and
(ii.1) lim

δ→0
lim sup

n
Pn [x : w′′x(δ) ≥ ε] = 0 for all ε > 0,

and

(ii.2)

{
limδ→0 lim supn Pn [x : |x(δ)− x(0)| ≥ ε] = 0

limδ→0 lim supn Pn [x : |x(1−)− x(1− δ)| ≥ ε] = 0.

A convenient and more practical criterion for weak convergence is the following. Given a
probability measure P we denote by TP the set of all times t such that P [Jt] = 0 where

Jt = {x ∈ D : x(t) 6= x(t−)}

is the set of all functions that have a jump at time t. If X is a random variable on D then
we write TX for TP where TP is the law of X.
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Theorem 5.9 Suppose that the finite-dimensional distirbutions (Xn
t1
, . . . , Xn

tk
) of random

variables Xn defined on D converge weakly as n → ∞ to (Xt1 , . . . , Xtk) whenever all ti
lie in TX , and X1 −X1−δ goes weakly to zero as δ → 0. Assume also that there exists β ≥ 0
and α > 1/2 so that for all r ≤ s ≤ t and λ > 0 we have

P [min{|Xn
s −Xn

r |, |Xn
t −Xn

s |} ≥ λ] ≤ C

λ4β
|F (t)− F (s)|2α, (5.7)

where F is a non-decreasing continuous function on [0, 1]. Then Xn converge weakly to X as
n→∞.

The key estimate in the proof of Theorem 5.9 is that (5.7) implies that there exists a con-
stant K that depends only on C, α and β so that

P [w′′Xn(δ) ≥ ε] ≤ K

ε4β
(F (1)− F (0))[wF (2δ)]2α−1, (5.8)

where wF is the modulus of continuity of the function F . This means that (5.7) ensures that
condition (ii.1) of Theorem 5.8 holds. A useful and verifiable condition that guarantees (5.7)
is that there exist β > 0, α > 1/2 and C > 0 so that

E
{
|Xn

s −Xn
r |2β|Xn

t −Xn
s |2β

}
≤ C|t− r|2α (5.9)

for all n. Then we may take F (t) = t and (5.8) becomes

P [w′′Xn(δ) ≥ ε] ≤ K

ε4β
δ2α−1. (5.10)

This is why we need α > 1/2 in (5.9). It follows that we may use (5.9) as a substitute for
condition (ii.1) in Theorem 5.8.

In turn, the following condition is sufficient to ensure that (5.9) holds: for any T > 0
and ν > 0 there exists a constant C(T, ν) so that for all n, and all 0 ≤ s ≤ t ≤ u ≤ T , we
have

E
{
|Xn(u)−Xn(t)|2|Xn(t)−Xn(s)|ν

}
≤ C(T, ν)(u− t)E {|Xn(t)−Xn(s)|ν} . (5.11)

Indeed, when ν = 0 in (5.11) we have

E
{
|Xn(u)−Xn(t)|2

}
≤ C(T, ν)(u− t) for all n and all 0 ≤ t ≤ u ≤ T .

Taking ν = 2 in (5.11) we get, using the above:

E
{
|Xn(u)−Xn(t)|2|Xn(t)−Xn(s)|2

}
≤ C(T, ν)(u− t)E

{
|Xn(t)−Xn(s)|2

}
(5.12)

≤ C(T, ν)(u− t)(t− s) ≤ C(T, ν)(u− s)2

and thus (5.9) indeed holds. A somehwat more general estimate than (5.11) is a reformulation
in terms of the conditional expectation

E
{
|Xn(t)−Xn(s)|2|

∣∣Fs} ≤ C(T )(t− s). (5.13)

A practical advantage of working with the conditional expectation in (5.13) is that the power
of (t− s) on the right is equal to one, not larger than one as in (5.9).

54



6 The proof of the limit theorem

We now come to the proof of the limit Theorem 4.2 for the solutions of

Ẋε =
1

ε
V

(
t

ε2
, Xε

)
, Xε(0) = x. (6.1)

The ”difficult to believe at first” aspect of Theorem 4.2 is simply the fact that Xε(t) is of the
size O(1) despite the coefficient ε−1 in front of the velocity field. That is the key to the proof,
and is a result of cancellation due to the mixing properties of the velocity field.

The proof proceeds in two steps. The key step is to establish tightness of the pro-
cesses Xε(t), so that a limit in law along a subsequence εk → 0 exists. This is done in
the space D of cadlag functions. However, as the processes Xε(t) are all continuous the limit
process also has to be continuous and convergence take place in the space C of continuous
functions. In the last step we show that the only possible limit along a subsequence is a
Brownian motion multiplied by the matrix σ. This uses the martingale characterization of
the Brownian motion.

Tightness of Xε is a consequence of the following.

Proposition 6.1 There exist C > 0 and ν > 0 so that

E
{
|Xε(t)−Xε(s)|2|Xε(s)−Xε(u)|2

}
≤ C(t− u)1+ν , (6.2)

for all 0 ≤ u ≤ s ≤ t ≤ T .

This is criterion (5.9) for tightness in the space D with β = 1 and α = (1 + ν)/2. The main
step in the proof of (6.2) is to find γ ∈ (1, 2) such that we have the following estimate for the
conditional expectation

E
{
|Xε(t)−Xε(s)|2

∣∣Fs} ≤ C(t− s) for t− s > 10εγ. (6.3)

As we have explained, the estimate (6.3) itself is sufficient to establish tightness in D for the
family Xε(t) if it were to hold for all t > s – see (5.13). As we will prove it only for pairs of
time with a gap: t− s > 10εγ, we may at the moment conclude only that

E
{
|Xε(t)−Xε(s)|2|Xε(s)−Xε(u)|2

}
≤ C(t− u)2 for t− s > 10εγ and s− u > 10εγ.

Our first step is to establish that, with an appropriate choice of γ ∈ (1, 2), if either t−s ≤ 10εγ

or s−u ≤ 10εγ, the estimate (6.2) follows from (6.3) together with the dynamical system (6.1)
governing Xε(t). If both t− s ≤ 10εγ and s− u ≤ 10εγ then we have directly from (6.1):

E
{
|Xε(t)−Xε(s)|2|Xε(s)−Xε(u)|2

}
≤ C(t− s)2(s− u)2

ε4
≤ Cε11γ/4(t− u)5/4

ε4
≤ C(t−u)5/4,

provided that γ > 16/11. On the other hand, if, say, t − s ≤ 10εγ but s − u > 10εγ, (6.3)
implies that

E
{
|Xε(s)−Xε(u)|2

}
≤ C(s− u),
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and (6.1) implies that with probability one

|Xε(t)−Xε(s)| ≤
C(t− s)

ε
.

Therefore, the following estimate holds for such times t, s and u:

E
{
|Xε(t)−Xε(s)|2|Xε(s)−Xε(u)|2

}
≤ C

ε2
(t− s)2(s− u)

≤ Cε7γ/4−2(t− u)5/4 ≤ C(t− u)5/4,

provided that γ > 8/7. We see that, indeed, (6.3) together with (6.1) are sufficient to prove
the tightness criterion (6.2). The rest of the proof of tightness of the processes Xε(t) is
concerned with verifying (6.3).

The mixing lemmas

A crucial component in many proofs of this kind is some sort of a mixing lemma that is
needed to establish the tightness of the dynamics. It translates the mixing properties of the
random field into the mixing properties of the trajectories.

We set G0(s, x) = V (s, x) and

G1,j(s1, s2, x) =
n∑
p=1

Vp(s2, x)
∂Vj(s1, x)

∂xp
, j = 1, . . . , n.

Exercise 6.2 Show that incompressibility of V (t, x) and its spatial stationarity imply that

E{G1(s1, s2, x)} = 0,

for all s1, s2 and x.

The next lemma quantifies the mixing of the trajectories.

Lemma 6.3 Fix T ≥ 0 and let 0 ≤ u ≤ s ≤ T . Assume that Y is a Vs/ε
2

0 -measurable
random vector function. Then there exists ε0 > 0 and a constant C > 0 such that for any
0 ≤ u ≤ s ≤ s2 ≤ s1 ≤ T and 0 < ε < ε0 we have∣∣∣E{V (s1

ε2
, Xε(u)

)
Y
( s
ε2

)}∣∣∣ ≤ Cβ(s1 − s)E
∣∣∣Y ( s

ε2

)∣∣∣ , (6.4)∣∣∣∣E{ ∂

∂xk

[
V
(s1

ε2
, Xε(u)

)]
Y
( s
ε2

)}∣∣∣∣ ≤ Cβ(s1 − s)E
∣∣∣Y ( s

ε2

)∣∣∣ , (6.5)

and ∣∣∣E{G1

(s1

ε2
,
s2

ε2
, Xε(u)

)
Y
( s
ε2

)}∣∣∣ ≤ Cβ1/2(s1 − s2)β1/2(s2 − s)E
∣∣∣Y ( s

ε2

)∣∣∣ , (6.6)∣∣∣∣E{ ∂

∂xk

[
G1

(s1

ε2
,
s2

ε2
, Xε(u)

)]
Y
( s
ε2

)}∣∣∣∣ ≤ Cβ1/2(s1 − s2)β1/2(s2 − s)E
∣∣∣Y ( s

ε2

)∣∣∣ , (6.7)

for all 1 ≤ k ≤ n.
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Proof. First of all, we note that for ρ > 1/2, C > 1 + sup |V (t, x)| and 0 < ε < ε0(T ) the
process Xε(t), 0 ≤ t ≤ u ≤ T does not leave the ball of the radius C(1 + uρ/ε2ρ) centered at

the origin, and hence is Vu/ε
2

0 (C, ρ) -measurable:

|Xε(t)| ≤
1

ε

∫ u

0

∣∣∣V ( s
ε2
, Xε(s)

)∣∣∣ ds ≤ Cu

ε
≤ C

(
1 +

uρ

ε2ρ

)
for all 0 ≤ t ≤ u.

We first prove (6.4)-(6.5). We prove only the second inequality, (6.5) as the proof of (6.4)
is identical. The idea is to replace the random variable Xε(u) by a deterministic value and
use the mixing properties of the field V (t, x) in time. Let M ∈ N be a fixed positive integer
and l ∈ Zn. Define the event

A(l) =

[
ω :

lj
M
≤ Xε

j (u) <
lj + 1

M
, j = 1, . . . , n

]
, l = (l1, . . . , ln).

The event A(l) is Vs/ε
2

0 measurable since u ≤ s. We may decompose the expectation in (6.5)
using the fact that the random variable Xε(u) is close to the non-random value l/M on the
event A(l) as follows:∣∣∣∣E{ ∂

∂xk

[
V
(s1

ε2
, Xε(u)

)]
Y
( s
ε2

)}∣∣∣∣ =

∣∣∣∣∣∑
l

E
{

∂

∂xk

[
V
(s1

ε2
, Xε(u)

)]
Y
( s
ε2

)
χA(l)

}∣∣∣∣∣
≤

∣∣∣∣∣∑
l

E
{[

∂

∂xk

[
V
(s1

ε2
, Xε(u)

)]
− ∂

∂xk

[
V

(
s1

ε2
,
l

M

)]]
Y
( s
ε2

)
χA(l)

}∣∣∣∣∣
+

∣∣∣∣∣∑
l

E
{

∂

∂xk

[
V

(
s1

ε2
,
l

M

)]
Y
( s
ε2

)
χA(l)

}∣∣∣∣∣ = I + II.

As the points l/M are deterministic, the second term above may be now estimated using the
mixing property (4.13) and the fact that E {∂V/∂xk} = 0 by

II ≤ 2Kβ

(
s1 − s
ε2

)∑
l

E
{∣∣∣Y ( s

ε2

)∣∣∣χA(l)

}
= 2Kβ

(
s1 − s
ε2

)
E
{∣∣∣Y ( s

ε2

)∣∣∣} ,
uniformly in M .

As far as I is concerned, we have assumed that two spatial derivatives of the field V (t, x)
are bounded by a deterministic constant, hence ∂V/∂xk is uniformly continuous in space.
Therefore, using the Lebesgue dominated convergence theorem we conclude that

I ≤ C

M

∑
l

E
{∣∣∣Y ( s

ε2

)∣∣∣χA(l)

}
=

C

M

∑
l

E
{∣∣∣Y ( s

ε2

)∣∣∣}→ 0 as M → +∞,

and (6.5) follows. An identical proof shows that in addition we have the same bound for the
second derivatives of the random field V :∣∣∣∣E{ ∂2

∂xk∂xm

[
V
(s1

ε2
, Xε(u)

)]
Y
( s
ε2

)}∣∣∣∣ ≤ Cβ(s1 − s)E
∣∣∣Y ( s

ε2

)∣∣∣ . (6.8)
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We now prove (6.7) – the proof of (6.6) is identical. Let us first write out the expression
for G1 : ∣∣∣∣E{ ∂

∂xk

[
G1

(s1

ε2
,
s2

ε2
, Xε(u)

)]
Y
( s
ε2

)}∣∣∣∣
≤

n∑
p=1

∣∣∣∣E{ ∂

∂xk

[
Vp

(s2

ε2
, Xε(u)

) ∂

∂xp

(
V
(s1

ε2
, Xε(u)

))]
Y
( s
ε2

)}∣∣∣∣
Now we may apply (6.5), (6.8) in two different ways using different parts of the inequality

0 ≤ u ≤ s ≤ s2 ≤ s1.

First, we may use (6.5), (6.8) with the gap between s1 and s2, that is, we group into “Y ” in
(6.5), (6.8) all terms that involve s and s2. Using in addition the uniform bounds on V and
its derivatives this leads to∣∣∣∣E{ ∂

∂xk

[
G1

(s1

ε2
,
s2

ε2
, Xε(u)

)]
Y
( s
ε2

)}∣∣∣∣ ≤ Cβ

(
s1 − s2

ε2

)
E
{∣∣∣Y ( s

ε2

)∣∣∣} .
Second, note that (6.5) may be slightly generalized to apply with ∂V/∂xk replaced by a
sufficiently smooth in space VTs1 random variable with an expectation equal to zero. As
E{G1} = 0 indeed, we can use use this modified version of (6.5) with the gap between s2 and
s, taking “Y ” in (6.5) to be simply Y (s/ε2):∣∣∣∣E{ ∂

∂xk

[
G1

(s1

ε2
,
s2

ε2
, Xε(u)

)]
Y
( s
ε2

)}∣∣∣∣ ≤ Cβ

(
s2 − s
ε2

)
E
{∣∣∣Y ( s

ε2

)∣∣∣} .
Multiplying these two inequalities and taking the square root we conculde that (6.7) holds.
This finishes the proof of Lemma 6.3. �

The proof of Proposition 6.1

Step 1. Taking a time-step backward. We start with a pair of times t > s with a gap
between them: t − s > 10εγ. Consider a partition s = t0 < t1 < · · · < tM+1 = t of the
interval [s, t] into subintervals of the length

∆t = lε = (t− s)
([

t− s
εγ

])−1

,

where [x] is the integer part of x, so that εγ/2 ≤ lε ≤ 2εγ. The parameter γ ∈ (1, 2) is to
be defined later. The important aspect is that γ < 2 so that ∆t is much larger than the
velocity correlation time ε2. The basic idea in the proof of (6.3) is “to expand Xε(t)−Xε(s)
in a Taylor series” with a “large” time step O(∆t). The first two terms in this expansion will
be explicitly computable. The error terms which are nominally large are shown to be small
using the mixing Lemma 6.3. The last point is the key to the whole argument.

Dropping the subscript ε of Xε we write for t > s:

X(t)−X(s) =
1

ε

∫ t

s

V
( u
ε2
, X(u)

)
du =

1

ε

M∑
i=0

ti+1∫
ti

V
( u
ε2
, X(u)

)
du (6.9)
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Our task is to estimate the integral inside the summation in the right side of (6.9). In
the preparation for the application of the mixing lemma, on the interval ti ≤ u ≤ ti+1 the
integrand can be rewritten as

V
( u
ε2
, X(u)

)
= V

( u
ε2
, X(ti−1)

)
+

∫ u

ti−1

d

du1

V
( u
ε2
, X(u1)

)
du

= V
( u
ε2
, X(ti−1)

)
+

u∫
ti−1

n∑
p=1

∂

∂xp

[
V
( u
ε2
, X(u1)

)](1

ε
Vp

(u1

ε2
, X(u1)

))
du1

= V
( u
ε2
, X(ti−1)

)
+

1

ε

∫ u

ti−1

G1

( u
ε2
,
u1

ε2
, X(u1)

)
du1.

The next step is to expand G1 as well, also around the “one-step-backward” time ti−1:

G1

( u
ε2
,
u1

ε2
, X(u1)

)
= G1

( u
ε2
,
u1

ε2
, X(ti−1)

)
+

1

ε

∫ u1

ti−1

G2

( u
ε2
,
u1

ε2
,
u2

ε2
, X(u2)

)
du2

with

G2(u, u1, u2, x) =
n∑
q=1

∂

∂xq
[G1 (u, u1, x)]Vq (u2, x) .

Putting together the above calculations we see that

X(t)−X(s) =
1

ε

M∑
i=0

∫ ti+1

ti

V
( u
ε2
, X(u)

)
du =

1

ε

M∑
i=0

∫ ti+1

ti

V
( u
ε2
, X(ti−1)

)
du

+
1

ε2

M∑
i=0

∫ ti+1

ti

[∫ u

ti−1

G1

( u
ε2
,
u1

ε2
, X(u1)

)
du1

]
du

=
1

ε

M∑
i=0

∫ ti+1

ti

V
( u
ε2
, X(ti−1)

)
du+

1

ε2

M∑
i=0

∫ ti+1

ti

[∫ u

ti−1

G1

( u
ε2
,
u1

ε2
, X(ti−1)

)
du1

]
du

+
1

ε3

M∑
i=0

∫ ti+1

ti

[∫ u

ti−1

[∫ u1

ti−1

G2

( u
ε2
,
u1

ε2
,
u2

ε2
, X(u2)

)
du2

]
du1

]
du.

The triple integral on the last line is deterministically small with an appropriate choice of γ:
the time interval in each integration is smaller than εγ and the total number of terms is at
most 2(t−s)/εγ as we have assumed that t−s ≥ 10εγ. Therefore, the last integral is bounded
by

1

ε3

∣∣∣∣∣
M∑
i=0

∫ ti+1

ti

[∫ u

ti−1

[∫ u1

ti−1

G2

( u
ε2
,
u1

ε2
,
u2

ε2
, X(u2)

)
du2

]
du1

]
du

∣∣∣∣∣ ≤ Cε2γ−3(t− s)

which is small if γ > 3/2. This is a general idea in proofs of weak coupling limits: pull back
one time step and expand the integrands until they become almost surely small, then compute
the limit of the (very) finite number of surviviing terms. In our present case we have shown
that, for 3/2 < γ < 2,

X(t)−X(s) = L1(s, t) + L2(s, t) + E(s, t)
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where

L1(s, t) =
1

ε

M∑
i=0

ti+1∫
ti

V
( u
ε2
, X(ti−1)

)
du

and

L2(s, t) =
1

ε2

M∑
i=0

ti+1∫
ti

[∫ u

ti−1

G1

( u
ε2
,
u1

ε2
, X(ti−1)

)
du1

]
du,

while |E(s, t)| ≤ Cεα(t − s) with some α > 0 and a deterministic constant C > 0. This
finishes the first preliminary step in the proof of tightness.

Step 2. Application of the tightness criterion. Now we are ready to prove (6.3).

That is, we have to verify that for any non-negative and Vs/ε
2

0 -measurable random variable Y
we have for all 0 ≤ s ≤ t ≤ T such that t ≥ s+ 10εγ:

E
{
|X(t)−X(s)|2Y

}
≤ C(T )(t− s)E {Y } .

Our estimates in Step 1 show that it is actually enough to verify that

E
{

(Lj(s, t))
2Y
}
≤ C(t− s)E{Y }, j = 1, 2.

An estimate for L1. We first look at the term corresponding to L1: it is equal to

E
{

(L1(s, t))2Y
}

=
2

ε2

∑
i<j

n∑
p=1

ti+1∫
ti

tj+1∫
tj

E
{
Vp

( u
ε2
, X(ti−1)

)
Vp

(
u′

ε2
, X(tj−1)

)
Y

}
du′du

+
1

ε2

∑
j

n∑
p=1

tj+1∫
tj

tj+1∫
tj

E
{
Vp

( u
ε2
, X(tj−1)

)
Vp

(
u′

ε2
, X(tj−1)

)
Y

}
du′du =

∑
i≤j

Iij.

The idea is to use separation between ti−1 and tj−1 and apply the mixing lemma. Accordingly
we look at the cases i ≤ j − 2, i = j − 1 and i = j separately as the terms end up being of
a different order. The terms with i ≤ j − 2 may be estimated with the help of the mixing
Lemma 6.3 using the time gap between the times u′ and tj−1 ≥ ti+1 ≥ u which is much larger
than the correlation time ε2:

M∑
j=0

∑
i≤j−2

|Iij| ≤
C

ε2

M∑
j=0

∑
i≤j−2

ti+1∫
ti

tj+1∫
tj

β

(
u′ − tj−1

ε2

)
E {Y } du′du

≤ C

ε2
β
(
ε−2+γ

)
(t− s)2E {Y } ≤ Cεp(t− s)E {Y }

for any p > 0 since γ < 2 and β(s) decays faster than any power of s. The term I3 corre-
sponding to i = j can be estimated using the mixing lemma again, using the fact that tj−1 is
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smaller than both u and u′:

M∑
j=0

|Ijj| ≤
C

ε2

M∑
j=0

tj+1∫
tj

tj+1∫
tj

E
{
Vp

( u
ε2
, X(tj−1)

)
Vp

(
u′

ε2
, X(tj−1)

)
Y

}
du′du (6.10)

≤ 2C

ε2

∑
j∈I

tj+1∫
tj

tj+1∫
u′

β

(
u− u′

ε2

)
dudu′E {Y } ≤ C(t− s)E {Y }

∫ ∞
0

β(u)du.

The integral I2 with i = j − 1 is estimated similarly.
A better estimate estimate for L1. Let us now go one step further and actually identify

the limit of E{L1,j(s, t)L1,m(s, t)Y } with 1 ≤ j,m ≤ n. The previous calculations already
show that the term corresponding to the previous I1 (but now with Vj and Vm replacing Vp
and Vp) satisfies

|I1| ≤ Cεα(t− s)E{Y },

with α > 0 so we are interested only in the limit of I2 and I3. The term I3 is computed as
in (6.10) with the help of the mixing lemma:

∑
j∈I

|Ijj| =
1

ε2

M∑
j=0

tj+1∫
tj

tj+1∫
tj

E
{
Vj

( u
ε2
, X(tj−1)

)
Vm

(
u′

ε2
, X(tj−1)

)
Y

}
du′du (6.11)

=
1

ε2

M∑
j=0

tj+1∫
tj

tj+1∫
tj

Rjm

(
u− u′

ε2
, 0

)
dudu′E {Y }+ o(1)(t− s)E {Y }

=

[∫ ∞
−∞

Rjm(τ, 0)dτ + o(1)

]
(t− s)E {Y } .

Finally, I2 corresponding to i = j − 1 is computed as

∑
j∈I

|Ij−1,j| =
1

ε2

M∑
j=0

tj+1∫
tj

tj∫
tj−1

E
{
Vj

( u
ε2
, X(tj−1)

)
Vm

(
u′

ε2
, X(tj−2)

)
Y

}
du′du (6.12)

=
1

ε2

∑
j∈I

tj+1∫
tj

tj∫
tj−1

Rjm

(
u− u′

ε2
, 0

)
dudu′E {Y }+ o(1)(t− s)E {Y } = o(1)(t− s)E {Y } .

because tj+1 − tj = εγ � ε2. Therefore we actually have a more precise estimate

E {(L1,j(s, t)L1,m(s, t))Y } =

[∫ ∞
−∞

Rjm(τ, 0)dτ + o(1)

]
(t− s)E {Y } . (6.13)

An estimate for L2. Following the above steps one also establishes the required estimate
for L2:

E
{

(L2(s, t))2Y
}
≤ C(t− s)E{Y }. (6.14)
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There is no reason to repeat these calculations separately for L2 except that an even stronger
estimate than (6.14) holds with an appropriate choice of γ:

E
{

(L2(s, t))2Y
}
≤ Cεα(t− s)E{Y } (6.15)

with α > 0. We will need (6.15) in the identification of the limit, thus we will show it now:

E
{

(L2(s, t))2Y
}

=
1

ε4

∑
i,j

ti+1∫
ti

du

tj+1∫
tj

du′
u∫

ti−1

du1

u′∫
tj−1

du′1E
{
G1

( u
ε2
,
u1

ε2
, X(ti−1)

)
G1

(
u′

ε2
,
u′1
ε2
, X(tj−1)

)
Y

}
.

Once again, you split the sum above into terms with i ≤ j − 2, i = j − 1 and i = j: those
with i ≤ j − 2 add up to

1

ε4

∑
i≤j−2

ti+1∫
ti

du

tj+1∫
tj

du′
u∫

ti−1

du1

u′∫
tj−1

du′1E
{
G1

( u
ε2
,
u1

ε2
, X(ti−1)

)
G1

(
u′

ε2
,
u′1
ε2
, X(tj−1)

)
Y

}
≤ Cε2γ−4β

(
εγ−2

)
(t− s)2E{Y }.

We used in the above estimate the mixing lemma with the gap between ti−1 and tj−1 as well
as the fact that the length of each time interval is εγ while the total number of terms in
the sum is not more than (2(t − s)/εγ)2. The important difference with L1 is that the term
with i = j is also small:

1

ε4

∑
i

ti+1∫
ti

du

ti+1∫
ti

du′
u∫

ti−1

du1

u′∫
ti−1

du′1E
{
G1

( u
ε2
,
u1

ε2
, X(ti−1)

)
G1

(
u′

ε2
,
u′1
ε2
, X(ti−1)

)
Y

}
≤ Cε3γ−4(t− s)E{Y }

simply because now the number of summands is bounded by (2(t−s)/εγ) (without the square).
This means that if we take γ > 4/3 this term is bounded by the right side of (6.15). The
contribution of the terms with i = j − 1 is estimated identically – hence (6.15) indeed holds.

Summarizing our work so far (and restoring the missing indices) we have shown that

E {(Xm(t)−Xm(s))(Xn(t)−Xn(s))Y } =

[∫ ∞
−∞

Rmn(τ, 0)dτ + o(1)

]
(t− s)E {Y } (6.16)

for all t > s with t − s ≥ 10εγ. This, of course, implies (6.3) and hence the tightness of the
family Xε(t) follows.

Identification of the limit

In order to identify the limit all we have to do is verify that the limit is continuous (that we
already know) and the following two conditions hold: first,

lim
ε→0

E
{[

(Xε
j (t)−Xε

j (s))(X
ε
m(t)−Xε

m(s))− ajm(t− s)
]

Ψ
}

= 0
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for all bounded non-negative continuous functions

Ψ = Ψ(Xε(t1), . . . , Xε(tn)),

with 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ s < t ≤ T . Second, we need

lim sup
ε→0

E
{

(Xε
j (t))

4
}
< +∞

for all t > 0. The former condition we have already verified in the previous section in the
proof of tightness. The latter may be checked using very similar arguments. This finishes the
proof of Theorem 4.2. �

7 Mixing in strong shear flows

In the previous sections, we have considered a flow with a uniform mean. Let us now consider
what happens when the mean flow is not uniform and leads to some stretching. A simple
example of such dynamics is advection by a shear flow in a channel

D = {(x, y) : x ∈ R, y ∈ Ω ⊂ Rd} ⊂ Rd+1. (7.1)

Here, Ω is a smooth bounded domain – the channel cross-section. The flow trajectories are
straight lines along the channel:

dX

dt
= u(Y (t)),

dY

dt
= 0, X(0) = x, Y (0) = y. (7.2)

This, of course, has an explicit solution

X(t) = x+ u(y)t, Y (t) = y. (7.3)

In order to randomly perturb this flow, we will add a diffusive perturbation to the flow. This
avoids many of the technicalities we have encountered when dealing with a time-independent
random flow. Thus, we consider a system of two stochastic differential equations

dXt = −u(Yt) +
√

2εdB
(1)
t , (7.4)

dYt =
√

2εdB
(2)
t .

The Brownian motion B
(1)
t is one-dimensional, while B

(2)
t is d-dimensional. The corresponding

Kolmogorov equation is
∂φ

∂t
+ u(y)

∂φ

∂x
= ε2∆φ. (7.5)

We will consider this problem on long time scales, of the order t ∼ ε2, to make the effect of
the random perturbation non-trivial. The corresponding time-rescaling gives

∂φ

∂t
+

1

ε2
u(y)

∂φ

∂x
= ∆φ. (7.6)
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This problem is posed in the channel D in (7.1), with the Neumann boundary condition at
the boudnary:

∂φ

∂ν
= 0 at ∂D = R× ∂Ω. (7.7)

Note that if u(y) ≡ ū = const, then solution of (7.7) is simply a translate of the solution
of the heat equation:

φ(t, x, y) = φ̄(t, x− ū t
ε2
, y), (7.8)

where φ̄(t, x, y) is the solution of the standard heat equation

∂φ̄

∂t
= ∆φ̄, (7.9)

with the Neumann boundary conditions (7.7). Therefore, if u(y) is a uniform flow, then the
solution of (7.6) behaves as the solution of the standard heat equation.

Quenching by a shear flow

The goal of this section is to investigate what happens if the flow is not uniform – there
is a speed mismatch when moving along the trajectories. This will connect the Kesten-
Papanicolaou theorem on the behavior of the particles in a flow with a uniform mean to the
relaxation enhancement results. Thus, we will ask the same question as in the relaxation
enhancement setting: consider the solution of

∂φ

∂t
+

1

ε2
u(y)

∂φ

∂x
= ∆φ. (7.10)

∂φ

∂ν
= 0 at ∂D = R× ∂Ω, (7.11)

φ(0, x, y) = φ0(x, y),

with a rapidly decaying initial condition φ0(x, y). When is it true that for any time τ > 0
and δ > 0 we have

‖φ(τ, ·)‖L∞(D) ≤ δ, (7.12)

provided that ε < ε0(τ, δ)?

Definition 7.1 We say that the profile u(y) is quenching if for any L and any initial condi-
tion φ0(x, y) supported inside the interval [−L,L]× Ω, with 0 ≤ φ0(x, y) ≤ 1, there exists ε0

such that the solution of (7.10) satisfies (7.12) for all ε ∈ (0, ε0).

The key feature that distinguishes quenching from non-quenching velocities is the absence or
presence of large enough flat parts in the profile u(y).

Definition 7.2 We say that the profile u(y) ∈ C∞(Ω) satisfies the H-condition if

there is no point y ∈ Ω, where all derivatives of u(y) vanish. (7.13)
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The H-condition guarantees that the operator

∂

∂t
+ u(y)

∂

∂x
−∆y (7.14)

is hypoelliptic [26]. The study of existence of smooth fundamental solutions for such operators
was initiated by Kolmogorov [35]. Kolmogorov’s work with Ω = R and u(y) = y served in
part as a motivation for the fundamental result on characterization of hypoelliptic operators
of Hörmander [26]. The hypoellipticity of the operator (7.14) plays a key role in some of our
considerations. The next result shows that the H-condition implies quenching.

Theorem 7.3 Let u ∈ C∞(Ω) satisfy the H-condition. Then u(y) is quenching. That is,
for any δ > 0 and any τ > 0 there exists a constant C(u,Ω, τ, δ) > 0 that is independent
of ε ∈ (0, 1) such that

‖φ(τ, ·)‖L∞(D) ≤ δ (7.15)

whenever the initial condition φ0(x, y) is supported in an interval [−L,L]×Ω, with L < C/ε.

More precise refinements of Theorem 7.3 can be found in [7, 34].
We now prove Theorem 7.3. Let φ(t, x, y) be the solution of

φt +
1

ε
u(y)φx = ∆φ (7.16)

φ(0, x, y) = φ0(x, y)

∂φ

∂n
= 0 on ∂D.

Let us write

φ(t, x, y) =

∫ ∞
−∞

dzG(t, x− z)Ψ(t, z, y),

with the function Ψ(t, x, y) satisfying the degenerate parabolic equation

Ψt +
1

ε
u(y)Ψx = ∆yΨ (7.17)

Ψ(0, x, y) = φ0(x, y)

∂Ψ

∂n
= 0 on ∂D.

Here, G(t, x) is the standard heat kernel

G(t, x) =
1√

4πκt
exp

(
− x2

4κt

)
.

If u(y) satisfies the H-condition (7.13) then the diffusion process defined by (7.17) has a unique
smooth transition probability density. Indeed, the Lie algebra generated by the operators ∇y

and ∂t + ε−2u(y)∂x consists of vector fields of the form

∇y,
∂

∂t
+ u(y)

∂

∂x
,
∂u(y)

∂yk

∂

∂x
,
∂2u(y)

∂yi∂yj

∂

∂x
, . . . , u(n)(y)

∂

∂x
, . . .
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which span R2 if u(y) satisfies (7.13). Then the theory of Hörmander [26], and the results
of Ichihara and Kunita [25] imply that there exists a smooth transition probability den-
sity pε(t, x, y, y

′) such that

Ψ(t, x, y) =

∫
R

dx′
∫
Ω

dy′pε (t, x− x′, y, y′)φ0(x′, y′).

In particular, the function pA(t) is uniformly bounded from above for any t > 0 [25]. Then
we have

‖φ(t)‖L∞D ≤ ‖pε(t)‖L∞(D)‖φ0‖L1(D).

It is straightforward to observe that

pε(t, x, y, y
′) = εp0(t, εx, y, y′)

with p0 being the transition probability density for (7.17) with ε = 1. That is, p0 satisfies

∂p0

∂t
+ u(y)

∂p0

∂x
= ∆yp0,

p0(0, x, y, y′) = δ(x)δ(y − y′),
∂p0

∂n
= 0 for x ∈ ∂Ω.

Therefore, we obtain
φ(t, x, y) ≤ ε‖p0(t)‖L∞(D)‖φ0‖L1(D),

and the conclusion of Theorem 7.3 follows.

Non-quenching by flows with plateaus

The next result shows that a plateau in the profile u(y) prohibits quenching. Therefore, the
conditions in Theorem 7.3 are natural.

Theorem 7.4 There exists a universal constant C0 > 0, such that, if u(y) = ū = const in a
ball y ∈ B(a, h) ⊂ Ω for some a ∈ Ω and h > 0, then there exist initial conditions supported
in [−1, 1]× Ω such that

‖φ(t = 1, ·)‖L∞(D) ≥ C0, (7.18)

for all ε ∈ (0, 1).

The proof is quite simple: solution of (7.16) is above the solution of the Dirichlet problem in
the smaller channel D′ = {(x, y) : x ∈ R, y ∈ B(a, h)}:

φt +
1

ε
u(y)φx = ∆φ in D′, (7.19)

φ(0, x, y) = φ0(x, y)

φ = 0 on ∂D′.
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However, as u(y) = ū in D′, we have

φ(t, x, y) = ψ(t, x− ū t
ε2
, y),

with the function ψ(t, x, y) that solves

ψt = ∆φ in D′, (7.20)

φ(0, x, y) = φ0(x, y)

ψ = 0 on ∂D′.

The conclusion of Theorem 7.4 follows simply from the fact that the function ψ does not
depend on ε.

8 Particles in randomly perturbed incompressible flows

Let us now consider particles moving in an incompressible flow with stochastic perturbations,
so that the underlying dynamics is governed by a stochastic differential equation

dXt = −u(X)dt+ εdBt. (8.1)

Here, u(x) is an incompressible flow in a domain Ω:

∇ · u = 0, for all x ∈ Ω, (8.2)

and Bt is the standard Brownian motion. One example are Hamiltonian flows, and in two
dimensions, if Ω is simply connected, these are the only examples: u = ∇⊥H. The underlying
time-dependent PDE is

∂φ

∂t
+ u · ∇φ = ε2∆φ, (8.3)

and its time-rescaled version
∂φ

∂t
+

1

ε2
u · ∇φ = ∆φ, (8.4)

We will assume that the flow u does not penetrate the boundary of Ω:

u · ν = 0 on ∂Ω. (8.5)

Here, ν is the normal to the boundary.
Let us make one additional observation. Recall that the probabilistic interpretation for

the solutions of (8.4) is as follows. Consider the solution of the stochastic differential equation

dXt = − 1

ε2
u(Xt)dt+

√
2dBt, X0 = x. (8.6)

Then φ(t, x) is given by
φ(t, x) = Ex[φ0(Xmin(t,τ)], (8.7)
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with the convention that φ0(Xτ ) = 0. Here, τ is the first exit time from the domain Ω for the
process Xt starting at X0 = x. Assume now that Φ(x) is a first integral of the flow u(x):

u · ∇Φ = 0, (8.8)

an consider Yt = Φ(Xt). The process Yt satisfies a stochastic differential equation

dYt = ∇Φ(Xt) · dXt + ∆Φ(Xt)dt = ∆Φ(Xt)dt+
√

2∇Φ(Xt) · dBt. (8.9)

In particular, there is no large term in (8.9) – the process Φ(Xt) remains of the order O(1), and
undergoes a slow evolution. Thus, even though the evolution of Xt is fast, the fist integrals
evolve slowly, meaning that Xt moves very fast on the level sets of the efforts integrals but
not across the level sets.

Oscillation on streamlines

To keep the presentation simple, we will first consider a steady version of this problem:

−∆φε +
1

ε2
u · ∇φε = g(x), (8.10)

φε(x) = 0, x ∈ ∂Ω.

Here, Ω is a bounded smooth domain. First, note that multiplying by φε(x) and integrating
by parts gives ∫

Ω

|∇φε|2dx =

∫
Ω

fφεdx ≤ ‖g‖L2‖φε‖L2 . (8.11)

The Poincaré inequality implies that

‖φ‖L2 ≤ Cp‖∇φε‖L2 . (8.12)

It follows from (8.11) and (8.12) that

‖φ‖L2 ≤ C‖∇φε‖L2 ≤ C‖g‖L2 . (8.13)

Next, we multiply (8.10) by u · ∇φε and integrate to get∫
Ω

|u · ∇φε|2dx = ε2

∫
Ω

(u · ∇φε)∆φεdx+ ε2

∫
Ω

g(x)(u · ∇φ) (8.14)

≤ −ε2

∫
Ω

∇(u · ∇φε) · ∇φεdx+
ε2

2
‖g‖2

L2 +
ε2

2

∫
Ω

|u · ∇φε|2dx.

We rewrite the integrand in the second line above above as:

∇(u · ∇φε) · ∇φε =
∂uk
∂xi

∂φε

∂xk

∂φε

∂xi
+ uk

∂2φε

∂xk∂xi

∂φε

∂xi
=
∂uk
∂xi

∂φε

∂xk

∂φε

∂xi
+

1

2
u · ∇(|∇φε|2). (8.15)

Once again using incompressibility of u, we obtain from the above

−
∫

Ω

∇(u · ∇φε) · ∇φεdx =
1

2

∫
Ω

(u · ∇
(
|∇φε|2

)
)dx−

∫
Ω

∂un
∂xm

∂φε

∂xm

∂φε

∂xn
dx

≤Mε2

∫
Ω

|∇φε|2dx ≤ CMε2‖g‖L2 , (8.16)
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where M = ‖∇u‖L∞(Ω). We deduce that∫
Ω

|u · ∇φε|2dx ≤ Cε2‖g‖2
L2 . (8.17)

Informally, this means that the oscillation of φε along the stream lines of u is small. There are,
of course, ways to make this more precise but it says, roughly, that as ε→ 0 the function φε(x)
converges to a limit φ̄(x) which is constant on the streamlines of u.

An unfortunate toy example: a radially symmetric Hamiltonian

Let us first consider a special situation when the Hamiltonian H(x, y) = (x2 + y2)/2, so that

u(x, y) = ∇⊥H(x, y) = (Hy,−Hx) = (y,−x),

and (8.1) becomes

dXt = Ytdt+ εdB
(1)
t , (8.18)

dYt = −Xtdt+ εdB
(2)
t .

The time rescaling t→ t/ε2 leads to

dXt =
1

ε2
Ytdt+ dB

(1)
t , X0 = x, (8.19)

dYt = − 1

ε2
Xtdt+ dB

(2)
t , Y0 = y.

The corresponding PDE is

∂v

∂t
=

y

ε2

∂v

∂x
− x

ε2

∂v

∂y
+

1

2
∆v, (8.20)

v(0, x) = v0(x),

in the sense that
v(t, x) = Ex,y[v0(Xt, Yt)]. (8.21)

Switching to the polar coordinates x = r cos θ, y = r sin θ gives

∂v

∂t
= − 1

ε2

∂v

∂θ
+

1

2

[∂2v

∂2r
+

1

r

∂v

∂r
+

1

r2

∂2v

∂θ2

]
, (8.22)

v(0, r, θ) = v0(r, θ).

We see that the average along the streamlines

v̄(t, r) =
1

2π

∫ 2π

0

v(t, r, θ)dθ

satisfies a parabolic equation

∂v̄

∂t
=

1

2

[∂2v̄

∂2r
+

1

r

∂v̄

∂r

]
, (8.23)

v̄(0, r) = v̄0(r).
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The corresponding process Rt = (X2
t + Y 2

t )1/2 converges to a diffusion with the generator as
in (8.23). There is an additional feature here, specific to the quadratic Hamiltonian: we may
write

v(t, r, θ) = w(t, r, θ − t

ε2
). (8.24)

The function w satisfies

∂w

∂t
=

1

2

[∂2w

∂2r
+

1

r

∂w

∂r
+

1

r2

∂2w

∂θ2

]
, (8.25)

w(0, r, θ) = v0(r, θ).

In other words, by factoring out the background dynamics –a fast rotation, we arrive exactly
at a diffusion equation, without any need to pass to the limit ε→ 0.

This example may look somewhat unfortunate since we do not see the uniformization
along the streamlines that we have observed in the general steady version of this problem. To
see it, one should consider the time-averages of the solution. In other words, the weak limit
(as a function in time) of the function v(t, r, θ) in (8.24) is

v̄(t, r) =
1

2π

∫ 2π

0

w(t, r, θ)dθ, (8.26)

and is independent of θ.

The Freidlin problem in two dimensions: one cell

Let us now consider the more general two-dimensional case, with u(x, y) = ∇⊥H(x, y). We
first assume that the Hamiltonian H(x, y) is a convex function growing at infinity, with a
minimum at some point (x0, y0) ∈ R2. We denote H0 = H(x0, y0).The assumption that u
is parallel to the boundary of Ω means that ∂Ω is a level set of H(x, y). As we have seen,
solutions of (8.10)

−∆φε +
1

ε2
u · ∇φε = g(x), (8.27)

φε(x) = 0, x ∈ ∂Ω.

are uniformly bounded in L∞(Ω) ∩H1
0 (Ω):

0 ≤ φε ≤ C,

∫
|∇φε|2dx ≤ C, (8.28)

with the constant C > 0 independent of ε > 0. Hence, the family φε converges weakly
in H1(Ω) (after extracting a subsequence) and strongly in L2(Ω) to a function φ̄.

We claim that φ̄ depends only on the variable h = H(x, y). Indeed, if we multiply (8.27)
by ε2 and let ε→ +∞, we get

u · ∇φ̄ = 0 (8.29)

in the sense of distributions. It is convenient to introduce the curvilinear coordinates (h, θ).
The coordinates are chosen so that h(x, y) = H(x, y), and the streamlines of the flow u(x, y)
are {h = const}. The level lines of the coordinate θ = Θ(x, y) are orthogonal to the flow lines:

∇Θ · ∇H = 0.
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We normalize θ so that 0 ≤ θ ≤ 2π. As we have mentioned, the boundary ∂Ω is a level set

∂Ω = {h = h0},

and we will assume without loss of generality that h0 = 0. Then (8.29) implies that φ̄ depends
only on the variable h. The L∞-bound in (8.28) implies that

0 ≤ φ̄(h) ≤ C.

In addition, we have∫
|∇xφ̄|2dx =

∫
|φ̄h|2|∇h|2dx =

∫ H0

0

|φ̄h|2
(∫ 2π

0

|∇H|2

J
dθ

)
dh.

Here J = HyΘx − HxΘy is the Jacobian of the coordinate change. Note that ∇Θ = ρ∇⊥H
with some scalar function ρ > 0, so that

J = ρ|∇H|2, |∇Θ| = ρ|∇H| and dl = dθ/|∇Θ|.

Therefore, we have ∫ 2π

0

|∇H|2

J
dθ =

∮
H(x,y)=h

|∇H|dl := a(h), (8.30)

and thus we have a weighted H1-bound∫ H0

0

a(h)|φ̄h|2dh < +∞,

which follows from (8.28), and hence φ̄(h) is continuous for h < H0, as p(h) ∼ C(H0 − h)
for h close to H0.

Next, we re-write (8.27) in the curvilinear coordinates:

−|∇H|
2

J

∂2φε

∂h2
− |∇Θ|2

J

∂2φε

∂θ2
− (∆H)

J

∂φε

∂h
− (∆Θ)

J

∂φε

∂θ
+

1

ε2

∂φε

∂θ
=

1

J
g(h, θ), (8.31)

φε(0, θ) = 0, φε(h, θ) is bounded for 0 ≤ h ≤ H0.

Integrating this equation in θ and passing to the limit ε→ 0 we obtain the limit problem for
the function φ̄:

−a(h)φ̄′′(h)− b(h)φ̄′(h) = ḡ(h), (8.32)

φ̄(0) = 0, φ̄(h) is bounded for 0 ≤ h ≤ H0,

with a(h) as in (8.30), and

b(h) =

∫ 2π

0

∆H

J
dθ, ḡ(h) =

∫ 2π

0

g(h, θ)dθ

J
.

The problem (8.32) is called the Freidlin problem. We note that

b(h) =

∫ 2π

0

∆H

J
dθ =

∮
H(x,y)=h

∆H

|∇H|
dl = a′(h).
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The last equality above follows from the fact that

a(h) =

∮
H(x,y)=h

|∇H|dl =

∫
Gh

∆Hdxdy.

Here Gh = {h ≤ H(x, y) ≤ H0} is the interior of the streamline {H(x, y) = h}. Hence, the
Freidlin problem (8.32) can be re-written in a self-adjoint form as

− d

dh

(
a(h)

dφ̄(h)

dh

)
= ḡ(h), (8.33)

φ̄(0) = 0, φ̄(h) is bounded for 0 ≤ h ≤ H0.

The Freidlin problem: gluing conditions

Let us now consider a more general situation when the function H(x, y) may have many
critical points. We will assume that each level set can contain just one critical point. Then
the limiting diffusion is defined on the Reeb graph of the function H(x, y). The Reeb graph
can be informally described as follows. Its vertices correspond to the level sets of H containing
the saddle points x̄1, . . . , x̄N of H. The level sets containing a saddle point x̄k of H(x) are
topologically ”figure eights”, with one critical point ofH(x) inside each of the two ”circles” Ck1

and Ck2. The level sets inside each of Ck1 and Ck2 correspond to an edge of the Reeb
graph, ek1 and ek2. These two edges are joined at the vertex corresponding to x̄k. Each edge
is parametrized by the values of H inside the corresponding ”circle”. The limit function φ̄(h)
satisfies the Freidlin problem (8.33) along each edge, with the coefficients a(h) computed as
in (8.30), inside the cell of the flow that corresponds to that edge.

Let us now obtain the gluing conditions at a vertex x̄k, where three edges eout and ei1,
ei2 join, corresponding to the ”outside” region Cout,k, and two inside circles Ck1 and Ck2. We
integrate (8.27)

−∆φε +
1

ε2
u · ∇φε = g(x), (8.34)

over a domain bounded by a ”just outside circle” Cout and two just circles Ck1 and Ck2. It
follows that, to the leading order in the thickness of this annular region, we have∮

Cout

∂φ

∂n
dl =

∮
Ck1

∂φ

∂n
dl +

∮
Ck2

∂φ

∂n
dl + l.o.t. (8.35)

Note that, since all contours in (8.35) are level sets, we have

∂φ

∂n
≈ ∂φ̄

∂h
|∇H|.

Using this in (8.35) leads to

∂φ̄out
∂h

∮
Cout

|∇H|dl =
∂φ̄k,1
∂h

∮
Ck1

|∇H|dl +
∂φ̄k,2
∂h

∮
Ck2

|∇H|dl. (8.36)
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In other words, the gluing condition at vertex k corresponding to the level set H(x, y) = Hk,
is:

ak,out
∂φ̄out
∂h

(Hk) = ak,in1
∂φ̄k,1
∂h

(Hk) + ak,in1
∂φ̄k,1
∂h

(Hk). (8.37)

These gluing conditions together with the Poisson equations (8.33) completely describe the
limit problem.

Particles in a random force field: “short” times

We now assume that the potential V (t, x) is random, weak and varies on the scale much larger
than the initial data. More precisely, we consider the semiclassical Schrödinger equation

iεφt +
ε2

2
∆φ− δV (x)φ = 0 (8.38)

with the ε-oscillatory initial data φ(0, x) = φε0(x). This equation is written on the scale of
the variations of the random potential, and δ � 1 is the parameter measuring its strength.
Passing to the high frequency limit ε → 0 we obtain the Liouville equation for the Wigner
measure of the family φε(t, x):

∂W

∂t
+ k · ∇xW − δ∇xV (x) · ∇kW = 0, (8.39)

with the initial data W (0, x, k) = W0(x, k), the Wigner measure of the family φε0(x). As the
parameter δ � 1 is small, the effect of the randomness will be felt only after long times. We
will build our analysis of (8.39) slowly, starting with relatively short times, and later for the
long times. We will assume that V (x) is a spatially homogeneous random process with mean
zero and the correlation function R(x):

〈V (x)〉 = 0, R(x) = 〈V (y)V (x+ y)〉. (8.40)

It will be convenient for us to use the correlation matrix for the force ∇V :〈∂V (y)

∂yi

∂V (x+ y)

∂yj

〉
= −∂

2R(x)

∂xi∂xj
. (8.41)

The characteristics at short times

We begin with the very basic theory of characteristics in a weakly random medium – this
material originated in the classical paper by J.B. Keller [29]. The characteristics for the
Liouville equation (8.39) are

dX

dt
= −K(t),

dK

dt
= δ∇V (X(t)), X(0) = x, K(0) = k. (8.42)

Let us seek the trajectories X(t), K(t) as a formal perturbation expansion

X(t) = X0(t) + δX1(t) + δ2X2(t) + . . . , K(t) = K0(t) + δK1(t) + δ2K2(t) + . . . .
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We insert this expansion into the characteristics (8.42), and get in the leading order:

X0(t) = x− k0t, K0(t) = k.

As expected, in the leading order the characteristics are straight lines. The first order correc-
tion in δ is

K1(t) =

∫ t

0

∇V (X0(s))ds =

∫ t

0

∇V (x− ks)ds, (8.43)

and

X1(t) =

∫ t

0

K1(s)ds =

∫ t

0

(t− s)∇V (x− ks)ds. (8.44)

Naively, in order to see how long this approximation should hold, we estimate that during
a time T we would get K1(T ) ∼ T , and X1(T ) of the order T 2 meaning that we would
need δT 2 � 1, or T � δ−1/2 for the spatial trajectory to stay close to the straight line. Let
us now see how randomness affects this ballpark estimate – we have, as in (1.30):

〈K2
1(t)〉 =

∫ t

0

∫ t

0

〈∇V (x− ks) · ∇V (x− ks′)〉dsds′

= −
∫ t

0

∫ t

0

∆R(k(s− s′))dsds′ = Dt+O(1), as t→ +∞,

with the diffusion coefficient

D = −
∫ ∞
−∞

∆R(ks)ds. (8.45)

With a little bit more work, one can show that an appropriate rescaling of K1(t) converges
to a Brownian motion with the diffusion matrix

Dij = −
∫ ∞
−∞

∂2R(ks)

∂xi∂xj
ds. (8.46)

The variance of X1(t) can also be computed explicitly:

〈X2
1 (t)〉 =

∫ t

0

∫ t

0

(t− s)(t− s′)〈∇V (x− ks) · ∇V (x− ks′)〉dsds′

= −
∫ t

0

∫ t

0

(t− s)(t− s′)∆R(k(s− s′))dsds′ = Dt3

3
+O(1), as t→ +∞,

and, once again, with a bit more work it can be shown that an appropriate rescaling of X(t)
converges, at large times to the time integral of the Brownian motion with the diffusion
matrix Dij. The above computations indicate that the simple perturbation expansion should
hold for times T such that

δ2T 3 ∼ O(1),

that is, for times of the order T ∼ δ−2/3, which is much longer than the “deterministic
prediction” T ∼ δ−1/2.
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Formally, this means that for large times (but much smaller than δ−2/3), the expected
value of the solutions of the Liouville equation (8.39) is well-approximated by the solutions
of the Fokker-Planck kinetic equation

∂W̄

∂t
+ k · ∇xW̄ = δ2

n∑
i,j=1

Dij
∂2W̄

∂ki∂kj
, (8.47)

that is, 〈W (t, x, k)〉 ≈ W̄ (t, x, k). This is probably the simplest way to get to a kinetic
description of waves in random media. Instead of trying to make this approximation result
precise, for times t � δ−2/3, let us explain why such result, while providing a very nice
“hooligan’s derivation of the kinetic limit”, can not “truly hold” for longer times, when the
deviation of the characteristics from straight lines will be not small. The problem is that the
original characteristics (8.42) preserve the classical Hamiltonian:

ω(x, k) =
k2

2
+ V (x),

that is, ω(X(t), K(t)) = ω(X(0), K(0)). In particular, if, say, V (x) is a bounded random
potential, it is impossible for K(t) to behave as a Brownian motion for large times. Never-
theless, the overall picture described above is not too wrong, and in the next step we will see
how it can be naturally modified to see what happens at large times.

8.1 Random geometric optics: the long time limit

A particle in a random Hamiltonian

We will now study the “truly” long time asymptotics of geometric optics in a weakly random
medium. This problem can be analyzed in the general setting of a particle in a weakly random
Hamiltonian field:

dXδ

dt
= ∇kHδ,

dKδ

dt
= −∇xHδ, Xδ(0) = 0, Kδ(0) = k0, (8.48)

with a random Hamiltonian of the form Hδ(x, k) = H0(k)+δH1(x, k). Here H0(k) is the back-
ground Hamiltonian and H1(x, k) is a random perturbation, while the small parameter δ � 1
measures the relative strength of random fluctuations. This was done in [3] and [37]. Here, we
will resist the temptation to describe the general results, and restrict ourselves to the case at
hand, with H0(k) = |k|2/2 and H1(x, k) = V (x), which simplifies some considerations. Thus,
we are interested in the Liouville equations

∂φ

∂t
+ k · ∇xφ− δ∇V (x) · ∇kφ = 0, (8.49)

and the corresponding characteristics

dX

dt
= K,

dK

dt
= −δ∇xV (X), X(0) = 0, K(0) = k0, (8.50)
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on the time scale t ∼ δ−2. As usual, we will assume that the random potential V (x) is a
man-zero statistically homogeneous random field, with a rapidly decaying correlation func-
tion R(x):

〈V (x)〉 = 0, 〈V (y)V (x+ y)〉 = R(x), (8.51)

We have already seen that at relatively short times t � δ−2/3 the “boosted” devia-
tion (K(t) − k0)/δ behaves as a Brownian motion. At the longer times, we are interested
not in the deviation from the original direction but in the particle momentum itself. An
important simple observation is that (8.50) preserves the Hamiltonian

H(x, k) =
k2

2
+ δV (x). (8.52)

Hence, the law of any possible limit for the process Kδ(t) = K(t/δ2), as δ → 0, has to
be supported on the sphere |K(t)| = |k0| (and can not be a regular Brownian motion).
Moreover, one would expect the law of the limit process to be isotropic – there is no preferred
direction in the problem. One possibility is that Kδ(t) tends to a uniform distribution on the
sphere {|k| = |k0|} – and this is, indeed, what happens at times t � δ−2. However, at an
intermediate stage, at times of the order δ−2, the process Kδ(t) converges to the Brownian
motion Bs(t) on the sphere (this is an isotropic diffusion such that |Bs(t)| = 1 for all t). This
intuitive result has been first proved in [31] in dimensions higher than two, and later extended
to two dimensions with the Poisson distribution of scatterers in [12], and in a general two-
dimensional setting in [38]. The rescaled spatial component Xδ(t) = δ2X(t/δ2) converges to
the time integral of the Brownian motion on the sphere:

X(t) =

∫ t

0

Bs(τ)dτ.

In turn, the long time limit of a momentum diffusion is the standard spatial Brownian motion,
and we will see that on the times longer than δ−2 the spatial component X(t) converges to
the Brownian motion, while K(t) becomes uniformly distributed on the sphere {|k| = |k0|}.

Let us mention that another important, (in the context of waves in random media) Hamil-
tonian

Hδ(x, k) = (c0 + δc1(x))|k|, (8.53)

arises in the geometrical optics limit of the wave equation. We will not address it directly here,
but, as we have mentioned, the analysis of the classical Hamiltonian (8.52) can be generalized
in a relatively straightforward way – see [37] for details. We stick here with (8.52) solely for
the sake of simplicity of presentation.

The Fokker-Planck limit

Let the function φδ(t, x, k) satisfy the Liouville equation

∂φδ

∂t
+ k · ∇xφ

δ − δ∇V (x) · ∇kφ
δ = 0, (8.54)

φδ(0, x, k) = φ0(δ2x, k).
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There are two assumptions implicitly made here: first is that the random potential is weak,
and the second is that the initial data varies on the scale 1/δ2 relative to the scale of the
variations of the potential. In the terminology of the introduction, this means that lc/L = δ2 –
or, we choose the particular observation scale L = lc/δ

2. One may wonder also as to what
happens on other observation scales – we will address this further below.

Let us define the diffusion matrix Dmn by

Dml(k) = − 1

|k|

∫ ∞
−∞

∂2R(sk̂)

∂xn∂xm
ds, m, l = 1, . . . , n. (8.55)

Note that if the correlation function is isotropic: R = R(|x|), then Dmn has a particularly
simple form:

Dml(k) = D(δmn − k̂lk̂m), D = − 2

|k|

∫ ∞
0

R′(r)

r
dr, m, l = 1, . . . , n. (8.56)

We have the following result.

Theorem 8.1 Let φδ be the solution of (8.54), with the initial data φ0 ∈ C∞c (R2d), whose
support is contained inside a spherical shell A(M) = {(x, k) : M−1 < |k| < M} for some
positive M > 0, and let φ̄ satisfy

∂φ̄

∂t
+ k · ∇xφ̄ =

d∑
m,n=1

∂

∂km

(
Dmn(k)

∂φ̄

∂kn

)
(8.57)

φ̄(0, x, k) = φ0(x, k).

Suppose that M ≥ M0 > 0 and T ≥ T0 > 0. Then, there exist two constants C, α0 > 0 such
that for all T ≥ T0

sup
(t,x,k)∈[0,T ]×K

∣∣∣∣Eφδ ( t

δ2
,
x

δ2
, k

)
− φ̄(t, x, k)

∣∣∣∣ ≤ CT (1 + ‖φ0‖1,4)δα0 (8.58)

for all compact sets K ⊂ A(M).

Note that

d∑
m=1

Dnm(k̂, k)k̂m = −
d∑

m=1

1

2|k|

∫ ∞
−∞

∂2R(sk̂)

∂xn∂xm
k̂mds = −

d∑
m=1

1

2|k|

∫ ∞
−∞

d

ds

(
∂R(sk̂)

∂xn

)
ds = 0

and thus the K-process generated by (8.57) is indeed a diffusion process on a sphere |k| =
const, or, equivalently, equations (8.57) for different values of |k| are decoupled. Another
important point is that the assumption that the initial data does not concentrate close to k = 0
is important – if |k| is very small, the particle moves very slowly, and does not have a sufficient
time to sample enough of the random medium by the time δ−2.
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Beyond the Fokker-Planck limit

Let us now return to the question of what happens to the solutions of the Liouville equation
with the initial data that varies on a scale much longer than δ−2 – in other words, the
observation is taken on even larger scales than described by the Fokker-Planck limit. It is
straightforward to see that solutions of the Fokker-Planck equation (8.57) themselves converge
in the long time limit to the solutions of the spatial diffusion equation. More, precisely, we
have the following result. Let φ̄γ(t, x, k) = φ̄(t/γ2, x/γ, k), where φ̄ satisfies (8.57) with slowly
varying initial data φ̄γ(0, t, x, k) = φ0(γx, k). We also let w(t, x, |k|) be the solution of the
spatial diffusion equation:

∂w

∂t
=

d∑
m,n=1

amn(|k|) ∂2w

∂xn∂xm
, (8.59)

w(0, x, |k|) = φ̄0(x, |k|)

with the averaged initial data

φ̄0(x, k) =
1

Γn−1

∫
Sn−1

φ0(x, k)dΩ(k̂).

Here, dΩ(k̂) is the surface measure on the unit sphere Sn−1 and Γn is the area of an n-
dimensional sphere. The diffusion matrix A := [anm] in (8.59) is given explicitly as

aij(k) =
|k|2

Γn−1

∫
Sn−1

k̂iχj(k)dΩ(k̂). (8.60)

The functions χj appearing above are the mean-zero solutions of

d∑
m,i=1

∂

∂km

(
Dmi(k)

∂χj
∂ki

)
= −k̂j, (8.61)

and when the correlation functionR(x) is isotropic, so thatDmi is given by (8.56), they are just
multiples of k̂j: aj(k) = c(|k|)k̂j, with an appropriate constant c(|k|) that can be computed
explicitly. In that case, the matrix anm is a multiple of identity, and (8.59) becomes the
standard diffusion equation

∂w

∂t
= ā(|k|)∆xw, (8.62)

with an appropriate diffusion constant ā.

Theorem 8.2 For every pair of times 0 < T∗ < T < +∞ the re-scaled solution φ̄γ(t, x, k) =
φ̄(t/γ2, x/γ, k) of (8.57) converges as γ → 0 in C([T∗, T ];L∞(R2d)) to w(t, x, k). Moreover,
there exists a constant C0 > 0, so that we have

‖w(t, ·)− φ̄γ(t, ·)‖L∞ ≤ C0 (γT +
√
γ) ‖φ0‖C1 , (8.63)

for all T∗ ≤ t ≤ T .
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The proof of Theorem 8.2 is based on classical asymptotic expansions and is quite straight-
forward. As an immediate corollary of Theorems 8.1 and 8.2, we obtain the following result.

Theorem 8.3 Let φδ be solution of (8.54) with the initial data φδ(0, x, k) = φ0(δ2+αx, k) and
let w̄(t, x) be the solution of the diffusion equation (8.59) with the initial data w(0, x, k) =
φ̄0(x, k). Then, there exists α0 > 0 and a constant C > 0 so that for all 0 ≤ α < α0 and all
0 < T∗ ≤ T we have for all compact sets K ⊂ A(M):

sup
(t,x,k)∈[T∗,T ]×K

∣∣w(t, x, k)− Eφ̄δ(t, x, k)
∣∣ ≤ CTδα0−α, (8.64)

where φ̄δ(t, x, k) := φδ (t/δ2+2α, x/δ2+α, k) .

Theorem 8.3 shows that if the initial data varies on a scale slightly larger than δ−2 then we
observe spatial diffusion for the solution (and uniform distribution in k) on the appropriate
time scale. The requirement that α is small is most likely technical and a constraint of a
“perturbative” proof – the result should hold for any α > 0.

To summarize: if the initial data for the random Liouville equation

∂φ

∂t
+ k · ∇xφ− δV (x) · ∇xφ = 0, (8.65)

varies on the scale δ−2: φ(0, x) = φ0(δ2x, k), then on the time scale t ∼ δ−2 the expec-
tation of the rescaled solution φδ(t, x, k) = φ(t/δ2, x/δ2, k) converges to the solution of the
Fokker-Planck equation. On the other hand, if the initial data varies on an even larger
scale: φ(0, x, k) = φ(δ2+αx, k) then on the time scale t ∼ δ−2−2α the expectation of the
rescaled field φδ(t, x, k) = φ(t/δ2+2α, x/δ2+α, k) converges to the solution of the spatial dif-
fusion equation and is uniformly distributed in the directions k̂ for each |k| fixed. Thus, the
appropriate kinetic limit depends on the scale of the probing signal, which, in turn, determines
the proper time scale of the observations.

A formal derivation of the momentum diffusion

We now describe how the momentum diffusion operator in (8.57) can be derived in a quick
formal way. We represent the solution of (8.54) as φδ(t, x, k) = ψδ(δ2t, δ2x, k) and write an
asymptotic multiple scale expansion for ψδ

ψδ(t, x, k) = φ̄(t, x, k) + δφ1

(
t, x,

x

δ2
, k
)

+ δ2φ2

(
t, x,

x

δ2
, k
)

+ . . . (8.66)

We assume formally that the leading order term φ̄ is deterministic and independent of the
fast variable z = x/δ2. We insert this expansion into (8.54) and obtain in the order O (δ−1):

∇V (z) · ∇kφ̄− k · ∇zφ1 = 0. (8.67)

Let θ � 1 be a small positive regularization parameter that will be later sent to zero, and
consider a regularized version of (8.67):

1

|k|
∇V (z) · ∇kφ̄− k̂ · ∇zφ1 + θφ1 = 0,
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Its solution is

φ1(z, k) = − 1

|k|

∫ ∞
0

d∑
m=1

∂V (z + sk̂)

∂zm

∂φ̄(t, x, k)

∂km
e−θsds, (8.68)

and the role of θ > 0 is to ensure that the integral in the right side converges. The next order
equation becomes upon averaging

∂φ̄

∂t
+ k · ∇xφ̄ = 〈∇V (z) · ∇kφ1〉. (8.69)

The term in the right side above may be written using expression (8.68) for φ1:

〈∇V (z) · ∇kφ1〉 =
〈 d∑
m,n=1

∂V (z)

∂zm

∂

∂km

( 1

|k|

∫ ∞
0

∂V (z + sk̂)

∂zn

∂φ̄(t, x, k)

∂kn
e−θsds

)〉
.

Using spatial stationarity of H1(z, k) we may rewrite the above as

−
〈 d∑
m,n=1

V (z)
∂

∂zm

∂

∂km

( 1

|k|

∫ ∞
0

∂V (z + sk̂)

∂zn

∂φ̄(t, x, k)

∂kn
e−θsds

)〉
= −

d∑
m,n=1

∂

∂km

( 1

|k|

∫ ∞
0

〈
V (z, k)

∂2V (z + sk̂)

∂zn∂zm

〉∂φ̄(t, x, k)

∂kn
e−θsds

)
= −

d∑
m,n=1

∂

∂km

( 1

|k|

∫ ∞
0

∂2R(sk̂)

∂xn∂xm

∂φ̄(t, x, k)

∂kn
e−θsds

)
→ −1

2

d∑
m,n=1

∂

∂km

(
1

|k|

∫ ∞
−∞

∂2R(sk̂)

∂xn∂xm

∂φ̄(t, x, k)

∂kn
ds

)
, as θ → 0+.

We insert the above expression into (8.69) and obtain

∂φ̄

∂t
=

d∑
m,n=1

∂

∂kn

(
Dnm(k)

∂φ̄

∂km

)
+ k · ∇xφ̄ (8.70)

with the diffusion matrix D(k̂, k) as in (8.55). Observe that (8.70) is nothing but (8.57).
However, the naive asymptotic expansion (8.66) may not be justified directly, to the best of
my knowledge. The rigorous proof is based on a completely different method.
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