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Abstract

We consider the Liouville equations with highly heterogeneous Hamiltonians and their nu-
merical solution by a time splitting algorithm. Such equations model the density of particles
evolving according to the corresponding Hamiltonian dynamics as well as the propagation of
high frequency waves with a wavelength much smaller than the correlation length of the random
Hamiltonian.

Our main results are on the relation between the time step used in the time splitting algorithm
and the correlation length of the Hamiltonian. In order to fully resolve the Liouville equation, the
time step must be chosen much smaller than the correlation length. However, we show that the
time step can be chosen of the same order as the correlation length of the Hamiltonian when one is
only interested in suitable statistical properties of the solution to the Liouville equation. We also
present a more involved time splitting algorithm that allows us to take a time-step independent
of the correlation length.

1 Introduction

In many problems of wave propagation the typical wavelength of the propagating fields can be as-
sumed to be smaller than the correlation length of the underlying propagating medium. Applications
include light in a turbulent atmosphere, microwaves in wireless communication, acoustic waves in
underwater communication, and seismic waves generated by earthquakes [5, 12, 17, 18]. Here we
consider propagation of high frequency acoustic waves. Wave propagation in such a regime can be
approximated by a Liouville equation with random potential for the acoustic energy density in the
phase space (see [1] and references therein).

There exist many works on the numerical simulation of wave equations; see, e.g., [6, 7] for recent
monographs. The numerical techniques are usually well adapted to the low-to-moderate frequency
regime where the size of the calculation domain is not too large compared to the typical wavelength
of the system. High frequency wave propagation in the semi-classical regime, which corresponds to
the high frequency regime with slowly varying underlying media, has also been considered [4, 14, 15].

Here we consider the propagation of the energy density of waves over times and distances that
are large compared to the correlation length of the Hamiltonian. This is modelled by the following
Liouville equation

∂Wε

∂t
+ k · ∇xWε −

1√
ε
∇xV

(
t

ε
,
x
ε

)
· ∇kWε = 0. (1)

The function Wε is the phase space energy density of acoustic waves, that is, the energy density of
a wave at a position x with a wave vector k. It is defined as the limit Wigner distribution of the
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solution of the underlying wave equation in the high frequency limit [9, 16]. The parameter ε � 1
measures the correlation length and time of the random medium relative to the overall propagation
distance and time, respectively. It is small in the applications we have in mind. The strength of
the potential is scaled in such a way that the above equation admits a physically interesting limit
as ε→ 0: see Section 2.

We consider a time discretization of the above equation by a time splitting method [19]. Our
analysis follows the method of study of the time splitting algorithm of a parabolic wave equation
that we have used in [3]. Let us denote by

A = k · ∇x, Bε = − 1√
ε
∇xV

(
t

ε
,
x
ε

)
· ∇k

the spatial advection and the ”scattering” operators, respectively. The time splitting algorithm
consists of separating the advection of the particles from the interaction with the underlying medium.
So during a time interval T = (Tn, Tn+1), we first solve the advection equation(

∂

∂t
+A

)
Wε = 0

on T assuming that the medium is homogeneous. We then consider the solution at the end of the
interval as the initial condition to solve the wave vector advection (”scattering”) equation(

∂

∂t
+Bε

)
Wε = 0

on the same interval T , this time accounting for interactions with the random medium but without
advection in the physical space. The interest of the method is that the first step can easily be solved
for instance by the Fourier method since the medium is homogeneous, and the second step can also
easily be solved since the problem is now local in space during the time integration on T .

One may, of course, also consider (2) as the Liouville equation for the density of particles evolving
according to the random Hamiltonian

H(t,x,k) =
|k|2

2
+
√
εV

(
t

ε
,
x
ε

)
without any reference to the acoustic waves. The time-splitting algorithm described above corre-

sponds to alternatingly solving the Hamilton equations: first,
dX
dt

= K with K fixed, and then

dK
dt

= − 1√
ε
∇xV

(
t

ε
,
X
ε

)
with X fixed.

The question is then how one should optimally choose the time step Θε = Tn+1 − Tn provided
that the correlation length ε of the underlying Hamiltonian is known. It is a classical result [19] that
the accuracy (in the strong L2 sense for instance) of the time splitting scheme is governed by

Θε‖[A,Bε]‖ = Θε‖ABε −BεA‖ = O(Θεε
−3/2),

where ‖ · ‖ is the L2 norm. The constraint Θε � ε3/2 is necessary to fully resolve the solution
of the Liouville equation, with an accuracy (in the strong L2 sense) of order Θεε

−3/2. Instead of
the classical time splitting scheme mentioned above, we could use the more accurate Strang time
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splitting for the same computational cost. The latter scheme corresponds to solving
(

∂
∂t +A

)
Wε = 0

for a time Θε/2 followed by
(

∂
∂t +Bε

)
Wε = 0 for a time Θε, and finally by

(
∂
∂t +A

)
Wε = 0 again

for a time Θε/2. The leading term in the error made is then of order

Θ2
ε‖A2Bε‖ = O(Θ2

εε
−5/2).

We thus find a better constraint Θε � ε5/4 guarantees convergence in the strong L2 sense when the
Strang time splitting scheme is used.

Our main result is that Θε � ε is actually sufficient provided one is interested in statistical
properties of the solution and not in its complete detailed structure. More precisely we show that
when Θε � ε, moments of the solution of the Liouville equation have the same deterministic limit as
ε→ 0 as the continuous time dependent solution of the random Liouville equation. We actually show
a stronger result, namely that the whole law of the moments of the solution of the time splitting
scheme agrees in the limit ε → 0 to the limiting law of the continuous solution of the Liouville
equation. The moments are of the form 〈Wε, λ〉, where λ(x,k) is a smooth test function.

We also introduce a modified time splitting algorithm for the Liouville equation, which allows
us to obtain the same result provided Θ � 1 independent of ε. This time splitting scheme is still
based on separating convection from scattering. However in the new scheme the random potential
∇xV is evaluated at a point that depends on time t on the interval T . This is a hybrid scheme,
which no longer enjoys the property of the original scheme that the scattering term is local. The
resulting equations are thus more complicated to solve than for the original scheme (though they
are less complicated than the initial Liouville equation) but the time step can be chosen much larger
and independent of ε.

Our results are related to other results on the commutativity of mesh size convergence and ”small
parameter” convergence, to a common limiting equation in homogenization problems, such as the
homogenization of an elliptic problem in a periodic medium in [11], or the diffusion limit of the
linear transport equation with a small mean free path in [10].

The proposed scheme is valid in two different asymptotical regimes, namely the regime of wave
propagation in homogeneous media, where the phase information of the wave is important, and the
regime of propagation in highly heterogeneous media, where only the energy density is meaningful
because of the multiple scattering. At a much lower cost than classical time splitting schemes, we
can thus expect to recover the phase information where it matters, as well as the correct energy
density of waves in the scattering regions.

The rest of the paper is organized as follows. We present the proof that the time splitting
scheme has the correct statistical limit as ε → 0 in section 2. The proofs are similar to those of
the limit theorems in [2] and [3]. Nevertheless we present the important details for the convenience
of the reader. The Liouville problem is formulated in Section 2.1, where the assumptions on the
random potential are also presented. The time splitting algorithm is introduced and our main result
presented in Section 2.2. An outline of the proof of our result is given in Section 2.3. The martingale
structure at the core of our demonstration is presented in section 2.4 and the convergence result
for the whole law of the time splitting algorithm in Section 2.5. In section 3 we introduce the time
splitting algorithm that allows us to choose Θε � 1 independent of ε. We present the modified
scheme in Section 3.1 and its convergence properties in Section 3.2.
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2 The high-frequency limit of the time-splitting scheme

2.1 The Liouville equation

We start with the following Liouville equation

∂Wε

∂t
+ k · ∇xWε −

1√
ε
∇xV

(
t

ε
,
x
ε

)
· ∇kWε = 0, (2)

with the initial data Wε(0,x,k) = W0(x,k) ∈ L2(Rd × Rd) independent of the parameter ε.
We assume that the random potential V (t,x) is a Markov process in time taking values in

C1(Rd). The Markovian hypothesis is not necessary to obtain the results presented below – a
sufficiently strong mixing assumption in time is sufficient [8]. It is however crucial to simplify the
mathematical analysis because it allows us to treat the process t 7→ (V (t/ε,x/ε),Wε(t,x,k)) as
jointly Markov and to apply the martingale method. Here are some additional assumptions on the
potential. We assume that there exists a deterministic constant C0 > 0 so that

‖V ‖C1(Rd) ≤ C0 (3)

with probability one. We define the set V = {V ∈ C1(Rd) : ‖V ‖C1(Rd) ≤ C0} where the process V
takes its values. Furthermore, V (t,x) is assumed to be stationary in x and t and to have mean zero:
E {V (t,x)} = 0. The correlation function

R(t,x) = E {V (s,y)V (t+ s,x + y)} (4)

is assumed to be smooth and rapidly decaying in space. We assume that the generator Q of the
Markov process V (t) is a bounded operator on L∞(V) with a unique invariant measure π(V )

Q∗π = 0,

and that there exists α > 0 such that if 〈g, π〉 = 0 then

‖erQg‖L∞V
≤ C‖g‖L∞V

e−αr. (5)

A simple example of a generator with a gap in the spectrum and invariant measure π is a jump
process on V where

Qg(V ) =
∫
V
g(V1)dπ(V1)− g(V ),

∫
V
dπ(V ) = 1.

Given (5), the Fredholm alternative holds for the Poisson equation

Qf = g,

provided that g satisfies 〈π, g〉 = 0. It has a unique solution f with 〈π, f〉 = 0 and ‖f‖L∞V
≤ C‖g‖L∞V

.
The solution f is given explicitly by

f(V ) = −
∫ ∞

0
erQg(V )dr.

The integral above converges absolutely because of the spectral gap assumption (5). More generally,
the mean-zero bounded solution of

∂f

∂τ
+Qf = g(τ, V ) (6)
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with the right side g ∈ L∞([0, T ]× V) is given by

f(τ, V ) = −
∫ ∞

0
erQg(τ + r, V )dr (7)

provided that 〈π, g〉(τ) = 0 for all τ > 0.
One may show under the above assumptions that the expectation of the solution of (2) converges

to the solution of a Fokker-Planck equation.

Theorem 2.1 Let W0(x,k) ∈ L2(Rd × Rd), and let φ ∈ L2(Rd × Rd) be a test function. Then the
process

∫
φ(x,k)Wε(t,x,k)dxdk converges in probability to

∫
φ(x,k)W (t,x,k)dxdk. Here W (t,x,k)

is a solution of the Fokker-Planck equation

∂W

∂t
+ k · ∇xW =

∂

∂km

(
Dmn(k)

∂W

∂kn

)
(8)

with the diffusion matrix

Dmn(k) = −
∫ ∞

0

∂2R(s, sk)
∂zn∂zm

ds. (9)

Theorem 2.1 was proved in the much harder case of a time-independent random potential V in
[13] for E{Wε}, while convergence in probability for such potentials was established in [1]. We will
restrict our analysis in this paper to the case of time-dependent Markovian potentials in order to
keep the presentation simple. Nevertheless our results may be generalized to the time independent
case under sufficiently strong mixing assumptions on the potential using the techniques of [1]. This,
however, is highly technical and lies beyond the scope of the present paper.

2.2 The time-splitting algorithm

In the Liouville equation (2), the advection part ∂t + A and the scattering part ∂t + Bε are easier
to solve than the full equation ∂t + A + Bε. This justifies the time splitting method to solve
(2) numerically. The time splitting method consists of two steps. First, given the approximation
W (nΘ,x,k) one solves the pure streaming part

∂Un+1

∂t
+ k · ∇xU

n+1 = 0 (10)

on a time interval nΘ ≤ t ≤ (n + 1)Θ with the initial data Un+1(nΘ,x,k) = W (nΘ,x,k). The
solution of (10) may be written explicitly as

Un+1(t,x,k) = W (nΘ,x− (t− nΘ)k,k).

During the second step one solves

∂Zn+1

∂t
− 1√

ε
∇xV

(
t

ε
,
x
ε

)
· ∇kZ

n+1 = 0, nΘ ≤ t < (n+ 1)Θ, (11)

with initial data Zn+1(nΘ,x,k) = Un+1((n+1)Θ,x,k). Equation (11) may also be solved explicitly:

Zn+1(t,x,k) = Un+1

(
(n+ 1)Θ,x,k +

1√
ε

∫ t

nΘ
∇xV

(s
ε
,
x
ε

)
ds

)
.

Then we set W ((n+ 1)Θ,x,k) = Z(n+1)((n+ 1)Θ,x,k) and iterate the procedure.
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It remains to understand how the time step Θ should be chosen. We have seen in the introduction
that time steps smaller than εα with α = 3/2 for the above time splitting method and α = 5/4 for
the Strang time splitting method are necessary to obtain an error converging to 0 strongly in the
L2 sense. In this paper, we are interested in the largest time step Θ so that the solution of the
time-splitting algorithm (10)-(11) has the statistical behavior close to that of the exact solution of
the Liouville equation. In practice, this is often all we are interested in. We show that in the latter
case, the time step Θ can be chosen much larger than what we just mentioned, whereby substantially
reducing the computational cost of the Liouville solution.

The time splitting algorithm can also be given the following interpretation. The Liouville equa-
tion (2) may be solved by the classical method of characteristics:

Wε(t,x,k) = W0(Xε(s = 0; t,x,k),Kε(s = 0; t,x,k))

with

dXε

ds
= Kε,

dKε

ds
= − 1√

ε
∇xV

(
t

ε
,
Xε

ε

)
, Xε(s = t; t,x,k) = x, Kε(s = t; t,x,k) = k. (12)

The time-splitting algorithm (10)-(11) corresponds to a time-splitting approximation of (12) obtained
by evolving Xε and Kε in an alternating manner. The dynamics are then trivially solved with source
terms that become constant over the time-splitting interval.

Before stating the main result, it is convenient to reformulate the time-splitting algorithm in a
somewhat more general framework as follows. We replace the exact equation (2) by

∂Wε

∂t
+ φ

(
t

ε

)
k · ∇xWε −

1√
ε
ψ

(
t

ε

)
∇xV

(
t

ε
,
x
ε

)
· ∇kWε = 0. (13)

The functions φ(τ) and ψ(τ) are periodic in τ = t/ε with period Θ > 0, which corresponds to a
period Θε on the large time scale. A generalized time-splitting algorithm corresponds to periodically
shutting down the two operators in (2) so that

ψ(τ) =

 0, τ ∈ [0, τ0)
Θ

Θ− τ0
, τ ∈ [τ0,Θ),

and φ(τ) =


1
τ0
, τ ∈ [0, τ0)

0, τ ∈ [τ0,Θ).

The standard time-splitting scheme corresponds to ψ(τ) = 1 and φ(τ) =
∑∞

n=−∞ δ(τ − nΘ), that
is, the limit τ0 → 0 of the above. Note that information is lost if τ0 > 0 since the random potential
is time-dependent. This would not be the case for time-independent potentials. We allow for more
general distributions ψ and φ in order to investigate other possibilities but impose the constraints

1
Θ

∫ Θ

0
φ(τ)dτ = 1,

1
Θ

∫ Θ

0
ψ(τ)dτ = 1. (14)

This is a natural restriction ensuring that both operators in the time-splitting procedure have equal
weight and that time is not re-scaled.

Let us define the diffusion operator

LΘf = − 1
Θ

∫ Θ

0

∫ ∞

0
ψ(τ)ψ(τ + s)

∂

∂km

[
∂2R(s,k[Φ(τ + s)− Φ(τ)])

∂zm∂zn

∂f(t,x,k)
∂kn

]
ds dτ, (15)

where Φ(s) is an anti-derivative of φ:
dΦ
dτ

= φ. Since only increments of Φ appear in our results the
choice of a particular anti-derivative is irrelevant. The main result of this section is the following
theorem.
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Theorem 2.2 Let the initial data W0(x,k) for (13) be bounded in L2(R2d), the function ψ and ψ
satisfy the normalization (14) and be uniformly bounded. Then the solution of (13) converges in
probability and weakly in L2(Rd) to the solution W of the modified Fokker-Planck equation

∂W

∂t
+ k · ∇xW = LΘW (16)

with initial data W0(x,k). More precisely, for any test function λ ∈ L2(Rd) the random process

〈Wε, λ(t)〉 =
∫

R2d

Wε(t,x,k)λ(x,k)dxdk

converges in probability to 〈W,λ〉 as ε→ 0 uniformly on finite time intervals t ∈ [0, T ].

An important special case arises when ψ = 1 and φ(τ) = Θ
∑∞

j=−∞ δ(τ − jΘ). Theorem 2.2
does not apply to this case as stated, as the function φ is unbounded. However, as only the anti-
derivative Φ of the function φ enters in most estimates, the only modifications in the proof required
to treat this case are in estimates (36) and (38), and these are straighforard . This corresponds to
the time-splitting scheme (10)-(11) when scattering by the random potential V is accounted for at
all times while advection in the spatial variable is accounted for at times t = jεΘ by the correction
W (εjΘ+,x,k) = W (εjΘ−,x − εΘk,k). Then we have Φ(s) = Θ[s/Θ] := [s]Θ and obtain the
following expression for LΘ:

LΘf = − 1
Θ

∫ Θ

0

∫ ∞

0

∂

∂km

[
∂2R(s,k {[τ + s]Θ − [τ ]Θ})

∂zm∂zn

∂f(t,x,k)
∂kn

]
ds dτ.

However, we have [τ ]Θ = 0 when 0 ≤ τ < Θ and thus obtain

LΘf = − 1
Θ

∫ Θ

0

∫ ∞

0

∂

∂km

[
∂2R(s,k {[τ + s]Θ})

∂zm∂zn

∂f(t,x,k)
∂kn

]
ds dτ. (17)

It is instructive to consider the limits Θ → 0 and Θ → ∞. The former limit corresponds to a
time step much smaller than the correlation length. Then we obtain after the change of variables
η = τ/Θ:

LΘf = − 1
Θ

∫ Θ

0

∫ ∞

0

∂

∂km

[
∂2R(s,k {[τ + s]Θ})

∂zm∂zn

∂f(t,x,k)
∂kn

]
ds dτ (18)

= −
∫ 1

0

∫ ∞

0

∂

∂km

[
∂2R(s,k {[s+ Θη]Θ})

∂zm∂zn

∂f(t,x,k)
∂kn

]
ds dη

→ −
∫ ∞

0

∂

∂km

[
∂2R(s, sk)
∂zm∂zn

∂f(t,x,k)
∂kn

]
ds =

∂

∂km

(
Dmn(k)

∂f

∂kn

)
since [s+ Θη]Θ = Θ[η+ (s/Θ)] → s as Θ → 0 point-wise in s and η. Here Dmn(k) is the exact limit
diffusion matrix (9) that arises without the time-splitting approximation.

In order to consider the opposite limit Θ → ∞, it is convenient to assume that the correlation
function R(s,x) has a compact support in s: R(s,y) = 0 for s ≥ T0. Then we have for 0 ≤ s ≤ T0

and Θ sufficiently large:

[s+ Θη]Θ = Θ[η + (s/Θ)] =

0, 0 ≤ η < 1− s

Θ
,

Θ, 1− s

Θ
≤ η ≤ 1.
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The operator LΘ becomes

LΘf = −
∫ 1

0

∫ ∞

0

∂

∂km

[
∂2R(s,k {[s+ Θη]Θ})

∂zm∂zn

∂f(t,x,k)
∂kn

]
ds dη (19)

= −
∫ ∞

0

1−s/Θ∫
0

∂

∂km

[
∂2R(s, 0)
∂zm∂zn

∂f(t,x,k)
∂kn

]
dηds−

∫ ∞

0

1∫
1−s/Θ

∂

∂km

[
∂2R(s,Θk)
∂zm∂zn

∂f(t,x,k)
∂kn

]
dηds

= −
∫ ∞

0

∂

∂km

[{(
1− s

Θ

) ∂2R(s, 0)
∂zm∂zn

+
s

Θ
∂2R(s,Θk)
∂zm∂zn

}
∂f(t,x,k)

∂kn

]
ds

→ −
∫ ∞

0

∂

∂km

[
∂2R(s, 0)
∂zm∂zn

∂f(t,x,k)
∂kn

]
ds =

∂

∂km

(
D̄mn(k)

∂f

∂kn

)
.

The above diffusion matrix D̄mn corresponds to the case of fluctuations in V that are white noise in
time. It means that when the time step is chosen much larger than the correlation length, the limit
diffusion operator of the time-splitting scheme is correct only when the medium fluctuations are
white in time. Therefore, choosing a time step on the order of or much larger than the wavelength ε
usually leads to incorrect statistics for the solution to the Liouville equation. Theorem 2.2 and (15)
quantify the error made by choosing too big a time step. Let us also remark that it is straightforward
to generalize the above calculation to correlation functions that are not compactly supported in time,
although we shall not consider this case here.

2.3 Outline of the proof

The proof of Theorem 2.2 follows the idea of the proof of the main result in [2]. Therefore we briefly
outline the main steps and concentrate on the necessary modifications in the proof. First, we need to
show that the family of measures Pε generated by the process Wε(t) on C([0, T ];L2(R2d)) be tight:

Lemma 2.3 The family of measures Pε is weakly compact.

The proof of this lemma is very similar to that in [2] and is omitted.
It is straightforward to verify that the L2-norm of Wε is preserved by the evolution and hence

Wε takes values in a ball X = {W ∈ L2 : ‖W‖L2 ≤ C}.

Lemma 2.4 The L2-norm of the solution of (13) is preserved:

‖Wε(t)‖L2(R2d) = ‖Wε(0)‖L2(R2d). (20)

Let λ(t,x,k) be a fixed deterministic function. In order to identify the limit of Wε, we construct
the functional Gλ : C([0, T ];X) → C[0, T ] defined by

Gλ[W ](t) = 〈W,λ〉(t)−
∫ t

0
〈W, ∂λ

∂t
+ k · ∇xλ+ LΘλ〉(s)ds (21)

and show that it is an approximate martingale. More precisely, we show that the following lemma
holds.

Lemma 2.5 There exists a constant C > 0 so that∣∣EPε {Gλ[W ](t)|Fs} −Gλ[W ](s)
∣∣ ≤ Cλ,T

√
ε (22)

uniformly for all W ∈ C([0, T ];X) and 0 ≤ s < t ≤ T .
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The proof of Lemma 2.5 is based on the construction of an exact martingale Gε
λ[W ] that is

uniformly close to Gλ[W ] within O(
√
ε). Lemma 2.3 implies that there exists a subsequence εj → 0

so that Pεj converges weakly to a measure P supported on C([0, T ];X). The weak convergence of
Pε and the strong convergence (22) altogether imply that Gλ[W ](t) is a P -martingale so that

EP {Gλ[W ](t)|Fs} −Gλ[W ](s) = 0. (23)

Taking s = 0 in the above equation we obtain the Fokker-Planck equation (16) for W = EP {W (t)}
in its weak formulation. The construction of the martingale Gε

λ and the proof of Lemma 2.5 are
presented in detail in Section 2.4.

The second step is to show that for every test function λ(t,x,k) the second functional

G2,λ[W ](t) = 〈W,λ〉2(t)− 2
∫ t

0
〈W,λ〉(s)〈W, ∂λ

∂s
+ k · ∇xλ+ LΘλ〉(s)ds

is also an approximate Pε-martingale. We then obtain that EPε
{
〈W,λ〉2

}
→ 〈W,λ〉2, which implies

(weak) convergence in probability of Wε(t,x,k) to W (t,x,k). It follows that the limit measure P is
unique and deterministic, and that the whole sequence Pε converges to P .

2.4 The approximate martingale

To obtain the approximate martingale property (22) and prove Lemma 2.5, one has to consider the
conditional expectation of functionals F (W,V ) with respect to the probability measure P̃ε on the
space C([0, T ];V × X) generated by V (t/ε) and the Cauchy problem (13). The only functions we
need to consider are actually of the form F (W,V ) = 〈W,λ(V )〉 with λ ∈ L∞(V;C1([0, T ];S(R2d))).
Given a function F (W,V ) let us define the conditional expectation

EP̃ε
W,V,t {F (W,V )} (τ) = EP̃ε {F (W (τ), V (τ))| W (t) = W,V (t) = V } , τ ≥ t.

The weak form of the infinitesimal generator of the Markov process generated by P̃ε is given by

d

dh
EP̃ε

W,V,t {〈W,λ(V )〉} (t+ h)
∣∣∣∣
h=0

(24)

=
1
ε
〈W,Qλ〉+

〈
W,

(
∂

∂t
+ φ

(
t

ε

)
k · ∇x −

1√
ε
ψ

(
t

ε

)
∇xV

(x
ε

)
· ∇k

)
λ

〉
,

hence

Gε
λ = 〈W,λ(V )〉(t)−

∫ t

0

〈
W (s),

(
1
ε
Q+

∂

∂s
+ φ

(s
ε

)
k · ∇x −

1√
ε
ψ
(s
ε

)
∇xV

(x
ε

)
· ∇k

)
λ(s)

〉
ds,

(25)
is a P̃ε-martingale. The generator (24) comes from equation (13).

Given a test function λ(t,x,k) ∈ C1([0, L];S) we will construct the function

λε(t,x,k, V ) = λ(t,x,k) +
√
ελε

1(t,x,k, V ) + ελε
2(t,x,k, V ), (26)

with the correctors λε
1,2(t) bounded in L∞(V;L2(R2d)) uniformly in t ∈ [0, T ]. The functions λε

1,2

will be chosen so that
‖Gε

λε
(t)−Gλ(t)‖L∞(V) ≤ Cλ

√
ε, (27)

for all t ∈ [0, T ]. Here Gε
λε

is defined by (25) with λ replaced by λε, and Gλ is defined by (21). The
approximate martingale property (22) follows from this.
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As is usual in homogenization theory we need to account for the behavior both at the fast and the

slow scales and define λε
j(t,x,k, V ) = λj(t,

t

ε
,x,

x
ε
,k, V ) for j = 1, 2. The function λ1(t, τ,x, z,k, V )

is the mean-zero solution of

∂λ1

∂τ
+ φ(τ)k · ∇zλ1 +Qλ1 = ψ(τ)∇V (z) · ∇kλ, (28)

with V (z) fixed and independent of τ . Solution of this equation is given by

λ1(t, τ,x, z,k, V ) = −
∫ ∞

0
esQ

∂V

∂zn
(z + k[Φ(τ + s)− Φ(τ)])ψ(τ + s)ds

∂λ(t,x,k)
∂kn

. (29)

The equation for λ2 is

∂λ2

∂τ
+ φ(τ)k · ∇zλ2 +Qλ2 = [LΘλ+ ψ(τ)∇zV (z) · ∇kλ1] + [1− φ(τ)]k · ∇xλ. (30)

The first term on the right may be further decomposed as(
LΘλ− Lτ

Θλ
)

+
(
Lτ

Θλ+ ψ(τ)∇zV (z) · ∇kλ1).

We decompose λ2 as
λ2 = λ21 + λ22 + λ23, (31)

corresponding to the three arising source terms, respectively. The operator Lτ
Θ is defined by

Lτ
Θλ = −E {ψ(τ)∇zV (z) · ∇kλ1} ,

and

LΘλ =
1
Θ

∫ Θ

0
Lτ

Θλdτ, (32)

where Θ is the period of φ and ψ. The explicit form of Lτ
Θ is:

Lτ
Θλ(t, τ,x, z,k) = −E {ψ(τ)∇zV (z) · ∇kλ1} = −ψ(τ)E

{
∂

∂km

(
∂V (z)
∂zm

λ1

)}
= ψ(τ)

∂

∂km

[
E
{∫ ∞

0
esQ

∂V (z)
∂zm

∂V

∂zn
(z + k[Φ(τ + s)− Φ(τ)])ψ(τ + s)ds

∂λ(t,x,k)
∂kn

}]
= −ψ(τ)

∂

∂km

[∫ ∞

0

∂2R(s,k[Φ(τ + s)− Φ(τ)])
∂zm∂zn

ψ(τ + s)ds
∂λ(t,x,k)

∂kn

]
.

Therefore we have

LΘλ = − 1
Θ

∫ Θ

0

∫ ∞

0
ψ(τ)ψ(τ + s)

∂

∂km

[
∂2R(s,k[Φ(τ + s)− Φ(τ)])

∂zm∂zn

∂λ(t,x,k)
∂kn

]
ds dτ.

We observe that the operators LΘ and Lτ
Θ are independent of V and z and therefore the function

λ21 = λ21(t, τ,x,k) is also independent of these variables. It is given explicitly by

λ21(t, τ,x,k) =
∫ τ

0
[LΘ(t,x,k)− Lζ

Θ(t,x,k)]λ(t,x,k)dζ (33)

and is periodic in the fast variable τ . Similarly the function λ23 is also independent of V and z and
is given by

λ23(t, τ,x,k) = [τ − Φ(τ)]k · ∇xλ(t,x,k). (34)
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The function λ22 satisfies

∂λ22

∂τ
+ φ(τ)k · ∇zλ22 +Qλ22 = Lτ

Θλ− g, g = ψ(τ)∇zV (z) · ∇kλ1,

and is thus given explicitly by

λ22(t, τ,x, z,k, V ) = −
∫ ∞

0
esQ[Lτ+s

Θ λ(t,x,k)− g(t, τ + s,x, z + (Φ(τ + s)− Φ(τ))k,k, V )]. (35)

Using (28) and (30) we have

d

dh
EP̃ε

W,V,t {〈W,λε〉} (t+ h)
∣∣∣∣
h=0

=
〈
W,

(
∂

∂t
+ φ

(
t

ε

)
k · ∇x −

1√
ε
ψ

(
t

ε

)
∇V

(x
ε

)
· ∇k +

1
ε
Q

)(
λ+

√
ελε

1 + ελε
2

)〉
=
〈
W,

(
∂

∂t
+ k · ∇x

)
λ+ LΘλ

〉
+
〈
W,

(
∂

∂t
+ φ

(
t

ε

)
k · ∇x

)(√
ελε

1 + ελε
2

)
+
√
εψ

(
t

ε

)
∇V

(x
ε

)
· ∇kλ

ε
2

〉
=
〈
W,

(
∂

∂t
+ k · ∇x

)
λ+ LΘλ

〉
+
√
ε〈W, ζλ

ε 〉,

with

ζλ
ε =

(
∂

∂t
+ φ

(
t

ε

)
k · ∇x

)
λ1

(
x,

x
ε

)
+ ψ

(
t

ε

)
∇V

(x
ε

)
· ∇kλ2

(
x,

x
ε

)
+
√
ε

(
∂

∂t
+ φ

(
t

ε

)
k · ∇x

)
λ2

(
x,

x
ε

)
.

Note that the terms k·∇xλ1 above are understood as differentiation with respect to the slow variable
x only and that the gradients are evaluated at z = x/ε. It follows that Gε

λε
is given by

Gε
λε

(t) = 〈W (t), λε〉 −
∫ t

0

〈
W,

(
∂

∂t
+ k · ∇x + LΘ

)
λ

〉
(s)ds−

√
ε

∫ t

0
〈W, ζλ

ε 〉(s)ds (36)

and is a martingale with respect to the measure P̃ε defined on C([0, T ];X ×V). Lemma 2.5 and the
estimate (22) follow from the following lemma.

Lemma 2.6 Let λ ∈ C1([0, T ];S(R2d)). Then there exists a constant Cλ > 0 independent of t ∈
[0, T ] so that the correctors λε

1(t) and λε
2(t) satisfy the uniform bounds

‖λε
1(t)‖L∞(V;L2) + ‖λε

2(t)‖L∞(V;L2) ≤ Cλ (37)

and∥∥∥∂λε
1(t)
∂t

+φ
(
t

ε

)
k·∇xλ

ε
1(t)
∥∥∥

L∞(V;L2)
+
∥∥∥∂λε

2(t)
∂t

+φ
(
t

ε

)
k·∇xλ

ε
2(t)
∥∥∥

L∞(V;L2)
+‖∇kλ

ε
2‖L∞(V;L2) ≤ Cλ.

(38)

Proof of Lemma 2.6. The estimates (37) and (38) follow immediately from the explicit expressions
(29) for λ1 and (33), (34), (35) for λ2, the gap property (5) and the almost sure a priori bounds (3).
For example, we have

|λ1(t,x,k, z, V )| ≤
∫ ∞

0
e−αs‖∇V ‖L∞ds |∇kλ(t,x,k)| ≤ C0

α
|∇kλ(t,x,k)| ,
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from which the first bound in (37) follows. The other estimates in Lemma 2.6 are shown in a similar
if slightly more tedious fashion.
Proof of Lemma 2.5. Observe that (37) implies |〈W,λ〉 − 〈W,λε〉| ≤ C

√
ε for all W ∈ X and

V ∈ V, while (38) implies that for all t ∈ [0, T ],

‖ζλ
ε (t)‖L2 ≤ C (39)

for all V ∈ V. So (22) follows from the fact that (36) is a martingale.
As explained in Section 2.3 the tightness of measures Pε given by Lemma 2.3 implies that the

expectation E {Wε(t,x,k)} converges weakly in L2(R2d) to the solution W (t,x,k) of the transport
equation for each t ∈ [0, T ].

2.5 Convergence in probability

We now prove that for any test function λ the second moment E
{
〈Wε, λ〉2

}
converges to 〈W,λ〉2.

This will imply the convergence in probability claimed in Theorem 2.2. The proof is based on
constructing an appropriate approximate martingale for the quadratic functional 〈W ⊗W,µ〉, where
µ(t,x1,k1,x2,k2) is a test function, and W ⊗W (t,x1,k1,x2,k2) = W (t,x1,k1)W (t,x2,k2). We
need to consider the action of the infinitesimal generator on functions of W and V of the form

F (W,V ) = 〈W (x1,k1)W (x2,k2), µ(t,x1,k1,x2,k2, V̂ )〉 = 〈W ⊗W,µ(V )〉,

where µ is a given function. The infinitesimal generator acts on such functions as

d

dh
EP̃ε

W,V,t {〈W ⊗W,µ(V )〉} (t+ h)
∣∣∣∣
h=0

=
1
ε
〈W ⊗W,Qλ〉+ 〈W ⊗W,Hε

2µ〉, (40)

where

Hε
2µ =

2∑
j=1

φ

(
t

ε

)
kj · ∇xjµ−

1√
ε
ψ

(
t

ε

)
∇V

(
xj

ε

)
· ∇kjµ. (41)

Therefore the functional

G2,ε
µ = 〈W ⊗W,µ(V )〉(t)−

∫ t

0

〈
W ⊗W,

(1
ε
Q+

∂

∂s
+ φ

(s
ε

)
[k1 · ∇x1 + k2 · ∇x2 ]

〉
ds (42)

+
∫ t

0

〈
W ⊗W,

1√
ε
ψ
(s
ε

)[
∇V

(
x1

ε

)
· ∇k1µ+∇V

(
x2

ε

)
· ∇k2µ

]〉
ds,

is a P̃ ε martingale. We let µ(t,X,K) ∈ S(R2d × R2d) be a test function independent of V , where
X = (x1,x2), and K = (k1,k2). We define an approximation

µε(t,X,K) = µ(t,X,K) +
√
εµ1(t,X,X/ε,K) + εµ2(t,X,X/ε,K).
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We will use the notation µε
1(t,X,K) = µ1(t,X,X/ε,K) and µε

2(t,X,K) = µ2(t,X,X/ε,K). The
functions µ1 and µ2 are to be determined. We now use (40) to get

Dε :=
d

dh

∣∣∣
h=0

EW,V,t(〈W ⊗W,µε(V )〉)(t+ h) =
1
ε

〈
W ⊗W,

 ∂

∂τ
+Q+ φ (τ)

2∑
j=1

kj · ∇zj

µ

〉

+
1√
ε

〈
W ⊗W,

 ∂

∂τ
+Q+ φ (τ)

2∑
j=1

kj · ∇zj

µ1 − ψ (τ)
2∑

j=1

∇V (zj) · ∇kjµ

〉

+

〈
W ⊗W,

 ∂

∂τ
+Q+ φ (τ)

2∑
j=1

kj · ∇zj

µ2 − ψ (τ)
2∑

j=1

∇V (zj) · ∇kjµ1

〉

+

〈
W ⊗W,

∂µ

∂t
+ φ (τ)

2∑
j=1

kj · ∇xjµ

〉

+
√
ε

〈
W ⊗W,

 ∂

∂t
+ φ (τ)

2∑
j=1

kj · ∇xj

 (µ1 +
√
εµ2)− ψ (τ)

2∑
j=1

∇V (zj) · ∇kjµ2

〉
.

The above expression is evaluated at zj = xj/ε and τ = t/ε. The term of order ε−1 in Dε vanishes
since µ is independent of V and of the fast variables τ and z. We cancel the term of order ε−1/2 as
before by defining µ1 as the unique mean-zero (in the variables V , τ and Z = (z1, z2)) solution of

( ∂
∂τ

+Q+ φ (τ)
2∑

j=1

kj · ∇zj

)
µ1 − ψ(τ)

2∑
j=1

∇V (zj) · ∇kjµ = 0. (43)

It is given explicitly by

µ1(τ,X,Z,K, V ) = −
∫ ∞

0
esQψ(τ + s)

[
∇V (z1 + k1[Φ(τ + s)− Φ(τ)]) · ∇k1µ

+∇V (z2 + k2[Φ(τ + s)− Φ(τ)]) · ∇k2µ
]
ds.

When µ has the form µ = λ⊗ λ, then µ1 has the form µ1 = λ1 ⊗ λ+ λ⊗ λ1 with the corrector λ1

given by (29). Let us also define µ2 as a sum of three terms, as in (31),

µ2 = µ21 + µ22 + µ23.

The function µ23 is the solution of

∂µ23

∂τ
+Qµ23 + φ(τ)

2∑
j=1

kj · ∇zjµ23 = [1− φ(τ)][k1 · ∇z1µ+ k2 · ∇z2µ].

It is given explicitly by

µ23(t, τ,x,k) = [τ − Φ(τ)][k1 · ∇z1µ+ k2 · ∇z2µ]. (44)

The function µ21 is the mean zero solution, with respect to the invariant measure π(V ), of ∂

∂τ
+Q+ φ(τ)

2∑
j=1

kj · ∇zj

µ21 = ψ(τ)
2∑

j=1

∇V (zj) · ∇kjµ1 + Lτ
2,Θµ, (45)
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where Lτ
2,Θµ is given by

Lτ
2,Θµ = E

{
−ψ(τ)

2∑
j=1

∇V (zj) · ∇kjµ1

}
.

We now compute this operator explicitly:

Lτ
2,Θµ = E

{
−ψ(τ)

2∑
j=1

∇V (zj) · ∇kjµ1

}

= E
{
ψ(τ)

2∑
j,l=1

d∑
n,m=1

∂V (zj)

∂zj
n

∂

∂kj
n

(∫ ∞

0
esQψ(τ + s)

∂V (zl + kl[Φ(τ + s)− Φ(τ)])
∂zl

m

∂µ

∂k l
m

ds

)}

=
2∑

j,l=1

d∑
n,m=1

∂

∂kj
n

(∫ ∞

0
ψ(τ + s)ψ(τ)

∂2R(s, zl − zj + kl[Φ(τ + s)− Φ(τ)])

∂zj
n∂zl

m

∂µ

∂k l
m

ds

)
.

Note that unlike the first moment calculation now the operator Lτ
2,Θ depends also on the fast spatial

variable Z and not only on the fast time τ . The difference is that while the dependence on τ ∈ [0,Θ]
may be averaged out by integration over the period, the dependence on Z ∈ Rd has to be treated
differently. The function µ21 may be written explicitly as

µ21(t, τ,X,Z,k, V ) = −
∫ ∞

0
esQg21(t, τ + s,X,Z + (Φ(τ + s)− Φ(τ))K,K, V )ds (46)

with

g21(t, τ,X,Z,k, V ) = ψ(τ)
2∑

j=1

∇V (zj) · ∇kjµ1 + Lτ
2,Θµ. (47)

Finally, µ22 is the solution of ∂

∂τ
+Q+ φ(τ)

2∑
j=1

kj · ∇zj

µ22 = L2,Θµ− Lτ
2,Θµ

with

L2,Θµ(t,X,Z,K) =
1
Θ

∫ Θ

0
Lτ

2,Θµdτ (48)

=
1
Θ

∫ Θ

0

2∑
j,l=1

d∑
n,m=1

∂

∂kj
n

(∫ ∞

0
ψ(τ + s)ψ(τ)

∂2R(s, zl − zj + kl[Φ(τ + s)− Φ(τ)])

∂zj
n∂zl

m

∂µ

∂k l
m

dsdτ

)
.

The function µ22 may be written explicitly as

µ22(t, τ,X,Z,K) =
∫ τ

0
[Lε

2,Θµ− L
ε,ζ
2,Θ]µ(t,X,K)dζ. (49)

The P̃ ε-martingale G2,ε
µε is given by

G2,ε
µ = 〈W ⊗W,µ(V )〉(t)−

∫ t

0

〈
W ⊗W,

( ∂
∂t

+ K · ∇X + Lε
2,Θ

)
µ

〉
(s)ds−

√
ε

∫ t

0
〈W ⊗W, ζµ

ε 〉(s)ds,

(50)

14



where ζµ
ε is given by

ζε
µ =

 ∂

∂t
+ φ (τ)

2∑
j=1

kj · ∇xj

 (µ1 +
√
εµ2)− ψ (τ)

2∑
j=1

∇V (zj) · ∇kjµ2

and the operator Lε
2,Θ is defined by (48) with Z = X/ε:

Lε
2,Θµ(t,X,K)=

2∑
j,l=1

d∑
n,m=1

∂

∂kj
n

(∫ Θ

0

∫ ∞

0
ψ(τ + s)ψ(τ)

∂2R(s, xl−xj

ε + kl[Φ(τ + s)− Φ(τ)])

∂zj
n∂zl

m

∂µ

∂k l
m

dsdτ

Θ

)
.

(51)
The bound on ζµ

ε is similar to that on ζλ
ε obtained previously as the correctors µε

j satisfy the
same type of estimates as the correctors λj :

Lemma 2.7 There exists a constant Cµ > 0 so that the functions µε
1,2 obey the uniform bounds

‖µε
1(t)‖L2(R2d) + ‖µε

2(t)‖L2(R2d) ≤ Cµ (52)

and ∥∥∥∂µε
1(t)
∂t

+ K · ∇Xµ
ε
1(t)
∥∥∥

L2(R2d)
+ ‖∇Kµ

ε
1(t)‖L2(R2d)

+
∥∥∥∂µε

2(t)
∂t

+ K · ∇Xµ
ε
2(t)
∥∥∥

L2(R2d)
+ ‖∇Kµ

ε
2(t)‖L2(R2d) ≤ Cµ

(53)

for all t ∈ [0, T ] and V ∈ V.

The proof of this lemma is very similar to that of Lemma 2.6 and is therefore omitted.
Unlike the first moment case, the averaged operator Lε

2 still depends on ε. We cannot claim yet
strong convergence of the P̃ ε-martingale G2,ε

µε to its limit. However, the a priori bound on Wε in L2

allows us to characterize the limit of G2,ε
µε and to show strong convergence. This is done as follows.

The terms in (51) with l = j are independent of ε and give the contribution:

L0
2,Θµ(t,X,K) =

2∑
j=1

d∑
n,m=1

∂

∂kj
n

(∫ Θ

0

∫ ∞

0
ψ(τ + s)ψ(τ)

∂2R(s,kj [Φ(τ + s)− Φ(τ)])

∂zj
n∂z

j
m

∂µ

∂k j
m

dsdτ

Θ

)
.

The two remaining terms give a contribution that tend to 0 as ε → 0 for sufficiently smooth test
functions. They are given by

L12,ε
2,Θ µ(t,X,K)=

d∑
n,m=1

∂

∂k2
n

(∫ Θ

0

∫ ∞

0
ψ(τ + s)ψ(τ)

∂2R(s, x1

ε − x2

ε + k1[Φ(τ + s)− Φ(τ)])
∂z2

n∂z
1
m

∂µ

∂k 1
m

dsdτ

Θ

)

+
d∑

n,m=1

∂

∂k1
n

(∫ Θ

0

∫ ∞

0
ψ(τ + s)ψ(τ)

∂2R(s, x2

ε − x1

ε + k2[Φ(τ + s)− Φ(τ)])
∂z1

n∂z
2
m

∂µ

∂k 2
m

dsdτ

Θ

)
= I + II.(54)

The first term above may be written as

Iε(t,X,K) = q

(
x1 − x2

ε
,k2

)
∂2µ(t,X,K)
∂k2

n∂k
1
m

,

with

q(x,k) =
∫ Θ

0

∫ ∞

0
ψ(τ + s)ψ(τ)

∂2R(s,x + k[Φ(τ + s)− Φ(τ)])
∂z1

n∂z
2
m

dsdτ

Θ
.
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We observe that∫
|q2(x,k)|2dx =

∫
Rd

∫ Θ

0

∫ Θ

0

∫ ∞

0

∫ ∞

0
ψ(τ1 + s1)ψ(τ1)ψ(τ2 + s2)ψ(τ2)

×g(s1,x + k[Φ(τ1 + s1)− Φ(τ1)])g(s2,x + k[Φ(τ2 + s2)− Φ(τ2)])
ds1ds2dτ1dτ2

Θ2
dx

≤ C

(∫ ∞

0
‖g(s)‖2ds

)2

,

where

g(s,x) =
∂2R(s,x)
∂x1

n∂x
2
m

.

We may assume without loss of generality, using classical density arguments, that
∂2µ(t,X,K)
∂k2

n∂k
1
m

=

η(t,x1 − x2,k1)η′(t, (x1 + x2)/2,k2) with sufficiently regular functions η and η′. Then we obtain

‖Iε‖L2 =
∫ ∣∣∣∣q(x1 − x2

ε

)∣∣∣∣2 |η(t,x1 − x2,k1)|2
∣∣η′(t, (x1 + x2)/2,k2)

∣∣2 dx1dx2dk1dk2

≤ εd‖q‖L2
x
‖η′‖L2

x,k

∫
sup
x
|η(t,x,k)|2dk.

A similar bound holds also for the second term in (54). This proves that ‖(Lε
2,Θ−L0

2,Θ)µ‖L2 → 0 as
ε→ 0.

We therefore deduce that

G2
µ = 〈W ⊗W,µ(V̂ )〉(z)−

∫ z

0

〈
W ⊗W,

( ∂
∂z

+ k1 · ∇x1 + k2 · ∇x2 + L0
2,Θ

)
µ

〉
(s)ds

is an approximate P̃ε martingale. The limit of the second moment

W2(t,x1,k1,x2,k2) = EP {W (t,x1,k1)W (t,x2,k2)}

thus satisfies (weakly) the transport equation

∂W2

∂t
+ (k1 · ∇x1 + k2 · ∇x2)W2 = L0

2,ΘW2,

with initial data W2(0,x1,k1,x2,k2) = W0(x1,k1)W0(x2,k2). Moreover, the operator L0
2,Θ acting

on a tensor product λ⊗ λ has the form

L0
2,Θ[λ⊗ λ] = LΘλ⊗ λ+ λ⊗ LΘλ.

This implies that

EP {W (t,x1,k1)W (t,x2,k2)} = EP {W (t,x1,k1)}EP {W (t,x2,k2)}

by uniqueness of the solution to the above transport equation with initial conditions given by
W0(x1,k1)W0(x2,k2). This proves that the limiting measure P is deterministic and unique (because
characterized by the transport equation) and that the sequence Wε(t,x,k) converges in probability
to W (t,x,k).

16



3 An efficient time splitting algorithm

3.1 A modified time splitting scheme

The results of the preceding sections imply that Θε = ε/N with N � 1 is necessary to obtain the
correct statistics of the wave energy density by solving the time splitting algorithm (10)-(11). We
now show that the interval Θε can be chosen substantially larger if one modifies the treatment of the
scattering term in an appropriate manner in the time splitting scheme. However, unlike (10)-(11)
the modified scheme can no longer be solved explicitly and requires a more complicated numerical
scheme to handle the scattering part.

Let us consider a time splitting algorithm for (2), which differs from (10)-(11) as follows. The
advection operator k · ∇x in (2) is treated in the same way as in (10): given the approximation
W̃ε(nΘ,x,k) we first solve

∂Un+1

∂t
+ k · ∇xU

n+1 = 0, nΘ ≤ t ≤ (n+ 1)Θ, (55)

with the initial data Un+1(nΘ,x,k) = W̃ε(nΘ,x,k). We have explicitly as before

Un+1(t,x,k) = W̃ε(nΘ,x− (t− nΘ)k,k), nΘ ≤ t ≤ (n+ 1)Θ.

The scattering term is now accounted for in a different fashion from (11). The new scattering
equation is

∂Zn+1

∂t
=

1√
ε
∇xV

(
t

ε
,
x− (t− nΘ)k

ε

)
· ∇kZ

n+1, nΘ ≤ t ≤ (n+ 1)Θ, (56)

with the initial data Zn+1(nΘ,x,k) = Un+1((n + 1)Θ,x,k). We then reset the approximation as
W̃ε((n+ 1)Θ,x,k) = Zn+1((n+ 1)Θ,x,k) and repeat the above scheme. Note that (56) is different
from (11) as the random potential V is evaluated at the point x − (t − nΘε)k instead of x. This
means, roughly speaking, that we account for the advection of the rapidly varying part of the right
side in (56), which depends on the oscillatory potential V , but we do not advect Wε, which we hope
to be statistically slowly varying in the limit ε→ 0. This modification allows us to obtain the right
dynamics with much larger Θε (actually independent of ε) than in previous sections because indeed
Wε has a slowly varying limit as ε→ 0.

However, as we mentioned above the possibility to take a large time step comes at a price: the
modified equation (56) has no explicit solution, unlike (11). The main advantage of the modification
(11) is that it still allows us to bypass the advection part in the x-variable, which has to be performed
much less often than in the time-splitting scheme (10)-(11).

3.2 Convergence of the time-splitting scheme for the Wigner equation

We analyze now convergence of the time-splitting algorithm (55)-(56) in the small ε limit with a
time-step Θ independent of ε. As in the analysis in Section 2 it is convenient to introduce a somewhat
more general set-up including (55)-(56) as a particular example. We modify (2) as follows:

∂Wε

∂t
+ φ(t)k · ∇xWε =

ψ(t)√
ε
∇xV

(
t

ε
,
x− η(t)k

ε

)
· ∇kWε. (57)

This is the analog to the modified Wigner equation (13). Once again, choosing the functions φ and
ψ equal to zero on alternating time intervals in (57) leads to a genuine time-splitting scheme. In
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general the periodic functions φ and ψ are as in Section 2 with period Θ and with mean value equal
to one. However, there is an important difference between the general time-splitting in (57) and that
in (13): now the functions φ and ψ vary on the macroscopic rather than the microscopic time-scale.
This corresponds to taking a time-step Θ independent of ε in the time-splitting scheme. However, in
order to allow for such a large time step one has to modify the oscillatory phase in the operator on
the right side of (57) by means of a function η(t) also varying on the macroscopic scale. We choose

η(t) =
∫ t

0
[φ(s)− 1]ds = Φ(t)− t. (58)

This allows us to compensate for the large time-step by appropriately adjusting the potential V
accounting indirectly for advection during the long time-step. This modification need not be made
in the argument of Wε since the latter has a macroscopic limit. The main result is as follows.

Theorem 3.1 Let the initial data W 0
ε (x,k) for (13) converge to W0(x,k) strongly in L2(R2d) and

the functions φ and ψ satisfy the normalization (14). Then the modified Wigner distribution Wε,
solution of (57) converges in probability and weakly in L2(Rd) to the solution W of the modified
Fokker-Planck equation

∂W

∂t
+ φ(t)k · ∇W = ψ2(t)

∂

∂km

(
Dmn(k)

∂W

∂kn

)
, (59)

with diffusion matrix

Dmn(k) = −
∫ ∞

0

∂2R(s, sk)
∂zn∂zm

ds, (60)

and initial data W0(x,k). More precisely, for any test function λ ∈ L2(Rd) the random process

〈W,λ(t)〉 =
∫

R2d

Wε(t,x,k)λ(x,k)dxdk

converges in probability to 〈W,λ〉 as ε→ 0 uniformly on finite time intervals t ∈ [0, T ].

Equation (59) is nothing but a time-splitting approximation with time-step Θ of the correct
limiting Fokker-Planck equation (8), which has the form

∂W

∂t
+ k · ∇W =

∂

∂km

(
Dmn(k)

∂W

∂kn

)
. (61)

In particular we obtain the correct diffusion matrix for all Θ.
The proof of Theorem 3.1 is very similar to that of Theorem 2.2. We only explain the necessary

modifications. One no longer needs to introduce separately the fast spatial and temporal variables
z = x/ε and τ = t/ε in the construction of the correctors. The new fast variable is z = (x−η(t)k)/ε
so that one formally has

∇x → ∇x +
1
ε
∇z,

∂

∂t
→ ∂

∂t
− 1
ε
η̇(t)k · ∇z.

With our choice (58) of η(t), the equation for the corrector λ1 takes a particularly simple form:

k · ∇zλ1 +Qλ1 = ∇xV (z) · ∇kλ(x,k)ψ(t), (62)
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since the function φ(t) − η̇(t) that would multiply the k · ∇z term on the left side is equal to one
identically. The function λ1 is given explicitly by

λ1(x,k, z, V ) = −
∫ ∞

0
esQ∇xV (z + sk) · ∇kλ(x,k)ψ(t)ds.

The integral above is convergent because of the gap property (5). Then as in the proof of Theorem
2.2 the right side of the limit equation is given by:

Lλ = ψ(t)E {∇xV (z) · ∇kλ1} =
∂

∂km

(
E
{
−∂V (z)

∂zm

∫ ∞

0
esQ

∂V (z + sk)
∂zn

∂λ(x,k)
∂kn

ψ2(t)ds
})

= − ∂

∂km

(∫ ∞

0

∂2R(s, sk)
∂zn∂zm

ds
∂λ

∂kn

)
=

∂

∂km

(
Dmn(k)

∂λ

∂kn

)
.

The rest of the proof of Theorem 3.1 is very similar to that of Theorem 2.2 and we omit the
details.
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