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Abstract

We analyze the solutions of the Schrodinger equation with the low frequency initial data
and a time-dependent weakly random potential. We prove a homogenization result for the low
frequency component of the wave field. We also show that the dynamics generates a non-trivial
energy in the high frequencies, which do not homogenize — the high frequency component of the
wave field remains random and the evolution of its energy is described by a kinetic equation.
The transition from the homogenization of the low frequencies to the random limit of the high
frequencies is illustrated by understanding the size of the small random fluctuations of the low
frequency component.

1 Introduction

We consider the Schrodinger equation
1
W0eg(t, ) + 5A0(t,z) — eV(t, 2)¢(t, x) =0 (1.1)

with a low frequency initial condition of the form

¢(0,2) = ¢o(c"), (1.2)

with some a > 0. Our goal is to analyze the long time behavior of ¢(t,x), and understand the
energy transfer from the low to high frequencies that comes about from the inhomogeneities in the
random media.

We assume that V (¢, x) is a stationary mean-zero Gaussian random field with a spectral repre-
sentation

Vit,z) = /R d eip'wm. (1.3)

Its covariance function and power spectrum are

R(t,z) =E{V(s,y)V (s +t,y +2)}, R(w,&) = /Rd+1 R(t,z)e ™12 dtdy,
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The spatial power spectrum (the Fourier transform of R(¢,x) in x only) has the form
R(t,€) :/ R(t,x)e " dz = e 9O R(¢), (1.4)
R4

where R(€) € LY(RY), and the spectral gap g(€) > 0, so that

A~

- 2 R
R §) = BT (1.5)
Throughout the paper, we assume that
;2((;;)) e LY(RY) N L= (RY). (1.6)

The compensated wave function

The standard approach to an understanding of the behavior of the solutions of the weakly random
Schrodinger equation is in the context of the kinetic limit [6, 7, 3, 12, 8, 11, 5], through the study
of the Wigner transform of the solution (the phase space resolved energy density) [9]. Our work
here is closer in spirit to [4, 10] that focused not on the weak limit of the energy density of the
solution but on the strong limit of the wave field itself. In order to motivate the “correct” way to
this end, let us mention that after a long time the phase of the wave field acquires a large factor:
for instance, setting V' =0 in (1.1) leads to an explicit expression

a(t,€) = e IEPH24(0, ¢)

for the Fourier transform of the solution. The Fourier transform is defined as
fo) = [ e sty
]Rd

Thus, a convenient object in the context of long time behaviors is the compensated wave function

A~

b(t,€) = elF24(1,€), (1.7)

which eliminates the deterministic component of the phase. This procedure is also known as phase
conjugation in the engineering and physical literature. The surprising miracle is that after this
simple-minded phase compensation, the wave field has a non-trivial limit.

Loose end #1: the high frequency initial data

We first describe the results of [4] obtained when the initial data for (1.1) is not slowly varying:
$(0,2) = ¢o(),
that is, « = 0 in (1.2). Let us set

2R(p)
(2m)dlg(p) —i(|€1* — 1€ —p*)/2]

2

D(p,§) =

D©) = [ D€, (1.9



It is straightforward to check that

ReD(p, ) = 2R(p)a(p) I S e

@Vl ) 1 (2 — [ —pP2/d] ~ @it 2

One of the results of [4] is that if

,D)- (1.9)

(p) c Ll (]Rd),
a(p)
then on the time scale t ~ £72, the compensated wave function corresponding to the initial data
with @ = 0 converges pointwise in distribution to a Gaussian random variable:

i¢|%t
2

3. 95 5 (e PO 4 2(1,9). (1.10)

Here, Z(t,£) is a centered, complex valued Gaussian with the variance
E{|Z(t, &)} = W(t,€) — |do()Pe PO, (1.11)
The function W solves a (space-homogeneous) kinetic equation

—~ . 2 2 - .
ow = R(M,p —OW(t,p) — W(t,€)) (;ff)d, (1.12)

with the initial condition . R
W(0,8) = [do(¢)[*.

This result is consistent with the aforementioned “traditional” kinetic equation approaches.

Loose end #2: homogenization of the very low frequencies

The results in the high frequency regime (a = 0) should be contrasted with the analysis of Bal and
Zhang in [13, 14] for the case a = 1 in (1.2), performed for time-independent potentials. For the
initial value problem

iy + %M —eV(x)p =0, (1.13)
¢(0,z) = ¢o(ex),

with a mean-zero Gaussian random potential V' (x), they have established a homogenization result:
t x
() = o(5.%)
¥ (0) = (5. -

converges in probability, as € — 0 to a deterministic limit ¢(¢, z), which satisfies the Schrodinger
equation

id + %Aq_ﬁ —Vo=0, (1.14)
$(0,2) = ¢o(x).



The effective potential is constant and is given by

_ R(p)d
‘/:/' @Lp
re [Pl
Let us mention that the choice @ = 1 is special, as then the overall phase of the solution at the

times t ~ 72 is

e?lef* = 0(1),

t
e2

so that no phase compensation is needed.

Homogenization of the low frequencies

Summarizing the above results, while solutions of (1.1) with the high frequency initial data have
a random limit on the time scale t ~ 72, as in (1.10), solutions with the “very slowly varying”
initial data as in (1.13) are homogenized on this time scale — their limit is deterministic. The first
goal of this paper is to understand where the transition between the two regimes occurs — this is
the motivation for introducing a general o > 0 in (1.2). It will turn out that the homogenization
result (formulated for the compensated wave function) holds for all & > 0 — that is, no matter
how “relatively high” the low frequency of the initial condition is, solution has a deterministic
limit at times ¢t ~ ¢~2. However, we will see that, unlike in the setting of [13, 14], the temporal
fluctuations of the random potential lead to an effective potential with a non-trivial imaginary part.
This means that the homogenized field loses mass in the limit. This loss of mass is attributed to
the energy transfer to the high frequencies, which, as we show, account for the mass missing in the
low frequencies, do not homogenize, and satisfy a kinetic type limit. We also analyze the random
fluctuations of the low frequency component of the wave field and characterize the corrector to the
homogenized limit.

More precisely, we consider the Schrodinger equation
1
10ip(t, x) + §A¢(t, x) —eV(t,x)p(t,x) =0 (1.15)

with a low frequency initial condition

$(0,z) = ¢o(kx), (1.16)

with k& < 1. The Fourier transform of the initial condition is

A P

0(0,€) = £~%60 ().
Thus, if the function éo(g) is of the Schwartz class, qg(O, §) is concentrated on the wave vectors & of
the size O(k). While the Schriodinger equation with a time-dependent potential conserves the total
mass:

Mo = [ lotaPde= [ jo0.0)Pde. (117)
the total energy
E(t):/ (V6?4 Vo ]da (1.18)
R’i
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is not conserved, unlike for time-independent potentials. Thus, even if the mass is initially concen-
trated in the low wave numbers, after a long time evolution it may spread to O(1) frequencies as
well. As the potential is weak, the time it takes for the mass to spread over a range of frequencies
will be long.

We consider the long time behavior of the solution, on the time scale of the order ¢t ~ 72,

when the effect of the weak random potential will be non-trivial. We will first consider the “low
frequency” rescaled compensated wave function:

Vot €) = K%(eiz,ﬂg)e' = (1.19)

with the initial data 1.(0,€) = ¢o(€). This allows us to study the low frequency component of
the solution — wave numbers of the order O(k). A straightforward computation shows that this
function is a solution of the following integral equation

e(t,€) = do(€) + l /O /R d Vii’ip) b

6m2(|£|2_‘£_§‘2)287‘2w5(8)§ _ B)ds (120)
K
We have the following result for the low frequencies.

)

Theorem 1.1. Assume that k = e* with o > 0. Then, for fized t > 0 and & € R?,

Ye(t, &) = (L, &) = qgo(f)e_%D(O)t in probability as € — 0. (1.21)

Let us stress that £ = O(1) in the argument of the function . (¢, &) corresponds to £ = O(k) in
the argument of the function ¢ — Theorem 1.1 addresses the evolution of the low frequencies of the
solution of the Schrédinger equation with a slowly varying initial condition. Recall that

2R(p)
/Rd @) + P72 ™

and, as g(p) > 0, we have ReD(0) > 0. Therefore, the passage to limit ¢ — 0 in (1.21) induces a
loss of the L?(RY) norm: while

D(0) = (1.22)

1Y (t, )l L2 = lloll 2,

as can be seen simply from the definition of 1.(¢, &), we have

— 1
1ot e = liollze™2 PO < o]l -

The natural question is how does the loss of mass happen, and where does the mass go? Mathe-
matically, there is no contradiction, as we will show the convergence in Theorem 1.1 is not uniform
with respect to ¢ € R From a physical point of view, as we have mentioned, the time dependence
of the random potential breaks the conservation of the energy (1.18), which allows the mass to
escape to the high frequencies. Let us mention that in the time-independent case [2], where the
conservation of the energy prevents the escape of mass from the low frequencies, it is shown that
the mass is conserved as well.



Generation of the high frequencies

We now investigate the generation of the high frequencies in the above setting. Once again, we
consider the solution ¢(¢, ) of (1.15) with the initial data (1.16). We stress that in all our results the
initial condition (1.16) is the same — various rescalings in Theorem 1.1 above and Theorems 1.2, 1.3
and 1.4 below correspond to zooming into various frequency ranges in the same solution. Our next
goal is to understand how the mass escapes from the low frequencies (those of the initial condition)
to the high frequencies, generated by the interaction with the random potential. As we are now
interested in the high and not the low frequencies, we define the compensated wave function not
quite as in (1.19), but as

ile%t

W (1,€) = wE( 5, €)e 5

so that the frequency is not rescaled. The initial condition for W, is

. (0,8) = k™ Y2¢(¢/ k).

(1.23)

The pre-factor %2 in (1.23) is chosen so that we get a non-trivial limit. This function solves the
integral equation

Ue(t,€) = d/2¢o Zg/ /Rd EP—IE=PP5 g (5, ¢ — p)ds. (1.24)

The following result explains the loss of mass observed in Theorem 1.1, and tracks the generation
of the high frequencies.

Theorem 1.2. Assume that k = €® with o > 0, then for fivzed t > 0 and £ # 0, we have
U (t, &) = Z(t,€) in law as € — 0,

where Z(t,€) is a centered, complex valued Gaussian random variable. Its variance W};(t,g) is the
solution of (1.12) with the initial condition Ws(0,€) = || o|26(€).

The variance I//I\/g(t, €) can be explicitly written as a series expansion

Wi(t,€) = W p(t, €) + Ws 5(L, ), (1.25)

with the ballistic part . R
Wip(t,€) = [|golPe RPO%5(¢),

and the scattering part

k
Waa(t, €) ZH%HQ/ dv/ﬂw ap [ e timss ReDle—.~P)

O0=vg41<vE<...<v1<vo=t j=0

k
><HReD(Pj,g—...—Pj,l)a(g—Pl—...—Pk).



Let us mention that /Wg(t, €) = /W57S(t,§) when £ # 0, that is, only the scattering part contributes
to the variance in Theorem 1.2. We also observe

/ Wis(t, €)de = | dol|2e RPO
Rd

which equals to the mass lost in the low frequencies.

Theorems 1.1 and 1.2 describe the dynamics of (1.1) on different scales of the frequency do-
main. In the former case, the low frequencies are zoomed in, and we find a deterministic evolution
(homogenzation). In the latter, we track the high frequency component of the solution, so that the
low frequency initial condition shrinks to a point source at the origin, which generates the high
frequency waves.

The fluctuation analysis in homogenization regime

We now return to the analysis of the behavior of the low frequencies. According to Theorem 1.1,
the compensated wave function homogenizes for the low frequencies, hence the next interesting
object is the fluctuation, which we define as

Uu(,€) = — (0:(1,€) — E0(t, ).

Here, ¢.(t,£) is defined as in (1.19). Heuristically, since the homogenization limit in Theorem 1.1
captures the ballistic component of the wave field, we expect small random fluctuations consisting of
the remaining scattering components. Indeed, we will see that the fluctuation exhibits a kinetic-like
behavior. Let us set

0 if a € (0,1),
¢ . X -
Wit — | ~PO0 PO [ [ e = pin(e +pe o ita =1, (1.36)
~D(,0)te PO [ du(6 ~ phdulé + D)y ifa> 1.
R4

Theorem 1.3. Assume that k = %, then for fivzed t > 0 and £ € RY, we have
Uc(t,§) = Zs(t,§) = X5(t,§) +iY5(t,€) ase — 0,
where Xg,Ys are centered, jointly Gaussian random variables such that
E{|Z5(t, )"} = Wos(t,0),

and

E{Zs(t,6)*} = Wal(t,€).

Therefore, we can write

Ve(t, &) = E{yc(t, &)} + k¥2U(t,€),



and Theorem 1.3 shows that when k = ¢, with a < 1, the fluctuation U.(t, &) is approximately
distributed as Z(t,0), a centered complex Gaussian random variable with variance Wg’ s(t,0). This
is similar to the result of Theorem 1.2 for the high frequency, albeit the variance is now given by
the transport solution evaluated at the origin & = 0, since we are now in the low frequency regime.
If we let & — 0 (which is the same as k — 1, so that the initial condition is less and less slowly
varying), then, formally, 1. (t, ) is distributed as

do(€)e 2P O 1 Z5(t,0),

which is consistent with (1.10). That is, Theorem 1.3 also interpolates between the deterministic
limit for the low frequencies and the random behavior of the high frequency component of the
solution.

The limit of the Wigner transform

Besides the pointwise fluctuation for a fixed ¢ € R?, we also consider the fluctuation of . (t,€) as
a wave field. The tool we use is the Wigner transform for some 5 > 0:

L(t,2,€) = / Ut €+ 1 )u*(t ¢ — i)ei"“ dn (1.27)
2 (2m)d” ’
Let W5 be the solution to the kinetic equation
z - p|* — 1€ dp
oW -V W = t t 1.28
t +§ vl‘ Rd ( 2 D — 5)( ( Hﬁ'p) ( 7$7£))(27T)d7 ( )
with the initial condition B R
W5(0,,8) = [|¢ol|36(£)d (),
and W&b, W& s be the ballistic and scattering component of W, respectively:
Wi(t,,€) = [|dol[35(£)d(x)eRPON,
and
k
Wis(t,2,8) =Y | / dv / dpP [ e~ (imvs)ReDE=-=F)
Z H 0H2 0=vg41<vE<...<v1<vo=t Rkd ]]](:)
k
X H ReD(Pj,&—... = Pj1)8(6 = P — ... — Pp)d(x — &+ Y Pyoy).
. j=1

Theorem 1.4. Assume that k = €, o € (0,1) and a+f = 2, then for any test function p € S(R??)
andt >0,

MW%OW@OM%%/TWQ@%WWMOM%
R2d R2d

in probability as € — 0.



As Theorem 1.1 indicates that the ballistic component of transport solution gives the low
frequency behavior, we conclude from Theorems 1.3 and 1.4 that the small random fluctuations are
described by the scattering component of the solution of the kinetic equation.

This paper is organized as follows. First, in Section 2 we present the Duhamel expansion and
the corresponding diagrammatic expansions and the moment estimates that are needed for the
proofs of all theorems. Section 3 contains the proof of Theorem 1.1. Theorem 1.2 is proved in
Section 4. Finally, Theorems 1.3 and 1.4 are proved in Section 5.

Acknowledgment. This work was supported by an AFOSR NSSEFF Fellowship and NSF
grant DMS-1311903.

2 The Duhamel expansion and the moment estimates

Theorems 1.1, 1.2, 1.3 and 1.4 are all proved using the moment method. For the convergence

e (t,€) = do(&)e 2P0,

in probability (Theorem 1.1), it suffices to show the convergence of E{v.(t,&)} and E{|vy.(t,€)|?}
to their respective limits. For the convergence in law of W.(¢,&) and U.(t,£) to a Gaussian in
Theorems 1.2 and 1.3, respectively, we need to show the convergence of the corresponding mo-
ments E{U_(t,&)M(Ux(t,€))V} and E{U(t, )M U (t,€))N} for any M, N € N to their respective
limits, which makes the analysis slightly more computationally heavy. In this section, we perform
the preliminary moment estimates that are needed in the proofs of the theorems.

The Duhamel expansions

All moment estimates rely on the Duhamel expansions that we now recall. From now on, we
will set k = €% For the low frequencies, we can iterate the integral equation (1.20) for the
function 9. (¢, &), and write the solution as a series

t f) = an,a(tag)v (2'1)
n=0

with the individual terms

1 nV(E ,dp (G (£,5) ) +...+Da
frne(t, &) = n/ / H 52 J) iGn (¢, )/€? ¢ (= H)’ (2.2)
(ig) i €
and the phase factor
- s
Gu(&,s™ ) = (1€ =p1— . = e [P = !&—pl—--.—pklz)gk. (2.3)

k=1

Here, we used the convention fo.(¢,&) = &0(5), and have set py = 0, p(™® = (p1,---,Dn), as well
as s = (s1,...,5,). We have also defined the time simplex

Ant) ={0<s,<...<s <t}



For the high frequencies, the solution W.(t, &) to (1.24) is similarly written as
o
t 5) = ZFn,s(tag) (2'4)
n=0

with

o 1 - ‘N/ 52vdpj zG (&, p(n)) /g2 1 §—p1—
Fn,e(t7§) - (28) /A (t / 13 ad/Q ¢0(

P (23)

and

. ¢
Fo. —'ggﬁ7§¢0(ga)'

The key “bureaucratic” difference between the Duhamel expansions (2.2) and (2.5) for the func-
tions Y. (t, &) and W.(¢t, &) is that e*¢ — £. This will make the limits very different.

The following lemma ensures that the solutions given by (2.1) and (2.4) are well-defined and
we can interchange the summation and the expectation when computing the moments. Its proof is
exactly as that of [4, Proposition 3.8].

Lemma 2.1. Fize >0,M,N € N. Let g = fne or F, ¢, then
E{gmyc - GmareOnyc- Iny et < Celma, ... ,mar,na,...,ny) (2.6)
with

Z Z Ce(my,...,mpr,m1,...,nN) < 00.

The pairings
Now, we discuss in detail the calculation of the moments

]E{g"nlvE T gm]Vhag:Ll,E e g:LN,E}7

where g, = fne or F, ., and

M N
Zmi + Z n; = 2k,
i=1 j=1

for some k € N (if the sum is odd, then the moment is zero by the Gaussian property). We have
L N=SM A=
E{Gimi e - GmngeOm e - Gy e} = (i) 7 2= (i) " =17

M N
X dsdu/ E IM,N eigMefigN hM7i h )
/Aml ()X X Ay (B) R2kd { } H H N,j

i=1 j=1

(2.7)

10



with

1 81,1 81, ~ SM,1
IMNZEE%ﬁXQ,@H) V(ﬁ%@%my“V(g,

~ SM,
) ). -V(%? dpM,mM)

Srx W11 x U1, UN,1 “rx  UN,
xV ( 62’ ,)V( 6;17dq1,n1)'- V( 2 7dQN1) V( 6;N7dQN,nN)7

and the phases

N
ZGW s Y2 Gy =3 Gy (™ gM) /2

i=1

with n = e%¢ or &, depending on whether g, . = f, . or F, .. The initial conditions appear as

n p71++p, i * s q71++q7
hari = Go(€ — S By = 656 - T )
when gn . = fne, and as
—adj27 & = Pil =+ = Pim, —ad/2 58 TG~ iy
hari =€ @ 72 0( : o 2, hy,;=¢“ 285 s =),

when g, . = F .

Using the rules of computing the 2k—th joint moment of mean zero Gaussian random variables,
we obtain

E{lvn} = Z H atwn)lor=orl/e 5y 4+ w,) R(wp) dwydw,. (2.8)
(’Ulyv'r)ef

The summation ) » extends over all pairings F formed over the vertices
{81,15 s Sl,mly RN} SM,lv cee 7SM,m]Mu1,17 cee )ul,nlv cee 7UN,17 cee 7uN,’nN}‘

In (2.8), v, v, are the two vertices of a given pair, and w;, w, are the respective p, ¢ variables, that
is, wy = p; ; if v = s; 5 and w; = —¢; ; if v; = u; ;. The same holds for w,. We will also write a pair
as an edge e = (v;, v, ). Note that the order of v;, v, does not matter here since g, R are both even.

A uniform bound on the pairings
We recall the following general bound.

Lemma 2.2. Let gp. = fne or Fy, ¢, then we have, for all ¢ € (0,1],

. (2k — 1])Vu o
[T (ma) T ()

|E{gm175 et gmM,Egzl, gnN,z-:}|

with some constant C depending on t, &, R, g.

11



Proof. The proof is close to the case ¢ = f, . and @ = 0 which is already contained in [4].
We present it, together with the required modifications, for the convenience of the reader. By
symmetry, the RHS of (2.7) can be bounded by

M N
. I dsdu [E{Im N | [l | ] 1P - (2.10)
[Ti=1(ma)! ;'V:l(nj)! e Jio g2 R2kd g J[Il J

i=1

In the case when ¢, = fy ¢, we bound

M N
[T Racs TT 1235
i=1 j=1

then for a given pairing F, we have

< doll2*Y,

1 .
2k/ dsdu/ H (2m) e 8(w)lvi— orl/e? 8(wy + wy) R(wy)dwydw, < CF,
19} [0715]21@ R2kd (vz mr)e}_

where we used the integrability of R(p)/g(p). Thus, (2.10) can be bounded by

T G T I = g S b

In the case when g, . = F), -, we integrate w, and bound (2.10) by

k

1 1 dwl
1%, (ma) I (n)t 2% / dsdu / > I e Riw) H [ H P51 H
=1 =1 [0,4]2 Rekd F (viur)EF
(2.12)
For a given pairing F, we have
B . P B . Qi
hacal = e P160l (Z3). - bl =10l (Z), (2.13)
where
Pr=&—pir— . —DPimyy Qi =&—qj1— - — Qin;»
subject to the conditions
w; + w, = 0 when (v, v,) € F. (2.14)

The difference with the previous case are the factors e %2 in (2.13). Note that if P; = £ or Q;=¢
(this may happen because of (2.14)), as & # 0 is fixed and ¢¢ is rapidly decaying, we may simply
use the bound

Efad/2’q£0| (8%) < C.

For i, j such that P;, Q; # &, to deal with the large factors in (2.13), we change variables as follows.
Take some 7 with P; # £, so that

Pi1 + ... +pi,m¢ 75 0.

12



We pick any variable p from {p;1,...,pim,;} (note the number of elements here can be strictly
smaller than m; since we have already integrated out the variables w, ), and change p to p’ = P;/e®.
The variable p = w; was paired to some p; or ¢; = w, as in (2.14). Thus, after the integration of
wy, p’ will also appear in a unique h M, which equals to some s ; or h}kv,j. We use the bound

\hari| < e 242C.

Thus, after the change of variable and taking into account the Jacobian of the change of variables,
we have, with a slight abuse of notation

|hariharildp < €= go|(p)e > Ce = C|o|(p')dp (2.15)

Since the change of variable only relates to p;, all other hys;, A}y ; are not affected. We continue
the procedure, integrating out the p-variables one by one. If we are left with a single

|B] = e79/2|o|(P;/e*) or =] o|(Qi/*)
in the end, we change variable similarly, and estimate this term, together with the Jacobian as

42| 4o | (p)dp' < |0l (0')dp'. (2.16)

Overall, this change of variables will involve M + N momenta, and will eliminate all factors hp;
and hy ;, and we will be left with an expression of the form

1
g%/mt]%dm/ [[ e lesmlnrieg wznlhwnlwdw

Ul 7'Ur E.F

CM+N 3
SE%/ dsdu/ H 27.[. —d e 9 (wy) vy —vr| /€2 R(’U)l) H (27T)—d6—9(2l)|’01—'0r\/8 R(Zl)
[0 t]%

(vi,vr)EFL (vi,vr)EF2

x II  Iol(wi)dw
(vy,vr)EF2
(2.17)
Here, (v;,v,) € Fi denotes the pairings in which the momenta do not participate in the change
of variables and (v;,v,) € Fy denotes the affected pairings. The explicit form of z; that appears
above is not important, so we do not specify them. The bounds (2.15) and (2.16) mean that the
“participating” w; give us the factor

H \Ggof(wl)

(’Ul ,1)7‘)6]:2

that appears in the last line of (2.17).

Next, we integrate in time. This brings about the product

R(w R(z
LA LS

(Ul 71}7‘)6‘71 ! (Ul 7UT)€~F2

13



Using the fact that R(w;)/g(w;) is integrable for the vertices in F, and that R(z)/g(%) is uniformly
bounded for the vertices in F, we may integrate out all the momenta variables, showing that (2.12)
is bounded by

#(F) k_ (2k — 1! K
M N C" = —x N C
Hi:1(mi)!nj=1(”j)! Hi:1(mi)!Hj=1("j)!
This finishes the proof. [

Lemma 2.2 ensures we can interchange the limit ¢ — 0 and the summation.

(2.18)

An estimate on non-simple pairings

Now we need to consider more carefully the contribution from different types of pairings. First we
can decompose the temporal domain A, (¢) X ... x A, (t) according to all possible permutations
of {s1,1,...unny} and write

E{gmae - Gmarenie - Gnyet

= sdu mNjeMe M
a (ig)zﬁl i (—Z'E)Z;'Vzl "7 Jok(t) R2kd i=1 Zj:l i
where ogi(t) = {0 < w9, < ... <w; <t} and o = {vy1,..., vy} denotes all possible permutations
of {s1,1,...unny} such that og,(t) # @. By (2.8),
E{lyn} = Z IT « a(wolo=vrl/€ 5wy 4+ w,) R (w;)dwydwy, (2.20)
(vl,vr)e]:
where F are pairings obtained by computing joint moments of Gaussian. We can write
E{gml,s e gm]w,eg;:ha e g;N@} Z Z n* J? F 5 g) (221)
with
1 1
Jy, n* \0, ]:a 3 =
e ( £,9) (i£) = s (o) T
‘ M N
X /U% dsdu /R?kd H (27 )%~ 8(wnlv= orl/e? §(wy 4 wy ) R(wy)dwydw,e' 9% e =98 HhM,ithvvj
(vlvvr)e}— i=1 ]:1
(2.22)

and the symbol g = f or F indicates the dependence of anl,...,n*N on gne = fne or Fi ..

Given a permutation o, we say that F, is a simple pairing if vo;_1,v9; form a pair for every
index ¢ = 1,..., k. The next lemma shows that the overall contribution of the non-simple pairings
vanishes in the limit ¢ — 0.

Lemma 2.3. Let g, = fne or Fy ¢, then we have

ZZ ey (0,F,&,9) =0, ase — 0.

o F#Fs
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Proof. When g, = fy ¢, this is proved in [4, Lemma 3.6]. The proof for g, . = F}, . is similar,
using the same change of variables as in the proof of Lemma 2.2. We do not provide all details — but
just mention the main simple point: if non-consecutive times are paired, then the time integration
of the exponentials brings out too large power of ¢, as, essentially, you collapse the intervals of the
time integration “too much”. We write

|J7§11,...,n}‘v(0'7 f?va)‘
M N
1 —d_—g(w;)|v;—vy|/e? > *
Sg%/g t deU/RM [T (@m)deotwnlunmer/e 5(wl+wr)R(wl)dwldwTH’hM7i’H’hNJ‘a
2k (t) (vy,00)EF i=1 j=1
and by the proof of (2.17), we have
|J7€711,...,n}‘v(0'7f7§7F)’
M+N . .
= 2 / deu/ [] (m)destlvl/ Riuy) (2m)~de—00 v/ fo(
€ o2 (t) Rk

(vg,vr)E€FL (vy,vr)EF2

< TI 1dol(wdw.

(’Ul 71)7‘)6]:2

Then, using the fact that R(p)/g(p) is integrable and uniformly bounded, we only need to follow
the proof of [4, Lemma 3.6] using the aforementioned observation that the time integration will
bring about too high power of € because of the exponential in time factors. [

The vanishing of the crossing pairings

By Lemma 2.3, we have
i% E{gmie - GmaeIn e Gnyet = Z ;1_13(1) S A 3V )R (2.23)
e

Let us define sets
Ai ={si1,-,8im; ), Bj = {uj1, ... ujp, } withi=1,..., M, j=1,... N.
Given a pairing F,, we say
S1,5 €{A;,Bj:i=1,...,M,j=1,...,N}

interact with each other if there is an edge (v;,v.) € F, such that v; € Sj,v, € So, and we
write S7 <> So. We say they are connected if there exist other sets such that S; < ...
Sy. Thus, for a given permutation o, we may decompose {4;,B; : i =1,...,M,j =1,...,N}
into connected components. For example, if all variables in A; pair inside Ap, then Ay itself
is a connected component. If all variables in A; and As either pair inside the corresponding
set or pair with variables in the other set, and we have at least one edge joining A; and As,
then {A;, A2} is a connected component, and so on. We let N.(F,) be the size of largest connected
component corresponding to F,. The following lemma shows the permutations with more than
triple interactions do not contribute in the limit. This leads to a Gaussian limit in Theorems 1.2
and 1.3.

15



Lemma 2.4. We have
E limz]el. * (” ; 757]0)—"'
e—0 MLy o

and

Y. lmJp (0.6 6 F) =0,

Proof. We first consider the case g, = fn . For a given permutation o, if N.(c) > 2, we can
find the sets
51,59 € {AZ‘,Bj i=1,...,M,j = 1,...,N},

such that S; <+ S2. Let e be an edge joining S7 and Sz, and hg,,hg, be the initial conditions
corresponding to S, .52, then we have

’anl,...,n}‘v (07 ‘Fau 57 f)‘
CMHN—2 d_—g(w;)|vi—vr|/e? ®
< T dsdu H (2m)% d(wy + wy) R(wy)dwdw, |hg, hs,|-
9 ook () R2kd

(Ulvvr)e}—o
(2.24)
Recall that when g, . = f.-, we have

CgGat -t Gy

~ pi’ + e —|— mei N e
hari = do(§ = : ca ), hin, = 00§ s ).
We can assume b .
R ) X )
[hsy| = |0l (€ = =) and |hs,| = |dol(€ — ),

for some P, Py after integrating out w, in (2.24). It is clear that P;, Py # 0 since they both contain
the w; variable corresponding to the edge e. Now we have

~

@Fnen e [T Tl - Doldl(e - 2ol o, (225)
(vi,vr)EFs

| Ty

*
B

as € — 0 by dominated convergence theorem.

Next we consider the case g, = F), .. The following estimate holds

|J5’Ll,.. A (O-af07§7F)|

SN
1 5 M N
<o / dsdu /R » [T @r)destlomerl/e s, + w,) Rw)dwidw, [T [harl T 1R
o2k (t) (v1,0r)EFo i=1 j=1
Recall that now
—a ~ —Pil — -« — DPimy % —a A*g—Q‘yl—...—Q‘m.
hari =€ d/2¢0(§ Pil e Pume), ;=& 25— p 7).

If N.(o) > 3, we can find

Sl,SQ,Sgé{Ai,Bj:i:1,...,M,j:1,...,N}
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such that S; <+ S2 <+ S3. We pick two edges linking S7 to S2 and S to S3, and denote them by eq o
and e 3, respectively. We also denote the variables corresponding to eq 2, e2 3 by w1 2, w2 3. Let hg,
be the initial condition corresponding to S;,7 = 1,2, 3, then we have

— P
lhs,| = e~ |dg ]( %) for some P;,i=1,2,3.

After integrating out the w, variables, it is clear that P; contains the variable wi 2, P» contains the
variables wy 2, w2 3 and P3 contains the variable ws 3. We do a similar change of variable as in the
proof of Lemma 2.2. First, we change w; 2 so that (§ — P;)/e® — P;. Second, we change wg 3 so
that (£ — P3)/e® +— P3. Then we have

e E—Pi oy E—Pp . E—P
|hs, hs,hs,| =e* d/2\¢0(g p 1)%(5 o 2)¢0(g o %) dwy 2dws 3

R W (2.26)
e 304220 G0 (Py) o (2) do(Ps )| dPrd Py < Ce2| o (Py) o (Ps)|dPyd P,

with some 2z that does not matter to us, as we simply bound qgo(z) by C. Now, we only need to
carry out the same change of variable as in the proof of Lemma 2.2 for the remaining h. In the
end, we obtain

CM+N cod/2
|J:n1 ---”7\{(0” Fo, &, F)| < ok / dsdu/ H (277-) —g(wp)|v;—vy|/e? R(wl)
k) k) [0 t]2k

(vi,0r)EFo,1

« H (QW)fdefg(Zzﬂvz*vr|/52R(zl) H ]¢0|(wl)dw,
(vi,vr)EF 5,2 (vi,0r)EF5,2
(2.27)
where (v;,v,) € Fy1 denotes the pairings which are not affected by the change of variables,
and (v;,v,) € Fu2 denotes the affected pairings, and, as in the analysis of (2.17), the precise
expression for z; is not important to us. Clearly, the RHS of (2.27) goes to zero as € — 0 because
of the extra factor £*¥/? compared to (2.17). O

Pairings for the correctors

We now describe analogous estimates that are needed in the analysis of the corrector

Uelt &) =Y 7,
n=0

with
Fne(t,€) = fnet, &) = B{fnc(t,€)}
_ (;)n /na) Rndw%,...,‘z—g,dpl,...,dpn)eiGn@‘)‘fvs(")vp(">>/82¢3 = 75% — - S—Z)ds,
where
n n
V(S1y.veySnydp1,...,dpy) = H (s5,dpj) — {H f/(sj, dpj)} | - (2.28)



Let us discuss in detail the calculation of moments

e_ad(MJrN)/QE{ﬁmhs .. ymzw,sy;l .- JnN .}, formy,...,ny €N,
with
M N
Zmi + Z n; = 2k.
i=1 j=1
Similar to (2.7), we can write
8_OLd(JM_FN)/2H:T"{‘g.ml,5 e ﬁmM, 9;1 € nN,s}
1 1 M N
— dsdu / E{Zanrn}e 9 e 8 TT hars [T b
(,’E)Zf‘il mi(— Zg)ZN nj /Aml(t)x. XAy (t) R2kd 21;[1 ZjI;[l 7
(2.29)
where
81,1 81, SM,1 SM,
IM,N :V(i ey é_;nl,dle?""dplyml)"‘V(sT"‘"%7dpM71""7dpM7mM) ( )
2.30
uy, 1 uy, UN,1 UN,
XV*( C) ;17dQ1,17-~7dQ1,n1)~~V*( PERERRE 2nN7dQN,17"‘7dQN,nN)7
5 g g 5
and

Qj,l + tee + qjvn]

Dil1+ ...+ Dimy
) o

50&

hari = 2o (6 - N (e )-

Previously, we have dealt with the expectation of a product of centered Gaussians. For Zy v,
however, each factor V, defined in (2.28) is a centered product of Gaussians rather than a product
of centered Gaussians. The rules for evaluating the expectation of such objects are recalled in
Lemma A.1 in the Appendix. Recall that we have defined the sets

Ai:{si’l,...,si’mi}, Bj:{u]‘71,...,u]‘7n].}, Withi:L...,M,j:l,...,N.

Given a pairing F, we decompose {4;,B; :i=1,...,M,j=1,...,N} into connected components
according to the interaction between the s, u variables. Let Ng(F) be the size of smallest connected
component, then by Lemma A.1 we have

E{Zun}t= I « a(w)lo=vrl/e* 5 () 4w, ) R (w;)dwydw, . (2.31)
F:Ng(F)>2 (vl,v,«)e}'

In particular, it is clear that E{Zy; n} < E{Ip n} and

E{lyn} —B{Zun}= Y IT « atwn)lor=oel/e* 5y 4w, ) R(wp)dwydw,.  (2.32)
F:Nq(F)= (vl,v,«)e]:

Comparing (2.7) and (2.8), to (2.29) and (2.31), we see that

Pt e T, ).
1,€ MMHE ny,€ * nN,z-:

cmed(MAN) 2 f g7

has exactly the same form as

E{Fme- FmpeFo e Fayet (2.33)
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if we replace £ — €*¢ and impose the constraint Ns(F) > 2 in (2.33). Therefore, we can follow the
same proof for Lemmas 2.2, 2.3 and obtain

: —ad(M+N)/2 _ :
lim eI NEELT o T e T Tt = D ImIL, e (0. F6 €% F),

nN
0:Ns(Fo)>2

« is defined in (2.22).

€
where we recall Jm17...7nN

We should note that in the proof of Lemma 2.2, for g, . = F}, ., we used the fact that £ # 0 so
that R
e o (/) < C,

and actually goes to zero as ¢ — 0. At this step, the analysis for .%, . can not proceed this way,
as we have replaced £ — £%¢. Instead, we use the condition Ng4(F) > 2, which implies that after
computing moments, all the h factors in (2.29) take the form

A P A
hags =< ho(6 — 1), and by, = e W2ho(6 ~ 2),

60&

for some P, @ # 0. If P or Q were to be zero, then A; or B; is not connected with any other set,
which would imply Ng(F) = 1. As P and @ are not zero, we only need to perform the same change
of variables as in the proof of Lemma 2.2.

We may now follow the same proof as for Lemma 2.4 to obtain

il_r}(l) E_Oéd(M—i_N)/zE{ymhs cee ﬁmﬂl’59;175 cee y;Nﬁ} - Z lirr(l) T ey (07 ]:m €a€7 F)
0:Ns(Fo)>2,Ne(Fo)<2

Since Ng(F5) > 2 and N.(F,) < 2, we have
Ns(Fs) = Ne(Fp) =2,

that is, all connected components corresponding to F, contain two sets, which implies M + N is
even.

3 Homogenization of the low frequencies

We now prove Theorem 1.1. To show that
(8, &) — bo ¢~ 3D 4y probability,
(U ¢
we only need to verify the following result.

Proposition 3.1. Ase — 0, we have

E{v:(t,€)} — do(€)e 20O, (3.1)

and

E{[¢= (1, )7} — |¢o(€)[PeRPOL. (3.2)
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Proof. By Lemma 2.1, we have

E{y-(t,6)} =Y E{fuc(t,©)}.
n=0

Lemma 2.2 ensures that we only need to compute
m E{f,(t,)},
e—0

when n = 2k for some k € N. By Lemma 2.3, we have

lim B{ /(1. €)} thJ 0, Fs &, f). (3.3)

It is straightforward to see that

Jé(a, For 5 )
Z%(i / [ (2m) et/ Bwy) =€ -lerem g 0
(i€)% Joar(t) (o) Fs (3.4)

, k
N R(p) dp \ ., (=tD(0)/2)F
—¢0(€)(-1)" (/}Rd (o) + 2 p) (27-[-)d> =%0(&) 7

and thus
lm E{ ()} = Y ImE{fore(t,9)} = Y lim J5(0, F &, f) = do(§)e 2,
k=0 k=0

which is (3.1).

Since
o

E{[(t, O} = Y E{fmet.O)fr(66)},

m,n=0

by a similar discussion as in the proof of (3.1), we have

tim E{ fn < (+.€) f3 (1, €)} thJ (0, For &, f) (3.5)

In addition, Lemma 2.4 shows that

> limJ, (0, F6 & f) =0, (3.6)
e—0 ’

0:Nc(0)>2

so we are left with

>l Jg (0, Fon 6 f).
e—0 ’

0:Nc(0)=1

20



However, N.(o) = 1 implies there is no interaction between f, .(¢,€) and f; _(¢,€), so m = 2k,
and n = 2k9 are both even. The number of possible permutations is

(k1 + ko)!
kilka!

and by the same calculation for (3.4), we have

. c _(k —|—]€)' ~ ko thitke D(O) k1 D*<O) ko
S im0 B f) = PR R g o2t )!( 2) ( )

i Na()=1 kq'ko! (kl + ko 2
12 (=tD(0)/2)" (~tD*(0)/2)*
_’¢0(§)’2 ]{71' ]{72'
(3.7)
Therefore, we have
& . —tD ki (_ D* ko .
g EQ (0P = Y fhooP TP ORI g gperenon, (g

k1,k2=0

which is (3.2). O

4 The high frequencies

In this section, we prove Theorem 1.2.

Convergence of the mean

We first show the convergence of E{W.(¢,&)} for fixed ¢ > 0 and £ # 0.

Lemma 4.1. We have
E{¥.(t,£)} = 0 ase— 0.

Proof. By Lemmas 2.2, 2.3, we only need to show that
lim J7 (0, Fo, & F) =0,
e—0
when n = 2k. It is straightforward to see that
S
)
|vp—vr|

=

1 A y (e} [e%

X(ie)%/ ()ds/kd (2m) e 0lwnl=vrl/e? By i€l el Zr gy

ook (t R
(vl7v7‘)€~7:a'

Jfl(0-7 ‘FavéaF) = giad/zqg()(

Since & # 0, we have )
e200(£/e%) = 0 as e — 0,

thus X
|JE (0, Fyr &, F)| < Ce™420(£ /) = 0 as e — 0,

and the proof is complete. [
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Convergence of the variance

Next, we look at the second moment.

Lemma 4.2. We have .
E{|W.(t, )]’} = W5(t,€) as e — 0.

The proof of Lemma 4.2 is very similar to [4, Proposition 3.12], and since Lemmas 5.1 and 5.2
below follow the same blueprint, we will provide the details here for the convenience of the reader.

Proof. By Lemmas 2.1-2.4, we only need to consider Jg, ..(0, F5,§, F) for fixed m,n € N (in
the present case, we automatically have N.(F,) < 2). We write

A={s1,...,8m}, B={uy,...,u,},

with m+n = 2k for some k € N. According to the pairing F,, {A, B} is decomposed into connected
components. If A, B are “separate”, we have two factors of e ~*%2|¢g|(&/e®) coming from the initial
conditions, so by the same argument as in the proof of Lemma 4.1, we have

(0, F5, & F) = 0ase — 0.

m,n*

Therefore, we only need to consider o such that A <+ B.

For a permutation o of AU B, the simple diagram F, corresponds to

AUB = {vf,v7,...,v 0 1
with
vf >op . >0l >,
and (vi"’, v; ) forming a pair, i = 1,...,k. Since A <+ B, there exists at least one pair such that vf

and v; come from different sets, and we call such pair a crossing edge between A and B. Assuming
the total number of crossing edges is N¢,(0) > 1, the interval [0, t] is decomposed into N, + 1 parts
according to the position of those crossing edges, which we denote by

+ s + —
ryo2nr) 2"'ZTNQTZTNCT7

with rl?t = v]j-E for some j, and with the convention where ry = t and T'XQT 41 = 0. We further
denote by & ;, i = 0,..., N, the set of edges between the vertices r; and 7?:1 that are of the
form (sj,sj+1), and by &,; the set of edges between r;” and 7, that are of the form (uj,u;j41).
The corresponding sets of indices are denoted by

Ai = {.7 : (U;r?vj_) egs,iaj = 17"'7k}7

and

Bi={j: (vj,v;) €&uij=1,...,k},
with ¢ = 0,..., N... For a non-crossing edge (vf,vj_), we denote 7; = 1 if v;-r,vj_ are s—variables
and 7; = —1 if they are u—variables.

22



Recall that

I (0, F5, & F)

1

- dsd o)~ de—8(w)vi—ur|/e® 5 \ R dw;dw,
T o™ fona L 7% ot Blugdudir gy

G (€5 ) fe2 e—iGn(&uW)#1("))/525_ad¢§0(§ P )¢3E§(5 —4-

-~ (Qn
€ o )

9

where vy, v, are the vertices of a given pair, and wj, w, are the corresponding p, g variables, that

is, w; = p; if v = s; and w; = —¢; if v; = ;. For a crossing edge (v;,v,) = (r;,r;"), the relevant p, g
variables equal to each other due to d(p — ¢), and we denote the corresponding w; = P;, with the
convention that Py = 0. We also define 5; = 1 if rj is s—variable and 5; = —1 if Tj is u—variable.

With the above notation, we have

I (0, F5, &, F)

ol
>

1 / dsdu R ) () Hezsms— PP
(i)™ (=€) Jom(t) e j=1 i=1
T i —P—...—P
XH H o€ =Py == = Py [?) Lot d‘qg ,(5 L " N”)Q.
Jj=01cA;UB;

(4.2)
Here, we have integrated out the variables w, in (4.1), and changed the notation w; — w;. To get
rid of the extra factor ¢, we change variables as before. Replacing

PNcr —> f — P1 — ... — PNCT,1 — €aPNCT,

and rewriting the terms in (4.2) associated with Py,, using the new variable, we obtain

1 R(w) —g( .)”;__Uj_
JE *(a,fa,é,F):../ dsdu/ dw Lol
m,n (ie)m(—ig)n oo (t) Rkd j:wjl;}DNCT (2m)
A 71+ T‘i
R({ —P— ... — PNcr—l — EQPNCT)e—g(f—Pl—-~~—PNCT71—EQPNCT)M

. (2m)d

+ —

(,7_1 T, =T, +
. "N, N
X | | Zsj(‘g_"'_Pj—l|2_|€_"'_Pj|2) J252] eZ'gNCT‘(‘g_ PNC’I‘ 1‘2 |EaPNc'r| ) CT2S§ <r

Ner—1 o e I
% H H e’iTl(‘ff...fpj|27‘§7.,.7Pj7wl|2)l2721 H eiTl(‘EaPNcr‘27|5(¥PNcr*wl|2) l252l
=0 \Il€A;UB; l€EAN, UBN,,.
2 2
‘¢ <PN(,1")‘ *
Now, we freeze r| > ry, > ... > TN, integrate out the other time variables and send € — 0 to
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obtain

I (0, F5, &, F)

Nep—1 5
_ T 1 R(Pj)
—(=1)" k/ dv/ dw , z
Ane () JRF ]1;[1 (2m)¢ g(F;) —isi (| — ... = P> = [ — ... = Pj|*)/2
Nep—1 A
cr R(wl)
X
JHO ZGLIJB g(w) —in(|€—... = PP = |§ — ... = By —wi[?)/2
L1 R(f—PO —...—Pn__1) 1 1 R(w)
NCT‘ NCT‘
N” _ Ajl+18B;]
Vi +1)| j J
x |¢o(Pw.,,)|”
H |‘A]| + [B;])!

Here, we have changed the notation r;” — v;, with vg = t,vn,,+1 = 0. Next, we integrate out w,
except for P, ..., Py, so that

J’ran,n* (Ua }.0757 F)

_1\n—k v 1 R(‘PJ)
At AQMJ”’}I @) g(P) i (€~ PP~ €~ BP)2
Ner—1
< [[ DE—... = P)/2HAND* (&~ ... = P;)/2)5(D(0)/2) ¥ |(D* (0) /2) Brer]
j=0
R(E—...— Py, 1) Ner (1 — ) AsIHIB]
ST oy e ey o N”‘II MA+H%W

(4.3)
Therefore, we have

lim E{| V. (t,6)*} = Z > lim J5, e (0, o 6, F)

m,n= OO'NCT>1

with
l'lll ° «\O .) o F
51 0 Jm,n ( ) 757 )

given by the RHS of (4.3). It is clear that n — N, is even, so that (—1)"% = (=1)*=Ner and we

also note that
NC’V‘

k= No = (14l + [B)).
i=0
When those crossing edges and |A;|, |B;| are fixed for j = 0,..., N (so the RHS of (4.3) is fixed),
the total number of possible permutations is

Tf (LB
|A;11B;]!

J=0
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Now, we can sum over all permutations when N, is fixed, denoted by oy, , and integrate in Py,
and obtain

Z lim J5, (0, F5 ,€)
UNLT

o0

- U]H))I 51+1B;
_ .« .. dP
||¢0H2 E : /ANCT /R(Ncr—l)d II ’AJ|'|BJ|'

|A1],|B1]=0 IANCTI IBNerr|=0

c'r_l
x H ReD(Pj,{ —... = Pj1) | ReD({ — ... = PN, -1, — ... — Pn.,—1)
Ner—1
x| TI (D€~ P2 D€~ .. = Py) /2B | (D(0)/2)4%r(D* (0) /2) Bxer.
7=0
(4.4)
After the summation, we get
Ner—1
Z hm n* g, ]:0-7t é_) = ”d)0||2/ d’l)/ dP H 6—(Uj—vj+1)ReD(§—...—Pj)
ON, ANCT (t) R(Ncr—l)d jZO
B 4.5
Ner—1 (4.5)
% e~ VNerReD(0) H ReD(Pj,6 —...—Pj_1) | ReD(( — ... — Pn,,—1,{ — ... — Pn,.—1),
which can also be written as
NCT
Z hm (0, Fo,t,€) —||¢0Hz/ dv/ dP Hef(vjval)ReD(gf...ij)
UNCT ANC’!' (t) RNcrd =0
4.6
Ner (4.6)
[[ReD(Pj,¢ ...~ Piy) | 6(6—PL—...— Pn,,).
Thus, we have
NCT‘
lim B{|W(,§)[*} =|1%oll3 Z / / dpP | ] e vnReDE—P)
NcT‘(t RNerd ]:0
(4.7)
[[ReD(Py € ... — Pi_y) | (6 — Py — ... — Py,,) = Wi(t,€).

The proof of Lemma 4.2 is complete.

Convergence of the higher order moments

In this section, we consider convergence of the general moments

E{W.(t, )M (Wz(t, )},
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for arbitrary M, N € N. By Lemma 2.1, we can write

oo

E{U (6 MW = Y Efgmice - GmacTie - Gy} (4.8)

mi,...,nn=0
with gn o(t,&) = Fo(t,€). As for the variance, we only need to consider

hm J?’Erbl,...,n"j\, (07 f07§7 F)a

e—0

for fixed my,...,ny and o such that N.(F,) < 2. Recall that (2.22) gives

‘Jrizl,... A (U’Fo'véaF)’

N
L —d g —g(wn) oy —or /22 ; s T
S ok dsdu I em 6(wy + wy) R(wy)dwydw, [T |haral [T 1Pavl-
o2k (t) R v EFs i=1 j=1

As before, we denote
Ai={si1,--»8im: ), Bj={uj1,...,ujn;}, withi=1,..., M, j=1,...,N.
The pairing F, decomposes
{4;,Bj:i=1,...,M,j=1,...,N}

into the connected components. If there exists a component of size one, that is, Ng(o) = 1, then,
as in the proof of Lemma 4.1, we have a factor of

e 2| go|(€/e),
coming from the corresponding initial condition, which implies that

J; « (0, F5, &, F) — 0

M,y

as ¢ — 0 since £ # 0.

Thus, we only need to consider the case when
Ng(0) = Ne(o) = 2.

For any 51,52 € {A;,B; :i=1,...,M,j =1,...,N} such that S; < S, the following lemma
shows that S7, S2 can not be both of type-A or type-B.

Lemma 4.3. Fiz 0 and assume N.(o) = 2. If there exists a pair S1,S2 € {4; : i =1,...,M}
or S1,5 € {Bj:j=1,...,N} such that S <+ Sa, then

lim Jo, o« (0, Fo,&, F) = 0.

e—0 Mty
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Proof. Let us assume that S = A;,, S2 = A;, — the proof for the other case is identical. Then
we can write

1 _ e R(wy)
(wy)|vy—vr|/e
|5 mi,.. nN(U Fo &, F)| < Zk/ dsdu/2 y | | e lwoivr d(wy + wy) @) dw;dw,
U2k R vlﬂ/’r efo-

VRNV H
i=1,i711,i2 Jj=1

7.7

Since A;, <> A;, and N.-(0) = 2, after integrating in w,, we have

&E—P E+P
604

hariy, = e 2 g( =

), and hjwﬂ'2 = €7ad/2(;50(

),

for some variable

P = Zpil,j # 0,
J

where the range of j in the summation depends on 0. Now we only need to pick some p;, ; and
change this variable so that (§ — P)e® — P, which leads to

28

Cod/21 )2 p
s haraldpi, g -+ <=2 Go(P)le™ 21 do(2s - d

P)le*tdP = \ng(P)éo(;a — P)ldP. (4.9)

Then we perform the change of variables as in the proof of Lemma 2.2 for

M N
IT  1hacal TT v,
i=1,i41 iz j=1

and in the end obtain

’ mi,.. nfv(avfaang”

M+N > X
R B~ I
0,t

vlvvr 6]:0' 1 (vlvvr)e«FG,Z

< [po(@)do(= — @) ] Ido(wy)ldwdib.

(Ul 7U7‘)€]}a,2

Here, as previously, z; denotes some momentum variables — we will not need their precise form,
while (v;,v,) € F,1 denotes the pairings not affected by the change of variables, and (v;,v,) € Fp2
denotes the affected pairings. Finally, ]}g,g corresponds to the affected pairings when we change
variables for

M N
IT  1hacal TT vl
i=1,ii1,i2 j=1

as in the proof of aforementioned Lemma 2.2. We have also changed the notation P — w. Now,
after the temporal integration we can apply dominated convergence theorem to obtain

Jr, (0,F5,& F) — 0,

17"'7n*N
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due to the factor <Z>0(§—§ —w). O

By the above discussion, the nontrivial contribution of J, 7\](0, Fs &, F) as € — 0 comes

154510
only from the cases when M = N, the permutation ¢ is such that

Ng(o) = Ne(o) =2,

and all connected components contain both type-A and type-B sets. Let ¥(myq,...,n} ) be the set
of such permutations. For o € ¥(my,...,nY), we have A; <+ B;,i = 1,..., M, where {I,.. ,]\:4}
is a permutation of {1,...,M}. We denote the set of o corresponding to a given {1,..., M}
by E{ M}(ml, ...,my). It is straightforward to check that

Zlaez{i ,,,,, M}(mlv' -T )J;‘;ll: ST (O—’]:O"{’ Z Z H ms O_mi,n;;;fa'm "*75 F)
* 1=1
M

where o, ,» denotes the permutation of A; U B; which keeps A; <+ B;. Now, we can write
lim E{W.(, )" ((t,€))™}

= Z Z Zlgez{l """ M}(m17 TN il_l)r(l)t]8 ',n}‘\;(o-"/—..o"g’F)

MYy DN = 0{1 M} o

_ Z >y .oy Hg%,] amm,fmn*,ﬁF)

mi,...,nN= O{L--wM}U'm‘l’"i m]\/[ n}k\;IZ 1

M o)
SII| X X i G Fa, e & F) | = MM,

{i,,M} i=1 mivngZOUm n;

Here, the last equality comes from Lemma 4.2:

o0

i%E{]Wa(t,g)‘Z} — Z lim S (ami,n;,F - n*,f F) = Ws(t,€).
mi:ng:() Umi,n;

To summarize, we have shown that
lim E{ W (£, )M (W2(1, )} = Las=n MW (8, &)

for arbitrary M, N € N. The proof of Theorem 1.2 is complete.

5 The fluctuation analysis

In this section, we prove Theorems 1.3 and 1.4.
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Pointwise fluctuation

We begin with Theorem 1.3. Recall that the corrector can be written as
o
Z/{e(ta g) = 5_ad/2 Z gn,s(ta f)a
n=0

and we have previously shown that

ii_rf(l) eodMAN2p L g e Tt Fh = Z il_% J;17...’n*N(J, o e, F),
0:Ns(Fo)=Ne(Fo)=2
(5.1)
when M 4+ N = 2K for some K € N. Let us define
S(ma,...,n%) = {o: Ny(F,) = Ne(F,) = 2}.
The constraint
Ny(Fy) = No(Fy) =2
forms pairings over vertices
{Cl (= 1,...,M+N}:{Ai,Bj 1= 1,...,M,j:1,...,N}, (52)
or equivalently the set
{mynii=1,...,M,j=1,...,N}. (5.3)
We write . .
S(ma,...,ny) = JSp(ma, ... ni),
p
where ip(ml, ...,n}y) is the set of permutations corresponding to a given pairing p over (5.3).
Then we can write
> W Jo, e (0, Fe e F) =% Y lmJ e (0, Fe e, F),
0'5Ns(]:a):Nc(]:a):2 P O’Eip(ml,...,n}‘v)
For a given p, we assume that pairs have the form (p(1), p(l)) with I =1,..., K, where
{p(),p():1=1,..., K} ={my,n}:i=1,...,M,j=1,...,N} (5.4)
It is straightforward to check that
2 Ty (0 F G F)
aeip(ml,...,n}*\,)
(5.5)

K
= Z e Z 1_[1 JS(l)m([)(U(p(l)v p(1)), ‘Fa(p(l)’p(f))ﬁa& F),

a(pL)p@)  o(p(K)p(K)) 1=
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where o (p(1),p(l)) denotes the permutation of C; U C; such that C; <+ C; if p(1),p(I) corresponds
to C;,C;. Now, we have

I EQL(LOM Q)M = >0 >, Y, ImJL e (0, F %)

mi,...,ny=0 p o’Eip(mly 7N)

= Z o> > Hiﬂ%" o0 (O D) F ooy i €56 F) (5.6)

MmN =0 P o(p(1)p(1))  o(p(K)p(K))

:ZH Z Z il_I)I[I)J; p(l ( (p(l)up(l>) F, a(p(l), p(l )75 € F)
P=L \p)p(D=0 0 (p(1),p(1))
Therefore, it is clear that we only need to compute

Z th ne (0, Fo, %, F) and Z th (0, Fo, 6%, F)

mn=0 o m,n=0 o

to obtain lim._,o B{U(t, )M (U (t,€))V}. The following lemmas combine to conclude the proof of
Theorem 1.3.

The first lemma deals with the “complex-conjugate” moments.

Lemma 5.1. We have

Z thJ (0, F, %, F) = W&S(t,O).

mn=0 o

Proof. Following the proof of Lemma 4.2 with £ replaced by €*¢, we obtain

Z Zign & (0, Fr t,67€) = || o]l Z /NCT /RNCTddP

mn=0 o
Ncr Ncr

x | [[ e tvmueoRePCR==E) | | TTReD(P),—Py — ... — Pj-1) | 6(=P1 — ... — Py,,).
=0 j=1

The RHS equals to W(;,s (t,0), which completes the proof. [J

The second lemma address the “non-conjugated” moments.

Lemma 5.2.

Z th (0, Fo, €%, F) = Wy (t,§).

m,n=0 o
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Proof. We use the same notation in the proof of Lemma 4.2. Recall that
(0 Fo, €%E, F)

7 e )
= dsdu (2m) ~de~swDl=vrl/E 5 () 4 w,) R(wy) dwyduw,
(€)™ J o (t) R2kd (vl,gefg

; a m m ; o n n o — ... N EXE — — ...
X ele(E 5,8( ),p( ))/EQGZGTL(E é,u( ),q( ))/625—ad¢0( g plga pm)¢0( { qlga QH)

We only need to consider o such that the number of crossing edges N.. > 1. For each crossing
edge (r;,r;),i =1,..., Ng, we denote the p—variable by P;. After the integration of the delta
functions, we obtain

1
JE, (0, Fp %, F) = ———— dsd d
manl? For €76, F) (ig)mtn /m(w ’ U/de v

k R vT—v7 Ner rrorT
o T 200) i) 2 T i Puroct Py ety Btk )P
Ll (2m)d :
J=1 J=1
Ner ) 9 5 P ) ) ) ot o (57)
% H ez(|5"‘§f.,.ij| —|e*é—...—Pj—w;|*) 12521 H 61(|5"‘£+...+Pj| —leé+..+Pj—w| )712521
7=0 lEAj lEBj
Ner . «@ 64
<11 o~ iIPi2+2P; (Pt 4 Py1)) Sy 1 do(E §-—Po—...— PNcr)qg & E+P+... + PNCT)
cod 0 e 0 e :
i=1

Compared to (4.2), the key difference is that we get an extra factor with a large phase:

NCT N
H o (PP +2P;(Pott Pioa))ry /2

J=1

ad

To get rid of the factor e~*“, we change the variable

Py, ——-Fy—...—Pn,,_1+ EQPNCT.
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Rewriting the terms in (5.7) associated with Py, using the new variable gives

1
J SO F) = — dsd d
ol P 6 F) = g [ [

T B Tt
H R(w]) e_g(wj) e2 4 R(_PO e PNcrfl + 8aPNCT)e_g(_PO_-~~_PNCT—1+EQPNCT) NCTSQ fer
(2m) (2m)

jZ’UJj#PNCT
Ner—1 r T
% H (15955 (Pot APy 1) P —[e®E—s; (Pot...+P;)[*) 55

JF
i(le®E—s N (Poto-Prey—1) P~ |66 =5, €% Prvgy | )%

“z

v
% I1 €= = PP —|e% €~ = P —wy|?) 5! I]e (| €t Py 2= | E 4 Py —wy|2)

7=0 lEAJ‘ ZGB‘

+
1) /U
% | | oile%E— £ PN, |*—[e*6—e* PN, —wi] )ZT | | Z(\Eo‘f'i‘EO‘PJVCT|2 le*E+e® P, —wi[?) l e

ZGANCT leBN,,
Ner—1 )
—i(|P;|24+2P;(Po+.+Pj 1)) 5 2
x e~ IPITRRy (Rt By ) 2 ¢ (€ = Pn..)¢o(§ + Pr.,.)
j=1

Id

> e_i(‘_PO—~-~—PNCT—1+EQPNcr|2+2(_P0_~-~_PNCT71+5aPNcr)'(PO+-~+PNCT71)) D

(5.8)
If we freeze r,... TN, P1y - PN, integrate out the other variables, and send € — 0, we see
that

liné |5 (0, Fo, e, F) — Hy, (0, Fo 696, F)| =0,
e—> ’ ?

with
1
Hqizn(0-7fd7€a§7F):k/ d’U/ dP
’ (—1) AN(;T'(t) RNcd
LT_l
H D(Pj,~Py—...— Pj_1)/2 | D(=Py — ... — Pn,,_1,—Py — ... — Pn,._1))/2
Ner—1 ) .
T 1418;) (05 = vj2) B A, | +1B (5.9)
X (D(Py + ...+ Pj)/2) Al 5] 0)/2)Aner [+ 1Bre |
]1:[0 ’ (1451 +18;])!
(VN — UNgyy1) ANer [F BN Ko i(|Pj | +2P;-(Po+...+Pj—1)) =% 7 ;
X e < 671 J i i- 72 - P cr + P cr
(A + B, 0T L Pol6 = P Jool& + i)

j=1
w e i1=Po= e PNep 146 Py [P42(=Po— o Pgp 146 Prigy )-(Pot oot Prgy 1)) 25"

Here, we used the property



We will consider separately the cases N, > 2 and N, = 1.

Multiple scattering N.. > 2. When N, > 2, we have at least one oscillatory phase in (5.9),
since

Ner—1 ) ) s
H 677,(|Pj| +2Pj-(P0+...+Pj,1)):£

j=1 (5.10)
77:(‘7P07"'7PN(;7'—1+EQPN(;T'|2+2(7P07‘"7PN(;1'—1+€QPN(;T)'(P0+"'+PN(;T‘—1)) UJEVQCT = 67i|P1‘2%X

X e

with | X| =1 and independent of v;. For the integral in v, we have

Ner

dv B =i PE x)
ANe, (1) H
N (5.11)
<C H dvj|/ (t —vy) \A0|+|Bo\(v1 _ U2)\A1|+|B1\ —i| P[> 2 =2 duy |
ANCT‘_I(t)] =2
for some C. Applying the Riemann-Lebesgue lemma gives
|/ wy) Ao 1Bl () — gyl AL B =PI gy s ) (5.12)
provided that P; # 0. Thus, by the dominated convergence theorem, we obtain
Ner . 93
/ dv H — Vj41) |A-7"+|Bj|e_2‘Pl| <X — 0, (5.13)
ANCT(t) ]:0
when P; # 0, which implies
Hy, (0, F5,e%¢, F) = 0, as € — 0,
if N > 2.
Single scattering N, = 1. When N, = 1, (5.9) simplifies to
D(0,0) [* . - ijev P2y
Hi, o, o €6 F) = « dv [ dPdo(e — P)doe + P)e 1
" (5.14)

y <D(O)>Ao|+|Bol+A1|+IB1I (t — v)Mol+IBol  yl il +B|
2 (Mol +1Bo|)! (Il + [Bi)!

If a € (0,1), we have a large phase factor eflPI*v/=*7**

have

, so for the same reason as for N, > 2, we

HE, (0, Fy %€, F) — 0,

which implies
an’n(a, Fo, €%, F) — 0.
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If @« =1, we have

D(0,0) [* ’ 2 e i o—ilPIP
syt | v [ apinte = Pran(e + )

<l)(0)> [Ao|+|Bol|+|A1|+|B1] (t . U)‘-AO|+|BO| U‘A1|+|Bl|
2 (o] +1Bol)! (|| +[B1])!”

H’ran,n(o-a J—'.U,Sag,F) =

(5.15)

which is e—independent. Following the argument we used in the proof of Lemma 4.2, we have

th (0, Fp e, F) = Y lim H, , (0, Fy, 2, F)
e— ’

oiNer=1 (5.16)
= — D(0,0)e / dv/ dPgo(€ — P)do(€ + P)e 1P,
Rd
Finally, if o > 1, similarly, we have
th (0, Fp %, F) = Nz_l lim HE, (0, Fo, e, F)
7:Ner= (5.17)

= — D(0,0)e PO /R ) dPgo(& — P)do(E + P).

The proof of Lemma 5.2 is complete.

Remark 5.3. The proof shows that only single scattering contributes to the “non-conjugated”
moments when o > 1. This is similar to the result obtained for heat equation [1, Theorem 2],
where the single scattering constitutes the whole random corrector. For Schrédinger equation, the
situation is different, as multiple scatterings show up in “complex-conjugated” moments as in the
proof of Lemma 5.1.

Correlation of the fluctuations

Here, we prove Theorem 1.4. Recall that we look at the behavior of

dn
(2m)d

5 .
Walt, 2, ) = /Rdu (t.6 + —)L{*(t g S hene (5.18)

To prove the convergence of

<W5(t)7 90> = R W&(tv L, 5)30*(337 §)dxd§

in probability, it suffices to show the convergence of

E{{(W:(1), 0)}

and
E{[(W(t), o)}
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Given that

B B
BUWL(0): )} =g [ Bt €+ G000, = 51" (0, €)dndad

(2m)?
and
* * 618"72 618"72
E{(W:(t),9)|*} = )U (t. & — )U (t, & + —— Ut &2 — —7)}
X 6”71 IQO (.%'1,51)6 o2 ( 752) (n )2§7
we first prove the following two results.
Lemma 5.4. Ifa+ 3 =2 and o € (0,2], then as € — 0,
BAUL(t, € + 7)U*(t - 7)}
o0 Nc'r Nc'r
— Z / dv/ dpP H e~ (Wi—vjt1)ReD(=Po—...—F;) H ReD(Pj,—Py— ... — Pj_1)
No—=1" AN (1) RNerd §=0 j=1
T p ) n_ o\ n
<8P == P [T 5™ (tacoa ol + 1acs [ dole + 5~ n)dite — - p)ip).
j=1

Lemma 5.5. If & # &, a+ =2 and a € (0,1), then

efn 8 efn B
;gmua&+—4wa& U (6 2)@@ =00

66772
2

. 65771
= lim E{U(t, & + —)u*(t & — VB (& + © ) Ue(t, & — )}

The assumption o + 5 = 2 in Lemmas 5.4 and 5.5 matches the kinetic scaling. To see this,
recall that

U (t,€) = g—ad/2(¢6(t,§) — E{¢-(t,€)}),
and
Ve (t, &) = e2P(t/e2, e€)elle el t/2,
If we let
U(t,x) = o(t,z) — E{o(t, x)},

then the Wigner transform written in physical domain is

Aﬂ@wwnw%@wwwwew

that is, we need o + 8 = 2 so that the propagation speed is of order one. Note the compensated
phase factor from the compensation

2004+8—2
)

ezg ‘nte
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disappears in the limit when choosing o + 5 = 2.

Proof of Lemma 5.4. We will use the representation

Ua(RQ - 5—ad/2 Zgn,f(tvé)v

n>1

so we only need to consider
E{Eiadgmﬁ (t7 gl)gz:;,s (ta 5—1)}7

with 5 5
e En _e_ &N
gl — §+ 2 ) f—l 9 .

Compared to (4.2), we need to change £ to €& or e¢_; (the factor e comes from the fact that
we are looking at the low frequency regime). Using the notations in the proof of Lemma 4.2, we
obtain

;I_IE(I) E{g_adymﬁ(t?él)y;,a(tag—l)}
m,n>1
k » vl —v.
— lim ﬂ / dsdu dw H R(w;) o 9(w))
0 = (1™ o et o (2m)4
Ner vt
% Heiﬁjﬂ&aﬁsj—---— 1P —le®Es; —...— Pj|?) L5 (5.19)
j=1
NCT U+7’U7 NCT
% H H 6i7’1(|€a§7—l7...7Pj‘2*|Eafq—l*...*ij’wl|2) l252l H eipj-nTj_Ea_'—ﬂ_z
7=0 lE.AjUBj 7j=1
1 - P+...+Pn,, . - P+ ...+ Pn,,
X —ag®o(é — = )bo(§—1 — s ).

Apart from the change & — ¥4, the key difference between (5.19) and (4.2) is the extra phase

factor
NCT

[ e
J=1

due to n # 0. Since o + = 2, this phase factor becomes

Ner Ner

T
Jj=1 Jj=1
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and we only need to follow the proof of Lemma 4.2 to obtain

lim > B{e T (t, &) Fp (1€ 1)}

e—0
m,n>1
(e 9] Ncr Ncr
= dv/ dp e~ (vivi+1)ReD(=Fo—o.=Fy) ReD(P;,—Py—...— P;_)
Ngl /ANcr(t) RNerd ]];% H ! !
Loy 2 U n
x6(=P1—...— Pn,,) H e!fi i <1o¢6(0,2)”¢0H% + la=2 /]Rd Po(€ + 5~ p)oo(€ — 5 —p)dp) -
j=1
(5.20)
The last factor comes from
9
[ dute+ 55 - misie - 1 - vy,

and the assumption of = 2 — . This finishes the proof. [J

Proof of Lemma 5.5. The proof is similar to the case when we show the convergence of

E{U(t, )M (U (t,€))N} for M,N € N.

The only difference is that & is replaced by &; + Eﬁi and & + & 52. First, by following the proof
of (5.6), we have

&b B8 P
lim B 1,61 + S (61— S0, + (1, — )
/3 B B B
= lim E{U (¢, & + )L{*(t g -2 ”1)}E{u*(t &+ S ”2 MRy (1,60 — 6%)}
B ﬁ .
+ lim B2 (1, 1 + )Z/I*(t €+ )}E{M*(t € - ; T (¢, €9 — 2))

6ﬂ771

B B
Tt - B+ TG - T = L bt gy,

+ lim E{U4:(, €1 +

and to complete the proof, we only need to show I» = I3 = 0.

To study the limit of I, we take, for example,
E{ue(t7 51 + 56771/2)1’{;< (t7 52 + 5ﬁ772/2)}'

We may follow the proof of Lemma 5.4 and obtain a phase factor

NCT
H iPj-(é1—Ea+ef (m—n2)/2)r; 2

j=1
as in (5.19). Since & # &9, the assumption that a € (0,2) ensures that we have a large phase for
multiple scattering; for single scattering, after change of variable P — ¢* Py, we get a factor

eiPr(&rinrEﬁ(m*772)/2)7‘]82‘*_2

)
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so we have a large phase if a € (0,1). In the end, we only need to follow the proof of Lemma 5.2
to conclude that Is = 0.

For I3, take, for example,

E{U(t, &1 + e°n1 /20U (t, & — £712/2) }.
As in the proof of Lemma 5.2, the corresponding phase factor becomes

NCT
H o i(IPj1?=Pj-(e*61—e%&a+e TP (m+n2) /2—-2(Pot-..+Pj-1))r; /€2

j=1
as in (5.7). The rest of discussion is the same, that is when « € (0, 1), there is always a large phase,
which implies I3 = 0. O

Now we can discuss the limit of W.. We use F,, F¢ to denote the Fourier transform in z,§
variable respectively. First, by the dominated convergence theorem, we have

lim E{W:(2),¢)} = : /R lim E{U (2, € + 7) (1,6 - 7)}(]:&790)*(777§)d77d£- (5.21)

(27T)d 2d e—0

Using Lemma 5.4, we need to discuss the following two cases.
Case 1: a+ =2, € (0,2). Using (5.20), we integrate 1, in (5.21) to obtain

lim B{(W- (1), ¢ }—H¢0HQZ / - w [P

N,;»p Nc'r
x | [[ e tvmuevRePCR==E) | | TTReD(Pj, —Py — ... — Pj_1)
7=0 =
NCT‘ _
X (5(_P1 - PNcr ]:5()0 Z P; U], = / Wé,s(ta €, 0)()0*(377 g)dl‘df,
R2d
with
NCT‘
Wgs(t z,€) _||¢0|| / / dP e~ (Wji—vjt1)ReD(E=FPo—...—Fj)
2 CZ ANCr(t) RNerd ]1;[0
NC’,» Ncr
x| [[ReD(Pj, ¢ =Py~ ... = Pj1) | 6(6 = Pr— ... = Pn,)0(x — &6+ Y Pyvy).
j=1 J=1

Clearly, we have ) i A
Wso(t, 2, &) = Ws(t, 2, €) — ||dol|36(€)d(x)e RePO?

which consists of the scattering component of the transport equation (1.28) with the initial condition

Wi(0,2,€) = [|dol[36(€)d ().
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Case 2: a = 2,8 = 0. By a similar discussion, we have

e—0

lim B{OV.() )} = [ | Woa(t,2,0)¢" (2, €)dadg (5.22)

with
Wis(t, 2, €) = Ws(t, 2,€) — (2m) %6 (&) | o (w) e RPN,
and W;(t, z,€) solving (1.28) with initial condition W;(0,x, &) = (27)96(€)|¢o(x)|*.
By Lemma 5.5, if we further assume « € (0, 1), we have

lim E{|(W=(t), )"} = | lim E{(W=(t), ¢) }*, (5.23)

which implies (W¢(t), ¢) converges in probability.

A Moments of product of Gaussians

The following result is standard, we present a proof for the sake of convenience. We assume that
{NlJZ: 1,...,m,j:1,...,Mi}

are zero-mean real (complex) Gaussian random variables, and write

m M,
E{ITIT Vit =2 E{Ni; N;;}, (A1)

i=1j=1 F((.9),(09))eF

where ) » extends over all pairings formed over vertices {(i,4) : 4 =1,...,m,j =1,..., M;}. We
set

Ai={(i,5):5=1,..., M}

For a given pairing F and i # ¢, we say that A; is connected to As, and denote this by A; <> A;, if
there exist j, 7 such that ((¢,7), (z,7)) € F. In this way, the set {4; : i =1,...,m} is decomposed
into connected components, and we denote the size of the smallest component by Ng(F).

Lemma A.1. For eachi=1,...,m, let X; = Hj\/[:ll N;j, then we have

m

E{J[(Xi —E{x:}} = > I E{viNg (A.2)

Proof. We write

E{H(Xz' - E{X;})} =E{X; H(Xi -E{X;})} - E{Xl}E{H(Xz‘ —-E{X:}}, (A.3)
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and note that every term in the expansion of

m

X [ - E{x:})

=2

is a product of zero-mean Gaussians (with possible multiplicative constant), so when taking expec-
tation, we follow the rule of computing joint moments of zero-mean Gaussians. For any pairing
such that A; is not connected to any A;, # 1, we have a cancellation from the corresponding term
in

E{Xl}E{H(Xi —E{X;})}.
i=2
Thus, we can write

E{H(Xi —E{X:})} =E{Xy H(Xi - E{X;})}, (A.4)

where E; stands for the expectation with the summation over those F such that A; <+ A; for some
i # 1. Following a similar procedure for Xo — E{X5}, we have

m

E{H(Xi —E{X;})} = E12{X1 X5 H(Xi —E{X;}H}, (A.5)

=1 =3

with Eq 2 stands for the expectation with the summation over those F such that Ay <+ A; for some
1 # 1 and Ay > A; for some ¢ # 2. In the end, we obtain

E{H(Xz‘ -E{X;})} = El,...,m{H Xi}, (A.6)

where we only take the expectation with the summation over those F such that for alli =1,... m,
A; <> Aj with some j # i, and these are exactly the pairings with N,(F) > 2. 0
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