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Abstract
In this paper we consider the motion of a tracer in a flow that is locally self-similar and whose

correlations decay at infinity but at the rate that does not guarantee that the flow does not have
”memory effect”. We show that when the field is Gaussian the appropriately regularized scaling
limit of the trajectory is a super-diffusive fractional Brownian motion. This complements our
previous result contained in [6].

1 Introduction

The motion of a particle propagating in a random velocity field

dX
dt

= V(t,X),

is typically well approximated by a Brownian motion in the long time limit when the random field
V(t,x) has sufficient mixing properties in time. The heuristic reason for this behavior is that
the particle’s speed at different times is weakly correlated and, loosely speaking, the central limit
theorem implies that its position behaves as a Brownian motion. Another regime which leads to the
”renewal” of the Lagrangian velocity of the particle is when the velocity is dominated by a large
constant drift:

dX(t)
dt

= v + δF(X(t)), X(0;x) = 0. (1.1)

Here v 6= 0 is a constant drift and δ � 1 is a small parameter. In that case, even if the random
fluctuation F(x) is time-independent, the particle never returns to the regions it has previously
visited, hence, if F(x) is sufficiently mixing in space, the particle ”always sees new randomness”.
Then the fluctuation of its trajectory around the mean position y(t) = X(t) − vt converges to the
Brownian motion. More precisely, if F(x) is a spatially homogeneous mixing field with the correlation
matrix R(x) = [Rij(x)] then the process

Yδ(t) = X
(

t

δ2

)
− vt

δ2
,

converges as δ → 0 to the Brownian motion with the covariance matrix given by the Kubo-Taylor
formula

Dij =
1
2

∫ ∞

0
(Rij(vt) + Rji(vt)) dt, i, j = 1, . . . , d. (1.2)
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This result was established by Kesten and Papanicolaou in [5] provided that |R(x)| ≤ C/(1 + |x|m)
with a sufficiently large m > 0 and some C > 0. The strong decay of the correlation tensor ensures
the aforementioned renewal of the particle Lagrangian velocity and also guarantees that the integral
in the definition of the diffusivity tensor is finite, see (1.2).

We are interested in the situation when the correlation tensor decays slowly in space so that
the diffusivity becomes infinite and the diffusive limit, at least as established in [5] needs not hold.
To be more precise, suppose that the field F : Rd × Ω → Rd is a random Gaussian field defined
over a probability space (Ω,F , P) that is homogeneous and isotropic. We assume further that the
power–energy spectrum of the field satisfies the power law, that is, its covariance matrix is of the
form

Rij(x) =
∫

Rd

eik·xR̂ij(k)dk, (1.3)

with the power-energy spectrum

R̂ij(k) =
1[0,K](|k|)
|k|2α+d−2

Γij(k̂). (1.4)

Here 0 < K < +∞ is a large frequency cut-off, k̂ := k/|k| and Γij(k̂) = δij − k̂ik̂j . To ensure
integrability of the spectrum we assume α < 1. We have shown in our companion paper [6] that
the behavior of the particle remains diffusive so long as the diffusivity tensor appearing in the Kubo
formula (1.2) is finite, that is, when α < 1/2. In the present paper, we shall consider the case when
α ∈ (1/2, 1). Then (see e.g. (2.1) below) the correlation tensor of F(x) behaves as

Rij(x) ∼ cij |x|2α−2, for |x| � 1 (1.5)

for some constants cij . We would like to understand the behavior of the trajectory of (1.1) for long
times t ∼ δ−2β for an appropriate β > 0. In the diffusive regime the Brownian motion limit is
observed for β = 1 but here the situation is different: it has been rigorously shown in [6] that for

β =
1
2α

(1.6)

and with y(t) = X(t)− vt, we have

lim
δ→0+

E|y(t/δ2β(1+ρ))|2 = +∞ and lim
δ→0+

E|y(t/δ2β(1−ρ))|2 = 0, (1.7)

where the first of the two limits is taken in the Cesaro-sense and E denotes the expectation with
respect to the probability measure P. This identifies the time-scale on which the process y(t) has a
non-trivial behavior but leaves open the question on how exactly y(t) behaves on this time-scale.

Regarding the last question, we have also presented in [6] a formal argument that substanti-
ated the claim that the one dimensional statistics of y(t/δ2β) converge weakly in law to those of
D1/2(v)B(α)(t), where B(α)(t) is a standard d–dimensional fractional Brownian motion with the
Hurst exponent α. It is a Gaussian process with stationary increments and such that

E[B(α)
i (t)B(α)

j (t)] = δijt
2α, ∀ t ≥ 0.

The matrix D(v) = [Dij(v)], where

Dij(v) =
1

2α2

∫
eik·v

|k|2α+d−2
Γij(k̂)dk. (1.8)
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The purpose of the current paper is to present a rigorous argument that supports that claim in
case we regularize the limiting procedure. More specifically, suppose that u0 ∈ S(Rd) is a smooth
rapidly decaying function, |v| = 1, G(t,x) := −F(x + vt) and X(t;x) is a trajectory of (1.1)
starting at X(0;x) = x. Let us set yδ(t,x) = X(t/δ2β;x) − vt/δ2β. One can easily observe that
Eu0(yδ(t;x)) = Euδ(t,x), where uδ(t,x) is a solution of the advection equation

∂tuδ(t,x) + δ1−2βG
(

t

δ2β
,x
)
· ∇xuδ(t,x) = 0, (1.9)

uδ(0,x) = u0(x).

Here, as we have already mentioned, β is given by (1.6). For given µ, κ > 0 consider vδ(t,x), the
mild solution of the regularized equation

∂tvδ(t,x) + δ1−2βG
(

t

δ2β
,x
)
· ∇xvδ(t,x) = κ[−(−∆)µ]vδ(t,x), (1.10)

vδ(0,x) = u0(x).

The precise meaning of the mild solution to (1.10) is defined below in the remark preceding (2.12).
Define also v(t,x) as the respective solution to the initial value problem

∂tv(t,x) = κ[−(−∆)µ]v(t,x), (1.11)
v(0,x) = u0(x).

Our principal result can be stated as follows.

Theorem 1.1 Assume that the Gaussian field F(·) satisfies the hypotheses made above, β is given
by (1.6) and the functions vδ(t,x) and v(t,x) are the solutions of (1.10) and (1.11), respectively.
Then, for an arbitrary µ > 0 satisfying 2α− 1− 1/µ > 0 we have

lim
δ→0+

Evδ(t,x) = Ev(t,x + D1/2(v)B(α)(t)), (1.12)

where B(α)(t) is a standard, d-dimensional fractional Brownian motion with the Hurst exponent α.

The proof of this theorem uses the perturbation series expansion of the solution to (1.10) obtained
with the help of Green’s function of equation (1.11), see Theorem 2.5 below. The expression for
Evδ(t,x) can be rewritten in the form of an infinite series, see (2.16) below. Calculation of the limit
appearing on the right hand side of (1.12) can be reduced therefore to the problem of computing
the limit for each term of the expansion separately, see Section 3. The latter can be achieved using
diagrammatic representations of the terms of the series. Section 4 contains the proof of Lemma 3.4
which plays the crucial role in substantiating the exchange of the limit with the infinite summation.
Section 5 is devoted to the proof of the existence and uniqueness result concerning the solutions of
equation (1.10).

Acknowledgment. This work has been supported by ASC Flash Center at the University of
Chicago, ONR and NSF grant DMS-0604687. T.K. acknowledges the support of the Polish Ministry
of Higher Education, grant N 201 045 31.

2 Preliminaries

2.1 The random field

The Spectral Theorem (see e.g., Theorem 2.1.2, p. 25 of [1]) implies that there exists a complex
d–dimensional vector valued spectral measure F̂(·) = (F̂1(·), · · · , F̂d(·)) such that

F(x) =
∫

eik·xF̂(dk), (2.1)
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where
E[F̂i(dk)F̂j(dk′)] = δ(k + k′)R̂ij(k)dk dk′, i, j = 1, . . . , d. (2.2)

We note here that F̂(·) is Gaussian, if considered as a 2d–dimensional real vector valued spectral
measure. The covariance matrix of the field is given then by (1.3). Let us show that it decays as
announced in (1.5).

Proposition 2.1 For any x ∈ Rd and v ∈ Sd−1 we have

lim
s→+∞

s2(1−α)R (x + vs) = D(v),

where D(v) = [Dij(v)] and Dij(v) is given by (1.8).

Proof. Using (1.3) and (1.4) we can write

R (x + vs) =

K∫
0

Dij(k, ξ̂)dk

k2α−1
,

where ξ̂ := (v + s−1x)/|v + s−1x| and

Dij(k, ξ̂) :=
∫

Sd−1

exp
{

ik̂ · ξ̂(k|x + vs|)
}

Γ(k̂)S(dk̂).

We change variables k′ := k|x + vs|. Then,

Rij (x + vs) = s2(α−1)|s−1x + v|2(α−1)

K|x+vs|∫
0

Dij(k, ξ̂)dk

k2α−1
.

Using the Hecke-Funk theorem (see e.g. [4], p. 181) we can obtain a more explicit formula for the
tensor Dij(k, ξ̂). First, note that for i 6= j the expression kikj is a harmonic polynomial, hence by
the aforementioned theorem

Dij(k, ξ̂) := ωd−1ξ̂iξ̂j

1∫
−1

eiktP2,d(t)(1− t2)(d−3)/2dt,

where Pn,d(t) is the n-th degree Legendre polynomial in dimension d, see Section 6.3 of [4]. Here
ωd−1 is the surface area of Sd−1. When, on the other hand, i = j note that

1− k̂2
i = ui(k̂) + 1− 1

d
,

where ui(k) := d−1|k|2 − k2
i is a harmonic polynomial. Then,

Dii(k, ξ̂) := ωd−1

(
1− 1

d

)
ξ̂2
i

1∫
−1

eiktP2,d(t)(1− t2)(d−3)/2dt +
ωd−1

d

1∫
−1

eikt(1− t2)(d−3)/2dt.

We use here the fact that P0,d(t) = 1. The conclusion of the proposition follows now upon the
passage to the limit s → +∞. �

We recall the following proposition from [7] (Theorem 3.2 in this reference).
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Proposition 2.2 Suppose that a Gaussian field F(x) satisfies the above assumptions. Then for any
γ > 1 there exists a positive random variable F such that

|F(x;ω)| ≤ F (ω)(1 + log+ |x|)γ/2, ∀x ∈ Rd.

In addition, there exists a constant C > 0 such that

P[F ≥ λ] ≤ Ce−λ2/C , ∀λ > 0. (2.3)

Proof. Define G(x;ω) := (1 + log+ |x|)−γ/2F(x;ω). Recall that for a given number ε > 0 the
entropy number N(ε) of the field G(x) is the smallest number of balls in the pseudo-metric

d(x;y) :=
√

E|G(x)−G(y)|2, x, y ∈ Rd

needed to cover Rd. An elementary calculation shows that there exist constants C1, C2 > 0 such
that

N(ε) ≤ C1 exp{C2ε
−2/γ} ∀ ε ∈ (0, 1]. (2.4)

This can be seen as follows. Choose R := exp{ε−2/γ} and let BR := [|x| ≤ R]. The set Bc
R := [|x| ≥

R] can be covered by a single d-ball of radius ε > 0. Since the function (x,y) 7→ d(x,y) is Hölder
continuous with the exponent 1/2 on BR × BR one can cover BR by C(R/ε2)d d-balls with radius
ε, where C > 0 is a certain constant, and (2.4) follows. The conclusion of the proposition is a direct
consequence of Theorem 5.4 p. 121 of [1]. �

2.2 The Green’s function for the fractional heat equation

Let us set
q̂0(t,k) := exp

{
−κ|k|2µt

}
. (2.5)

Then the Green’s function for the fractional heat equation (1.11) is

qκ,d(t,x) :=
∫
Rd

eik·xq̂κ(t,k)dk = t−d/(2µ)q0

(
|x|

t1/(2µ)

)
, (2.6)

where
q0(x) :=

∫
Rd

eixk·ee−κ|k|2µ
dk, x ∈ R,

and e is an arbitrary unit vector: |e| = 1 (rotational invariance implies that q0(x) does not depend
on the choice of e). We shall drop the indices κ, d when they are obvious from the context.

We will need the following properties of the kernel qκ,d(t,x) in the proof of the main theorem.
They shall be proved in Section 5.

Proposition 2.3 (i) There exists a constant C > 0 such that

|q0(x)| ≤ C

(1 + x2)d/2+µ
, ∀x ∈ R. (2.7)

(ii) We have
∇xqκ,d(t,x) = −2πx qκ,d+2(t,x′), ∀ t > 0, x ∈ Rd, (2.8)

where x′ = (x, 0, 0) ∈ Rd+2.
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The estimate (2.7) is not sharp when µ is a positive integer. Indeed, in that case qκ(x) is a Schwartz
class function. As a direct consequence of (2.7) and (2.6) we conclude the following.

Corollary 2.4 There exists a constant C > 0 such that

|qκ,d(t,x)| ≤ C

td/(2µ)

(
1 +

|x|2

t1/µ

)−d/2−µ

(2.9)

and
|∇xqκ,d(t,x)| ≤ C|x|

t1/µ
|qκ(t,x)| (2.10)

for all t > 0, x ∈ Rd.

2.3 An infinite expansion for random mild solutions

Suppose that the initial data u0 ∈ S(Rd). One can the rewrite equation (1.10) in the mild form as
follows

vδ(t,x) =
∫
Rd

u0(y)qκ(t,x− y)dy − δ1−2β

t∫
0

∫
Rd

qκ(t− s1,x− y1)G
( s1

δ2β
,y1

)
· (∇vδ)(s1,y1)ds1dy1.

(2.11)
In fact, thanks to the incompressibility of the field F(x), we can reformulate (1.10) further. Namely,
we can define a mild solution to that equation, with the initial condition u0 ∈ S(Rd) as a function
vδ(t,x) that is continuous on [0,+∞)× Rd, bounded on any [0, T ]× Rd for T > 0 and such that

vδ(t,x) =
∫
Rd

u0(y)qκ(t,x− y)dy − δ1−2β

t∫
0

∫
Rd

(∇qκ)(t− s1,x− y1) ·G
( s1

δ2β
,y1

)
vδ(s1,y1)ds1dy1

(2.12)
for all t ≥ 0. The results of [7], see Theorem 3.2. p. 169, imply that |F(x)| can grow as log1/2 |x|
for |x| � 1. Hence, in order to establish the existence and uniqueness result for mild solutions to
(1.10) we have to deal with the issue of unbounded coefficients.

Let us set
q
(δ)
0 (t,x, s,y) := qκ(t− s,x− y)

and for any n ≥ 1

q(δ)
n (t,x, s,y) := (−1)nδ(1−2β)n

∫
. . .

∫
∆n(t,s)

∫
. . .

∫
(Rd)n

Qδ(t,x, s1,y1) . . . Qδ(sn−1,yn−1, sn,yn)

× qκ(sn − sn+1,yn − yn+1)ds(n)dy(n),

where ds(n) := ds1 . . . dsn, dy(n) := dy1 . . . dyn, with the convention that yn+1 := y, sn+1 := s. The
integration above is carried out over the simplex

∆n(t, s) := [(s1, . . . , sn) ∈ Rn : s ≤ sn ≤ . . . ≤ s1 ≤ t],

and the integral kernel is

Qδ(t,x, s,y) := (∇qκ)(t− s,x− y) ·G
( s

δ2β
,y
)

. (2.13)

We have then the following result.
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Theorem 2.5 For any fixed δ > 0 the series
∑

n≥0 q
(δ)
n (t,x, s,y) is uniformly convergent on compact

subsets of [(t,x, s,y) : t > s,x 6= y] to a certain limit r(δ)(t,x, s,y) for P-a.s. ω. This function is a
fundamental solution of (1.10) in the following sense:
(i) for any u0 ∈ Cb(Rd) the function

vδ(t,x) :=
∫
Rd

r(δ)(t,x, 0,y)u0(y)dy (2.14)

is a mild solution to (1.10) in the sense of (2.12),
(ii) for any x ∈ Rd we have

lim
t→0+

vδ(t,x) = u0(x).

(iii) In addition, vδ(t,x) is a unique mild solution of (1.10).
Moreover, for any R > 0 and x ∈ Rd we have

+∞∑
n=0

E

[
sup
|y|≤R

|q(δ)
n (t,x, 0,y)|

]
< +∞. (2.15)

Remark 2.6 Observe that as an immediate consequence of the above proposition and the fact that
the expectation of a product of an odd number of jointly Gaussian random variables vanishes we
obtain that

Evδ(t,x) =
+∞∑
n=0

E
∫

q
(δ)
2n (t,x, 0,y)u0(y)dy (2.16)

for any u0 ∈ C∞
c (Rd).

We postpone the proof of the above theorem till Section 5.

3 Proof of Theorem 1.1

3.1 Outline of the proof

The proof of Theorem 1.1 is based on passing to the limit δ ↓ 0 in expression (2.16) for Evδ(t,x).
For that we need the following proposition. We abbreviate q

(δ)
2n (t,x,y) := q

(δ)
2n (t,x, 0,y)

Proposition 3.1 For an arbitrary %, µ, t > 0 there exists a constant C > 0 such that

|Eq
(δ)
2n (t,x,y)| ≤ Cn‖u0‖∞

(n!)2α−1−1/(2µ)−%
, ∀n ≥ 1, δ > 0, x, y ∈ Rd. (3.1)

This proposition allows us to interchange the infinite summation over n and the limit δ ↓ 0, provided
that 2α− 1− 1/(2µ) > 0, to claim that

ū(t,x) := lim
δ↓0

Evδ(t,x) =
+∞∑
n=0

lim
δ↓0

E
∫

q
(δ)
2n (t,x,y)u0(y)dy. (3.2)

The next step is to identify the limit ū(t,x) defined above as the right side of (1.12).
The limits of the individual terms in (3.2) are identified as follows.
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Proposition 3.2 We have, for each n:

lim
δ↓0

E
∫

q
(δ)
2n (t,x,y)u0(y)dy =

1
(2n)!

E
[∫

qκ(t,x− y)
(
D1/2(v)B(α)(t) · ∇y

)2n
u0(y)dy

]
. (3.3)

Here B(α)(t) is a d-dimensional, standard fractional Brownian motion with Hurst exponent α, defined
in the statement of Theorem 1.1.

With the help of Propositions 3.1 and 3.2 the proof of Theorem 1.1 is short.
Proof of Theorem 1.1. We obtain from (3.2) and (3.3), that

lim
δ↓0

Evδ(t,x) =
+∞∑
n=0

Ī2n(t,x), (3.4)

where Ī2n(t,x), n ≥ 0 are given by the right side of (3.3). To sum the series appearing on the right
side of (3.4) we rewrite the expression for Ī2n(t,x) using the Fourier transform of u0. As a result we
get

Ī2n(t,x) =
(−1)n

(2π)d(2n)!
E
[∫

eix·kq̂κ(t,k)
(
D1/2(v)B(α)(t),k

)2n
û0(k)dk

]
, (3.5)

where q̂κ(t,k) is given by (2.5). Calculating out the expectation of the Gaussian, using the formula
EX2n = (2n− 1)!!(EX2)n valid for any centered Gaussian random variable X, we obtain

Ī2n(t,x) =
(−1)nt2nα

(2π)d2nn!

∫
eix·kq̂κ(t,k) (D(v)k,k)n û0(k)dk, (3.6)

We substitute this expression for Ī2n into (3.4):

lim
δ↓0

Evδ(t,x) =
1

(2π)d

∫
eik·xq̂κ(t,k) exp

{
−1

2
(D(v)k,k)t2α

}
û0(k)dk

= E
[

1
(2π)d

∫
q̂κ(t,k) exp

{
ik ·

(
x + D1/2(v)B(α)(t)

)}
û0(k)dk

]
= E

[
v(t,x + D1/2(v)B(α)(t))

]
,

where v(t,x) is the mild solution to (1.11) and the conclusion of Theorem 1.1 follows. �
The rest of the paper is devoted to the demonstrations of Propositions 3.1 and 3.2.

3.2 Proof of Proposition 3.2

Step 1. Passing to the limit δ ↓ 0. We will first compute the expectation of q
(δ)
2n (t,x,y) in terms

of the correlation function R(x) as a sum over the Feynman diagrams. We will then pass to the
limit δ ↓ 0 with the help of the uniform integrability, see Lemma 3.3 below and Proposition 2.1.
This leads to expressions (3.11)-(3.12) below for the limit of Eq

(δ)
2n (t,x,y).

Let ∆n(t) := ∆n(t, 0). With this notation we have

Eq
(δ)
2n (t,x,y) =

d∑
i1,...,i2n=1

δ2(1−2β)n

∫
. . .

∫
∆2n(t)

∫
. . .

∫
(Rd)2n

2n∏
r=1

∂irqκ(sr−1 − sr,yr−1 − yr) (3.7)

× E

 2n∏
p=1

Gip

( sp

δ2β
,yp

) qκ(s2n,y2n − y2n+1)ds(2n)dy(2n).
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Here, by convention, y0 := x, s0 := t and y(2n+1) = y. To compute the expectation of the product
of Gaussians we shall use the Feynman diagrams. Suppose that we are given the set of vertices
Z2n := {1, . . . , 2n}. A graph F consisting of edges made of all the vertices belonging to Z2n and
such that no two edges have a common vertex is called a Feynman diagram. If p, q, with p < q,
are the vertices of a given edge we write (p, q) ∈ F . We denote by F(n) the family of all Feynman
diagrams made of the vertices of Z2n.

Using the above notation we can write that

Eq
(δ)
2n (t,x,y) =

d∑
i1,...,i2n=1

δ2(1−2β)n

∫
. . .

∫
∆2n(t)

∫
. . .

∫
(Rd)2n

2n∏
r=1

∂irqκ(sr−1 − sr,yr−1 − yr) (3.8)

×E

 2n∏
p=1

Gip

( sp

δ2β
,yp

) qκ(s2n,y2n − y2n+1)ds(2n)dy(2n)

= δ4(α−1)βn
d∑

i1,...,i2n=1

∑
F∈F(n)

∫
. . .

∫
∆2n(t)

∫
. . .

∫
(Rd)2n

2n∏
r=1

∂irqκ(sr−1 − sr,yr−1 − yr)

×
∏

(p,q)∈F

Rip,iq

(
v

sq − sp

δ2β
+ yq − yp

)
qκ(s2n,y2n − y2n+1)ds(2n)dy(2n).

In the last equality we have used the fact that 4(1− α)β = 2(2β − 1). Proposition 2.1 implies that
pointwise we have

lim
δ↓0

δ4(α−1)βRip,iq

(
v

sq − sp

δ2β
+ yq − yp

)
= |sq − sp|−2(1−α)Dipiq(v). (3.9)

In order to use this pointwise convergence result inside the integral in (3.8) we need the following
uniform integrability estimate.

Lemma 3.3 For any n fixed and a given Feynman diagram F ∈ F(n) there exits ν > 0 such that

lim sup
δ→0+

δ4(α−1)βn


∫

. . .

∫
∆2n(t)

∫
. . .

∫
(Rd)2n

∣∣∣∣∣
2n∏

r=1

∂irqκ(sr−1 − sr,yr−1 − yr)qκ(s2n,y2n − y2n+1)

∣∣∣∣∣
×

∣∣∣∣∣∣
∏

(p,q)∈F

Rip,iq

(
v

sq − sp

δ2β
+ yq − yp

)∣∣∣∣∣∣
1+ν

ds(2n)dy(2n)


1/(1+ν)

< +∞. (3.10)

We shall postpone for a moment the proof of the lemma and use it first in order to calculate the
limit lim

δ↓0
E
∫

q
(δ)
2n (t,x,y)u0(y)dy. Applying Lemma 3.3 and Proposition 2.1, as in (3.9), we obtain

lim
δ↓0

E
∫

q
(δ)
2n (t,x,y)u0(y)dy =

∫
q̄2n(t,x,y)u0(y)dy, (3.11)

where

q̄2n(t,x,y) =
d∑

i1,...,i2n=1

∑
F∈F(n)

∫
. . .

∫
∆2n(t)

∫
. . .

∫
(Rd)2n

2n∏
r=1

∂irqκ(sr−1 − sr,yr−1 − yr) (3.12)

× qκ(s2n,y2n − y2n+1)
∏

(p,q)∈F

Dip,iq(v)(sq − sp)−2(1−α)ds(2n)dy(2n).
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Step 2. Identification of the limit in terms of a fractional Brownian motion. We will
now transform the expression for q̄2n(t,x,y), leading to (3.19) below and thus finish the proof of
Proposition 3.2. After performing 2n-times integration by parts we obtain∫

Rd

q̄2n(t,x,y)u0(y)dy =
d∑

i1,...,i2n=1

∫
. . .

∫
∆2n(t)

∫
. . .

∫
(Rd)2n+1

2n+1∏
r=1

qκ(sr−1 − sr,yr−1 − yr)

×
∏

(p,q)∈F

[Dip,iq(v)(sq − sp)−2(1−α)]∂2n
i1,...,i2n

u0(y2n+1)ds(2n)dy(2n+1)

=
d∑

i1,...,i2n=1

∫
. . .

∫
∆2n(t)

∫
qκ(t,x− y)

∏
(p,q)∈F

[Dip,iq(v)(sq − sp)−2(1−α)]∂2n
i1,...,i2n

u0(y)ds(2n)dy.

The last equality follows from the semi-group property of the kernels:∫
qκ(t,x− z)qκ(s, z− y)dz = qκ(t + s,x− y), ∀x, y ∈ Rd, t, s ≥ 0.

Note that the function

f(s1, . . . , s2n) :=
d∑

i1,...,i2n=1

∏
(p,q)∈F

[Dip,iq(v)|sq − sp|−2(1−α)]∂2n
i1,...,i2n

u0(y2n+1)

is symmetric in all its arguments, that is, f(s1, . . . , s2n) = f(sπ(1), . . . , sπ(2n)) where π is an arbitrary
permutation of {1, . . . , 2n}. Using this fact we can replace integration over the simplex by integration
over a 2n-dimensional cube [0, t]2n and rewrite the above integral as

∫
Rd

q̄2n(t,x,y)u0(y)dy =
1

(2n)!

d∑
i1,...,i2n=1

t∫
0

. . .

t∫
0

∫
qκ(t,x− y)

×
∏

(p,q)∈F

[Dip,iq(v)|sq − sp|−2(1−α)]∂2n
i1,...,i2n

u0(y)ds(2n)dy. (3.13)

We will now re-write the integral appearing above to bring about the expectation with respect
to an appropriate fractional Brownian motion. Let w(dk) be an Rd-valued Gaussian noise with the
covariance matrix

E[wi(dk)wj(dk′)] = δijδ(k + k′)dkdk′.

We have then

lim
R→+∞

E
[∫ R

−R

eik1s

|k1|α−1/2
wi(dk1)

∫ R

−R

eik2r

|k2|α−1/2
wj(dk2)

]
(3.14)

= δij

∫ ∞

−∞

eik1(s−r)

|k1|2α−1
dk1 = c2

αδij |s− r|−2(1−α),

where cα > 0 is defined by

c2
α :=

∫ ∞

−∞

eikdk

|k|2α−1
= 2

∫ +∞

0

cos kdk

k2α−1
=

π

Γ(2α− 1) sin(πα)
. (3.15)
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The last equality follows, for instance, from formula 3), in paragraph [539] of [3]. We can now replace
|sq − sp|−2(1−α) in (3.13) using the above expression and Gaussianity of w(dk), and obtain,

∫
Rd

q̄2n(t,x,y)u0(y)dy =
c−2n
α

(2n)!

d∑
i1,...,i2n=1

t∫
0

. . .

t∫
0

∫
Rd

qκ(t,x− y) (3.16)

× lim
R→+∞

E


2n∏

p=1

[∫ R

−R

eikpsp
[
D1/2(v)w(dkp)

]
ip

|kp|α−1/2

] ∂2n
i1,...,i2n

u0(y)ds(2n)dy

=
c−2n
α

(2n)!

d∑
i1,...,i2n=1

lim
R→+∞

t∫
0

. . .

t∫
0

∫
Rd

qκ(t,x− y)

× E


2n∏

p=1

[∫ R

−R

eikpsp
[
D1/2(v)w(dkp)

]
ip

|kp|α−1/2

] ∂2n
i1,...,i2n

u0(y)ds(2n)dy.

The possibility of interchanging the limit with integration, used in the last equality, can be substan-
tiated as follows. With the help of Feynman diagrams the problem of estimating the integrand can
be reduced to the problem of estimating∣∣∣∣∣∣

∏
(p,q)∈F

E

[∫ R

−R

eikpsp
[
D1/2(v)w(dkp)

]
ip

|kp|α−1/2

∫ R

−R

eikqsq
[
D1/2(v)w(dkq)

]
iq

|kq|α−1/2

]∣∣∣∣∣∣
for all diagrams F . The above expression equals however∣∣∣∣∣∣

∏
(p,q)∈F

Dipiq(v)
∫ R

−R

eikp(sp−sq)dkp

|kp|2α−1

∣∣∣∣∣∣ ≤ C
∏

(p,q)∈F

1
|sp − sq|2(1−α)

, (3.17)

where C > 0 can be chosen independently of R > 0. The right hand side of (3.17) is weakly singular
because α > 1/2 and the last equality in (3.16) follows from the dominated convergence theorem.

Note that

lim
R→+∞

∫ t

0

(∫ R

−R

eikpspD1/2(v)w(dkp)
|kp|α−1/2

)
dsp = c2

αD1/2(v)B(α)(t), (3.18)

where

B(α)(t) := c−2
α

+∞∫
−∞

eikpt − 1
ikp|kp|α−1/2

w(dkp)

is a d-dimensional, standard fractional Brownian motion with the Hurst exponent α. The limit
appearing on the left hand side of (3.18) is understood in the L2(P) sense. We obtain therefore∫

Rd

q̄2n(t,x,y)u0(y)dy =
1

(2n)!
E
[∫

qκ(t,x− y)
(
D1/2(v)B(α)(t) · ∇y

)2n
u0(y)dy

]
, (3.19)

which is nothing but (3.3) and the proof of Proposition 3.2 is complete, except for the proof of
Lemma 3.3, which we postpone until Section 3.4. �
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3.3 Proof of Proposition 3.1

An auxiliary lemma. Let q+(x) := |xq(x)|, x ∈ R. The following lemma is crucial in both the
forthcoming proof of Lemma 3.3, and the proof of Proposition 3.1 presented in this section.

Lemma 3.4 Suppose that t > 0, α ∈ (1/2, 1), µ > 1 and % ∈ (0, 2α − 1− 1/(2µ)) are fixed. Then,
one can find ν > 0 so that

2α− 1− 1
2µ

− 2ν(1− α) > 0 (3.20)

and for any ν ′ ∈ [0, ν] there exists C > 0 such that for all n, k ≥ 0, δ ∈ (0, 1) we have

sup
y

∫
Rd

q+(|z|)dz


τ∫

0

s−1/(2µ)(τ − s)nε+kε1
[
δ2(2β−1) + |vs− δ2βs1/(2µ)z + y|2(1−α)

]−(1+ν′)
ds


≤ Cτ (n+1)ε+kε1

(k + n + 1)ε−%
, ∀ τ ∈ [0, t]. (3.21)

Here ε := 2α− 1− 1/(2µ)− 2ν ′(1− α)and ε1 := 1− 1/(2µ) > 0.

We present the proof of the lemma in Section 4. Let us apply first the result in order to show
Proposition 3.1. In this case we take ν ′ = 0.

Reduction to one Feynman diagram. We now rewrite the expression for E
∫

q
(δ)
2n (t,x,y)

reducing the problem to a bound for one Feynman diagram. Using Proposition 2.3, Corollary 2.4
and the rules of computing the product of 2n Gaussian variables we can estimate the left hand side
of (3.7) as follows∣∣∣∣E∫ q

(δ)
2n (t,x,y)u0(y)dy

∣∣∣∣ ≤ δ(2−4β)n
d∑

i1,...,i2n=1

∑
F∈F(n)

∫
∆2n(t)

∫
(Rd)2n+1

|u0(y2n+1)|
2n∏

r=1

(sr−1 − sr)
− 1

2µ

×

∣∣∣∣∣∣
∏

(p,q)∈F

Rip,iq

(
v

(sq − sp)
δ2β

+ yq − yp

)∣∣∣∣∣∣
2n+1∏
l=1

(sl−1 − sl)
− d

2µ q+

(
|yl−1 − yl|

(sl−1 − sl)
1
2µ

)
ds(2n)dy(2n+1).

Recall that
|R(x)| ≤ C

1 + |x|2(1−α)
(3.22)

for some C > 0 and all x ∈ Rd. Using the above and the relation 4(1 − α)β = 2(2β − 1) we can
further write that∣∣∣∣E∫ q

(δ)
2n (t,x,y)u0(y)dy

∣∣∣∣ ≤ Cn
d∑

i1,...,i2n=1

∑
F∈F(n)

∫
∆2n(t)

∫
(Rd)2n+1

2n∏
l=1

(sl−1 − sl)−1/(2µ)

×
∏

(p,q)∈F

[
δ2(2β−1) + |(sq − sp)v + δ2β(yq − yp)|2(1−α)

]−1

×
2n+1∏
r=1

(sr−1 − sr)
− d

2µ q+

(
|yr−1 − yr|

(sr−1 − sr)1/(2µ)

)
|u0(y2n+1)|ds(2n)dy(2n+1).
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Changing variables zp := (sp−1−sp)−1/(2µ)(yp−1−yp), p = 1, . . . , 2n+1, with the convention s0 = t,
s2n+1 = 0, we obtain

|E
∫

q
(δ)
2n (t,x,y)u0(y)dy| ≤ Cn‖u0‖∞

∫
q+(|z2n+1|)dz2n+1

∑
F∈F(n)

J(F), (3.23)

where

J(F) :=
∫

. . .

∫
∆2n(t)

∫
. . .

∫
(Rd)2n+1

2n∏
l=1

[
q+ (|zl|) (sl−1 − sl)−1/(2µ)

]

×
∏

(p,q)∈F

δ2(2β−1) +

∣∣∣∣∣∣(sq − sp)v − δ2β
q∑

r=p+1

zr(sr−1 − sr)1/(2µ)

∣∣∣∣∣∣
2(1−α)


−1

ds(2n)dz(2n+1).

An estimate for J(F). The key step in the proof of Proposition 3.1 is the following estimate
for J(F) for a given Feynman diagram F .

Lemma 3.5 For any % > 0 there exists a constant C independent of F and n such that

J(F) ≤ Cntn(2α−1/µ)

[(2n)!]ε1
[(2n− 1)!!]2(1−α)+% (3.24)

End of proof of Proposition 3.1. Now, Proposition 3.1 is a simple consequence of Lemma 3.5.
Combining (3.23) with (3.24) we obtain that the left hand side of (3.23) can be estimated by

Cntn(ε+1)

[(2n)!]ε1
(2n− 1)!! [(2n− 1)!!]2(1−α)+% ‖u0‖∞ ≤ Cntn(ε+1)

(n!)2α−1−1/µ−%
‖u0‖∞.

The last estimate follows from the fact that (2n)! ∼ (n!)2, (2n− 1)!! ∼ n! for n � 1. �
Proof of Lemma 3.5. Step 1: removal of one edge. Let us fix a Feynman diagram F and

suppose that e := (pn, 2n) ∈ F . We can estimate

J(F) ≤
∫

. . .

∫
∆2n−1(t)

∫
. . .

∫
(Rd)2n−1

2n−1∏
l=1

[
q+ (|zl|) (sl−1 − sl)−1/(2µ)

]
Q(s2n−1) (3.25)

×
∏

(p,q)∈F\e

δ2(2β−1) +

∣∣∣∣∣∣(sq − sp)v − δ2β
q∑

r=p+1

zr(sr−1 − sr)1/(2µ)

∣∣∣∣∣∣
2(1−α)


−1

ds(2n−1)dz(2n−1),

where

Q(s2n−1) := sup
y

s2n−1∫
0

∫
q+(|z|)s−1/(2µ)

[
δ2β−1 + |vs− δ2βzs1/(2µ) + y|2(1−α)

]−1
dsdz ≤ Csε

2n−1,

by virtue of Lemma 3.4.
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There are now two possibilities: either pn = 2n − 1, or not. In the first case, integrating out∫
q+ (|z2n−1|) dz2n−1, we obtain the estimate

J(F) ≤ C2

∫
. . .

∫
∆2n−2(t)

∫
. . .

∫
(Rd)2(n−1)

2n−2∏
p=1

[
q+ (|zp|) (sp−1 − sp)−1/(2µ)

]

×
∏

(p,q)∈F\e

δ2(2β−1) +

∣∣∣∣∣∣(sq − sp)v − δ2β
q∑

r=p+1

zr(sr−1 − sr)−1/(2µ)

∣∣∣∣∣∣
2(1−α)


−1

×
[∫ s2n−2

0
sε(s2n−2 − s)−1/(2µ)ds

]
ds(2n−2)dz(2n−2).

Evaluating the last integral we obtain

J(F) ≤ C2B (ε + 1, ε1)
∫

. . .

∫
∆2n−2(t)

∫
. . .

∫
(Rd)2(n−1)

2n−2∏
l=1

[
q+ (|zl|) (sl−1 − sl)−1/(2µ)

]
(3.26)

×
∏

(p,q)∈F\e

δ2(2β−1) +

∣∣∣∣∣∣(sq − sp)v − δ2β
q∑

r=p+1

zr(sr−1 − sr)−1/(2µ)

∣∣∣∣∣∣
2(1−α)


−1

sε+ε1
2n−2ds(2n−2)dz(2n−2).

Here B(·, ·) denotes Euler’s beta function. When, on the other hand pn 6= 2n− 1 then 2n− 1 must
be a right vertex of a certain edge e′ := (pn−1, 2n− 1). We can repeat now the same estimate that
lead to (3.25) and obtain that

J(F) ≤ C

∫
. . .

∫
∆2n−1(t)

∫
. . .

∫
(Rd)2n−1

2n−1∏
l=1

[
q+ (|zl|) (sl−1 − sl)−1/(2µ)

]
sε
2n−1 (3.27)

×
∏

(p,q)∈F\e

δ2(2β−1) +

∣∣∣∣∣∣(sq − sp)v − δ2β
q∑

r=p+1

zr(sr−1 − sr)1/(2µ)

∣∣∣∣∣∣
2(1−α)


−1

ds(2n−1)dz(2n−1).

Step 2. Removing finitely many edges. We formulate the following result that generalizes
(3.26) and (3.27).

Proposition 3.6 Suppose that F is a Feynman diagram with the right vertices 2n+1−k1, . . . , 2n+
1− kn, where 1 = k1 < . . . < kn. Then for any % > 0 and r = 1, . . . , n there exists a constant C > 0
independent of n and F such that

J(F) ≤ Ckr+1−1

[(kr+1 − 1)!]ε1

(
r∏

l=1

kl

)2(1−α)+%

(3.28)

×
∫

. . .

∫
∆2n+1−kr+1

(t)

∫
. . .

∫
(Rd)2n+1−kr+1

2n+1−kr+1∏
p=1

[
q+ (|zp|) (sp−1 − sp)−1/(2µ)

]
s
rε+(kr+1−r−1)ε1
2n+1−kr+1

×
∏

(p,q)∈Fr

δ2(2β−1)+

∣∣∣∣∣∣(sq − sp)v − δ2β
q∑

r=p+1

zr(sr−1 − sr)−1/(2µ)

∣∣∣∣∣∣
2(1−α)


−1

ds(2n+1−kr+1)dz(2n+1−kr+1).
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Here, by convention we denote kn+1 := 2n + 1, s0 := t and Fr is the set of edges that remains after
subtracting from F all the edges that have right vertices 2n + 1− ki, i = 1, . . . , r.

Proof. We establish the proposition by induction on r. The proof for r = 1 has already been
carried out above in (3.26) and (3.27). Suppose that estimate (3.28) holds for a certain r and let
e := (pr, 2n + 1 − kr+1) ∈ Fr. We can bound the expression appearing on the right hand side of
(3.28) by

Ckr+1−1

[(kr+1 − 1)!]ε1

(
r∏

l=1

kl

)2(1−α)+% ∫
. . .

∫
∆2n−kr+1

(t)

∫
. . .

∫
(Rd)2n−kr+1

2n−kr+1∏
j=1

[
q+ (|zj |) (sj−1 − sj)−1/(2µ)

]

×
∏

(p,q)∈Fr\{e}

δ2(2β−1) +

∣∣∣∣∣∣(sq − sp)v − δ2β
q∑

r=p+1

zr(sr−1 − sr)−1/(2µ)

∣∣∣∣∣∣
2(1−α)


−1

(3.29)

×Q̃(s2n−kr+1)ds(2n+1−kr+1)dz(2n+2−kr+1),

where

Q̃(s2n−kr+1) := sup
y

∫
q+(|z|)dz


s2n−kr+1∫

0

s−1/(2µ)(s2n−kr+1 − s)rε+(kr+1−r−1)ε1

×
[
δ2(2β−1) + |vs− δ2βzs1/(2µ) + y|2(1−α)

]−1
ds

}
Lemma 3.4

≤ C

kε−%
r+1

s
(r+1)ε+(kr+1−r−1)ε1
2n−kr+1

.

The numbers from 2n− kr+1 to 2n + 2− kr+2 are left vertices that are not represented in the graph
Fr+1 = Fr \ {e}. We can estimate therefore (3.29) by

Ckr+1−1

[(kr+1 − 1)!]ε1kε−%
r+1

(
r∏

l=1

kl

)2(1−α)+% kr+2−kr+1−1∏
j=1

B(ε1, (r + 1)ε + (kr+1 − r − 1 + j)ε1 + 1)

∫
. . .

∫
∆2n+1−kr+2

(t)

∫
. . .

∫
(Rd)2n+1−kr+2

2n+1−kr+2∏
m=1

[
q+ (|zm|) (sm−1 − sm)−1/(2µ)

]

×
∏

(p,q)∈Fr+1

δ2(2β−1) +

∣∣∣∣∣∣(sq − sp)v − δ2β
q∑

r=p+1

zr(sr−1 − sr)−1/(2µ)

∣∣∣∣∣∣
2(1−α)


−1

(3.30)

×s
(r+1)ε+(kr+2−r−2)ε1
2n+1−kr+2

ds(2n+1−kr+2)dz(2n+1−kr+2).

Using the well known formula B(a, b) = Γ(a)Γ(b)Γ−1(a + b) we can re-write the product of beta
functions in (3.30) as

kr+2−kr+1−1∏
j=1

[Γ(ε1)]kr+2−kr+1−1Γ((r + 1)ε + (kr+1 − r)ε1 + 1)
Γ((r + 1)ε + (kr+2 − r − 1)ε1 + 1)

. (3.31)

With the help of Stirling’s formula

Γ(a) =
(

2π

a

)1/2 (a

e

)a
exp

{
θ

12a

}
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for any a > 0 and a suitably chosen θ ∈ (0, 1) we conclude that for a fixed b > 0 there exists a
constant C > 0 such that for all x > 0 and non-negative integer k we have

Γ(x + (k + 1)b)
Γ(x + kb)

≥ C(k + 1)b. (3.32)

The above estimate allows us to bound (3.30) by

Ckr+2

[(kr+1 − 1)!]ε1kε−%
r+1

(
r∏

l=1

kl

)2(1−α)+%
kr+2−kr+1−1∏

j=1

1
kr+1 + j

ε1

(3.33)

∫
. . .

∫
∆2n+1−kr+2

(t)

∫
. . .

∫
(Rd)2n+1−kr+2

2n+1−kr+2∏
m=1

[
q+ (|zm|) (sm−1 − sm)−1/(2µ)

]

×
∏

(p,q)∈Fr+1

δ2(2β−1) +

∣∣∣∣∣∣(sq − sp)v − δ2β
q∑

r=p+1

zr(sr−1 − sr)−1/(2µ)

∣∣∣∣∣∣
2(1−α)−1/(2µ)


−1

×s
(r+1)ε+(kr+2−r−2)ε1
2n+1−kr+2

ds(2n+1−kr+2)dz(2n+1−kr+2).

Equality ε1 − ε = 2(1− α) concludes the induction argument. �
In the particular case when r = n we obtain the following.

Corollary 3.7 For any % > 0 there exists a constant C independent of F and n such that

J(F) ≤ Cntn(2α−1/µ)

[(2n)!]ε1

 n∏
p=1

kp

2(1−α)+%

(3.34)

All we need to finish the proof of Lemma 3.5 is the following.

Lemma 3.8 For any 1 = k1 < . . . < kn as in the statement of Proposition 3.6 we have

n! ≤
n∏

p=1

kp ≤ (2n− 1)!!. (3.35)

Proof. The lower bound is obvious. Note that for each kr there exists 2n ≥ lr > kr such that
(2n + 1− lr, 2n + 1− kr) ∈ F . As a result we have kr + 1 ≤ 2n. Since the sequence kr, r = 1, . . . , n
is strictly increasing this implies that kr ≤ 2r − 1 for all r = 1, . . . , n. The upper bound is now
obvious. �

The proof of Lemma 3.5 is now complete. As a consequence Proposition 3.1 has also been shown
except for the proof of Lemma 3.4.

3.4 The proof of Lemma 3.3

Another consequence of Lemma 3.4 is the proof of Lemma 3.3 which is the only remaining part in
the proof of Proposition 3.2. Using (3.22) we conclude that (3.10) follows if we could prove that for
a certain ν > 0 we have

lim sup
δ↓0

∫
. . .

∫
∆2n(t)

∫
. . .

∫
(Rd)2n+1

∣∣∣∣∣
2n∏

r=1

∂irqκ(sr−1 − sr,yr−1 − yr)qκ(s2n,y2n − y2n+1)

∣∣∣∣∣
×

∏
(p,q)∈F

[
δ2(2β−1) + |(sq − sp)v + δ2β(yq − yp)|2(1−α)

]−(1+ν)
ds(2n)dy(2n+1) < +∞. (3.36)
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Proposition 2.3 and Corollary 2.4 allow us to estimate the expression under the limit in (3.36) by

Cn

∫
. . .

∫
∆2n(t)

∫
. . .

∫
(Rd)2n+1

2n+1∏
p=1

(sp−1 − sp)−d/(2µ)q+

(
|yp−1 − yp|

(sp−1 − sp)1/(2µ)

) 2n∏
p=1

(sp−1 − sp)−1/(2µ)

×
∏

(p,q)∈F

[
δ2(2β−1) + |(sq − sp)v + δ2β(yq − yp)|2(1−α)

]−(1+ν)
ds(2n)dy(2n+1). (3.37)

Changing variables zp := (sp−1 − sp)−1/(2µ)(yp−1 − yp), p = 1, . . . , 2n + 1, where s2n+1 = 0, we
can apply Lemma 3.4, this time with some ν > 0, and proceed in the same way as it was done in
Section 3.3. We shall obtain then that the expression in (3.37) can be estimated by the expression
appearing on the right hand side of (3.34), which is independent of δ. The conclusion of the lemma
then follows. �

4 The proof of Lemma 3.4

Let us recall that we need to show that

sup
y

∫
Rd

q+(|z|)dz


τ∫

0

s−1/(2µ)(τ − s)nε+kε1
[
δ2(2β−1) + |vs− δ2βs1/(2µ)z + y|2(1−α)

]−(1+ν′)
ds


≤ Cτ (n+1)ε+kε1

(k + n + 1)ε−%
, ∀ τ ∈ [0, t], (4.1)

with ε := 2α− 1− 1/(2µ)− 2ν ′(1− α)and ε1 := 1− 1/(2µ) > 0.
Denote by I(y) the expression under the supremum on the left side of (4.1) and set

γ0 :=
2(1− α)
α(2µ− 1)

, γ := γ0 + δγ, (4.2)

with δγ > 0. We split integration over z in (4.1) into the regions [|z| ≥ δ−γ ] and [|z| < δ−γ ] and
denote the respective integrals as I1(y) and I2(y) respectively. The first integral can be estimated
by

I1(y) ≤ Cδ2(1−2β)(1+ν′)+γ(2µ−1)

τ∫
0

s−1/(2µ)(τ − s)nε+kε1ds

= Cδ2(1−2β)(1+ν′)+γ(2µ−1)τnε+(k+1)ε1B(ε1, nε + kε1 + 1)

and the conclusion of the lemma for I1(y) follows (since ε < ε1) upon an appropriate choice of
0 < ν < δγ(µ− 1/2)(1/α− 1)−1.

Therefore, it remains to estimate the ”inner” integral I2(y). However, since |v| = 1, we can write

sup
y

I2(y) ≤ sup
y∈R, |σ|≤δ2β−γ

τ∫
0

s−1/(2µ)(τ − s)nε+kε1
[
δ2(2β−1) + |f(s1/(2µ))− y|2(1−α)

]−(1+ν′)
ds, (4.3)

where f(ρ) := ρ2µ−σρ. Let us denote, with a slight abuse of notation, the integral appearing in the
above formula by I2. We estimate it below by considering several possible cases for the parameters
y and σ.
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4.1 Parameter σ ∈ (0, δ2β−γ)

The function f has a then a unique critical point at ρ0 = [σ/(2µ)]1/(2µ−1) and two zeros at 0 and
ρ∗ := σ1/(2µ−1) ∈ (ρ0, δ

(2β−γ)/(2µ−1)).

4.1.1 Parameter y > 0

In this case the equation f(ρ) = y has a unique solution in [0,+∞), say at ρ1 > ρ∗. Note that we
can only consider the case when ρ1 ∈ [0, τ1/(2µ)]. If ρ1 > τ1/(2µ) we have y−f(ρ) > f(τ1/(2µ))−f(ρ)
and this reduces to the former case.

We divide the integral appearing in (4.3) into integrals corresponding to the subintervals [0, ρ2µ
∗ ],

[ρ2µ
∗ , τ ] and denote them by I21, I22 respectively.

To estimate I21 we make a change of variables s := ρ2µ, ds = 2µρ2µ−1dρ and note that

I21 ≤ 2µδ2(1−2β)(1+ν′)

ρ∗∫
0

ρ2(µ−1)(τ − ρ2µ)nε+kε1dρ (4.4)

≤ 2µδ2(1−2β)(1+ν′)ρ
4µ(1−α)(1+ν′)
∗

τ1/(2µ)∫
0

ρ2µ[2α−1−1/µ−2ν′(1−α)](τ − ρ2µ)nε+kε1dρ.

Remembering that ρ∗ < δ(2β−γ)(2µ−1)−1
we can estimate δ2(1−2β)(1+ν′)ρ

4µ(1−α)
∗ by δε2 , where

ε2 :=
[
(2β − γ)

4µ(1− α)
2µ− 1

+ 2(1− 2β)
]

(1 + ν ′).

It is straightforward to verify (recall that β = 1/(2α)) that for µ satisfying the assumptions of the
lemma the exponent ε2 corresponding to γ = γ0 and ν ′ = 0 is positive.

We can choose therefore appropriate ν, δγ > 0 in such a way that ε2 corresponding to those
parameters also remains positive. Reverting to the s variable in the integral appearing on the
utmost right hand side of (4.4) we obtain that

sup
y∈R, |σ|≤δ2β−γ

I21 ≤ δε2

τ∫
0

sε−1(τ − s)nε+kε1ds ≤ δε2τ (n+1)ε+kε1B(ε, nε + kε1 + 1). (4.5)

To estimate I22 we claim that

y − f(ρ) ≥ ρ2µ−1(ρ1 − ρ). (4.6)

In order to verify (4.6) we note that it is equivalent to

ρ1(ρ
2µ−1
1 − ρ2µ−1) ≥ σ(ρ1 − ρ), (4.7)

which can be seen with an elementary inequality

[(m− 1)am−1 + bm−1](b− a) < bm − am (4.8)

valid for any b > a > 0 and m > 1 . It allows to estimate the left side of (4.7) from below by

ρ1[(2µ− 2)ρ2µ−2 + ρ2µ−2
1 )](ρ1 − ρ) ≥ (2µ− 1)ρ2µ−1

∗ (ρ1 − ρ) = (2µ− 1)σ(ρ1 − ρ).
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In the last equality we have used the fact that ρ2µ−1
∗ = σ and (4.7) follows. Likewise, we have

f(ρ)− y ≥ (ρ− ρ1)ρ2µ−1 for ρ ∈ [ρ1, τ
1/(2µ)]. We have shown therefore that

|f(ρ)− y| ≥ |ρ− ρ1|ρ2µ−1 for ρ ∈ [ρ∗, τ1/(2µ)].

Dropping the term δ2(2β−1) in the denominator of I22 and using the above estimate we obtain,
upon the substitution ρ := s1/(2µ), that

I22 ≤ C

τ1/(2µ)∫
ρ∗

ρε3(τ − ρ2µ)nε+kε1dρ

(ρ1 − ρ)2(1−α)(1+ν′)
, (4.9)

where ε3 := (2µ−1)[2α−1−2ν ′(1−α)]−1 and C > 0 is a certain constant. Suppose that % ∈ (0, ε)
is arbitrary. We let 1/p := 2(1−α)(1+ ν ′)+ % > 1 for a suitable choice of ν. Let also 1/q = 1− 1/p.
Using Hölder’s inequality we obtain that the last integral is less than, or equal to

C

 τ1/(2µ)∫
ρ∗

|ρ1 − ρ|−2p(1−α)(1+ν′)dρ


1/p  τ1/(2µ)∫

ρ∗

ρqε3(τ − ρ2µ)q(nε+kε1)dρ


1/q

.

Using substitution ρ := s1/(2µ) in the second integral one can estimate the above expression by

Cτ [1/p−2(1+ν′)(1−α)]/(2µ) × τnε+kε1+ε3/(2µ)+1/(2µq)B1/q((qε3 + 1)/2µ, q(nε + kε1)) (4.10)

Applying (3.32) we can further bound (4.10) by

Cτ2α−1−2ν′[1+(1−α)/µ]+nε+kε1

(n + k + 1)ε3/(2µ)+1/(2qµ)
. (4.11)

Taking into account that ε3/(2µ) + 1/(2qµ) = ε− %/(2µ) we obtain the required estimate

sup
y∈R, |σ|≤δ2β−γ

I22 ≤
Cτ (n+1)ε+kε1

(k + n + 1)ε−%
. (4.12)

4.1.2 Parameter y < 0

The equation f(ρ) = y can possibly have two solutions ρ1, ρ2 satisfying 0 ≤ ρ1 < ρ0 < ρ2 ≤ ρ∗.
In fact we can assume that y ∈ [f(ρ0), 0], since otherwise we have f(ρ)− y ≥ f(ρ)− f(ρ0) and the
situation reduces to the case y = f(ρ0). We should consider two possibilities: either τ1/(2µ) < 2ρ∗, or
otherwise. In the first case we estimate I2 precisely as in (4.4). In the second one we distinguish two
regions of integration for I2, namely [0, 2ρ∗] and [2ρ∗, τ

1/(2µ)]. We denote the respective integrals by
I21 and I22 correspondingly. The estimate for I21 is the same as in (4.4). To deal with I22 note that
for ρ ∈ [2ρ∗, τ

1/(2µ)] we have

f(ρ)− y ≥ ρ2µ − ρ2µ
2 − σ(ρ− ρ2) = ρ2µ − ρ2µ

2 − 2µρ2µ−1
0 (ρ− ρ2).

Using inequality (4.8) we conclude easily that

f(ρ)− y ≥ (ρ− ρ2)
{

[(2µ− 1)ρ2µ−1
2 + ρ2µ−1]− 2µρ2µ−1

0

}
≥ (ρ− ρ2)(ρ− ρ0)ρ2µ−2 ≥ (ρ− ρ∗)2ρ2µ−2 ≥ ρ2µ

4
.
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The last inequality follows from the fact that ρ(ρ−ρ∗)−1 ≤ 1+ρ∗(ρ−ρ∗)−1 ≤ 2 for ρ ∈ [2ρ∗, τ
1/(2µ)].

We, therefore, obtain

I22 ≤ 4

τ∫
(2ρ∗)2µ

(τ − s)nε+kε1sε−1ds ≤ τ (n+1)ε+kε1B(nε + kε1 + 1, ε), (4.13)

and proceed then as in the passage from (4.10) to (4.12).

4.2 Parameter σ ≤ 0.

Then f(s) is a strictly increasing function on [0,+∞) and hence only the case when y > 0 needs to be
considered. Otherwise, we would have f(s)−y > f(s)−f(0) and this reduces to the aforementioned
situation. When y > 0 the estimations essentially repeat the case considered in Section 4.1.1. In
fact they can be reduced only to the consideration of integral I22 considered there. As a result we
again obtain (3.21).

5 The fundamental solutions to the random fractional advecion-
heat equation

Here we establish the existence of fundamental solutions for (1.10) and prove Proposition 2.3 and
Theorem 2.5. We shall assume that δ = 1 and suppress it from the subsequent notation.

5.1 The proof of Proposition 2.3

Part (i) of Proposition 2.3 is proved in [2], Theorem 2.1, p. 263. To prove part (ii) note that using
Funk-Hecke theorem, see p. 181 of [4], we can write

qκ,d(t,x) =
∫
Rd

exp{ix · k}e−t|ξ|2µ dk
(2π)d

=
ωd−2

(2π)d

+∞∫
0

e−tρ2α
ρd−1dρ


1∫

−1

cos(u|x|ρ)(1− u2)(d−3)/2du

 .

Hence, we have

∇xqκ,d(t,x) = − ωd−2x
(2π)d|x|

+∞∫
0

e−tρ2α
ρddρ


1∫

−1

u sin(u|x|ρ)(1− u2)(d−3)/2du

 . (5.1)

Integrating by parts with respect to u we obtain that the right side of (5.1) equals

− ωd−2x
(2π)d(d− 1)

+∞∫
0

e−tρ2α
ρd+1dρ


1∫

−1

cos(u|x|ρ)(1− u2)(d−1)/2du

 = −2πxqκ,d+2(t,x′),

where x′ = (x, 0, 0) ∈ Rd+2. �
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5.2 Proof of Theorem 2.5

Let us fix T > 0 and γ0 > 1/2. Using Proposition 2.2 we can easily conclude that there exists a
random variable FT (ω) that satisfies (2.3) and such that

|G(vs + y)| ≤ FT (ω)(1 + log+ |y|)γ0

for all (s,y) ∈ [0, T ]× Rd. Theorem 2.5 is a consequence of the following lemma.

Lemma 5.1 For any T > 0, µ′ ∈ (1, µ) and γ0 > 1/2, there exists a deterministic constant CT > 0
such that for P-a.s. ω we have

|qn(t,x, s,y)| ≤ [CT FT (ω)]n(t− s)n(1−1/(2µ))−d/(2µ)

Γ(n(1− 1/(2µ)))
× (1 + log+ |y|)nγ0

[1 + |x− y|2(t− s)−1/µ]d/2+nµ′+µ
(5.2)

for all T ≥ t > s ≥ 0, x,y ∈ Rd, n ≥ 1.

Statements (i) and (ii) of Theorem 2.5 then easily follow from (5.2). As for equality (2.15) a
simple extremum consideration shows below that for any γ > 0 there exists a constant C > 0 such
that for any t > 0, x,y ∈ Rd we have

(1 + log+ |x|)γ0

(1 + |x− y|2t−1/µ)γ
≤ C(t + 1)

(
1 + log+ |y|

)γ0 . (5.3)

It suffices to verify (5.3) for γ < µ and |x| > 1. Consider two cases: either |x − y| < 10−2|x|, or
otherwise. In the first situation we have

|y| ≥ |x| − |y − x| ≥ 99
100

|x|

so we can estimate the left hand side of (5.3) by by

(1 + log(100|y|/99))γ0 (5.4)

and (5.3) follows. In the other case the left side of (5.3) is at most

(1 + log |x|)γ0

(1 + 10−4|x|2t−1/µ)γ
≤ tγ/µ (1 + log |x|)γ0

|x|2γ
≤ C(t + 1) (5.5)

for an appropriate C > 0.
From (5.2) and (5.3) we conclude therefore that

|qn(t,x, s,y)| ≤ [CT FT (ω)]n(t− s)n(1−1/(2µ))−d/(2µ)

Γ(n(1− 1/(2µ)))
× (1 + log+ |x|)nγ0

[1 + |x− y|2(t− s)−1/µ]d/2+µ
(5.6)

To finish the proof of (2.15) we note that EFn
T ∼ Γ(n/2) so after integration in y the series

appearing in that formula can be estimated from the above by∑
n≥1

Cn
T Γ(n/2)(1 + log+ |x|)nγ0

Γ(n(1− 1/(2µ)))
‖u0‖∞ < +∞.

It remains only to prove part (iii) of Theorem 2.5: uniqueness of the mild solution of (2.12). One
can observe with the help of (2.8) that the mild solution v(t,x) of (2.12) with vanishing initial data
satisfies

|v(t,x)| ≤ C

t∫
0

∫
(t− s1)−1/(2µ)Φ(t,x, s1,y1)|v(s1,y1)|ds1dy1 (5.7)
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for some constant C > 0 and all t ∈ [0, T ] for some T > 0. Here we have defined

Φ(t,x, s,y) := (t− s)−d/(2µ) (1 + log+ |y|)γ0

[1 + |x− y|2(t− s)−1/µ]d/2+µ
.

We would like to iterate (5.7) and use a Gronwall type argument. For that we need the following
auxiliary lemma.

Lemma 5.2 Suppose that µ, γ1, γ2 > 0. Then, there exists a constant C > 0 depending only on γ1,
γ2 and the dimension d such that for all t > 0 and a, b < 1 + d/(2µ) and x ∈ Rd one has

t∫
0

∫
Rd

(t− s)−as−b

[
1 +

|x− y|2

(t− s)1/µ

]−d/2−γ1
[
1 +

|y|2

s1/µ

]−d/2−γ2

dsdy (5.8)

≤ CB

(
d

2µ
+ 1− a,

d

2µ
+ 1− b

)
t1+d/(2µ)−a−b

(
1 +

|x|2

t1/µ

)−d/2−γ1−γ2

.

Here B(·, ·) is the Euler beta function.

We claim that, as consequence of (5.7) and Lemma 5.2, for any µ′ ∈ (1, µ) there exists C > 0 such
that for all n ≥ 1 we have

|v(t,x)| ≤ Cn

Γ(n(1− 1/(2µ))

t∫
0

∫
(t− s1)n(1−1/(2µ))−1−d/(2µ)(1 + log+ |y1|)nγ0

[1 + |x− y1|2/(t− s1)−1/µ]d/2+nµ′
|v(s1,y1)|ds1dy1.

(5.9)
The proof of (5.9) is done by induction with respect to n. For n = 1 it is just a consequence of (5.7).
Suppose that (5.9) holds for a certain positive integer n. Substituting the right side of (5.9) into
(5.7) in place of v(s1,y1), we obtain

|v(t,x)| ≤ Cn

Γ(n(1− 1/(2µ))

t∫
0

∫
(t− s1)−(d+1)/(2µ) (1 + log+ |y1|)γ0

[1 + |x− y1|2(t− s1)−1/µ]d/2+µ
(5.10)

×
s1∫

0

∫
(s1 − s)n(1−1/(2µ))−1−d/(2µ)(1 + log+ |y|)nγ0

(1 + |y1 − y|2/(s1 − s)−1/µ)d/2+nµ′
|v(s,y)|dsdyds1dy1.

Let us set
γ := min{µ− µ′, µ′/2}. (5.11)

Then, with the help of (5.3) we obtain

(1 + log+ |y1|)γ0

(1 + |y1 − y|2/(s1 − s)−1/µ)d/2+γ
≤ C(T + 1)(1 + log+ |y|)γ0 .

Thus, we can re-write (5.10) as

|v(t,x)| ≤ Cn

Γ(n(1− 1/(2µ))

t∫
0

∫
|v(s,y)|(1 + log+ |y|)(n+1)γ0

∫ t

s

∫
(t− s1)−(d+1)/(2µ)

[1 + |x− y1|2(t− s1)−1/µ]d/2+µ

× (s1 − s)n(1−1/(2µ))−1−d/(2µ)

[1 + |y1 − y|2/(s1 − s)−1/µ]d/2+nµ′−γ
ds1dy1dsdy. (5.12)
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Lemma 5.2 allows to estimate the (s1,y1)-integral above as∫ t

s

∫
(t− s1)−(d+1)/(2µ)

[1 + |x− y1|2(t− s1)−1/µ]d/2+µ

(s1 − s)n(1−1/(2µ))−1−d/(2µ)(1 + log+ |y|)(n+1)γ0

[1 + |y1 − y|2/(s1 − s)−1/µ]d/2+nµ′−γ
ds1dy1

≤ CB

(
1− 1

2µ
, n

(
1− 1

2µ

))
(t− s)(n+1)(1−1/(2µ))−1−d/(2µ)

[
1 +

|x− y|2

(t− s)1/µ

]− d
2
−(n+1)µ′

(5.13)

as µ− γ > µ′. Using (5.13) in (5.12), together with B(x, y) = Γ(x)Γ(y)/Γ(x + y) leads to (5.9). As
a result of that estimate we conclude that

|v(t,x)| ≤ Cn(1 + log+ |x|)nγ0

Γ(n(1− 1/(2µ)))
‖v‖∞

t∫
0

∫
(t− s1)n(1−1/(2µ))−1−d/(2µ)

[1 + |x− y1|2/(t− s1)−1/µ]d/2+n(µ′−γ)
ds1dy1.

for 0 ≤ t ≤ T and all n ≥ 1, with a constant C which is independent of n , As ‖v‖∞ < +∞ because
v is a mild solution, the above estimate in turn, after passing to the limit n → +∞, implies that
v(t,x) ≡ 0. Therefore, the mild solution of (2.12) is unique. This finishes the proof of Theorem 2.5
except for the proof of Lemmas 5.1 and 5.2. �

5.3 Proof of Lemma 5.2

Using identity
+∞∫
0

tβ−1e−btdt =
Γ(β)
bβ

(5.14)

that holds for all β, b > 0 we can rewrite the left hand side of (5.8) as being equal to

1
Γ(d/2 + γ1)Γ(d/2 + γ2)

t∫
0

∫
Rd

+∞∫
0

+∞∫
0

(t− s)−as−bρ
d/2+γ1−1
1 ρ

d/2+γ2−1
2 e−(ρ1+ρ2) (5.15)

× exp
{
− ρ1

(t− s)1/µ
|x− y|2 − ρ2

s1/µ
|y|2

}
dsdydρ1dρ2.

Performing first the integration over y variable and using the well known formula for the convolution
of Gaussian densities we obtain that∫

Rd

exp
{
− ρ1

(t− s)1/µ
|x− y|2 − ρ2

s1/µ
|y|2

}
dy (5.16)

= πd/2

[
(t− s)1/µ

ρ1
× s1/µ

ρ2

]d/2 [
(t− s)1/µ

ρ1
+

s1/µ

ρ2

]−d/2

exp

−
[

(t− s)1/µ

ρ1
+

s1/µ

ρ2

]−1

|x|2
 .

We perform the integration with respect to ρ1, ρ2 variables using the polar coordinates simultaneously
rescaling the size of the interval over s to the unit one, namely substitute ρ1 = r cos φ, ρ2 = r sinφ
and s := s/t. We find then that the respective integral of the expression in (5.15) equals

πd/2td/(2µ)−a−b+1

Γ(d/2 + γ1)Γ(d/2 + γ2)

1∫
0

+∞∫
0

π/2∫
0

(1− s)d/(2µ)−asd/(2µ)−bfd/2(s, φ)rd+γ1+γ2−1

× exp
{
−r

[
(cos φ + sinφ) + f(s, φ)

|x|2

t1/µ

]}
cosd/2+γ1−1 φ sind/2+γ2−1 φdsdrdφ,
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where

f(s, φ) :=

[
(1− s)1/µ

cos φ
+

s1/µ

sinφ

]−1

=
sinφ cos φ

(1− s)1/µ sinφ + s1/µ cos φ
.

Using the fact that cos φ + sinφ ≥
√

2 and integrating out the r variable with the help of (5.14) we
can estimate the above expression by

πd/2td/(2µ)−a−b+1B(d/2 + γ1, d/2 + γ2)

1∫
0

π/2∫
0

(1− s)d/(2µ)−asd/(2µ)−b cosd/2+γ1−1 φ sind/2+γ2−1 φ

×
[√

2 + f(s, φ)
|x|2

t1/µ

]−(d/2+γ1+γ2)

fd/2(s, φ)dsdφ

≤ πd/2td/(2µ)−a−b+1B(d/2 + γ1, d/2 + γ2)
[√

2c(µ) +
|x|2

t1/µ

]−(d/2+γ1+γ2)

(5.17)

×
1∫

0

(1− s)d/(2µ)−asd/(2µ)−bds× sup
s′∈(0,1)

π/2∫
0

cosd/2+γ1−1 φ sind/2+γ2−1 φf−γ1−γ2(s′, φ)dφ

where c(µ) is the infimum of f−1(s, φ) over s ∈ (0, 1), φ ∈ (0, π/2) and the supremum over s′ is
finite thanks to the fact that f−1(s′, φ) ≤ 2(cos φ sinφ)−1. The conclusion of the lemma then clearly
follows. �

5.4 Proof of Lemma 5.1

Let us define the function
Ψ(t,x) := t−d/(2µ) 1

(1 + |x|2t−1/µ)d/2+µ

and let γ be given by (5.11). Using Lemma 5.2 and expression (5.3) we obtain that for any γ0 > 1/2
and µ > 1 there exists a constant C > 0 such that for 0 ≤ s < t ≤ T , x,y ∈ Rd

t∫
s

∫
(t− s1)−1/(2µ)Φ(t,x, s1,y1)Ψ(s1 − s,y1 − y)ds1dy1 =

t∫
s

∫
(t− s1)−1/(2µ)−d/(2µ)(s1 − s)−d/(2µ)

× (1 + log+ |y1|)γ0

[1 + |x− y1|2(t− s1)−1/µ]d/2+µ
× 1

[1 + |y1 − y|2(s1 − s)−1/µ]d/2+µ
ds1dy1 (5.18)

(5.3)

≤ C

t∫
s

∫
(t− s1)−1/(2µ)−d/(2µ)(s1 − s)−d/(2µ) × 1

[1 + |x− y1|2(t− s1)−1/µ]d/2+µ

× (1 + log+ |y|)γ0

[1 + |y1 − y|2(s1 − s)−1/µ]d/2+µ′
ds1dy1

(5.8)

≤ C(t− s)1−1/(2µ)−d/(2µ)(1 + log+ |y|)γ0

[1 + |x− y|2(t− s)−1/µ]d/2+µ+µ′
.

In fact, we can generalize the above estimate to obtain.

Proposition 5.3 For any T > 0, µ′ ∈ (1, µ) and γ0 > 1/2 there exists a constant CT > 0 such that
for all n ≥ 1∫

. . .

∫
∆n(t,s)

∫
. . .

∫
(Rd)n

n∏
k=1

[
(sk−1 − sk)−1/(2µ)Φ(sk−1,yk−1, sk,yk)

]
Ψ(sn − s,yn − y)ds(n)dy(n)
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≤
Cn

T (t− s)n(1−1/(2µ))−d/(2µ)

Γ(n(1− 1/(2µ)))
× (1 + log+ |y|)nγ0

[1 + |x− y|2(t− s)−1/µ]d/2+nµ′+µ
, (5.19)

with the convention that s0 = t and y0 = x.

Proof. We show this result by induction in n. The result for n = 1 is just (5.18) with an appropriate
choice of the constant C > 0. Suppose that it holds for a certain n. We can estimate the left side of
expression (5.19) written for n + 1 by

Cn
T

Γ(n(1− 1/(2µ)))

t∫
s

∫
Rd

(t− s1)−1/(2µ)Φ(t,x, s1,y1)(s1 − s)n(1−1/(2µ))−d/(2µ) (5.20)

× (1 + log+ |y|)nγ0ds1dy1

[1 + |y1 − y|2(s1 − s)−1/µ]d/2+nµ′+µ

(5.3)

≤
Cn

T C(t + 1)
Γ(n(1− 1/(2µ)))

t∫
s

∫
Rd

(t− s1)−(d+1)/(2µ)(s1 − s)n(1−1/(2µ))−d/(2µ)

× 1
[1 + |x− y1|2(t− s1)−1/µ]d/2+µ′

× (1 + log+ |y|)(n+1)γ0

[1 + |y1 − y|2(s1 − s)−1/µ]d/2+nµ′+µ
ds1dy1.

Using Lemma 5.2 we can estimate the right side of (5.20) by

Cn
T C(t + 1)(t− s)(n+1)(1−1/(2µ))−d/(2µ)

Γ(n(1− 1/(2µ)))
× B(1− 1/(2µ), n(1− 1/(2µ)))(1 + log+ |y|)(n+1)γ0

[1 + |x− y|2(t− s)−1/µ]d/2+(n+1)µ′+µ
.

Again, the induction argument can be concluded from the identity B(α, β) = Γ(α)Γ(β)Γ−1(α + β)
for α, β > 0. �

We can now finish the proof of Lemma 5.1: it follows immediately from Proposition 5.3 and
expression (2.13). �
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