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Abstract

We consider a stationary solution of the Poisson equation (A — L¥)¢y(z;w) = —0*b(z;w),
where A > 0 and L“ is a random, discrete, elliptic operator given by L¥u(z) := 0* [a(x; w)du(x)],
x € Z. Here Of () := f(x + 1) — f(x) and 9*f(x) := f(x — 1) — f(z) for an arbitrary function
f :Z — R. The coefficients {(a(z;w),b(z;w)), x € Z} form a stationary random field over a
probability space (2, F,P). We prove that if the field of coefficients is sufficiently strongly mixing
then || (0)||p - the L2 norm of w.r.t. the probability measure P - behaves as CA~1/4 as A < 1 for
some constant C' > 0. In addition ||@¢x(0) — 8¢ (0)||p < CAY/4 for A € (0,1] and some constant
C > 0. These results complement those of [6] and [8] that hold for an analogous problem in the
multidimensional setting.

1 Introduction

Suppose that {(a(z;w), b(z;w)) z € Z} is a stationary random field over a probability space (2, F,P).
We shall be concerned with the stationary solutions of the equation

A+ L¥)ga(z;w) = —=0"b(z; w), (1.1)

where A > 0 is small,
L¥u(x) := 0" [a(x;w)Ou(z)], x€Z

where u : Z — R, du(x) := u(x + 1) — u(x) is the discrete difference operator and 0*u(zx) :=
u(z — 1) — u(x) is its adjoint. We assume that there exist constants 0 < a, < a* < 400 and
b* < +oo, so that

a(z;w) € las,a”], [b(r;w)] <b*, VreZ,P as. inw. (1.2)

Note that the operator L¥ is positive-definite and is the discrete version of (—V - (a(z)V)) in the
continuous case, thus all A > 0 belong to its resolvent set. This observation allows to find a (unique)
stationary solution of (1.1) for any A > 0, see e.g. [7] for a details. On the other hand since L*1 = 0,
Ao = 0 belongs to the spectrum of the operator. We shall be concerned with the limiting behavior
of pxa(x), as A | 0.

It has been shown recently (somewhat surprisingly) in [6] (see also [8] for another, more proba-
bilistic, argument) that when d > 3 (d > 9 in [8]), and the coefficients a(x) = b(x) (in [8] a(x) and
b(x) are allowed to be different) are i.i.d., ||¢»(0)||p stays bounded, as A | 0. We denote here by || - ||p
the L? norm with respect to the probability measure P:
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When d = 2 one can prove, see ibid., a logarithmic bound ||¢x(0)||p < C'log? AL, for A € (0,1]. In
the present note we complete the picture by proving that in one dimension ||¢,(0)||p ~ CA~V4 with
an explicit constant C > 0, as A | 0, see Theorem 1.1 below, provided that the field a(z) is sufficiently
strongly mixing. The case when a(x) = b(x) is of particular interest in the homogenization theory as
the respective field ¢y (), called the corrector, can be used to show the convergence of solutions of
equations with fast varying coefficients. A somewhat related question of determining the convergence
rate for homogenization in one dimension has been considered in [1].

Our second result concerns the rate of convergence of the gradient of the A-corrector in one
dimension. It has been shown in [13] (see also [2] for the discrete setting) that in the continuum
case when d > 3 and the coefficients are sufficiently strongly mixing there exist constants C,~v > 0
such that [[V¢a(0) — Vo(0)[lp < CXY, A € (0,1]. In fact, in the discrete setting, for an i.i.d.
field a(xz) one can show that v can be chosen arbitrarily in the interval (0,(d — 2)/(d + 8)), see
[2]. When d = 2 the corresponding result is slightly weaker, see [10], Lemma 7.1 — it asserts that
IV (0) — Vo (0)||p < CA/1osloeA™) \ e (0,1] for some C,y > 0. We prove that in the case
d = 1, under the aforementioned mixing assumption, ||@¢x(0) — d¢o(0)|[p < CAY* for all A € (0,1],
where C' > 0 is a constant.

Finally, we use our approach to obtain estimates of the convergence rate of solutions of parabolic
equations with random coefficients and random initial data towards the expected value of the initial
data, see Theorem 3.1. This property is known as stabilization of solutions of the heat equation and
has been introduced by Zhikov in [14]. Our contribution is to establish the rate of convergence to
equilibrium.

The method of the proof relies on a Feynman-Kac type of representation of the gradient of the
corrector given by formula (2.4) below. This representation in turn allows us to write the corrector
itself in terms of the Green’s function of the symmetric, simple random walk, which is given explicitly.
These formulas together allow us to describe the precise asymptotics of both ¢,(0) and ¢/ (0), as
Al 0, see Theorem 1.1.

The main result

We assume that the field {(a(z),b(x)),z € Z} satisfies (1.2), and the following:

(1) Stationarity: for any N > 1, z1,...,xn and = € Z the laws of (a(z1),b(z1),...,a(zN),b(zN))
and (a(z1 +z),b(x1 + x),...,a(xy +x),b(zy + x)) are identical. Under this hypothesis there
exists a unique stationary solution to (1.1) for each A > 0, see [7].

(2) Mixing: denote by [, the summation over all integers, B(z) := b(x)/a(x) and

where & := (a~1(0));", and b = (B(0))p, so that (a(0))p = (6(0))p = 0. We require that the
two point statistics satisfy

/Zx2[|<a(fv)a(0)>ﬂ»\ +[(B(2)5(0))plldz < +o00, (1.3)

and, in addition, the higher moments satisfy

2N
=1 P

for N=1,...,5, k=0,1, and y(z) = a(z), 71(z) = B(x).

In = sup dridzs...dxon_1 < +00 (1.4)
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The main result of this note is the following.

Theorem 1.1 Under the foregoing hypotheses we have
pA(0)|lp = CA Y4+ 0(1) as A 10, C,=al*Ge?/2 (1.5)

where
Gy == /(F(x)F(O»pda:
zZ
and X
I'(z) := aba(z) + B(z). (1.6)
In addition, there exists C > 0 such that

1062 (0) — Do (0)||p < CAV* for all X € (0,1]. (1.7)
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2 The proof of Theorem 1.1

2.1 The proof of (1.5)

In order to obtain a precise asymptotics in (1.5) we will split the field ¢, into several terms (see
decomposition (2.7) below), and estimate each of them separately. Denote ¥y (z) := a(x)d¢)(x).
Using equation (1.1) we obtain

6A(w) = ~50" o (2), (21)
where
(@) == Pa(z) — Yo(). (2.2)

Here 1o(z) := ab — b(z). Note that the field ¥ (x) converges, as A — 0+, in L%(P) to 1o(z). This
can been seen as follows. Using Theorem 2.4 of [11] one can deduce that d¢(z) converges to some
stationary, zero mean, field ®,(x) in L?(P). From (1.1) we get 0*[a(z)®.(z)] = —0*b(z) hence
®,(r) = —B(z) + Ca~!(z) for some deterministic constant C. Since (®.(z))p = 0 we conclude that
C = ab and the assertion follows due to the fact that ¢ (z) = a(z)®,(z).

Observe that 1) (x) satisfies

(A/2)a (@) (x) + (1/2)0 0 (2) = —(1/2)0*Ob(x), VA > 0. (2.3)
Therefore, it can be written as
+o0
o) = =5 [ Elea(t.0)o"ab(x?)] e, (2.4)
0

where

ex(t,z) == exp {—()\/2) /Ota_l(Xf)ds} .



Here {X}, t > 0} is a symmetric, simple random walk on Z with continuous time starting at x, given
over another probability space (3,4, Q), and E denotes the expectation with respect to Q. We shall
drop the superscipt = in the case wen the walk starts at the origin. Using the fact that

t
M; = b(XF) — b(z) + % / 0" 9b(X")ds
0

is a mean zero martingale, we conclude that (recall B(x) = b(x)a!(z)),

+00 +oo
i@ = [ Blatad(xn) =5 [ BB - (2.5)

2
= o(x) — ab + Z Dg\i) (x) + Rg\n) (x),
i=0

where

DV (x) = l (’;)M /0+OOE {B(Xt) [/Ota(Xs)ds]i} exp {—ta~'\/2} dt,

(”)ZE._é I ex(t,z) —exp {—ta~! nl A tOé Si
RV ( )._2/0 E{B(Xt)[,\(t, ) —exp {—t A/z}iz;“{z/o (Xs)d}]}dt. (2.6)

Substituting (2.5) into the right hand side of (2.1) we obtain

n

oa(@) =3 8 (@) + (@), 27)
=0
where
1,15
=37 [~ oY), o
@) = 30D (@), fori =1
and 1

As we will see, the main contribution to ¢ comes from d)E\O) (x) +¢g\1) () that is of the order O(A~1/4),
while the other terms are of the size at most O(1), provided that n > 3.
Before we proceed to the estimates, note that simple symmetry considerations give for ¢ > 1

0 B i i+l ptoco e i |
Dy (z) = <2> /0 exp {—ta 1)\/2}dt/Ai(t)E{B(Xt) Ll:[la(Xsk)]}dsl...dsl

A i+1  pdoo 400 400 +o00
= <2> / dsl/ dsz.../ dsi/ dsii1 exp{—siﬂd_l)\/Z} (2.10)
0 S1 Si—1 S5

7

X /_+1 B(xit1)p(Sit1 — Sis Tig1 — T;) [H a(zk)p(sk — Sk—1, Tk — $k—1)] dzy ...dx;,

ZZ
k=1
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where A;(t) := [(s1,...,8) : 0 < s1 < ... < 4], sp := 0, and zp := x. Recall that the Green’s
function corresponding to the operator p + (1/2)0%0 is

+o0o
Gu(x) ::/ e Mp(t, x)dt,
0
where p(t,z) := Q[X; = z] for t > 0, x € Z. It is explicitly given by (see, e.g. (3.134) p. 141 of [4])
Gu(z) =€(1 =), zez (2.11)

with € := (1 + p)™! and g¢ := (1 — /1 — £2)¢7 1. Observe that for small ;1 we have

§1=1—p+o(u), (2.12)
and .
1—4/1-¢
s i ECTR ) (2.13)
Integrating out the s;41-variable in (2.10) and using the definition of the Green’s function we
can write
Q) A i+1 4
D)\ (.r) = <2> /ZH—1 H [Oz(xk)G)\/(Qd)(l’k_l — :L’k)] (2.14)
k=1
XB(%‘Z‘_:,_l)G)\/(Q&)(CCi — 1‘Z‘+1)d£€1 . dl‘i_;,_l, ) > 1. (2.15)

When i = 0 we can write
(0) N
D)\ (l’) —ab= 5 G)\/(Q&) (l’ — :vl)ﬂ(xl)dxl, (2.16)
z
where, as we recall, 3(z) = B(x) — b.

Asymptotics of rf\n)

The begin the proof of (1.5) with the estimate of rg\n) since some elements of the proof of this bound
will be used later in estimating the other terms.

Lemma 2.1 Suppose that n > 3. Then, there exists a constant C, such that
1P p < CAPHDAZL v x e (0, 1]. (2.17)
Proof. It suffices to prove that here exists a constant C' > 0 so that

IR e < CAPFVA e (0,1], (2.18)

with R&n) (x) given by (2.6), and Rg\n) = Rg\n) (0). We use an elementary inequality

- (b—a) 1
- 0~ ~a b +1
e a—;_oe i ‘ < (n+1)!max{e e " Hb—al”

valid for any a,b > 0. This inequality and the ellipticity assumption (1.2) together imply that

+oo
IR{V| < cyamt? /0 V(t)exp {—(A\/2)(a*) "t} dt (2.19)

5



where

t n+1
V(t)=E / a(Xy)ds ,
0
with a deterministic constant C; > 0. Calculations similar to those leading to (2.14) yield
n+1
IRy| < CQ)\H-H/ . [T le@)Ga, (2i — zim1)] das ... dana, (2.20)
2r =

where A\; := a*)\/2, and thus

2n+2
(R2)p < O%AQ”“/ < 11 a(;vl-)> (2.21)
Z2n+2
k=1 P
n+1
X H [G)\l (IZ - xi—l)GM (xi+n+2 - xi-‘rn-‘rl)] dxy ... d$2n+2,
i=1
where g = x9,+3 = 0. Using (2.11), we conclude that
2n+2 n+1
<R§\>]P’ < Oy /2 . < H oz(x,-)> H {qgi*xiﬂ\qgiﬂtnﬂﬂfwwlq dry...dropyo,  (2.22)
z k=1 pli=1

and & = (1+ \;) L.
We divide Z?"*2 into simplicies A, := [xa(2n+2) > ... > xa(l)], where ¢ is a permutation of the

set {1,...,2n + 2}. Each simplex is further split as A, = Af}) U AE?’. Here (x1,...,%9p42) is in
Agl) if 0 e [.%'U(Q), x0(2n+2)), and in A((f) if 0 Q [mU(Q), xa(2n+2))~
Lemma 2.2 We have

n+1

H |:q|§fi*xi71‘q|€5ji+n+2*xi+n+1‘] < qzlcr(zn+2)+\xa(2)| on Agl), (2.23)
i=1
n+1
i~ Ti— i+n+2—Titn To(2n 2)’ 2
H [q\g P 1|q|§+ f2—Tit +1|} < g @n+2) A((r) — A((,) N [xg(2n+2) > 0], (2.24)
=1
and
ntl U . s ‘x | (2)// (2)
H [qléz xlfl\q\gwnm 331+n+1|:| < q§10(2) on Ay’ =As’ N [xa-(2n+2) < 0]. (2.25)
=1

Proof of Lemma 2.2. In order to show (2.23), suppose that To2) = Tj and ZTy(gpq2) = Tg. If
j<n+1land k>n+ 2, as rop+3 = 29 = 0, and

To) <0 < Toganra) on AL, (2.26)
it is clear that
Toont2) T 1Zo@)| < |2k — Zhpa] + .+ [Tongo — Topgs| + o — 21|+ |z — 2] (2.27)
and (2.23) holds since g¢;, € (0,1). When j,k < n + 1 we can write, using (2.26),

Lo (2n+2) + |:E0'(2)| = ‘x0(2n+2) - :1:0'(2)| < |£L’0 - $1| ..o+ |$n - xn+1|a (228)
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whence (2.23) holds. The case j,k > n + 2 can be verified analogously.
In order to verify that (2.24) and (2.25) hold, we simply note that, say, for (2.24) if 0(2n +2) <
n + 1 then we would use the fact that

Lo(2n+2) = |xa(2n+2) - .T(]| < ‘1‘1 - $0| +-+ ’-Tn—l-l - xn|,

and the other cases are very similar. [
We now finish the proof of Lemma 2.1. The integral in (2.22) can be written as

2n+2 n+1
/ IT e@)) (1] [qlgl_x%l‘quﬁ_xz“q dry...dronto = I + I,
Bo |\ k=1 pli=1

where I; correspond to the integration over domains A((,—Z), ¢ =1,2. Using the mixing condition (1.4)
for N =n+ 1 and (2.23) we conclude that, with

Agl) = {[xa(2n+2) > Lo(2n) 2.2 xJ(Q)]a 0€e [xa(2)7x0(2n+2)]} )

2n+4-2
i)
k=1 P

we have

o(2n+2) HTo(2)
Il < /qzl (2n+2) e (2) dl‘a(Q) ce dma(2n+2) sup d.%'g(l) cee d.Z'J(Qn_H)

AW T g
To(2n +|‘ra ‘ Zl__‘—l i +1
< In+1 /(1) Q§1 (2n+2) (2) dx0(2) .. d$0(2n+2) < In+1 / qé? 2 il /n d{L‘l o d.’En+1
A zn+1
1/(nt1) (D) C
<Znt1 (1 — 4 ) < W

for some constant C' > 0. We have used (2.13) in the last step. On the other hand the mixing
condition (1.4) and (2.24), (2.25) yield

C

L<C q:l‘a(2n+2)d$0—(2) o ldTy(2n42) < N2

[xd(2n+2) 2x0(2’ﬂ) Z”-Zxo'(Q) 20]

Coming back to (2.22) we conclude that

([RP)p < CuATHD/2, (2.29)
which in turn implies (2.18). This finishes the proof of Lemma 2.1. [J
Asymptotics of qu\O)(()) + gzﬁ&l)(O)

Here, we identify the leading order contribution in (1.5).

Lemma 2.3 We have
162(0) + ¢V (0)|p = CATY4+0(1)  as A L0, (2.30)

with the constant Cy as in (1.5).



Proof. From (2.8) and (2.16) we conclude that
Oy =_L [ _ 1 £)g71]
¢y (0) = 5 Za G/ 2a) (1) B(21)dz1 = 3 Zg(xh&)q& B(x1)dz1, (2.31)
where & := [1 + \/(2a)]7!, and

L+ —— when x > 1, [¢| < 1,

g(z;€) =

1—
—(1- 1=¢ ,  whenz <0, [¢] <1.
\ 1+¢

There exists a constant C' > 0 such that

lg(x;€) —sgn(z)| < CVA, Yz eZ Ae(0,1], ¢ e1/2,1], (2.32)

with the convention sgn(z) := 1 for x > 1 and sgn = := —1 for < 0. Likewise, using (2.8) and
(2.10) we obtain that

A
qbg\l)(()) = _Z /Z2 8*GA/(2€L)($1)GA/(2&) (l‘g — $1)O¢($1)B($2)dﬂ?1dl’2 (2.33)

A1

= ey el fei—aal
_m 7.2 g<x1,£1)q£1 qfl a(xl)B($2)d$1dl'27

Using decomposition B(z) = b+0(z), we obtain from (2.31) and (2.33) that ¢E\0)(0)+¢§\1)(0) = Ji+Jo,
with

1
J1 = 2/9(96'1;51)%?1F(l‘1)dl‘1d$2,
z

and

A 1/2 1/2 ol et —a
= <1f§1> | st ate)Ba)deda

Here I'(x) is given by (1.6).
Asymptotics of J;
By virtue of (1.3) and (2.32), we deduce that, as A | 0,

9 = § [ stes€nate’s €)af 0 — PO dada (2:34)

1 z|+|x’
- / sen wsgn o/ 77D (@ - )D(0))pdada’ + O(1)

72
2

Zéfwwﬂmwmﬂ+mm
0

where
F(z) = -1+ 2iIm [/ zx} = 2i(Imz)[1 — 2|72 — 1,
z>1
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and

Bochner’s theorem implies that
0< GO < Gim [ {T@IO)elds < +oc,
V/

due to (1.3). In order to pass to the limit A | 0 we use (2.12) and (2.13), and obtain that

&1 = (A),

and

96 =

R I

Thanks to (1.3) we have |G(¢) — G(0)| ~ Cg for ¢ < 1. One can conclude that

27
1 . d¢
2.1 2 _ 1 iy (2 ag
¢ = lim VAR = VA [ 1Flae PG5
0

27
_G(0) . icy 24
= S VA [ 1P Py,
0

However, we have

1

2w 2
; 1
o |F(ge, )|2d¢ = / / sgn T sgn x’q‘xmml r=iCe’ g da’ d¢
27 0 27 72 J0

2

_ / 2lge = 1%

0T g
1+qZ  a'2G(0)

7G(O) lim )\1/2 5 = )
4 Ao 1-— g, 4

whence

C:=

which is the constant appearing in (1.5) in Theorem 1.1.

Asymptotics of Jy

The L2-norm of .J, satisfies

I172]12 < CA / gl gl gt gl () alws) B () Bxa) p| dy devadirsds,

(2.35)

(2.36)

(2.37)

with some constant C' > 0. To estimate the right side we use the mixing condition (1.4) in the
same way as in the proof of Lemma 2.1. We divide the domain of integration Z* into subdomains
of the form A, = [T5(1) > Zy(2) = T(3) = To(a)] Where o is a permutation of (1,2,3,4). In case the

permutation equals identity we can estimate it by

'\ q\érz\ Iﬂf4|d:n2d:c4{sup/ <a(m1)a(fc3)ﬁ(:n2)ﬂ(x4)>ﬂp|dledazg}
[x1>x0>23>74]

Z2,T4 Z2,T4
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This expression can be further estimated by
C"A\1—qe)2<Ch, VeMe(0,1]

with some C”,C;. The cases corresponding to other domains can be dealt with similarly. This
completes the proof of Lemma 2.3. [

Asymptotics of ng\i) for i > 2
Next, we show that the contribution of both qb(f) and ¢§\3) in ¢, is small.
(4)

Lemma 2.4 There exist constants Cy’, i = 2,3 such that

162 O)llp < CON/2T1 for d e (0,1]. (2.38)
Proof. We start with the argument for ¢ = 2. A simple calculation, using (2.1) and (2.14) shows
that
@) X2
3 (0) = ) . [8*GA/(2a) (901)] G,\/(za) (w2 — SUl)G,\/(za) (73 — 22)
xa(xi)o(re)B(zs)dridradrs = Ky + Ko, (2.39)
where

)\1/2&3/2[) ol g —a
K = 23/251/2(1 +£1)—1/2/2 g(z1: 6 )q‘fll‘qéll 2|a($1)a($2)dx1d332,
Z

8
) 23! ) [z1]| |z1—22| |v2—23]
Ky = 4(1—|—£1)/Z3 g(g}hfl)q51 q51 q51 a(l’l)a(l‘g),@(m’g)d$1d$2d$3.
The L? norm of K satisfies
K113 SC}\/4 g(z1;&1)g (953,51)%11‘(1'51 “'q‘gf‘"" ‘TS @l <Ha x > dxidxodrsdry
Z
P
' [z1] |z3| |21—w2] |w3 z4]
< C'A q§1 g, g, Ha x;) dxidxodrsdry, (2.40)
P

with some constants C,C" > 0. To estimate the utmost right side of (2.40) we use the mixing
condition (1.4) with N = 2. We divide the domain of the integration Z* into the subdomains of
the form A, 1= [T5(1) = To2) = T(3) = To(a)], Where o is a permutation of (1,2,3,4) and use an
argument detailed in the proof of Lemma 2.2 below. When the permutation equals identity we can

estimate this term by
4
<H a(wi)> da:ldxg} .
=1 P

'\ / |£f€2| m‘dazgdu sup /
22,24 J[x1>w2>23>24]
C"\1—qe) 2<Ch, VeMe(0,1]
for some C”,Cy. The other domains of integration can be dealt with similarly. The considerations

The last expression can be further estimated by

for || K| are similar. Finally, to estimate ||<j>f\l)(0)\|l2@7 for ¢ > 3 we can easily generalize the above
argument applying the mixing condition (1.4) for N = . O

To finish the proof of Theorem 1.1 we use expansion (2.7) for n = 3. The result is a direct
consequence of Lemmas 2.1, 2.3 and 2.4.
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2.2 The gradient estimate
We now prove (1.7). It suffices to show that

142(0) = %o (0)[p < CAV, VA€ (0,1] (2.41)
for some constant C' > 0. Using (2.5) it is enough to estimate
1D + D5 — ablle,

HDE\i) |lp for i = 2,3 and ||Ry||p. We have used a shorthand notation Df\i) = Df\i)(O). From (2.14) we

obtain after elementary calculations the decomposition D&l) = Ly + Lo, where

A
L1 = Q/F(xl)G,\/(g&)(xl)dxl
7
_ Aagf jo1—a3|_Jon|
Lo := 4(1+§1)/Z? a(wl)ﬂ(azg)q&l 2 qgl1 dxi1dzs.
Thus,
5%)\2 / ||+’ / / Ao [T i

L 2 _ 517 T(r — T _ I iC\ |2
Il = ga gy [ ! = e’ = 52 [T RGP0+ O

where G(¢) is given by (2.35), Fi(z) := (1 — |z|?)|1 — 2|2 is the Poisson kernel in dimension d = 2.
Since |G(¢) — G(0)| ~ ¢? for ¢ < 1 one can easily deduce that

GO [ i
IalE = “52° [T 1R PG + o).
We have
/%rm Gpac <o [ =
. A
o =k l-g + 2

for A € (0,1] and some constant C; > 0 and 1 — g¢, ~ /2. Hence, after elementary computations,
we get,
IL1]13 < Co'/?

for A € (0,1] and some constant Cy > 0.
To estimate || Lo|3 we repeat essentially the estimates of ||.J2||2 and obtain

L2 < CA

for A € (0,1] and some constant C' > 0.

The computation that HDf\i) (0)]|2 < CiAY/2 for i = 2,3 (in fact both these quantities are of order
o(A/?)) is quite routine taking into account the arguments contained in the proofs of Lemmas 2.1
and 2.4. This ends the proof of (1.7) and that of Theorem 1.1. [J
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3 Asymptotics of transition semigroup of the environment process.
Expansion (2.8) can be used to describe the asymptotics of the solution of the initial value problem

(0 + L¥)P(t,x;w) =0 (3.1)
®(0,z;w) = c(x;w),

as t — 400, where {(a(z;w), c(x;w)), x € Z} is a stationary field satisfying assumptions (1) and (2)
from Section 1. In addition, we assume (c(0))p = 0.

We obtain, in the one dimensional situation, estimate of the rate of convergence in the stabiliza-
tion problem. Namely, the following result holds.

Theorem 3.1 Under the above assumptions there exists a constant C > 0 such that
/ ||<I>tx|\Pdt§T1/2, VeeZ, T > 1. (3.2)

Remark. Property expressed in (3.2) is known as the stabilization (in the mean) of solutions of
the heat conduction equation, see [14], and has been considered in various versions in a number of
papers, see e.g. [15, 16, 3] and the references therein.

Proof of Theorem 3.1. The proof of this result shall be done in a number of steps.

Step 1: representation of ®(¢, )

Suppose that {Y;“ ¢t > 0} is a random walk, starting at = and corresponding to the generator —L*.
We have

D(t,73w) = Ble(Y™)] = clwiw) — Li(w;), (3.3)
where .
Li(z;w) := / EL%c(Y"¥)ds.
0
Let .
= [ 1,012
Since
1@ (t, 2)|I5 = [|B(t,0)[[E = l|lc(0)]|F — 2(c(0), L (0))p + || L:(0)
we obtain,

+o0o
G0 i= [ e Nplt)dt = 5 [IO)E = 200).c0)z + (0r(0).0a0)e] . A>0 (34

with ¢ (z) the solution of (1.1) corresponding to b(z) := a(z)dc(z). Indeed, denote F(t,x;w) :=
—EL%c(Y;"";w) and F(t) := F(t,0). Then,

+o0
oa(zw) = / e MEP(t, z;w)dt.
0

A direct application of the integration by parts formula gives

“+oo . t 9
_2/0 e dt/ (6(0), La(0))pds =~ (c(0), 62(0))pds. (3.5)

0
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For any t > t' > 0 we have
(F(t,2), P(t',))p = (F(t), F(t')p = (F(t —t'), F(2t'))p. (3.6)
We prove this identity momentarily but first use it to verify (3.4). We have
+00 t
/ My / Lo (0)[2ds = 2 / e M(F(sy), F(s1))pditdsds, sy
0 0 [t>5>51>52>0]

3.6) 2 s
(36) > /[ . AL (51 — 8), F(252))pds1dss
5128220

=5 [, OO, PO = 55(6:0). 6320

and the second equality in (3.4) follows.

The proof of (3.6)

To show (3.6) we use the notation p“(t,z,y) to denote transition probabilities corresponding to
Y,*“. The first equality follows easily from stationarity of the environment so we only need to use
the second one. Because the generator — L% is in a divergence form and counting measure is invariant
and reversible we have p“(t,z,y) = p“(t,y, z) for all z,y € Z. The middle term in (3.6) equals

/Z | Loely) L2 ey )p* (8, 0, y)p* (¢, 0, y' ) dydy’
= /Z Loy Lo e(y ) (8,0, y)p” (8,0, 2)p° (' — 1, 2,y )dydy’
= [ B Ll 0, (0. (¢ = 1521/ g
Using stationarity of the environment we can rewrite the right hand side as being equal to
/Z3 LYc(y — 2)LYc(y — 2)p*“(t, —z,y — 2)p“(t, —2,0)p*(t' — t,0,9 — 2)dydy'dz.

Changing variables y := y — z, ¢ := ¢ — 2, z := —z and using symmetry of p“ (¢, z,0) we obtain that
the above expression equals

/ Lec(y) LY c(y )p“ (t, z,y)p” (,0, 2)p* (t' — 1,0,y )dydy'dz
Z3
:/ LYc(y)L¥c(y")p* (2t,0,3)p* (t' — 1,0,y )dydy .
ZQ
and the last equality in (3.6) follows.

Step 2: estimates of the resolvent

We make use of computations made in Section 2.1 with b(z) = a(z)0c(z). Notice that B(x) = dc(x)
and b = (B(0))p = 0. We prove the following.

Proposition 3.2 Under the above assumptions there exist C1,Co > 0 such that

16(0) — ¢ (0) ] < C1A2, (3.7)
and
1e(0) + ¢ (0) e < oA, A€ (0, 1] (3.8)

13



Proof. The argument is very similar to what has been done in Section 2.1. This time however we
use the expansion (2.5) with n = 6. From Lemma 2.1 we can estimate ||7“E\6) |p < CrAY2. To estimate

HQZ’E\D(O)”P we use representation (2.33). Because b = 0 we get (recall that B(x) = dc(x))

)\ k
¢§\1)(0) = 4 - 0 G)\/(Qa)(xl)a G)\/(Qa)( xl)a(x1)c(x2)dx1da:2 (39)
A z1| |za—
=5 [ sl €)glon €04 ol )elaz)dodas.
Z

Using mixing assumption in the same way as in the proof of Lemma 2.3 we conclude that
163 )] < C1AY2, X e (0,1]. (3.10)

A slight modification of the proof of estimates of qb(;) for ¢ > 2 is also possible due to the fact that
B(x) is a gradient of a zero mean field ¢(x). In that case we can write

; 1—1
i A . «
¢\ (0) = 3 0*G/a) (1) [ [ Cay2ay (@hrr — 20)0" Gy 2ay (wins — a4)
' k=1
X H a(zg)e(Tivr)dry . .. dzip (3.11)
k1
A(+1)/2

= _W/Z‘H 9(w1;61)9(wiv1;61) Q§11‘ H [qng ol a(zg)| c(zip1)dzy ... dzigy.

Using the mixing lemma for N = ¢ + 1 we arrive at the estimate
165 (0]l < C1AT2, X e (0,1]. (3.12)
This, and expansion (2.33) implies (3.7). To show (3.8) observe, see (2.31), that

1 1
gbg\o)(x) =-3 /Za*G)\/(%)(x —x1)0c(x1)dr) = —= / 0"0G y(2a)(x — x1)c(w1)dT]

)\ r—x
=% /Z G20 ( — m1)e(ar)dey — e(x) = i 52 7 / g " e(ar)drr — c().

Hence,
2

16\”(0) + c(0)|2 < CA H /Z g8 e(ar)day

P

The L? norm on the right hand side is of order of magnitude A~*/2, which can be seen analogously

to the estimates of J; done previously, see (2.34) and following estimates. [J

Step 3: the end of the proof of Theorem 3.1
Note also that, directly from the definition in (3.4), it follows that A™'¢ (A™!) < @(X) hence

Ap (ATH) < N%g(N), VA €E(0,1]. (3.13)
This in turn implies that, with A = 71,

1 (7 I

7 | 1z < T2pr. (3.14)

By virtue of (2.34) and Theorem 3.2 we conclude that the right hand side of (3.14) can be estimated
by CT~1/2, which implies (3.2). O
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