The logarithmic delay of KPP fronts in a periodic medium
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Abstract

We consider solutions of the KPP-type equations with a periodically varying reaction rate,
and compactly supported initial data. It has been shown by Bramson [5, 6] in the case of the
constant reaction rate that the lag between the position of such solutions and that of the traveling
waves grows as (3/2)logt, as t — +00. We generalize this result to the periodic case.

1 Introduction

We study solutions u(¢,x) of the initial value problem

{ U = Ugy + g(x) f(u), t>0, xR,
u(0,x) = up(z).

The function f is of class C[0,1], and is of KPP-type. Specifically, we assume that

f(0)=f(1)=0, f/(0)>0, f/(1) <0, 0< f(s) < f'(0)s for all s € (0,1), (2)
and that there exist so € (0,1), M > 0 and « > 0 such that

f(s) > f'(0)s — M s*T< for all s € [0, s0).
We assume the function g(x) € C*(R) is 1-periodic, and that there are two constants g; o such that
0<g1<g(z) < ge < +oo.
By modifying the definition of g(x), we may assume without loss of generality that
7'(0) = 1.

Such equations model numerous problems in biology and other applications, and have been exten-
sively studied since the early papers by Fisher [10] and Kolmogorov, Petrovskii and Piskunov [18] —
see [26] for a recent review.

We are interested in the spreading rate for solutions of (1) with the non-negative compactly
supported initial conditions ug that satisfy

0 <wup <1, and esssupgug > 0.

The strong parabolic maximum principle implies that 0 < u(¢,z) < 1 for all t > 0 and = € R.
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Results in a homogeneous medium

Let us first recall what is known when the function g(z) is a constant: g(x) = 1. Then, given any
¢ > ¢* = 2, there exists a traveling wave solution of

Ut = Ugy = f(u)7
of the form u(t,z) = Uc(z — ct). The function U, satisfies
—cU, = U+ f(Uc), Ue(-00) =1, Ue(+o0) =0, 0<TU.<1.

For ¢ > ¢* the function U.(z) decays exponentially as x — +o00: Ug(z) ~ Ce <%, with the decay
rate A being the smallest positive solution of

A —cA+1=0.

On the other hand, at ¢ = ¢* the traveling wave asymptotics is Uex(z) ~ Cxe %, with \* = 1. Tt
has been shown in the pioneering work of Bramson [5, 6] that solutions of the initial value problem (1)
with compactly supported initial data up(x) “are located” (on the right half-line Ry = [0, +00)) at
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X(t) = c't -
=<t 5%

logt+ O(1) as t — +oo.

More precisely, u(t, x) satisfies the following property: given any € > 0 if we set
X.(t)=sup{z e R: u(t,x) > e}, Y:(t) =inf{z € Ry: u(t,z) <1-¢},

then

X:(t) ="t — %logt +0(1) as t — +oo,

and

Yo(t) ="t — % logt+ O(1) as t — +o0.

In other words, the region in R} where u(t,x) transitions from the value u ~ 1 to u ~ 0 has a
width that is uniformly bounded in time, and is located at the distance (3/2)\*)logt behind the
location of the traveling wave with minimal speed ¢*. Bramson’s proofs were based on probabilistic
techniques, and were later extended by Gértner to higher dimensions [11], and recently revisited by
Roberts [22], while a PDE proof of this result was later given by [17] with the additional assumption
1'(s) < f(0) on [0, 1], and recently in the companion paper [14], with other results in this direction
obtained earlier in [24].

We should also mention a very interesting paper [9] where the medium is taken to be time-
dependent, with the reaction coefficient taking two different values o1 and o9 on the time intervals
[0,7] and [T,2T]. It is shown by probabilistic techniques that the lag behind X (¢) and traveling
front position depends strongly on whether o1 > g9 or g2 > 0.

Periodic pulsating fronts

In order to understand how Bramson’s results can be adapted to a periodic environment, let us recall
the notion of a pulsating traveling wave that generalizes the notion of a traveling wave to periodic
media. A pulsating front with speed ¢ > 0 is a function U.(¢, z) satisfying

Ut =Ups +9(x)f(U), z€R, tER, (3)



and !
U(t—i—g,:c) =U(t,z — 1),

as well as the boundary conditions U(t, —o0) = 1, U(t,4+00) = 0. Let us now recall some of the
results about spreading speeds and pulsating traveling waves U.(t,x) [2, 4, 13, 15, 25, 26]. It is
known that there is a minimal speed ¢* > 0 such that for each ¢ > ¢*, there exists a unique up to
time-shifts pulsating traveling front U, (¢, x), while no pulsating traveling front exists with a speed
less than c¢*. Furthermore, all pulsating traveling fronts are necessarily increasing in t. Lastly, the
minimal speed ¢* may be characterized as follows. Given A > 0, let ¢ = ¥ (x, \) > 0 be the principal
eigenfunction of the 1-periodic eigenvalue problem

Yoz = 2005 + (N + g(@) ' (0)0 = 7Ny, (@ +1,A) =d(2,A), (@A) >0, zeR,  (4)

and () the corresponding eigenvalue. The eigenfunction is normalized so that

1
| e nde=1, (5)
0
for all A > 0. The minimal wave speed is given by

iy YA s
SRR T

Here A* > 0 minimizes y(A)/A. In particular, we have

) L

Yo =T = (6)

The main results

Our first main result is as follows.

Theorem 1.1 Let u(t,z) be a solution of (1) with the initial data uo(x) such that 0 < ug(z) < 1,
uo(z) # 0, and up(z) = 0 for |x| > M with some M > 0. Then for any € > 0 there exist s(e) and
L(e) so that
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u(t,z) >1—¢ for allt > s(¢) and all z € [0, 't — logt — L(e)]

and

u(t,x) < e for allt > s(e) and all x € [t — 2?))\* logt + L(g), +00).

This generalizes directly Bramson’s results to a periodic medium: the front is located at distance
(3/2X*) logt behind the pulsating front.

Let us explain informally how the logarithmic decay comes about. The main observation, from
the PDE point of view, is that solutions of the nonlinear problem (1) behave very similar to those
of the linearized problem

Vg = Uy + g(x)v7

with the Dirichlet boundary condition v(¢,¢*t) = 0. In the homogeneous case, with g(z) =1, ¢* = 2
and \* = 1, let us write v(t,z) = p(t, z)e” @2, Then p(t,z) satisfies

Dt = Pzz — 2Pz, T > 2t, p(t, Qt) =0.



Changing variables y = x — 2t, we get

Pt = Pyy; p(t, 0) =0.

It follows that p(t,y = 1) ~ t~3/2 as t — 400, or, in the original variables v(t,z = 2t + 1) ~ t=3/2,
Assuming that the solution u(¢,z) of the nonlinear problem has the same behavior as v(¢,z), and
has the exponential asymptotics u(t,z) ~ e~ @=X®) we deduce that X (t) ~ 2t — (3/2)logt. For
the homogeneous case g = 1, we have worked out this argument in detail in [14]. The bulk of the
proof in the periodic case is in getting the decay estimates for the heat kernel in a half space with
periodic coefficients. These estimates are well known in the whole space [8, 20, 21] but we are not
aware of such results in a half space for periodic coefficients.

In the proof of Theorem 1.1, one shows actually more precise exponential estimates on u(t, )
for x > ¢*t — (3/(2)\*)) logt. These estimates imply that the solution u is asymptotically trapped
between two finite space-shifts of the minimal front U.+ around the position z = ¢*t — (3/(2\*)) log t.
Equivalently, u is asymptotically trapped between two finite time-shifts of the minimal front U«
around the time t — (3/(2¢*\*)) logt. Then, by passing to the limit along any level set, any limiting
solution is necessarily equal to a shift of the minimal front: this follows from a new Liouville-type
result which is similar to what had already been known in the homogeneous case. For more details,
we refer to Section 8, where the following result is proved:

Theorem 1.2 There exist a constant C > 0 and a function & : (0,400) — R such that [£(t)] < C
for allt >0 and

lim
t—+00

u(t,-) — Ue (t —

0. (7)
L>(0,+00)

logt + (), )

2c* \*

Furthermore, for every m € (0,1) and every sequence (tn,xy) such that t, — 400 and x, — [z,] —
ZToo € [0,1] as n — +oo, and u(ty,x,) =m for all n € N, there holds

u(t +tn, x + [x4)) — Ue (t + T, z) locally uniformly in (t,z) € R?, (8)

where [xy,] denotes the integer part of x, and T € R denotes the unique real number such that
Ue(T, x00) = m.

Theorem 1.2 shows in particular the convergence to the family of shifted minimal fronts along
the level sets of the solution u. Results of this type have been obtained recently in [7] for more
general nonlinearities f and Heaviside initial conditions ug and in [12] for asymptotically periodic
KPP functions f and compactly supported initial conditions ug. The proofs in [7, 12] are completely
different from the ones used here: they are based on the time-decay property of the number of
intersections of any two solutions and on the fact that the minimal fronts are the steepest ones.
They hold for more general functions f but do not provide the logarithmic shift of the position of
the solutions.

Connection to branching Brownian motion

When g is constant and f(u) = u(1 — u), there is a well-known connection between solutions of (1)
and branching Brownian motion [5, 19]. Consider a branching Brownian motion with constant
branching rate g > 0. Initially, there is one Brownian particle, X;1(0) = 0. At a random time T},
which is an independent exponential random variable with rate g, this particle gives birth to two
independent Brownian motions and then dies immediately itself. The two new particles start their



motions from the final location of the parent particle. The process continues in this way, each living
particle reproducing and dying at an independent random time, leaving two new Brownian particles
as offspring. As shown by McKean [19], the function

u(t,x) =P (max Xp(t) > x| X1(0) = 0> (9)
kEL(t)
satisfies
1
Ut = 5 Uae + gu(l —u).
and

u(0,2) =1, x <O0; u(0,2) =0, =z >0.

The set L(t) in (9) denotes the set of indices corresponding to particles that are alive at time ¢.

When ¢(z) is not constant, there is a similar interpretation of (1) in terms of a branching
Brownian motion with space-dependent branching rate g(x) > 0. In that case, we start the particle
initially at x: X7(0) = 2. At a random time, this particle produces two Brownian offsprings and
then dies immediately. The branching time is constructed from an independent exponential random
variable: if S is a standard exponential random variable, independent of X (t), then the time at
which X; branches is

Ty :inf{t>0 | S < /Otg(X1(r))dr},

so that T satisfies P(T7 >t | X1) = e~ Jo 9 (m)dr, Using arguments as in [5, 19], one can show
that the function

t,x) =P in Xi(t) <0]X1(0)= 10
utt.0) =P iy Xu(0) <0 X:(0) =) (10)
satisfies )

Ut = 5 las + g(x)u(l —u).
and

u(0,z) =1, x <0 u(0,2) =0, z>0.

When g is constant, it is easy to see that the two formulas (9) and (10) define the same function.
However, if g is not constant then (10) need not be equivalent to (9).

The zero Dirichlet boundary condition exactly corresponds to Gértner’s [11] strategy of killing
the branching Brownian motion at a moving boundary.

The paper is organized as follows. Section 2 contains the basic elements of the proof of the
lower bound for the solution, while the main steps of the proof of the upper bound are contained in
Section 3. Sections 4, 5, 6 and 7 contain the proofs of the auxiliary results formulated in these two
sections. Lastly, Section 8 is devoted to the proof of Theorem 1.2.
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2 The lower bound: outline of the proof

The linearized Dirichlet problem

The proof of the lower bound in Theorem 1.1 is based on the analysis of the linearized problem with
the Dirichlet boundary condition at x = ¢*t (recall that f'(0) = 1):

Wy = Wy + g(x)w, x> c't, (11)
w(t,c't) =0, t>0,
w(0,z) = up(x), x>0.

As we will see, with an appropriate choice of a(t), the function w(t,z) = a(t)w(t,z) will be a

subsolution of the nonlinear equation (1). Therefore, a lower bound on u will follow from a lower
bound on w. It is convenient to represent w(t, z) in the form

w(t,z) = e N @z, X)p(t, z). (12)

Here ¢(z, A*) is the eigenfunction of (4)-(5), with A = \* satisfying (6), and p(¢, x) satisfies

Pt =Pz + ——Dgy T 2> C*t, (13)

p(t,c't)=0, t>0
p(0,2) = po(x) = uo(x)eA*x(@D(x, )\*))_1, x>0,

with ¢(t,z) = e X @=¢"Dy)(x, A*). The initial data po(x) is nonnegative and compactly supported
on [0, +00). For convenience, we define the function

204 (2, A"
20 U X)
¢ Wb, A)
which is the drift term in (13). This function x(z) is 1-periodic in z, and is independent of ¢.

The first (and longest) step in the proof of the lower bound in Theorem 1.1 is the following lower
bound on p(t, z), which implies a lower bound on w(t, z).

k() (14)

Proposition 2.1 There exist constants Ty > 0, o > 0, and Cy > 0 such that
. Co
p(t,c*t +ovt) > " for all t > T.

For the homogeneous medium, when ¢ is constant, it is rather simple to derive the bound in
Proposition 2.1. In that case 9(z) = 1, and ¢ = e~ » =D 50 that k = —2\*. Moreover, when ¢ is
constant it happens that 2\* = ¢*, so the function z(t,x) = p(t,z + ¢*t) satisfies the heat equation
2zt = Zzg on the half-line with Dirichlet boundary condition z(¢,0) = 0. Then, using the explicit
formula one finds that there exists C' > 0 so that

x—c't C(x —c't)

opp SPta) < —gp

e (15)

holds for @ € [¢*t,c*t + /t]. When g is not constant, however, the analysis is more difficult: it is
not generally true that 2A\* = ¢*, nor do we have an explicit formula for the heat kernel associated
with (13). Moreover, the standard bounds for the heat kernel for equation (13) on the entire line
z € R do not immediately imply the needed estimate for the Dirichlet problem on the half-line
x > c*t.



From the linearized problem to a subsolution for the nonlinear problem

Given the lower bound of Proposition 2.1, the next step is to construct a subsolution for (1) using
the solution of (11). If w(t, ) = a(t)w(t,z), then w(t, x) is a subsolution for (1), that is,

Wy < Wy + g(x)0 = g(x)q(w),
with g(w) = w — f(w), provided that

d(t)w(t, ) < —g(z)q(a(t)w(t, z)). (16)

As q(s) < ms?, and g(z) is uniformly bounded from above and below by two positive constants, (16)
holds provided that
d' (t) w(t,x) < —Ma(t)*w(t, z)?, (17)

with a large enough constant M. We claim that there exists a constant Cy > 0, depending on the

initial data wug, such that
Co

(t+1)3/2
for all ¢t > 0 and = € R (we may define w(t,z) = 0 for x < ¢*t). This estimate is a consequence of
an upper bound on p(t, x):

w(t,z) < (18)

Lemma 2.2 There exists a constant C > 0 such that

Czx e

tr+ct)) < ———
Pl +e'0) < s

for allt >0 and x > 0.

Once again, in the homogeneous case, (19) follows trivially from the explicit solution formula.
With (19) in hand, using (12), we have

C o0 * *
s t,x) < AN oo dy ) s A=) (g — )]
s w(t,) < 06w G ] ot ) s [e (@ c't)
which implies (18). Next, given (18), (17) holds provided that

M

d(t) < —ma(tp’
and we may take 0
a(0
)= T oaoa - g1y 400
which satisfies 0)
T+ 20ago) = 40 = a0

for all t > 0. If a(0) < 1, then w(0,z) < up(z) for all x € R. Therefore, the comparison principle
implies
u(t,x) > w(t,z) = a(t)w(t,z) > Cw(t,xz) for all t > 0 and = > c*t.

In particular, Proposition 2.1 implies that
u(t, ct + ov't) > Ctle MoVt (20)

for t > Ty.



From a lower bound on the far right to the bound at the front

Now we show that (20) (a bound far on the right) implies the lower bound in Theorem 1.1. Let
e > 0. We will use (20) to show that there is a constant L(¢) € R such that

3
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u(t,z) >1—2¢, V xze[0,c't— logt — L(e)]. (21)

if ¢ is sufficiently large.
Let k be a C1[0,1—¢] function such that k& < fin [0,1—¢], k(0) = k(1—¢) = 0, k¥'(0) = £(0) = 1,
and k > 0 on (0,1 —¢). The function k then satisfies

k(s) < f(s) < f'(0)s = K'(0)s for all s € [0,1 — ¢].

Thus, there exists a pulsating traveling front UL (¢, z) solution of (3) with nonlinearity k instead
of f, having the same minimal speed ¢*, and such that 0 < U, Ck* <1l—¢,and

lim UN(t,c't+2)=1—¢, lim UL(t,c*t+x)=0, (22)

T——00 T—-+00

uniformly in ¢. Moreover, Uck* is monotone increasing in t.
To show (21), we will bound u from below by the function

Ult,z) = UL (t — r(t),2). (23)
Since we have ;U (t,z) > 0 for all ¢t and x, the function U (t,z) satisfies
U = Upe — g(@)k(U) = (1 = ' (1)) 0U% — B2UL — g(a)k(UL) = —r' ()Q,UL <0,
provided that r/(t) > 0. In this case, since f > k in [0,1 — €], U is a subsolution of the equation

U — Ugy — g(x) f(u) = 0.

Since g(z) > g1 > 0, it is known from [1] that u(t,z) — 1 as ¢ — +oo locally uniformly in z € R.
Therefore, there exists 77 > 0, depending on ug and e, such that u(t,0) > 1 — ¢ for all ¢t > T7.
Therefore,

U(t,0) <1—¢e <u(t,0), Vt>T.
By taking T larger, if necessary, we may assume T > Tj so that (20) holds for all ¢ > T7. Therefore,
the maximum principle and (20) imply that the bound

Ult,z) <wu(t,z) forall z€[0,c't+avi], t>T, (24)
will hold, if both .
U(Ty,z) <u(Ty,z), x€|0,'Th+ovTi] (25)
and .
U(t,c*t + ov/t) < ?e*“ﬁ, t>T (26)

are satisfied.
Let us now verify that (25) and (26) hold with
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if Ly is sufficiently large. Because (22) holds uniformly in ¢, it is clear that for T} fixed, we may take
Ly sufficiently large (depending only on up and T7) so that (25) is satisfied. It was shown in [13]
that the function UX (t, ) satisfies

UL (t,2) < Oz — ¢*t)e™ (@<
for x > ¢*t + 1. Hence, the function U satisfies

Ut,c't+ovt) = UL(t—r(t),c't +ov/1)
< Cctt+ovE—c(t—r(t))e N tHovizet=r®)

3 NVt C
C <0ﬁ+ I logt + C*Lo) € e N Lo <« oA "‘E,

3/2 t

for all t > Ty, provided that Ly and T; are sufficiently large. Hence, (26) also holds for large enough
Lg. Therefore, (24) must hold for large enough Ly and 77.
For t > T and h > 0, let A; be the interval

3
Ay =[0,ct - e log(t) — c¢*Lo — h] C [0,¢*t + oV/t].
We have now shown that for ¢t > T3,

3
inf > inf UL (t— —log(t)— L > inf inf UE 2
xlélAtu<t’x) z inf U, (t Y og(t) 0733> z ;IelRyglcr*ls—hUc (s,y) (28)

From the properties (22) of UL, we know that the right side of (28) is larger than (1 — 2¢) if h > 0
is sufficiently large. This proves (21).

Thus, we have reduced the proof of the lower bound in Theorem 1.1 to the proof of Proposition 2.1
and Lemma 2.2. We postpone them until later sections, and first describe in Section 3 how the upper
bound in this theorem is proved.

3 The upper bound: outline of the proof

The linearized problem in the logarithmically shifted reference frame

As we have seen, the idea behind the (3/2X*)log(t) delay is that the evolution is driven by the
behavior of solutions to the Dirichlet problem (11), which is

2t — Zgw — g(x)2 =0, x>t

with z(¢,c¢*t) = 0. The problem is that such solutions that are initially compactly supported will
decay in time like t~3/2, hence they can not serve as super-solutions to the non-linear problem. The
correction to this inconvenience is to devise a reference frame in which the Dirichlet problem will
have solutions that remain bounded both from above and below by positive constants for finite x, and
this is exactly what the 3/(2A*) log ¢ shift achieves. We expect the front to be at x(t) = ¢*t — rlogt,
with 7 = 3/(2)\*). For the moment, let us assume that the constant r is still general, and we will
choose r appropriately later. Accordingly, we consider the Dirichlet problem

2t — 2Zgp — g(x)2 =0, t>0, x>c't—rlogt+T)+rlog(T),
2(t,c*t —rlog(t +T) + rlog(T)) =0,

with a given nonnegative continuous compactly supported initial condition z(0,-) Z 0 in (0, +00).



Define the new time variable 7 by
cr=ct—rlog(t+T)+rlogT,

and set Z(7,x) = z(t,z). Let us also denote ¢t = h(7), and choose T' > 0 sufficiently large so that the
function h(7) is well defined and monotonic. Then we have

Zr = W (7)z = B (7) |20z + 9(2)2] = B (7)[Z2e + 9(7)Z], x> C*T,
and Z(7,c*1) = 0. Next, set
2(r,x) = e N Iy (@, A a(1)p(T, 2),

with an increasing function a(7) > 0 to be determined. Here, as before, 1(x, \*) is the eigenfunction
of (4)-(5). The function p(7, x) must satisfy

1 o~ ¢z ~ 1 O/(T) * ok 1 ~ *
h’(T)pT_pM+2¢pI+<h’(T)a(T)+>\C <1h/(7_)>>p—0, >0, z>c'T, (29)
where 2¢, /¢ is as in (14). We first compute h/'(7):
1 T r T
e O r R I (L R s
with
B(r) = r B r _ r?log((t +T)/T)

cHr+T) (r+T)+rlog((t+T)/T) c(t+T)c*(t+T)+rlog((t+T)/T))

Observe that |3(7)| < C|r=3/2|, and if r > 0, then /() > 1 for all T > 0.
To eliminate the low-order term in (29), we now choose (1) so that

el 7 Lo <(1> :

a(r) (r+17) T+T)3?
hence
a(t) = exp[rA* In(t + T) + O(r~V3)] = (1 + T)™ (1 + O(r~/?)). (30)
The function p(7,x) then satisfies
1 Pu «
WPT = Doz + 2pr, T>0, z>c'r, (31)

with the Dirichlet condition p(7,c*7) = 0. Observe that if » = 0 (taking no logarithmic shift), and
R’ =1, this is identical to equation (13) which is satisfied by p(t, z) that was used in the construction
of a sub-solution. However, we can not take r = 0 and use p(¢,x) for a super-solution since p(t, z)
decays as t73/2 as t — +o0o while for a super-solution we need p(t,x) to stay bounded from above
and below for finite values of .

To bound the function

z2(t,z) = Z(1,x) = e_A*(x_C*T)¢(CUa A)e(T)p(T, ),

we need an estimate on p(7,x) from above and below. The main technical step in the proof of the
upper bound in Theorem 1.1 is the following estimate on p(7,x), which implies that p has the same

leading order behavior as p, even though h/(7) # 1 in (31). Let us set
1 r
=1 = — .
w() W(r) c(r+T) A7)

Observe that w(7) ~ r/c*t as T — o0, and |w(7)| < C/7, |'(7)| < C/72 for T > 7.
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Proposition 3.1 Let p(T, ) satisfy

(1 = w(T))Pr = Paa + 2(2:131,, x>, (32)
with the Dirichlet boundary condition p(T,c*T) = 0. Then there exist constants k, K, 79 > 0 so that
k(x —c*rt) K(x —c*r1)
= <p(r,z) < 32

for all x € (¢*1,c¢*1 + k/T) and all T > T9.

Proof of the upper bound in Theorem 1.1

In terms of the function Z(7,x), Proposition 3.1 says that

a\T * M\ (x—c*T ~ o\T * —A*(x—c*T
7_:(,)/2)14:(56—0 e M )SZ(T,x)STg/Q)K(a:—C T)e M )

holds for all = € (¢*r,¢*1T + ky/7) and all 7 > 79, even if it means changing the positive constants k
and K. Expression (30) for a(7) shows that the choice of r = 3/(2\*) gives

alr
KlSLSKz, T > 70,
—3/2

and therefore
k(z — C*T)e_)‘*(x_C*T) < Z(r,x) < K(x — c*T)e_)‘*(z_C*T)

holds for all = € (¢*1,c*1 + k+/7) and all 7 > 9.
Now, we go back to the ¢t variable and bound z(¢,z) = Z(7, x). Since

c'r=ct—rlog(t+T)+rlogT,
we get the lower and upper bounds

2(t,x) > k(x — c*t +rlog(t + T) — rlog T)e N (@—c"ttrlog(t+T)—rlogT) (33)
2(t,z) < K(x — ¢t +rlog(t + T) — rlog T)e N (z—c t4rlog(t+T)—rlogT)
for all t > h(m), in the interval

t—rlog(t+T)+rlogT <z < "t —rlog(t+T) +rlogT + kt'/?,

even if it means decreasing the positive constant k.
The rest of the proof is as in the homogeneous case. It follows from (33) that there exist 1 > 0
and x2 > 0, both independent of ¢ > h(7) so that if we choose M > 1 large enough then

Mz(t,c't —rlog(t+T)+rlogT + x1) > 2,
and
Mz(t,c*t —rlog(t+T) +rlogT +xz) <1/2, forall x> c*t—rlog(t+T)+rlogT + 2.

Then we set

alt, ) 1, x<ct—rlog(t+T)+rlogT + x;
" min(1, Mz(t,x)), x> c*t—rlog(t+T)+rlogT + z.
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for t > h(7y). Note that u(t,x) = Mz(t,x) for all z > ¢*t —rlog(t + T) + rlogT + x3. Moreover,
u(0,z) < u(h(mp),z) for all x € R, even if it means increasing the constant M. Therefore, since
u(t,x) is a supersolution because of the KPP assumption (2), the maximum principle implies that

u(t,z) < a(t+ h(r),z) forallt >0 and z € R. (35)

Therefore, for any v > 0, we may choose Z sufficiently large so that

& log(t)) <7

& log(t)) < Mz(t + h(ro),x + "t — X

t *t —
u(t,x +c e

holds for all ¢t > 0 and = > Z.
Therefore, the proof of the lower bound in Theorem 1.1 is reduced to the proof of Proposition 3.1.
The rest of the paper contains the proofs of Propositions 2.1 and 3.1, as well as that of Lemma 2.2.

4 Proof of Lemma 2.2

The self-adjoint form

It is useful to write (13) in a more convenient form, to which we can apply the techniques and ideas
of [21] where heat kernel estimates in the whole space are obtained.

Lemma 4.1 Let k(z) = 2¢,/¢ be defined by (14). There is a unique positive, periodic function
v(x) such that

/ ()= 1, (36)
0

and, for any function p(x),

*

1 0 c
Paaz + H(«T)px - m% (V(m)pm) - V(x)pw- (37)
Proof. The identity (37) means that
Viz) b
I/(IL‘) - ﬁ(l‘) - I/(IE)’ (38)
with b = —c*, and hence
Vez — (K(2)V), = 0. (39)

It is easy to deduce that (39) has a positive periodic solution — this can be seen immediately since
v(z) = 1 satisfies the adjoint problem

Upr + k(x)0p = 0,

and by an application of the Krein-Rutman theorem.
In order to find the constant b, observe that the periodic function

B 1 dy(x, \Y)
@) =~ (10)
satisfies
Xza + K(2) X2 = —K(z) — . (41)

12



Indeed, differentiating (4) in A gives the following equation for ¥y = di/d\:
(Ux )z — 2M(¥02)z + A2Yx — 205 + 20 + g(2)bn = 7' (A\)Y + Y.
Then, using (6) we obtain at A = X*, with ¢} (x) = ¥ (z, \*):
(¥R)zz — 2N (U3)e + (V) + g(@)Y} — 295 + 20" = Y + A3,

Writing now ¢y = —x()¢(z, A\*) and using the definition of x(x) gives (41).
Multiplying (41) by v(z) and integrating over the period gives

1
/ (k(z) + ") vde =0.
0

Therefore, we have, since v satisfies the normalization (36):

¢ = /0 1 k(2)v(z) d.

It follows from (38) that the constant b has to be

1
b= / k(z)v(z)dr = —c*.
0
Given that value of b, the solution of (38) exists. [J

The periodic function x(z) which satisfies (41) will be useful later. For this reason, let us remark
that there is a unique periodic function x"(x) which satisfies both

X2$—|—2@X0:—2ﬁ—c, r R

¢ ¢
and

1
| @iz =o,
0

which is obtained by adding a suitable constant to the function x(z) defined at (40).

Proof of Lemma 2.2

We return to (13) which, by virtue of Lemma 4.1, may be written as

1 c* .
Pt = (@) (v(2)pz)z — mpm ct<ux (42)

p(t,ct)=0, t>0
p(0,2) = po(x) = ug(x)eX *(P(x, X*)) ™, = >0.

Lemma 2.2 is proved using a duality argument, and the main step in the argument is to derive the
L? bound

IS 1/2 C 00
</ pQ(tyq;)dx> < 153/4/0 xpo(x)dx, Yt>0. (43)

*t
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It follows from (42) that

1 d o0 o0
Ld [ ot 2)de = — / V(@)1 2)da. (44)

The right side of (44) may be bounded from above by using a Nash-type inquality: there is a constant

C' such that
00 00 3/5 0o 4/5
/ |B(z)|?dz < C ( / ﬁgdx> ( / :cﬂ(:c)dx) (45)
0 0 0

for all functions 3 € L'([0,00)) N H'([0,00)) satisfying 5(0) = 0 and B(x) > 0 for > 0. This
inequality can be verified in the usual manner: if £(z) is an odd extension of 3(x) to all of R, then

/ —C / k)[2dk, (46)

where £(k) is the Fourier transform of £(z). Note that £(0) = 0, and

‘j ‘ < C’/ xB(z
whence |£(k)| < C|k|||zf])1. It follows from (46) that for any R > 0 we have

o - k
[Cewras<o [ éwpacec [ Sogmpas < o+ ok

. /5 .
Choosing R = (6.3 / [|z813)"/° gives (45).
Going back to (44), since v(z)~! > 0 is bounded, we conclude that

%% O: (@)t )z < —C ( / ot 2))? d:v) o’ < / (o — () d:v) W

*t *t

Next, we work toward an estimate of the right side of (47). Let us multiply (42) by a function
v(z)f(t,z), with f(¢,c*t) = 0 and integrate:

4 :) v(z)f(t,x)p(t,x)de = /: v(z) fi(t, x)p(t,z) de — /OO v(z) fz(t, z)pe(t, x) dx

o0
—c* / fpsdx.
c*t

We will choose f to be a solution of the backward equation, defined by the next lemma.

Lemma 4.2 There is a function f(t,z) and a constant m > 0 such that f; <0,

1 c* .
ft-l-m(l/(%)fx)x-f—@fx:o, x>c't, tekR, (48)
flt,c't) =0, teR

and
m(x — c't) < f(t,x) <m Yz —c*t), for allx > c*t, t €R. (49)

14



Let us postpone the proof of this lemma for the moment, and use it to finish the proof of
Lemma 2.2. Given the function f(t,z) described in Lemma 4.2, observe that the integral

I(t) = /00 v(z)f(t, z)p(t,x)dz

is preserved: I(t) = I(0) for all ¢ > 0. Moreover, (49) implies that

( / Tl =l 2) daz) o >C < / @) f(t 2)p(t 3) d;,;) e CI(0))~Y5,

*t *t

for all ¢ > 0. Therefore, if

then from (47) we conclude
Ab(t) (b))
. — (I(0))4/3°

It follows that (Io(t))~2/3 > Ct(I1(0))~*/3 for all t > 0, which implies the L? bound (43).

The standard duality argument can be now applied. If S; is the solution operator mapping po(-)
to p(t,-), then the adjoint operator S; is of the same form as S; except for ¢* replaced by (—c*)
and changing the direction of time. Hence, the L' — L? bound (43) for S; implies also the dual
L? — L* bound:

Clx —c*t
Ip(t,x)| < (753/4)HpoHLg, x> c't, t>0.

Finally, writing S; = S/ 0 S;/2 we obtain the conclusion of Lemma 2.2. [J

Proof of Lemma 4.2. Observe that (48) has a solution of the form Y (¢t,z) = (x — ¢*t) + y(x),
where y(z) is periodic and satisfies

—C*I/(l‘) + (V(:E)(l + ym))x + C*(l + yac) =0,

W (2)Ya), + Yo = " (v(z) — 1) = V/(2). (50)

Equation (50) has a periodic solution because the integral of the right side over the period vanishes,
because of (36). By subtracting a constant from y, we may assume Y (¢,c¢*t) < 0. Although Y (¢, z)
grows linearly in (x — ¢*t) and is a solution of (48) for all ¢ € R and =z € R, it may not satisfy the
desired Dirichlet boundary condition at = ¢*t. On the other hand, if §(t) is the largest zero of YV
then

|6(t) — 't < M, (51)

with a constant M that does not depend on t.
A function f(t,z) having the desired properties may be constructed as the limit of the sequence
of functions f(™ (¢, z) which satisfy
m , 1 (va)f) C w0 x>t t<
FM @)y =0 t<n,
F™(n,2) = max(0,Y (n,z)), > cn.
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It follows from the maximum principle and (51) that there exists a constant C', independent of n,
such that
Y(t,z)—C < fM(t,2) <Y(t,z)+C, Vaz>ct t<n. (52)

Using (52), we can find positive constants L, M, m, independent of n, so that
f@™(t, et + L) > My, for all t < n,

and, in addition, m(z — ¢*t) < f(t,2) < m~*(z — ¢*t) holds for x > ¢*t + L and t < n/2. Then
the strong maximum principle and parabolic regularity imply that fa(;”) (t,c*t) > ¢p for all t < n/2,
for some positive constant ¢y that does not depend on n or t. By parabolic regularity, we may then
extract a subsequence converging to a limit f(¢,z) satisfying (48), (49) and the boundary condition
f(t,c*t) = 0 for all t € R. Note that ft(n) < 0 — this follows from the maximum principle since
f™@(t,z) > 0and fM(t,2) > Y(t,z) for all t < n, and = > ¢*t. It follows that in the limit we also
have fi(t,z) <0. O

5 The proof of Proposition 2.1

Proposition 2.1 is based on the following key estimate, which is proved in Section 6.

Proposition 5.1 There exist a time Ty > 0 and constants co > 0, 8 > 0, and N > 0 that depend
only on the initial data so that for any t > Ty there exists a set I; C [c¢*t + N~1\/t, c*t + N/t such
that |I;| > B/t and

plta) = 7. (53)
holds for all x € I;.
We also make use of an estimate for the heat kernel associated with the equation
o
= o @) = s (54)

For R > 0 and £ € R fixed, let T'(t,z, s,y) = ['(t,z, s,y; R, &) denote the heat kernel for (54) in the
tilted cylinder
T R, s)={(t,z) eR* : [z—¢—C't|<R, t>s}

with the Dirichlet boundary conditions on the lateral boundary of the cylinder. That is, if s € R
and |y — & — es| < R, I'(t,x,s,y) satisfies (54) for (¢,x) € T(, R, s), with the boundary condition
I(t,z,s,y) =0if |z — £ — ¢*t| = R, and the initial condition

lim £t 2,5,) = (v(9) '8, (z).

The following lemma gives a lower bound on I'(¢,z, s,y), provided that x and y are sufficiently far
from the boundary of T'(§, R, s).

Lemma 5.2 For all 6 € (0,1), there are some constants o > 0 and K > 0 such that

r ‘(-5 R, S
(t,@, s,y —c"(t - s); 5)_me

holds if R > 0, t € (5,5 + R?], and z,y € (c*t + & — 6R, c*t + & + 6R).
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Proof. Let I'(¢,z,s,y) denote the free-space heat kernel associated with the equation

v(x)pr = W(2)pz)e — ¢ pa-

That is, for each (s,y) € R?, I'(-,-, s,¥) is a solution of (54) for € R and ¢ > s, with
(¢, z,5,9) = (v(y))'0,().
[ANE]

If p is continuous, bounded and satisfies (54) for x € R and t > s, then

olt,z) = /R D(t, 2,5, 9)p(s, 9)v(y) dy

for t > s. For I'(¢,z,s,y) we have the following estimates of Norris [21], Theorem 1.1: there is a
constant K > 0 such that

—Klz—y|*/(t—s) Ke—lt—yl?/K(t—s)
€ <T(t,x,s,y —c"(t—3s)) < €

_— 99
Kt —s|t/2 — |t — s|1/2 (55)

holds for all x,z € R, t > s. Obviously, (55) implies the upper bound
f(t7 T,8,Y — C*(t - S); Ra 5) < F(tv x,5Y — C*(t - S)) < K|t - 5’_1/26_|x_y‘2/K(t_8)’

The proof of Lemma 5.2 mimics the analysis of Fabes and Stroock [8] (see the proof Lemma 5.1,
therein). It suffices to assume s = 0 and £ = 0. The first step is to derive the identity

[(t,2,0,y) =T(t,z,0,y) — /Ot (D(t,z,r,c*r + R)h"(r) + T(t,z,r,c"r — R)h™(r)) dr (56)
where h*(r) > 0 depends on y and R, but
/Ot(h+(r) +h(r)dr <1
always holds. This is analogous to a statement on p. 335 of [8]. To see where (56) comes from,

suppose p satisfies (54) for (¢t,x) € Tr = {(t,z) | t > 0, |z — ¢*t| < R}. Choose a test function
©(r, z), and integrate over r € [t1,t2], 2 € D, = [c¢*r — R, c*r + R]:

o - [ [ 0= e+ 0 ot 2y s
- - [ o) et . = ) dsar | [ oo~ wpp).ars
+/tlt2/r(Vps0)r+ (c"pp). drdz.

So, if ¢ satisfies the adjoint equation v, + (ry,), — c*p, = 0 and if p vanishes on 9D, for each r,

we obtain
/ vppdz — /
Dy, D

Now, let t > 0 and x € D; = (c*t— R, c¢*t+R) be fixed. For y € (—R, R) fixed, let p(r, 2) = ['(r, 2,0, )
and ¢(r,z) = I'(t,x,r, z). The function p(r, z) satisfies (54) in T'(§, R, s) with p(r,z) =0 for z € D,..

c*r+R
dr. (57)

to
vppdz = / Vp2p
c*r—R

t1

t1
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The function ¢(r,z) is a solution of the adjoint equation vy, + (v.). — cp, = 0 for r € (0,).
and t; — 0, we obtain the following identity relating I" to

Therefore, (57) holds. By letting to — ¢
the free-space heat kernel I':

L(t,2,0,y) = L(t,z,0,y) +

Here we have used the fact that

lim [ (¢, z,te,2)f(2)v(z) dz

ta /'t

for any continuous f. Note that T',(r,c*r+ R, 0,y) < 0 and I',(r,c*r — R,0,y) > 0. If we had chosen

@ =1, instead, we would have obtained
/ v(z)[(t,,0,y) dv
Dy

t
.
0

f(x)

z=c*r+R
dr.
z=c*r—R

t
/ V()T (r, 2,0, y)D(t, 2.7 2)
0

F(t17 2y Ovy)f(z)y(z) dz f(y)

lim
t1\.0

and

z=c*r+R
dr

z=c*r—R

v(2)L,(r, 2,0,y)
=1- /Ot(V(C*T + R)[T.(r,c*r 4+ R,0,y)| + v(c"r — R)[T.(r,¢"r — R,0,y)]) dr.
Since the left side is non-negative, this implies
/Ot(I/(C*T + R)[L.(r,c*r + R,0,y)| + v(c'r — R)|T.(r,c¢*r — R,0,y)|) dr < 1.

Thus, we have shown (56). )
By combining (56) with the estimate (55) for I', we obtain a lower bound on T

e—R*(1-6)%/(KT)

7172 ’

o—Kly—zf2/t
I(t,z,0,y — c't) > ———

Kt1/2

— K sup
0<7<t

(58)

for all z € [-0R,0R], y € [-R, R], t > 0. Observe that the unique maximum of the function
e~ R*(1-6)%/(KT)

172

B(7) >0,

)

occurs at the point 7% = 2R?(1 — §)?/K. So, if €2 < 2(1 — §)?/K and t < e2R?, we have t < 7*. In
this case, (58) gives us the bound

_ . e~ Kly—a[?/t o~ R2(1-6)2/(K)
F(t, Z, 0, y—c t) = W — Koiligt 7-1/2
e Kly—al/t o—R2(1-8)% /(K1)
B Kt1/2 +1/2
o~ Kly—=|/t

R%2(1-6)2 | Klz—y|?
<1—K2€_ =0 | Klo—y| >

If 2 € [-0R,0R] and |z — y| < eR also hold, and €2 < (1 — §)?/(2K?) is small enough we have

Kt1/2

R2(1-8)2 | Klz—y|? _1,R%(1-6)? _1R2(1-6)2
1 —K2€7 (Kt ) ¥ | ty\ > 1 —K267t 1 (K ) —Ke2R?) > —K267t 1 (2K )
9 _2(<1—6>2)
> 1 - K¢ ¢ 2K/ > 1/2.
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This implies that for any § € (0,1) and R > 0,

T(t,,0 ) > L -t
(t,z,0,y —c't) > We
if . € [-0R,0R] and |z — y| < eR, t < £2R?, and ¢ is sufficiently small, depending only on ¢ and K.
A chaining argument, as in [8], now shows that for any 6 € (0,1), there must be a constant «,
depending only on § and K, such that

T(t, 2,0 ) > O~

( y LU,y —C ) = 2Kt1/2e

holds if z,y € [-0R,0R], t < R? (i.e. rather than just ¢t < e2R?). Although I' depends on R, o and
K are independent of R. This finishes the proof of Lemma 5.2. [J

End of the proof of Proposition 2.1

We may now finish the proof of Proposition 2.1. By Proposition 5.1 we have

pls,a) = = (59)
s
for all s > Ty and = € I, where Iy C [c*s + N~1\/s,c*s + Ny/s] and |I;| > B+/s. We apply the
lower bound on the heat-kernel in Lemma 5.2. Let s > Tp, R = VS(NTL4+ N)/2, € = c¢*s+ R,
and I' = T'(¢, z, s,y; R, &) be the heat kernel in the tilted cylinder T'(¢, R, s) with Dirichlet boundary
conditions. For z € [c*t,c*t + 2R], t > s, we have

cs+2R
p(t,z) > j/ L(t,z,s,9)p(s, y)v(y) dy. (60)

S

Set
-1

b=——
N 4+ N-1

€ (0,1),
and t = s + R?. Observe that
I, Clc*s+ N 's,c's + Nys| = [c*s + (1 — )R, c*s + (1 + 0)R).

By Lemma 5.2, we have

f(t ) > « _ Kla—y|? o _Klzt—Qy\2
== _ o
BV =50 et 9KR®
for all
z€[c't+ (1 —0)R,c*t+ (14 0)R] = [c't + N~1/5, ¢t + N/,
and

yelcts+ (1 -8R, c*s+ (1+0)R] =[c*s+ N"1/s,c*s + Nv/5|.
Therefore, by combining (59) and (60) we obtain

p(t,z) > /I T(t, 2,5, 9)p(s, y)v(y) dy

»] Q)

_ C
> |L|minT(t > |I,|— mi >
_IAﬁg(ﬂwwmwwﬂw_\ﬁﬁ£%Mmﬁ_
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for all # € [c*t+ (1 —8)R,c*t+ (1+0)R]. Since R = \/s(N~1+ N)/2 and t = s + R? we have shown
that for o = 1+ (N1 4+ N)?/4, there is a constant C > 0 such that

p(t, ¢t +ovt) > ¢ %
s

holds for all ¢ > ¢Ty. Therefore, the last remaining ingredient in the proof of the lower bound in
Theorem 1.1 is the proof of Proposition 5.1. [J

6 The proof of Proposition 5.1

6.1 The homogeneous case

Since the proof of Proposition 5.1 is rather long we first present it in the simplest case v(z) = 1,
¢* = 0. In that case (53) (and (15)) can be proved simply by examining the explicit formula for the
solution to the heat equation on the half line, as shown in [14]. However, as such formulas are not
available in the non-uniform case, we will present an alternative (and much longer!) proof using the
energy method that we will adapt to the periodic case. The key step is the following lemma.

Lemma 6.1 Letv(x) =1 and ¢* =0, and let p(t,x) solve (42) with po(x) being compactly supported
on [0,00). There ezists C > 0 so that for any a > 0 we have

00 eZom: _ 6720130 5 1/2 Cea2t 0 par _ o—ax
—p“(t,x)d < dx. 1
e A B (61)

Let us first show how (53) follows from (61). We will take o = 1/v/t in (61). Then, if Ty is
sufficiently large, and ¢t > Tp, for any x € supp pg we have

Moreover, the integral
1(t) = / xp(t, z)dx
0

is conserved: I(t) = I(0). We conclude that for all ¢ > Ty we have

1/2
%) 6235/\/% o 6—2x/\/i ) C %)
</o NG p*(t, z)dx < 753/4/0 xpo(x)dx, (62)

or

X

0o 2x/Vt _ —2x/\t 1/2 (3]
(/ e € PA(t, x)d:v) < (tj/ xpo(z)de. (63)
0 0

Let us now take N > 1 sufficiently large (but independent of ¢), then for z > N+/t we have
e22/Vt > 2¢=20/VE thus (63) implies

0o 2x/v/t 1/2 00
/ ¢ p2(t, z)dx < C/ xpo(z)de.
NVE T t Jo
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Moreover, we have

/ xp(t, z)dx /
NVt NVt

)e_”"/\/ia:?’/de

IN

x/\/ 1/2 oo t 1/2
< (/ ¢ (t,:r)dac}o </Nﬁf/_22x/\[x3dx>
< C(/ zpo(x)dx ) </N y3e‘ydy>
< i/ zpo(z)dx 21(40,

as long as N > Nj is large enough (but independent of ¢). As I(t) = I(0), it follows that

NV
/ p(t x)dz > S0
0 4

From Lemma 2.2 we know that
TVt
/ xp(t, z)dz < CN 3.
0

Therefore, by taking N larger, if necessary, we have
/ ap(t, z)de > 2.
Nfl\[ 2
For ¢y > 0 to be chosen, let HtjE be the sets H,” = {z € [N"'/t,NVt] | p(t,x) > co/t}, and
H; ={x € [N"'Wt,NVt] | p(t,z) < co/t}. We have

I
< / xp(t, x)dx +/ zp(t, x)dr < / zp(t, v)dw + N2
HY - H 2

so that by choosing ¢y < I/(2N?), we have

Iy
< .
1 /Ht* xp(t, z)dx

Now, apply Lemma 2.2 again:
Iy Clo 22 +| N2
— < < — < —=
1 /Hj zp(t, z)dx 57 /t dx 3/2]H |N“t.

It follows that |H,"| > v/t/(4N?C). Except for the proof of Lemma 6.1, this proves Proposition 5.1
in the homogeneous case.

Proof of Lemma 6.1

In the homogeneous case (42) is simply

Pt = Dza, p(tv O) =0,
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since we assume that v(x) = 1 and ¢* = 0. There are at least three ways to prove Lemma 6.1 in
this situation: first, one can use the explicit formula for p(t,z). Second, one can use the fact that
q(t,x) = p(t,x)/x solves

qt = Quz + ;qz. (64)
Hence, if we set G(t, z) = q(t, |2]), with z € R3, then we get the heat equation in R? for g:
G = A4, z€R (65)
Then one could apply the usual Nash inequality to the function
o(t,z) = e¥%4(t,z), z€R3,

and prove Lemma 6.1 in this way. Neither of these methods would generalize to the periodic case,
hence we develop a third, longer but generalizable proof. Motivated by the above, let us define the
exponential moments

1 00 LT _ p—Ox
) =5 [ etz = [ =gt aja, (66)

Vo) = o= [ (et = [ e
21 Jps 0 20 '

and

Dy (t) = 1/ |Vo|?dz = /Oo M(qQ — ) zdz.
2w R3 0 2c *

The Nash inequality in R? (e.g. [23], Lemma 1.1.1.) gives the following lemma.

Lemma 6.2 There is a constant C > 0 such that for any function w(z) : [0,00) — R which is
smooth, bounded and compactly supported we have

(Va)*/? < C(1a)**Dq,

for all a > 0, where

. [ee] ean _ 6720136 R 0 par _ p—ax
Va :/ —— zwi(x)dzx, I :/ —z|w(z)| dz,
0 2cy 0 6%

and
. oo 2ar _ ,—20x
D, = ——z(w? - o*w?) d.
0 20

Using (65), it is easy to check that I,(t) = e*’tI,(0) and
V/

[0

(t) = 202V, (t) — 2D, (t). (67)

Lemma 6.2 applied to (67) results in the bound

: ClVa ()]
V() < 202V, (t) — L@
If Vo (t) = €22°t Z(t), then
, CZo(t)%/?
TR e
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It follows that Z(t) < (I,(0))?/t3/2, hence

00 620@’ _ 6—2ax 5 1/2 Ceoz2t 0 par _ p—ax
_ < .
(/0 5 xq(t, x)da:) < /0 - zq(0, z)dx

«

In terms of p(t,x) this is:

e’} eZax _ 6—201:6 5 1/2 Cea2t 00 paT _ o=
—p“(t,x)d < dx.
A L A

This completes the proof of Lemma 6.1. [

6.2 The general case

We now adapt the preceding proof to the general problem

1 0 c*
P= i @) = S (63)

with the Dirichlet boundary condition p(t, c*t) = 0. The next lemma gives the analog of the function
x in the periodic case.

Lemma 6.3 There is a function ((t,z) and a constant m > 0 such that
v(x)G = W(x)(), —c'Cy, x>c't, teR, (69)
C(t,c't)=0, teR (70)

and
m(x —c't) < C(t,x) <m Yo —c't), Va>ct, teR.

In analogy to the uniform case, define

q(t, x) = p(t, x)/C(E, x). (71)
Using (69) and (68), one can check that ¢(¢, x) solves

¢ X
vgr = (V) + 21/%(1:5 — gy,

which is a generalization of (64).
Recall the function f(¢,z) that satisfies the adjoint equation (48). A conserved quantity is

I(t) = /00 v(z)f(t,z)p(t,x)dx = /OO v(z)f(t,z)C(t,x)q(t, x)dz.

*t ct
The analog of I, in (66) is
1(®) = [t ow@p(t.)ds,
c*t

a(z—c*t)

with a function n4(¢, z) that is exponentially growing as e as x — +o0o. Then

dla(t) /“’[3%
dat  Ja, Ot

= [ e <”($)%7?>m + e G it = et

*t

v(@)p(t, ©) + 1a(t, ) (VPe)e — ¢ polde

provided that 7, satisfies

0N N, « ONay N
) (052 ) e G = e alt ) =0
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Lemma 6.4 There is a constant C' > 0 such that for each « sufficiently small there is a constant

w(a) and a function 1y (t, x) satisfying

Z/(CL')% + (V(x)ana> + C*% =ul@)v(x)n, teR, x>ct, teR

ot Ox ox
and
Na(t,c't) =0, teR
and
Cg < nalt,z +c't) < C‘lg, V>0, teR.

In addition, there exists po > 0 such that
pla) = poa? 4+ O(a?) for all o > 0 sufficiently small.

For the homogeneous medium, v(z) = 1, and the function

ea(:c—c*t) _ e—a(a:—c*t)

t’ — )
Na(t, T) o

(72)

(73)

satisfies (72) with p(a) = o?. In the general case, the function 7, has exponential asymptotics as

xr — +00 1
Na(t, z) ~ —ea(xfc*t)ﬁa(x), as x — +00,
@

where 7,(z) is a positive periodic solution of

OMa

(5] +a @i+ +are) G +all - v = (ula) - @2l

X

and p(a) is the corresponding eigenvalue.

Let us postpone the proof of Lemma 6.3 and Lemma 6.4 and continue with the analysis of p(t, x).

We define the second exponential moment by

[e.o]

Val(t) = /OO v(x)n2a(t, z)p(t, x)q(t, x) dz :/ v(x)noa(t, 2)C(t, ) g2 (t, x) d.

*t c*t

Then

dV,(t o0 o0 o0
®) _ / v(0m2a)pq dx + / UN2apiq dx + / UN2a Pt d.

— n(za)Valt) - |

c*t

o0 o0 o0

V(L 2a)pq dx + /

c*t c*t

where £*n = v~ (vn,), + v~ 1e*n,. Since

pt = Lp, q=Lqg+ Q%Qm

we have

o0 o0

Vi) = wa)Va(t) - [ (L o) da + /

*
c c*t 00

= u(2a)V,(t) — / vnoa (DL + qLp) dx — 2/ UN2aPeqz dT

c*t c*t

oo oo
+ / UN2aptq dx + / Un2apq: dr
C

*t c*t

— p2a)Va(t) — 2 /

c*t

’g% c*t

[e.e] o0

C
V120 Pz Gz AT + 2 / VT]QaP?IQx dx.

c*t
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As p = (q, we have p, = (,q + (g, and so
G B 9
pple = 4CeGze = P2z — C(qx)”-

Therefore, the last two terms in (74) reduce to

o0

VI(t) = p(20)Valt) - 2 / UM (42)? da. = p(20)Va(t) — 2D (t), (74)

c*t

where

Da(t):/ yngag(qx)2dm.

*t
As in the homogeneous case, V,,(t) is the quantity we need to estimate — we do this by bounding
the right side of (74). We claim that there is a constant C' > 0 such that the inequality

Vo)

Da(t) > CW

holds for all ¢ > 1 and « > 0 sufficiently small. Since v > 0 is periodic, this is equivalent to the
statement that for any a > 0,

00 5/3 0 4/3 0
oCq2d _c( N d> < N x2d>. 7
</m772 Cq w) < /c*tan T /an C(qe)" dz (75)

By Lemma 6.3 and Lemma 6.4 we may compare the function ((¢,x) to the linear function = — ¢*t,
and 7,(t, ) to the function (e®* — e~ **)/a. That is, for o > 0 sufficiently small

00 00 e2ax o 67204:1: R
/ ?72va2 dx < Cl / 71’(‘72(@ T+ C*t) dr = Clva,
c

*t 0 204
and
0o 0 o _ - .
/ NaCqdr > CQ/ ———xq(t,x + c't)de = Col,,
c*t 0 «
and

00 9 [ee] 62(1:1: _ 672011 .12 .
/ 120€(qz)* dx > C’g/ Tﬂqx(t,zr + c*t)|*dx > CaD,,.
c*t 0

Now (75) follows for all ¢ > 1 by applying Lemma 6.2 with w(z) = q(t, z + ¢*t).
Returning to (74) we now have

Ve ()

Vo(t) < p(2a)Va(t) — CIa OLE

where I’ (t) = p(a)I,(t). For V,(t) = e#(20!Z,(t), this implies the bound

—tp(2a) Lt5u(2a) /3 5/3 5/3
(t) < _Ce € (Za(t)) o _C(Za(t)) etRa (76)

!/
Z, 61&4;1(04)/3101(0)4/3 - Ia(0)4/3

«

for t > 1, where

Ra = 2p(20) — Sp(0) = 2u(20) + O(a?).

3 3
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We used (73) in the last step above. We deduce from (76) that

4/3 3/2 2 _ 3/2
1a(0) Ra> :C(Iam) <tRa Ra> | -

Zo(t) < C <etRa — ¢Ra t—1)3/2 \ etha — ¢Ra

Note that, since e* is a convex function, we have

<e
eb —ea —

for all b > a. Moreover, R, > 0 for « sufficiently small, so Ryt > R,, for ¢t > 1. Hence, (77) implies
Ia(0)2 —3Ra/2 OI@(O)Q
<C——FF= ald < "
Za(t)_C<t_1)3/26 S G-
Therefore, we have

1a(0)°
n(2a)t _~a
Va(t) < Ce TR

which is
00 1/2 eu(2a)t ()
| maltowendn) <0 [T a0 ou)0.2)m(e)
c*t (t - 1) / 0
By Lemma 6.3 and Lemma 6.4 and the definition (71) of ¢(¢, x), this implies

®© 20z _ 20z ) 1/2 e,u(2a)t 0 pax _ LaT
(/0 Sy (t,c"t + x) dx) < C(t O /0 - zpo(x) dz

The rest of the proof of Proposition 5.1 now proceeds exactly as in the homogeneous case, in
the steps following (62)-(63), taking o = 1/v/#, and keeping (73) in mind. The only minor technical
detail is that the conservation of

I(t) = /000 xp(t, x)dx

is replaced by the conservation of

10) = [ vl)f(ta)p(t.0) do

*t
together with the fact that m(z — c*t) < f(t,z) < m~1(x — ¢*t) for some m > 0, and all z > c*t.
The rest of the argument is essentially identical. [

Proof of Lemma 6.3

The proof is very similar to that of Lemma 4.2. Recall that the “linearized” traveling wave is
o(t,z, ) = e N Dyp(a, ).

At the critical speed, there is another solution of the linearized problem which moves to the right:
the function
- 0

Bta) =~ = eV (o — (e, A) — (e, A) = d(ta) ( (@ — ) — 2
A’ v
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is also a solution of the linear equation (11). So, if we set

U(t,z) = (z —c't) — qf/;\ = (x —c't) + x(x),

(recall (40)) then the two linearized traveling waves are ¢(t, z) and ¢(¢, z) = ¢(t, 2)¥(¢, z). Therefore,

U also satisfies (69):
ov ( 8\1/) L0V
T

Z/(CL‘)E l/(l’)% c B

In the homogeneous case we have 1(z, \) = 1, hence we take ((t,z) = ¥(¢,x) = (x —c*t). In general,
however, ¥ doesn’t satisfy the Dirichlet boundary condition at z = ¢*t in (70), therefore we can not
take ((t,x) = ¥(t,x). Instead, we take ((¢,x) to be the limit (as n — o0) of a sequence of functions
{¢™(t,2)}°, which satisfy

V(JZ)Ct(n) = (V(;U)Cg(c”))x — c*(é"), x>c't, t>—n
“)=0, t>-n

c

(—n,z) = max(0,¥(—n,z)), = > —c'n.

The maximum principle implies that for some constant C,
U(t,z)—C < (™W(t,z) < U(t,z)+C,

holds for all ¢ > —n and = > c¢*t. The rest follows as in the proof of Lemma 4.2. [J

Proof of Lemma 6.4

The eigenvalue asymptotics for a < 1. The only remaining ingredient in the proof of Propo-
sition 5.1 is the proof of Lemma 6.4. First, we prove the asymptotics (73) for u(a). Consider the
periodic eigenvalue problem

(M0)52) +atans + (@ + avle) G+ all - vy = s(awan
n@+1) = n(a) >0,

with () = p(a) — a? and the normalization

1
/ v(z)n(xz)de = 1.
0

Observe that v(0) = 0 and n(z,« = 0) = 1. Moreover, as v(0) = 0 is a simple eigenvalue, y(«) is an
analytic function of «, for « sufficiently small. The function ' = dn/d« satisfies

on’ ! * o' . o / @ x(q _ .
v(z) +a(w(z)n) e+ (F+av(z))=—+c a(l—v(z))n +(vn)e+v——+c*(1—v)n = vy’ ++'vn.
or ), ox ox
Setting a = 0 we obtain:
o' Lon' * _
<V(x)8m)z+c %-I—Vx-i-c (1-v)=~r. (78)
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Integrating (78), we conclude that 7/(0) = 0. Next, 1" solves

on" " . n" . " / o' . /
viz)=— | +aw(@z)n)s+ (" +av(zx)) =+ ca(l —v(x))n" +2(vn)y +2v— + 2¢* (1 —v)n
or ), ox ox
— ’)/1/77/,—|-2’)/,1/77/+"y”1/77.
So, at & = 0 we have

Z " ,
(V(l‘) 887; > +c* 881; +2(vn)e + 21/2—7; +2c* (1 —v)n =~+"v.

Integrating this equation, we obtain

1 8?’]
"n_ w1 /
' = 2/0 (V o +c*(1 V)n) dx. (79)

Since 7/(0) = 0, (78) implies that

. _ Lon' o'
cFl-—v)=-vy,—c o (Vf)x)z

Plugging this into (79), we obtain

1 an/ 1 87’]/ 2
"(0) =4 —dx+2 — | dx.
~"(0) /0 e T+ /0 v <8£B) x

Since 4y + 2y? > —2 for all y € R, we conclude that

1
7"(0) > —2/0 v(z)de = —2

with equality if and only if %—Z = —1. Since 7’ is periodic, %—Z = —1 cannot hold at all z, so we must

have 7”(0) > —2. Finally, since p(a) = a? + v(a), we have p”(0) = 2 +~"(0) > 0, proving (73).
Let us now denote the eigenfunction of (78) by 7, to indicate its dependence on a.

Corollary 6.5 There is a constant C' such that for all a > 0 sufficiently small, there is f(a) > 0
with w(—pB) = p(a) and such that

g _ 1‘ < Ca, (80)

and
sup |fo(z) — 1| < Cay, sup |73(z) — 1| < Coa
xT xT

Proof. The existence of such a 3 satisfying (80) follows from the fact that u(a) ~ Ca? for a small.
The bounds on 7, and 7g follow from elliptic regularity and the fact that for o = 0, fo(z) = 1. O

Construction of the function 7,(¢,z). Continuing with the proof of Lemma 6.4, choose § =
B(a) > 0 according to Corollary 6.5 and consider the terminal value problem

a (0% 8 (0% *a (0% *
v(a) =l + <V(x) g;) + oL = (@ t<T, x>t (81)
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with the terminal condition 7,7 (7, z) > 0 to be determined. The function 7,(¢,z) of Lemma 6.4
will be defined as lim7_. 1o,7(¢, ). Observe that for any constant C, the function

aflea(a:fc*t)ﬁa (l’) - Cﬁflefﬁ(:pfc*t)ﬁﬁ($)
satisfies (81), since u(—0B) = p(a). If we choose the constant

Cy = p min Tla ()

then the function
ha(t, ) = e Wiy () — Cu e P g ()

satisfies hy(t,c*t) > 0 for all ¢ € R. Similarly, if we choose

C’l—é ax?a( ) > 0,
a = (z)
then the function
h(t,z) = a~te®@=Dy (2) — O e P@=Dig () (82)

satisfies hy(t,c*t) < 0 for all t € R. Now, if we choose the terminal condition for 7,7 to be
Na, (T, x) = max (0, he(T, x)) ,
the maximum principle implies that
hi(t, x) < na(t, ) < hu(t, ) (83)

holds for all ¢+ < T and x > c¢*t. Although the constants C, and C; depend on «, Corollary 6.5
implies that
Cy=1+40(a) and Cr=1+0(a)

as a — 0.
Now, we claim there are constants L > 0 and M > 0, independent of T, such that

eQT _ p—ax e—ox

M <prtatot <M S (84)
(8] (0%

for all x > L and t < T, and all « sufficiently small. Given this claim, parabolic regularity and the
maximum principle imply that there is a constant b > 0 (also independent of T") such that

a770c,T

ox

holds for all ¢t <T — 1 and « > 0 sufficiently small. Since

i e _ p—ai
dx o

it follows, by parabolic regularity, that

b <

(t,c*t) < b !

= 2’
=0

eQT _ p—ax ar _ p—ax

[ R ) e o —
(8] (6%
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forall x > 0 and t < T — 1, with a constant C that is independent of 1. Then letting T' — 400
we may take a subsequence of functions 7,7, (z,t) such that T, — oo and n,, 7, converges locally
uniformly to a function n4(¢, z) satisfying all the criteria of Lemma 6.4.

The proof of (84). Let us derive the upper bound in (84). Because of (83), it suffices to show that
et _ g—ax
ho(t,z+ct) < M1 ——— (85)

(0%

holds for all t € R and > L, with L > 0 and M being independent of . Let us write hy (¢, z) as

*t
ho(t,x + c*t) = a i (x + c*t) <e a W@“)

“3 Mo (z + c*t)
Therefore, since 7, is uniformly bounded in z, independently of a € (0, 1), the upper bound (85)

holds if ( 9
az «a 77/3 z+c —/Bx az —ax
—Cy=—"——"7+7——= < M- —
(- oG e ™) < M-

for some constant Ms, which is equivalent to

20w Oé T+ 't —(B—a)x

Since Cy, 7a, g are positive, this inequality certainly holds if
G_QOCIMQ < MQ — 1.

So, if we set My = 2, then (86) holds for all x > In(2)/(2«). Now consider (86) for z < In(2)/(2«).
By Corollary 6.5

a gz + ¢*t)

B 1o + c*t)

as a — 0, uniformly in x and t. Moreover, 3 — a = O(a?), so that for = < 1n(2)/(2a), we have

=1+ 0(a)

AT+ ) (gaye _
ﬂna(m—l-c*t) =1 +0(a))

Therefore, with My = 2 and = < In(2)/(2«a/), inequality (86) becomes

My —1
—2az < 2 —1-0 )
€ - M2—1+O(a) (a)
Hence there is a constant L such that (86) holds for all z > L and ¢t € R, and all « sufficiently small.
This establishes the upper bounds in (85) and (84).
In a similar manner, we now we prove the lower bound in (84). It suffices to show that

ax —ax
— €

hu(t, @) > M———— (87)

holds for all ¢t € R and x > L. Let us write h(¢,z) as

1. +c't) _
Byt 2+ &) = a— i (e 4 ¢t ans(@+ct) o)
itz +ct) =a "z +c )(e Cﬁna(x—l—c*t)e
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Therefore, since 7, () is uniformly bounded away from zero, independently of « € (0, 1), the lower
bound (87) holds if

B ila(z + c*1)
for some constant M3, which is equivalent to
_ -
My 1> Mgclewe—wﬂ)m 20z (88)
B 7oz + c*1)

This bound certainly holds if

My — 1> M 2 BE D) graye
B 7o (2 + c*t)

By Corollary 6.5 we know that

a gz + ¢*t)
C——~=14+0(a) L2
lﬁﬁa(x+c*t) (o) <

uniformly in x and ¢, if « is sufficiently small. So, if we set M3 = 2, then (88) holds for all z > In(2)/«.
Now consider (88) for # < In(2)/a. Recall that, 8 + a = 2a + O(a?), so that for < In(2)/a,
we have ~ .
ans(x+ ) - (5-aga
|—— e
B 7a(x + c*t)
Therefore, with M3 = 2 and = < In(2)/a, inequality (88) becomes

= ¢~207(1 1+ O(a)).

Mz —1> (M3(1+ O(a)) — 1) e~ 222,

which is

1
—2ax < —1— O )
=91 +0()-1 ()
Hence there is a constant L such that (88) holds for all z > L and ¢t € R, and all « sufficiently small.
This proves the lower bound in (87) and in (84). This completes the proof of Lemma 6.4, and the
proof of Propositions 2.1 and 5.1 is also now complete. [J

7 Proof of Proposition 3.1

Recall that the upper bound in Theorem 1.1 was reduced in Section 3 to the proof of Proposition 3.1
that we present in this section. Let p(7,x) be as in this proposition, that is

(1 —=w(7))Pr = Paa + 2(?;]5% x> T, (89)
with the Dirichlet boundary condition p(7, c¢*7) = 0. The coefficient w(7) satisfies w(7) ~ 3/(2¢*7) as
7 — 00, and |w(7)| < C/7, |'(7)| < C/7? for T > 19. The general philosophy is that the correction
w(7) does not play a role in most of the decay estimates, and the function p(¢, z) behaves essentially
as p(t,z), which is the solution of (89) with w(7) = 0, and which we have studied in detail in the
preceding sections. We will need the following steps to prove Proposition 3.1. The key step is to
establish that p(¢,z) decays as C/7 at positions of the order ¢*7 4+ O(\/T).
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Proposition 7.1 For any Lo > 0 and € > 0, there exists C: > 0 so that

1
C.t

Sp(;vc; LO EI)SC
T
hOldS 707 CI,” T > 1.

This is a direct generalization of Proposition 2.1 and Lemma 2.2 to the case w(7) # 0. We will
also need a more or less explicit solution of the approximate equation that we will need compare to
p(t,x). It is described in the next proposition.

Proposition 7.2 Let x € R and let x(x) be as in (40). There is a function 0°PP(T, x) such that for
any o > 0, 0P (T, x) satisfies

00°rpP o 3
(1 - W(T)) 9 - O%ZP - 2g92pp = O(T ), cr<zr<ct+ U\/F, T2>1,
T

and there is a constant C' (depending on o and m) such that

r—c*r+x(x)+y _G@en?

OPP (T, ) — 32 e A0FmT

< 0732 <"’“"_\/ET>2 +0(r2) (90)

T

holds for all x € [¢*1,¢*T 4+ 0+/T] and T > 1. The constant k in the exponential factor is defined by
formula (101) below and satisfies 1 + K > 0.

The following refinement of the approximate solution satisfies the exact problem.

Proposition 7.3 Let 0 > 0 be fized, and let 0°PP(7,x) be defined as in Proposition 7.2 for some
x € R. Let &(7,x) solve

(1- w(7))§ =&zx + Q(f;&p, € (cr,c'r+oyT), T>1 (91)
T
with the boundary conditions
E(r,c*r) = 0P(1,c"T),
T CTHoVT) = 0(r,CT 4 oyT). (92)

Then there is 19 > 0 such that

|&(T,2) — 0PP(1,2)| < <z <dTHoT

73/2

holds for all T > 1.

Observe that by choosing X > ||x||cc in Proposition 7.2, we may arrange that §*PP(r,c*7) > 0 for
7 suffiently large. Similarly, with ¥ < —||x|loc, we have 0PP(1,c*1) < 0 for 7 sufficiently large. Let
us define 89" to be a solution with Y = 2||x||es and 6577 (7, ¢*7) > 0; let 07" to be a solution with
m = —2|x|le and PP (7,c*7) < 0. To prove Proposition 3.1, we wish to compare p(7,x) with the
functions 05", We know from Proposition 7.2 that

C

Co
app(. x Al P
PP (1, 1 + o/T) v 2
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Combining this with Proposition 7.1, we see that there must be C; > 0 such that
p(r, 't + o/T) < CLOPP (1, "1 + 0/T)

BT, ¢ T+ oy/T) = CTH0 (1,1 + 0/7),

for all 7 > 1. Now if &4 (7, ) solve (91) for 7 > 1 with the boundary conditions (92) using 6P = 07,
we have

Ep(r, ') = Hipp(T, c't)>0= Cl_lﬁ(T, ')
E(r, ' T+ oVT) = Qipp(T, T +oT) > Cl_lﬁ(T, ')
and
E (r,c* 1) = 0"P(1,c" 1) < 0 = C1p(, c*7)
£ (r,¢*r +oT) = 871, ' + 0/T) < Cup(r, )
The maximum principle implies
017167(73 ZL‘) < ﬁ(Ta SL’) < Cl£+(7_7 :L‘)?

holds for all 7 sufficiently large and = € [¢*T, ¢*T + o/T].
Proposition 7.3 implies that for any d > 0 there exists x5 so that

|Ex (T, ) — 0P (1, 2)| < 60 (1,2), T+ 15 <2 <7 +eT,
if 7 > 7g. It follows that

C—l
%Ofpp(ﬂ x) <p(r,z) < 201011’;’(7, x), 'THas<z<cTHeJT,

for all 7 > 7. In view of (90) and parabolic regularity, the conclusion of Proposition 3.1 now
follows. O

The proof of Proposition 7.1

The proof of Proposition 7.1 is as in the case w(7) = 0 (i.e. Proposition 2.1 and Lemma 2.2) but
a little more technical — we focus only on the differences. The first ingredient needed is a quantity
that is bounded from above and below.

Lemma 7.4 Let p(1,z) be as in Proposition 3.1. There is C > 0 such that
+oo
ct< / (x —c*m)p(r,x)de < C, V71>0.
Proof. It suffices to bound the integral
+00
1) = [ @)1 = (o) f(r,2)p(r, ) da

where f(7,z) is the function defined in Lemma 4.2, with m(z — ¢*7) < f < m~Y(z — ¢*7). In the
case w = 0, I(7) is conserved. We compute:

dI = - /+00 vipder —w /+OO vipde = Ot )I(1) —w /+OO vfrpdz. (93)

dr o r ot
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+oo
For an upper bound on I(7), we treat the spurious term / vf;pdx as follows:
c*T

1/4 too

+o0 c*T+T
/ VfTﬁdx:/ yfﬂﬁda:—i—/ v pde = IT + III.
c*r c*r c*r4rl/4
By parabolic regularity, there is a constant C' > 0 such that |0, f(7,z)| < C, hence
+oo +oo
|1IT| < 07_1/4/ xpdr < 07_1/4/ v(z)f(r,z)p(r, x) dx.
C

c*T *T

Recall that equation (32) for p is equivalent to

(I —w(r))pr = (v(@)Pa)e —
with p(7,¢*7) = 0. A simple time change so that

dr’ = _dr
1—w(r)’

shows the heat kernel bounds of [21] in the whole space hold (with the time change) for the perturbed
equation
1 c*
(I —w(r)) Pr= m(”(x)Px)m - m x5

z € R.

In particular, we have
P(ra) <07 [ P(O.y)ldy.
R
So, because p(7,z) is less than the solution of (94) in the whole space with the same initial data
p(0, -), we have:

crr4rl/4

11| < 07—1/2/

c*T

+o0o
/ |p(0,y)|dy dz = 07_1/4/ p(0,2) dz.
R 0
Gathering these estimates we conclude
I'(r) O(r I + 077" + 077/,

which implies the existence of C' > 0 such that I(7) < C(1 + 1(0)).
For a lower bound, note that f. <0, while v,p > 0. Therefore, the term

“+o0o
—w/ vi;pdz
c*r
in (93) is non-negative. This implies I’(7) > O(72)I, so that I(t) > CI(0) > 0, with some constant
C>0. O
The main step in the proof of Proposition 7.1 is an estimate on the quantity
+oo

Valr) = (1=w(r)) [ vle)ma(ra)priala(r. )i,

c*T
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where

p(T, )

((r,z)

and ((7, z) is defined by Lemma 6.3; it solves the unperturbed equation (i.e. with w = 0) and grows
linearly. The function 7,(7, z) is defined by Lemma 6.4. The time derivatives of the functions 7 and
¢ will have to be examined, and this is the object of the following

q(T,l‘) =

Lemma 7.5 (i). There is a constant C' > 0 such that |0:((1,z)| < C for all x > c*r.
(i3). There is a consant C' such that |0:-na (T, z)| < C for all x € (¢*1,¢* +a™ ).
(iii). There is a constant C such that |0:na (7, x)| < Cang (7, ) for all x > c*r.

Proof. Part (i) just comes from parabolic regularity. As for Part (ii), we come back to the notations
of Lemma 6.4. Consider T' > 0, at 7 = T we have, just using the equation for 7,:

87'"7a(T, 33) _ O(ea(x—c*T) + e—a(gc_c*T)) + dﬂa(SC)

where i, is a measure carried by the (compact) zero set of the function h;, which was defined at
(82), and whose mass is uniformly bounded with respect to «. So, applying the equation for 9,7, -
recall that it solves the same equation as 7,:

aTna(T — 1,1}) = O(ea(J?—c*T) + e—a(:v—c*T)) + O(l) — O(ea(w_c*T)).
Running the equation for 7 < 7T — 1 yields
[0r 10 (7, 2)| < Ce* Do (),

and s0 0,1,(7, ) = O(e*®=¢"7)), which is sufficient to prove the claim. [J

Proof of Proposition 7.1. A straightforward computation shows that

dVy, - -
= = (12a) Vo -w / v dz — 2/Vnpqu dx
_Ca e
+2 Vnp?qx dxr +w Vnpq? dx
= (u2a) — W)V, — 2D, + w/y (nﬁq% — nTﬁq) dx
+00 9
= (u2a) —Vy + w/ (ynmgq — V(@Tnga)pq) dx — 2D,,.
c*r

Here, as in the case w = 0, we have defined

Dalr) = / s

We now use the following fact: for all M > 0, there is a constant x3; > 0 such that, for all

1
nonnegative functions u(x) € C1([0,1]) such that |u'(z)| < M/ u(z)dz we have:
0
1 1
/ u(x)dr < KM/ zu(z)dx.
0 0
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If not, there is a sequence u,, of such functions with unit mass and uniformly bounded derivatives
whose first moments tend to 0, an impossibility. Now, from this remark we have

—+00
w/ V‘CT”?&‘QZ dx < CT?lVaa
c

*T
and from Lemma 7.5 we have
“+o00 “+o00
w/ v|0rn2q|pg dx < Cw/ Uaapqdr < CT71V,.
c*T c*r
Because of Lemma 7.4, we have (following the lines of the proof of Proposition 5.1):
A 5/3 (V)?/3

o < (u(2a) + O )Valr) = €55 = ~C s e™ 4 (n(2a) + O™ )Va(r).

Let us choose T > 0 and examine the above differential inequality with & = 7! and 7 < T. For
A > 0 large enough, the function A7—%/2 is a super-solution for 7 < T , showing that V,(T) =
O(T‘3/2). So, for all 7 > 0, we have V,(7) < C773/2, and the rest of the proof of this proposition
follows as in Proposition 5.1.0J
The proof of Proposition 7.2
The proof is by a multiple-scale expansion. We will construct a function PP having the form

PP (1,2) = a(T)v(T, (x — c*1)/R(T), ).

which satisfies 0%PP(7, ¢*1) = 0, with R(7) = 7!/2. Plugging this ansatz into

(1= w(7)0r = O + 2‘2’”996,
we see that v(7, z,z) should satisfy
a zR' c* 1 9 9
(1-w) E’U +ur — fvz - Evz = ﬁvzz + E’sz + Vgz + Qd:ZUI + RQ;I’UZ.

We will construct an approximate solution given by the expansion

1
721)2(25‘/1")4» /U3(Za$)a

1
v=u0(r,z,2) = 0°(2) + =v'(z,2) + 7

R R3
where v!(z,z) and v?(z,z) are uniformly bounded in each compact set in z, and x, and are both
periodic in x. Therefore, the desired equality is

a o, 14 I 5 I R 1, 2 9 3 3
(l—w)g(v —|—Ev —l—ﬁv —i-ﬁv)—(l—w)ﬁ v +EU —i-ﬁv

R 1 1 1 * 1 1 1
—(1— w)z—(vg + vl ol ) - (11— w)c—(vg + —vl + 02+ —0d)

R R* R** R3F7 R R* R** R37”
1 1 1 2 2 2

= 00 + —vl + 0k + ol + o0? + Sl
R2 zZz R3 zZz R4 zZz R2 zZx R3 zZx R4 zZT

L1

1 2 2 2
+Evz$+ﬁv§$+ d):r 1 d)x 2 (ba: 3

3
20: 0. 2 Qx4 2 Gr 5 2 @p 3
- T ——a ——a ., i . 95
+ U+ 55V, F 53Vt 5o (95)
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Let us set a(7) = 77™, so that a//a = —m7~! = O(R™2). Now we choose v;, i € {0, ...,3} so that
terms of order O(R™1), O(R™2) and O(R™3) will cancel. Recall that w(r) ~ 3/(2c*\*7), so w will
not play a role until we equate terms of order O(R™3), and even then the only term to contribute is
we*v?/R. All other terms involving w(r) are smaller than O(773/2).

If we equate the leading order terms (of order O(R™!)), we obtain an equation for v! in terms

of v0:
bt = (2282
6" ¢(z)
Recalling x(x) defined at (40) which solves

vl 4222 + c> v(2). (96)

Xzz + 2¢:;Xm = _2¢:; -6
we see that (96) has a solution of the form v!(z,z) = v2(2)x(x) —p°(2) with x°(z) = x () + x being
periodic in z, and ¥ being any constant. For any choice of the constant ¥ and p%(2), (96) holds and
the O(R™!) terms in (95) cancel.
Let us now equate the terms of O(R~2) in (95) to obtain

1 2 ¢, o d o 2R 4 1 1 2 2 ¢r 4
I i L A R R i
which is:
PR 2 P 1=0 97
«t Ev + ma? +2vz+v + cvl +2v}, + Ev =0. (97)

Consider the operator pg, + 2%(( )) Pz = gb*z(gppz)x acting on 1-periodic functions, where ¢ =

e HFh(x). We claim that the adjoint operator has one-dimensional kernel. A function 7 is in the
kernel of the adjoint operator if and only if

(6* (6 *N)a)e =0 (98)
which holds if and only if
7) = k1 *(x) /'¢ (s) ds + kad2(a) (99)

for some constants k; and ko. If k1 = 0, the function 7 cannot be periodic, since ¢?(z) = e~ 2472 (x)
is not periodic. So, we may assume k1 = 1. However, the function

= *(x /¢ (s)ds + kad?(z)

will be periodic for exactly one choice of ko:

B e,
b= STy § >0

Therefore, with kg chosen in this way, any other solution of (98) must be a multiple of this function
n given by (99). Observe that n > 0 for all z.
If (z) is 1-periodic and spans the kernel of (¢%(¢2n),)s, then equation (97) is solvable if and
only if the sum
P !

mo® + v + 22, 4 cvl +2vm+2¢
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is orthogonal to 7(z), for each 2z € R. Using v! = v9(2)x(z) — p°(2), we write the sum as

mv + 21}2 + vzz + CUSZXO + 2”22)(2 + QQZZUSZ}( - <C + 2¢;1> 2 (100)

So, the solvability condition is

(mv —|-2vz—|-v )/Oln(:v)d:v = —/01 <cv —1—212%,:—1—2%E 1>77(;U)d:v

1

¢

= - / <CUEZ><° + 200X + Zjvgzx n(x) d.
0

Here we have used the fact that fol(c + 2%1)77(3:) dz = 0, so that the terms involving p? cancel after
integration against 7. Hence, v°(z) should solve

mo? + 27)2 O 14k =0

= (/Oln(x) dx>_1 /01 (cxo(x) + (@) + 2€fg><0(x)> n(z) dz. (101)

It is not difficult to show that

where

(1 +x8)% da
[ ndx

In particular, » is independent of the normalization of x°(x) (the choice of y). Thus, we choose
v%(2) > 0 to be the principal eigenfunction of

1+k=

mv® + 21)Z + (1 +r)02, =0, 2>0, v°(0) = 0,

which forces m = 1, and
2

0(2) = ze” T

The function pY(z) is undetermined so far. With v%(2) chosen in this way, there exists a function
v%(z, ) which is periodic in x and satisfies (97). Thus, the O(R~?2) terms cancel. In consideration
of (100) and the definition of v", we see that (97) is equivalent to

Vg + ZGZ: 2 =—12.(2) (CXO +2xp + 2q2fx° — /~c> - (c + Qﬁj) .

Therefore, v2(z, ) must have the form

vi(z,2) = 02, (2)0%(2) — p2(2)x°(2) + ' (2),

where ©2(z) is a periodic solution of

+2ﬁA2 <cX0+2X2+2¢””X0—/<;) .
¢ ¢
Finally, equating the R~3 terms suggests choosing v>(x, ) to satisfy
3
am:+2q;;v i 2)\*’02—(771-}-1)11 - %U; _Ul ( *+2¢;1)U3—2U§x- (102)
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The right hand side is:

I\ vz —2v XO + 2]) - §Usz + pz - Uzsz +pzz

(C +2¢:;)( Vy22U _psz +pz) - 2( Vyzz 33 pzzxm)

Therefore, the solvability condition implies that p°(z) should satisfy

z
2p0 + ip(z) + (1 + K’)pzz ﬂlvzzz =+ B22 2z ( - 2/62)

20*

_ </0177(x) d:c) 1 /01 <X0+ (c* +2‘ZZ)@2+2@§) n(z) da,
= (/0177(96)6155> /leond%

and we would like to have p°(0) = 0. The p' term does not appear in the solvability condition.
Therefore, we may take p'(z) = 0. We let p°(2) be the unique solution of the initial value problem

where

z 3
7p2+(1+’€)pgz:ﬁ zzz+/82 U +( _262)’027 z2>0

20
Pty 9 V2 T g

with the initial data initial p°(z) = 0 and p2(0) = 0.
Having chosen p” in this way, we take v3 to be a solution of (102), which is unique up to addition
of a function p3(z). So, the O(R™3) = O(773/2) terms have canceled. Our approximate solution is:

6P (t, ) = 710 (2) + 7'_3/2211(2, z) + 7 20% (2, 1) + 7'_5/21;3(,2, x),

with
. e
vo(z) = ze FR),
22 2,0 22
olz,z) = XO(x)e T — M6_74(1+n) —0(2).

2(1+ k)

Now, fix a constant ¢ > 0. Having chosen p°(0) = 0 and p2(0) = 0, we may choose C; > 0 so
that |p°(2)| < C122 for all z € [0,0]. Consequently, there is a constant Cy > 0 such that for all
x € [¢*1,c*T + o+/7] and T > 1 we have

0 2
P T AE) o
3/2 €

-

* 2
OPP(t,x) — < Cyr—3/? (C T) + 0(7_2)

\/7_

The last term O(772) comes from v? and v® and the fact that v? and v are uniformly bounded over
(z,2) € [0,0] x R.

Since the periodic function x°(z) = x(x) + X is unique up to addition of a constant, we may
choose Y < 0 so that max, x’(x) < —1. Then, at the point = = ¢*7 we have

0 (1, ¢*r) < 7 Y0(eT) + O(r ) < —7 Y2 £ O(r72),

which is negative for all 7 > 1 sufficiently large. Alternatively, we could choose ¥ > 0 so that
ming x°(z) > 0. Then we would have §PP(7, ¢*1) > 0 for all 7 sufficiently large. O
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The proof of Proposition 7.3

Using Lemma 4.1 we bring this problem into the form

1 0 c*
(1 -w(r)ér = o(z) O (v(2)€) — ()

2 (103)
Let
O(1,z) =&(1,2) — 0PP(1,x)
so that ®(7,c¢*7) = 0 and ®(7,c¢*T + Lo + /7)) = 0. We have
(1= w(n)(@)®r = (V(2)Ps)s — '@z + O(T 7).
Multiplying by ®(7, z) and integrating by parts over the interval I = [¢*7, ¢*T+ Lo +¢£+/7], we obtain
w'(7)

2 | v(2)®%de = — [ v(x)®3de 3 xT.
() (1L~ ()@ + ) /I<)<1>d /I()cizd 4+ O )/chd

1d
2d7' I

Note that, since ®(7,c*7) = 0, we have

C
|w’(7‘)|/1/<1>2d:c < 2527'/1%1)5(1:1:
I T I

and
Ce

C
o(r— /cbdx < + /<I>2dx < = +052/uc1>§dx.
O(r™) f < —p . - f

T

If now ¢ is small enough so that the constant Ce? is less than 1/4 it follows that, for 7 > 7 large
enough, we have

1d 1
sar v(z)(1 —w(r))®%dr < _Z/IV(I)(I)?de + %

1 C
< - 1-— d2d —.
< e [ () B+

We conclude that, for ¢ sufficiently small, we have
C C
d?dr < < A
Jirowe < i +

Now, parabolic regularity implies that |®(r,2)| < C/(1 + 7)%? for 7 > 7¢ sufficiently large. This
completes the proof of Proposition 7.3. (I

8 Proof of Theorem 1.2

This section is devoted to the proof of the convergence of the solution u to the family of shifted
minimal fronts Uc. We first remember that u is bounded away from 0 or 1 around the position
c*t — (3/(2X*))Int for large t. To the right of this position, the solution u has the same type of
decay as the critical front U+, as it follows from the estimates of Sections 2 and 3. Therefore, u is
almost trapped between two finite shifts of the profile of the front U.«. From a Liouville-type result,
similar to that in [3] and based on the sliding method, the convergence to the shifted approximated
minimal fronts will follow.

First, we derive from Sections 2 and 3 some exponential bounds of u to the right of the position
't — (3/(2X\%)) log t.
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Lemma 8.1 Let o > 0 be as in Proposition 2.1. There exist two positive constants 0 < k < p such
that

* 3
kye MY < u(t,c*t - 2—)\*10gt—f—y) forallt>1and 0 <y <oVt (104)
and
3 -
u(t,c*tf 2—>\*logt+y) <pye MY forallt>1 andy > 1. (105)

Proof. Under the notations of Section 2, it follows from (23), (24) and (27) that, for some positive
constants 17 and Ly,

u(t,x) > Uck* (t — logt — Lo,x) for all t > Ty and 0 < x < ¢*t + oV/t. (106)

2 *c*
The pulsating front U~ can be written as UL (¢t,2) = ¢k (z — c¢*t,z), where 0 < ¢F.(s,2) < 1
is continuous in R x R, 1-periodic in z, and ¢% (—oc,-) = 1, ¢k (4+00,-) = 0. Furthermore, it is
known [13] that there is a constant 3 > 0 such that ¢¥.(s,z) ~ B(x,\*)se % as s — +oo,
uniformly in z € R. In particular, there is > 0 such that ¢% (s,z) > max (nse*)‘*s,O) for all

(s,z) € R x R. As a consequence, it follows from (106) that

3

oy 1ot +y) =71 (y + ¢ Lo) e”VFeTo)

* 3 * *
u(t,c t— 2—)\*logt+y) > ok (y + ¢* Lo, 't —
for all t > T7 and —c*t + (3/(2)\*))logt < y < o/t + (3/(2X*))logt. Therefore, there are T > T}
and x > 0 such that

3 .
u(t,c*t — Wlogt +y) > ﬁye*)‘ Y forallt>To and 0 <y < aV/t.
The inequality (104) follows, by positivity and continuity of u over [1,+00) X R, by taking a smaller
K > 0 if necessary.

On the other hand, it follows from (33), (34) and (35) that there exist some positive constants
T, 7 and p such that

3
2)0*

u(t, ct — logt + y) <pye MY forallt>T and y > 7.

The inequality (105) follows, by positivity and continuity of u over [1,+00) x R, by taking a larger
p > 0 if necessary. U

Proof of Theorem 1.2. First, let 0 > 0 and 0 < k < p be given as in the previous lemma. Write

the pulsating front U.« as
Uer(t, ) = ¢ex(x — 7, x), (107)

where 0 < ¢¢+(s,2) < 1is continuous in R X R, 1-periodic in z, and ¢ (—00, ) = 1, ¢ex (+00,-) = 0.
From [13], there is a constant B > 0 such that

ber(s,2) ~ Bp(z,\*) se™* as s — +oo, uniformly in z € R. (108)
Choose now any real number C > 0 so that

B max (-, \") g0 <k <ped < Bmini(, \) e O, (109)
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Let us prove that (7) holds with the choice of C' = C + 1/¢*. Assume not. There are then & > 0
and a sequence of positive times (t,)nen such that ¢, — +o00 as n — 400 and

> €
L20(0,400)

min

3
n u(tn>’) — Uex (tn_ 710gtn+£7 )
|€]<C+1/c

2C* \*

for all n € N. Since ¢« (—00,-) = 1, ¢+ (400, ) = 0 uniformly in R and ¢(s, ) is 1-periodic in z, it
follows from (107) and Theorem 1.1 that there exists a constant > 0 such that
min <max ‘u(tn,y + [¢*tn — ilntn]) - UC*(§,y)D >e (110)
le|<C \lyl<e 2X*
for all n € N, where [¢*t,, — 3/(2X*) log t,] denotes the integer part of ¢*t, — 3/(2\*)logt,,.
For each n € N, set

un(t,z) = u(t +tn,x + [C*tn — 2—?\* logtn]).

Up to extraction of a subsequence, the functions u,, converge locally uniformly in R? to a solution
Uoso Of
(Uoo)t = (Uoo)zx + 9() fuss) in R? (111)

such that 0 < uss < 1 in R2. Furthermore, Theorem 1.1 implies that

lim ( sup uoo(t,a?)> =0
A—+oo (t,x)ERZ, z>c*t+A

and

lim ( inf oo (£, ) —1. 112
A——o00 \ (t,z)eR2, z<c*t+A OO( ) ( )

On the other hand, for each fixed t € R and y > 2, and n large enough, write

3
log(t +tn) +y + Vn),

un (b, t+y) = u(t + b, F(E+ tn) — X

where

* 3 N 3
Vn = [c ty — Txﬂbgt”} — (c tn — ﬁlog(IH-tn)).

There holds ¢ + ¢, > 1 and 1 <y + 7y, < 0\/t +1;, for n large enough, whence
k(Y4 ) e N WM <y (t 4 y) < p(y 4 ) e N W)

for n large enough, from Lemma 8.1. Since —1 < liminf,, ., v, < limsup,, ., ¥» < 0, it follows
that
ky—1)e Y <us(t,ct+y) <pye @D forallt e R and y > 2. (113)

The following Liouville-type result gives a classification of the time-global solutions s of (111)
satisfying the above properties (112) and (113).

Lemma 8.2 For any solution 0 < us < 1 of (111) in R? satisfying (112) and (113) for some
positive constants k and p, there is &g € R such that

Uoo(t, ) = Ups (t + &0, ) for all (t,z) € R?. (114)
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The proof of this lemma is postponed at the end of this section. We first complete the proof
of Theorem 1.2. It follows from Lemma 8.2, from (107), from (113) and from the exponential
decay (108) of ¢¢+, that

k< Bmax (-, A*) e N0 and Bmin(-, \*) e N0 < pet’,

whence |&| < C from (109). But since (at least for a subsequence) u, — usg locally uniformly in
R?, it follows in particular that u,(0,-) — U (&, ) — 0 uniformly in [0, 0], that is

. 3
lI;l@‘U(tmer [¢*tn — ﬁlogtn}) = Ue(80,y)| — 0 as n — +o0.

Since |&| < C, one gets a contradiction with (110). Therefore, (7) is proved.

Let us now turn to the proof of (8). Let m € (0,1) be fixed and let (t,)nen and (x5, )nen be two
sequences of positive real numbers such that t, — +o0o0 as n — +oo and u(t,,x,) = m for all n € N.
Set

. 3
X, = [zn] — [c tn — % logtn].

Theorem 1.1 implies that the sequence of integers (X, )nen is bounded, and may then be assumed
to be equal to a constant integer X, up to extraction of a subsequence. Under the notations of the
previous paragraphs, the functions

3
Un(t,x) = u(t + ty, x + [z,]) = u(t +tn, x + Xoo + [c*tn — ﬁlogtn]) = up(t,r + Xoo)

converge locally uniformly in R2, up to extraction of another subsequence, to the function
Xoo
Voo (t, &) = Uoo (t, 2 + Xoo) = Uer (t + &, 7 + Xoo) = Ues (t +&- 790)

for some real number . Since v, (0, 2, —[z,]) = m for all n € N and z,, — [x,] — 2o asn — +00, one
gets that U (£ — Xoo/C", o) = m, that is £ — X /c* =T, where T is the unique real number such
that Ugs (T, xoo) = m. Finally, the limit vy, is uniquely determined and the whole sequence (vy,)nen
therefore converges to the pulsating front Ue(t + T, x). The proof of Theorem 1.2 is thereby com-
plete. OJ

Proof of Lemma 8.2. In the homogeneous case, if, instead of (112) and (113), the function us is
assumed to be trapped between two shifts of the minimal traveling front, then the conclusion follows
directly from Theorem 3.5 of [3]. In our periodic case, the comparisons (113) and the exponential
behavior (108) of the minimal front U, imply that us is actually trapped between two finite time-
shifts of Ug in the region {CL‘ —c*t > 0}. In the region where x — ¢*t is very negative, uo, is close
to 1 and the maximum principle holds, from the negativity of f’(1): the solution us can then be
compared to some of its shifts in this region. We finally complete the proof of the lemma by using a
sliding method: we shift the function us (¢, + 1) in time, we compare it with the function us,, and
we show that us(t + 1/¢*, 2 + 1) = us(t, x) in R2. Together with (112) and (113), this will mean
that us is a pulsating front. From the uniqueness of the pulsating fronts up to time-shifts [15], the
conclusion (114) will follow. More precisely, for all £ € R and (¢, z) € R?, we set

V(1) = Uso(t + & 2+ 1).

We shall compare v¢ to s and prove that v¢ > u, in R? for all € large enough. We will then prove
that v¢ = us in R? for the smallest such &, and finally that this critical shift is equal to 1/c*.
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To do so, we first notice that, for all a < b € R, there holds

0< inf Uoo(t, ) < sup Uso(t, ) < 1. (115)
(t,z)€ER2, a<z—c*t<b (t,2)€ER2, a<z—c*t<b

This a consequence of the strong maximum principle, parabolic regularity, and the fact the solution
0 < uso < 1 converges to two different limits (0 and 1) as x — ¢*t — +oo. Let now ¢ € (0,1) be such
that f is nonincreasing in [1 — 4, 1], and let us extend f by 0 on (1, +00). From (112), thereis A > 0
such that

Uoo(t, ) > 1 — & for all (t,z) € R? such that z — ¢*t < —A. (116)

As far as the region {x —c*t > —A} is concerned, we claim that there is £ € R such that
v (t, ) > uso(t,z) for all & — ¢*t > —A and € > £. (117)

Assume not. Then there exist some sequences (&, )nen in [0, +00) and (t,, Zn)nen in R? such that
limy, 400 &, = +00 and

Ty — 'ty > — A, Uoo(tn +&nyxn +1) = v&n (tn,xn) < Uoo(tn,xy) for all m € N.

Because of (112), (113) and (115), the sequence (x,, — c*t,, — ¢*&;,)nen is bounded from below by a
constant M. Thus, (113) and (115) provide the existence of some positive constants k and p such
that

R(xn — 'ty — ¢ 6y — M + 1) e N @) <y (t, + Ep, 2 + 1)
< Uoo(tn, xn) (118)
< P(wn — 'ty + A+ 1) e N (@n=ctn)
for all n € N. On the other hand,
Tp—Ctyn+A+1 = (vp—Cty— & —M+1)+ (¢ + M+ A)

< 2(@p =ty = —M4+1) (6 + M+ A)

for n large enough. Putting this into (118) and passing to the limit as n — 400 (with &, — 400 as
n — +00) leads to a contradiction. Thus, the claim (117) is proved.
Without loss of generality, one can assume that £ > 1/c¢*. In this paragraph, we fix £ in the

interval [£, +00). Set
€* = min {5 >0, v5(t,x) + € > uoo(t, x) for all (¢,2) € R? such that z — ¢*t < —A}

and let us prove that €¢* = 0. Assume that £* > 0. Since uso is globally Lipschitz continuous and
since v¢ > U ON {x — 't = —A} and both functions v¢ and ua converge to 1 as x — c*t — —o0,
there are a sequence of positive real numbers (¢, )nen, a sequence (t,, 2, )nen in R? and a real number
Yoo < —A such that

En — €%, Ty — 'ty — Yoo as n — +o00 and vg(tn,xn) + &n < Uoo(tn, xy) for all n € N.

Without loss of generality, one can also assume that

[Zn]

Ty — [Tn] — Too and t,, — —= — T as n — +00,
c
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with Yoo = Too — ¢*7. Up to extraction of a subsequence, the functions

Un(t,z) = uso (t + [i:],l’ + [wnD

converge locally uniformly in R? to a solution Uy, of (111) satisfying (112) and (113). Set
VE(t,2) = Uso(t + & 2 + 1) for all (¢, x) € R2.

Therefore, VE(t,z) + &* > Ux(t, ) for all (t,z) € R? such that  — ¢*t < —A, with equality at the
point (7,2 ) such that 2o — ¢*7 = Yoo < —A. On the other hand, for all (t,z) € R? such that
r — c*t < —A, there holds

VE(tx)+e* > VEi(t,a) >1—90

from (116), the definition of the functions V¢ and U, and the assumption £ > 1/c*. Consequently,
VE(t @) = V(o) = g(@) F(VE(t2) > g(@) f(VE(t ) + &)

for all (¢,z) € R? such that z — ¢*t < —A, since f is nonincreasing in [1 — §, +-00) and ¢ is positive.
Since U, solves (111), it follows from the strong maximum principle that V&(t,z) + &* = Uy (t, )
for all (¢,z) € R? such that z — ¢*t < —A and t < 7. The positivity of £* is in contradiction with
the fact that V¢ and U, converge to 1 uniformly as « — ¢*t — —oo. Therefore, ¢* = 0, whence

v (t, ) > uso(t, ) for all (t,x) € R? such that x — ¢t < —A. (119)

Together with (117), one gets finally that v¢ > us, in R? for all £ > €.
Set now
& = min {§ €R, v¥ > uy in R? for all &> 5},

which is a well defined real number such that &, < & (notice that v¢(t,2) — 0 as & — —oo for each
fixed (¢,7) € R?, while us > 0 in R?). Our goal is to prove that

1

f* S 0*7

which will then yield v!/¢" > uq and a symmetric argument will then give the desired conclusion.

Assume then that & > 1/c*. Remember that v$* > us, by definition of &,. We first claim that,
for any a < b in R,

g 6) ) >0 0

Otherwise, by a usual limiting argument, there would exist a solution 0 < Uy < 1 of (111) satis-
fying (112) and (113), and such that U (t + &,z + 1) > Us(t, z) for all (t,x) € R? with equality
somewhere. From the strong maximum principle and the uniqueness of the solutions of the Cauchy
problem associated to (111), it would then follow that Uy, (t+&x, 7+ 1) = U (t, ) for all (t,x) € R?
and then U (t + kéy, 2 + k) = Us(t, z) in R? for all k € N. Since one has assumed that &, > 1/c*
and since U, satisfies (112), the limit as k — +oo implies that Uy (t,z) = 1 for all (t,z) € R?
which is clearly impossible, because of property (113) satisfied by U.

Therefore, (120) holds. In particular, since uq, is Lipschitz, there is £ € (1/c*, &) such that

V8 (t, ) > uso(t, ) for all (t,z) € R? such that z — ¢*t = —A and for all € € [€,&,].
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Furthermore, v&(¢,z) > 1 — ¢ for all (t,x) € R? such that # — c¢*t < —A and for all £ € [£,&,] C

[1/¢*, +00), from (116) and the definition of v¢. As done in the proof of (119), it follows then that

V8 (t, ) > uso(t, ) for all (t,x) € R? such that z — ¢*t < —A and for all £ € [€,&,]. (121)

On the other hand, the definition of &, implies that there exist a sequence (&,)nen in (& —1,&,)
and a sequence (t,,Tn)ney in R? such that

€n — Ex as n — 400 and v5" (t,, ) < Ueo(tn, ) for all n € N. (122)

Property (121) yields x,, — ¢*t, > —A for all n large enough and (120) and (122) imply then
that x, — ¢*t, — +o0o0 as n — +oo. Up to extraction of a subsequence, one can assume that
Tp — [Tn] = Too € ]0,1] as n — +o00.

Define now

V& (t + tn, z + [T0])
Uso (t + tn, T + [24))

Uso (t + tn, T + [x4))

Un(t"r) = uoo(tna [x"])

and V,(t,z) =

for all (t,2) € R? and n € N. From (113) and lim,, ., o0 Z,, — ¢*t,, = 400, it follows that the sequences
(Up)nen and (Vi )nen are bounded in Llojc(R2). From standard parabolic estimates and the fact that
Uso (tn, [Tn]) — 0 as n — 400, the functions U,, converge locally uniformly in R?, up to extraction

of a subsequence, to a nonnegative classical solution Uy, of

(remember that f/(0) = 1). Furthermore, (Uy,)s — (Uso)z locally in R? as n — 400 and Us(0,0) =
1, whence Uy > 0 in R? from the maximum principle. In particular, the functions

(Uoo)z(t + tn, T + [T4]) _ (Un)a(t, )
Uoo (t + tp, x + [21]) Uy (t,x)

are locally bounded. As far as the functions V,, are concerned, they obey

(Un)a(t, )
Un(t,x)
fluso(t +tn, @+ [2a))Va(t, 7)) fluoo(t +tn, x + [24]))

+g(m)( Yoo (E+ tn, 7 + [2n]) T Uttt 7t ) V”(t’m)>

(Va)e(tz) = (Vi)aa(t,x) +2 (Va)a(t, )

in R2. Since (Uy)z/Un — (Uso)a/Uso and ueo (t+tp, T+ [7,]) — 0 locally uniformly in R? as n — +oo,
and since the functions V,, are locally bounded, it follows from standard parabolic estimates that,
up to extraction of a subsequence, the functions V;, converge locally uniformly in R? to a classical
solution V4, of

UOO x .
(Voo )t = (Voo )aw + 2( i ) (Vi) in RZ. (123)
Owing to the definitions of V;, and &,, one has V;, > 1 whence V., > 1 in R?. On the other hand,
’Ugn tna xn UTL 07 .f[;n — xn UTL O7 ajn — xn
Vn(én_é*,xn— [.Tn]) = ( ) X ( [ ]) ( [ ])

Uoo(tn, Tn)  Un(&n — &k, Tn — [T4)) = Un(§n — &xy Tn — [70])

from (122). By passing to the limit as n — 400, one infers that V. (0, 2 ) < 1. Finally, Vo (0, 2+) =
1. Therefore, Voo = 1 in R? from the strong parabolic maximum principle and the uniqueness of the
Cauchy problem associated to (123).
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One has then proved that

Uoo(t +tn + &, @ + [xn] +1) e (s f)) 1 locally uniformly in R? as 11 — +oo.
Uso (t + tn, T + [24)) Uso (t + tn, T + [24)])

It follows by immediate induction that, for each p € N, there holds

’Ll,oo<t+tn +p€*,$ + [xn] +p)

— 1 locally uniformly in R? as n — +o0.
uoo(t“‘tnax"i_[x”]) Y Y

Fix p € N. Property (113) and the limit lim,,_, 4 o ,, — ¢*t,, = 400 imply that, for n large enough,

UOo(tn + P, [ﬁn] + p) > K ([$n] +p—c'ty, —pcté — 1) e AN ([zn]+p—c tn—pc™&s)
uoo(tna [xn]) B P ([xn] — C*tn) e_A*([xn]_c*tn—l) ’

By passing to the limit as n — 400, one gets that

1> 0 opr(ere—n-x
p
Since this inequality holds for all p € N and since one had assumed that &, > 1/c*, one is led to a
contradiction. One concludes that &, < 1/c¢*, whence v/t > Uoo in R2.

By sliding uso(t,z + 1) in the other ¢-direction, one can prove similarly that v < wus, in R?
for all £ < ¢ for some real number £_, and that the largest such & cannot be smaller than 1/c*.
Therefore, v1/¢" < us in R2.

Finally, v'/¢" = uy in R?, that is ueo(t + 1/¢*, 2 4+ 1) = uso(t, ) for all (t,z) € R In other
words, U is a pulsating front with speed ¢*, connecting 0 and 1. The conclusion (114) follows from
the uniqueness up to time-shifts of the pulsating fronts, for a given speed (see [15]). The proof of
Lemma 8.2 is thereby complete. ([
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