TRAVELING WAVES IN 2D REACTIVE BOUSSINESQ SYSTEMS
WITH NO-SLIP BOUNDARY CONDITIONS
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ABSTRACT. We consider systems of reactive Boussinesq equations in two dimen-
sional strips that are not aligned with gravity’s direction. We prove that for any
width of such strips and for arbitrary Rayleigh and Prandtl numbers, the systems
admit smooth, non-planar traveling wave solutions with the fluid’s velocity satisfying
no-slip boundary conditions.

1. INTRODUCTION

In this note we establish existence of non-planar traveling wave solutions of reactive
Boussinesq systems with no-slip boundary conditions (the fluid flow vanishes at the
boundary). Much of the analysis is similar to the no-stress case [5], but there are several
difficulties due to the no-slip boundary conditions that require new ideas. These are
explained below.

Existence of non-planar traveling waves for reaction-diffusion equations in a pre-
scribed flow has been a subject of active study in the last decade — we refer to [4]
and [16] for excellent overviews. When u is an imposed flow of shear type, then the
study of existence and stability of the multidimensional traveling waves for the single
temperature equation can be found, for example, in [6, 7, 12].

Recently, traveling waves have been also shown to exist in a reactive system with a
Boussinesqg-type coupling between the temperature field and the fluid flow [3, 5, 13, 14].
In non-dimensional variables, this system has the form

T, +u-VT — AT = f(T)

1
(1.1) —(ug+u-Vu) — Au+ Vp =Tpg
o
div u = 0.
Here T is the temperature, u the fluid velocity and p the pressure. The parameters p
and o are, respectively, the Rayleigh and Prandtl numbers, and g is the unit vector

in the direction of the gravity force. The Lipschitz continuous nonlinearity f is of
ignition type, that is,

(1.2) f(T)=0on (—o0,b) U{1}, f(T) > 0on (6, 1), f(T) < 0on (1,00),

where the ignition takes place at some temperature 7' = 6, € (0, 1).
1
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The reactive Boussinesq system has been considered in the references mentioned
above in a two-dimensional strip, with either periodic or no-stress boundary conditions:
the normal component of the flow and the flow vorticity vanish at the boundary. When
the strip is vertical (gravity is aligned with the strip’s direction) it is not difficult to see
[9] that non-planar fronts do not exist for small Rayleigh numbers but planar fronts
with u = 0 exist for all values of parameters. On the other hand, for large Rayleigh
numbers, the planar fronts become unstable: there is a bifurcation at some critical p,
[13, 14] so that non-planar fronts exist for p close to p.. It turns out that the situation
is quite different when the domain is not vertical [3, 5]. In particular, it has been
observed in [3] that planar fronts cannot exist in a slanted strip and that a non-planar
traveling wave exists for small p > 0. This result has been extended to all p > 0 in [5].

We consider (1.1) in an infinite strip D C R?. The vector § = (g1, g2) representing
the gravity direction is assumed to be non-parallel to the unbounded direction of D.
By an elementary change of variables, without loss of generality, we may restrict our
attention to the horizontal strip

(1.3) D ={(z,y); z € (-00,00), y € [0,h]}
and assume that
(1.4) g2 # 0.

We impose front-like boundary conditions for temperature and no-slip boundary con-
ditions for the flow:
oT
T,—-0asx— —o00, T —=0aszx —00, — =0aty=0,h,
(1.5) dy

u=0aty=0h, |[ul - 0asz — +oo.
Notice that by the maximum principle there holds:
0<T(x,y) <1 for all (z,y) € D.

The main result of this note is the following:

Theorem 1.1. Assume that gravity satisfies (1.4) and the nonlinearity f satisfies
(1.2). Then there exists a smooth traveling front solution T'(x — ct,-),u(x — ct,-)
of (1.1), (1.5) in the two-dimensional strip (1.3). In particular, this traveling wave
satisfies: the speed ¢ > 0, the functions T,u € C**(D), p € CL%(D) (for some a > 0),

VT € L*(D), u € W3%(D) and the boundary conditions at infinity are approached
uniformly in y € [0, h]:

(1.6)
i (@, )[peony = Hm |[Vu(@, )l[peqony = Hm |[VT(z,-)[|e(om) = 0.
(1.7) Jm (|7, )=o) = lim ([T, ) = 0-||=(o,u) = 0,
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for some 0_ € (0,00 U{1}. If, in addition, we have
(1.8) F(T) < (T = 60)+]?/h* VT €[0,1]
then 6_ = 1.

The paper is organized as follows. In Section 2, following the method of [8], we
introduce compactified versions of the problem (1.1) on truncated domains (rectangles)
of increasing lengths 2a > 0, and prove that they have solutions that are uniformly
bounded in a. In particular, the constants in the elliptic regularity inequalities depend
only on the local uniform properties of the embedding of the boundary of the domain
in the ambient space and they are independent of a. These and other uniform bounds
are contained in Theorem 2.1 and are proved in Section 3. The crucial estimate can be
found in Lemma 3.5 whose proof is new and does not follow from the analysis in [5].
The difficulty is due to the non-slip boundary conditions (see Remark 3.6). In Section
4 we conclude the proof of Theorem 1.1 by obtaining the traveling wave solution as
the limit of a subsequence of solutions to the compactified problems as a — 400. The
main novelty in this part of the argument is in the proof of Lemma 4.5, which replaces
the analysis of the inner and outer solutions from [5].

Acknowledgment. PC was supported by NSF grant DMS-0504213, LR was sup-
ported by an Alfred P. Sloan fellowship.

2. THE COMPACT DOMAIN PROBLEM

In this section, following the approach of [5, 8|, for each large a > 0 we consider the
problem in a finite rectangle R, = [—a,a] x [0, h] and obtain bounds on the solutions
that are uniform in a. In order to avoid dealing with questions of regularity at the
corners, the Navier-Stokes part of the problem (1.1) will be considered on a larger
smooth convex domain D,, such that R, C D, C R,y (see figure 1).

Ra Da Ra+1

FIGURE 1

The temperature T satisfies an approximate problem in the rectangle R,:

(2.1) —cTy +u-VT — AT = f(T) in R,,
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with the boundary conditions from (1.5), replacing the conditions at +00 by prescrib-
ing the temperature on the vertical boundary of R,:

T(~a,y) =1, T(a,y) =0 for y € [0, ]

oT oT
8—y($,0) = a—y(:c, h) =0 for x € [—a,al.

In order to formulate the problem for u in the larger domain D, we extend the function
T(z,y) from R, to D, by the odd reflection across the vertical boundary of R,:

(2.2)

| -T(-2a—2,y) +2T(—a,y) forzx< —a
(2.3) T(z,y) = { ~T(2a — x,y) + 2T (a,y) for z > a.
Note that
(2.4) T lerawa < 20T leveras  IVT 200y < 2IVT 1] 22(Ra)-
The flow u satisfies the following problem in D,:
1
(2.5) 5 ("Ctatu-Vu) = Au+Vp =Tp in Do,

divu =0 in D,,
with the no-slip boundary conditions
(2.6) u =20 on dD,.

We denoted by p'the vector pg in (2.5).
Finally, we introduce the following normalization condition (see [6]):

(2.7) max{T'(z,y); = € [0,a], y € [0, ]} = .
Therefore, f(T') =0 for x > 0 and thus the maximum principle implies that:
(2.8) max{T'(z,y); = € [0,a], y € [0,h]} = max{T(0,y); y € [0, ]} = bo.

The flow equations (2.5)-(2.6) may be also written in terms of a non-linear el-
liptic system for two unknowns: the stream-function v, such that u = curl ¥; =
(¢1y, —t1.2), and the vorticity function ¢y = Ay:

A¢1 — lpg =0 in Da
(2.9) Ay = (—curl(Tﬁ) + lcurl(—cum +u- Vu)) in D,
o
1 =0, Vi =0 on dD,.

The aim of this section is to prove existence of a regular solution to (2.1)-(2.2),
(2.5)-(2.7) and obtain uniform in @ bounds for (¢, u,T’). More precisely, we have the
following result.
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Theorem 2.1. There exists ag > 0 so that for all a > ag the problem (2.1)-(2.2),
(2.5)-(2.7) has a solution ¢ € R, u € C*>*(D,), T € C**(R,), p € C**(D,). In
addition, we have the following bounds:

(2.10) el + [[Tlleve(ra + llullezapn + IV Tl 2ra) + lullwszwa + | F(T) <G,
Ra

with a constant C' which is independent of a > ay.

Proof. We postpone the proof of the uniform bound (2.10) to Section 3. Assuming that
the a priori bound (2.10) holds for any (smooth) solution of (2.1)-(2.2), (2.5)-(2.7), we
now prove the existence part of Theorem 2.1 by a degree argument. In order to set-up
a fixed point problem we let ¢ € R, u € C**(D,), T € CY*(R,) be given, and take the
homotopy parameter 7 € [0,1]. We extend T" to D, as in (2.3) and solve the following
system of elliptic equations for the unknowns ; and 1 with a given right side:

A,lvbl - 'l/}2 =0 in D,
(2.11) Ay =7 <—curl(Tﬁ) + lcurl(—cum +u- Vu)) in D,
o
1 =0, V1 =0 on 0D,

and define v = V4. Having constructed v as above we let Z be the solution of the
linear problem

—cZy+710-VZ —-AZ=71f(T) inR,

Z(~a,y) =1, Z(a,y) =0 for y € [0, h]
(2.12) Py 97 . .
a—y(:c,O)—a—y(:c, )=0 or x € [—a,al.

We now set the mapping;:
(2.13) K(c,u,T,7) = (c — 0y + max{T(z,y); x € [0,a], y € [0,h]},v, Z).

By construction a fixed point of K := K (-, -,-, 1) is a solution of (2.1)-(2.2), (2.5)-(2.7).
The classical regularity results in [10, 11] imply that the operator

K R x C**(D,) x C*"*(R,) x [0,1] — R x C*>*(D,) x C**(R,)

is well defined, continuous and compact. If we now calculate the Leray-Schauder degree
deg(Id — K(-,-,-,0), Bg(0),0) and find it to be different from 0 (for some sufficiently
large radius R) then, in view of the uniform bounds (2.10) and the homotopy invariance
of the Leray-Schauder degree, we conclude that K; must have a fixed point.

To this end, note that at 7 = 0 we may solve both (2.11) and (2.12) explicitly: v =0
and the function Z is given by

—CT —cCca

e

eca _ p—ca :

— €

Z(xy) = ¢°(x) =
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When ¢ # 0 the function ¢¢(z) satisfies
C, o =0 in[—a,al, ¢(—a)=1, ¢°(a) =0

Therefore, the last two components of the operator K (c,u,T,0) do not depend either
on u or on 7" and K has then an explicit form:

KO(C7U7T) = K(C,U,T, O) = (C_ 90 + MT>07Z)7

where
Mr = max{T(x,y); z €[0,a], y € [0, h]}.
As in [5], we note that Ky is homotopic to the map

F(Cv u, T) = (C - 90 + m[%x] ¢C(I)7 07 ¢C*)>
x€|0,a

where ¢* is the unique number such that

max ¢ (z) = ¢ (0) = 0.
x€[0,a]
The a priori bound (2.10) implies that homotopy can be taken to be compact and
without fixed points on the boundary of a sufficiently large ball Bg(0) in R xC**(D,) x
CY*(R,) with the radius R independent of a.
By the homotopy invariance of the Leray-Schauder degree of compact perturbations
of identity we conclude that

deg(Id — Ky, Br(0),0) = deg(Id — F, Br(0),0) = 1,

as the degree of the last map (Id — F)(c,u, T) = (6p — ¢°(0),u, T — ¢°") is the product
of degrees of each component, all three of them being equal to 1. Hence the operator
K, has to have a fixed point and the existence part of the proof of Theorem 2.1 is
complete. [ |

3. A PROOF OF THE UNIFORM BOUND (2.10).

In this section we prove the a priori bound (2.10) in order to finish the proof of
Theorem 2.1. Let K(c,u,T,7) = (c,u,T), where K is defined as in (2.13). The
proof of (2.10) will be achieved through a sequence of lemmas estimating norms of
the quantities T', u, c. The main point is as in [5]: from the reaction-diffusion equation
we deduce an upper bound for ||VT||7. that is linear in the |u||e; from the flow
equation we deduce an upper bound for ||u||z~ that is sub-quadratic, || VT||¢. with an
exponent « € (0,2). These two bounds allow us to close the argument and show that
both quantities are bounded. The second upper bound is more difficult to obtain than
in [5] because of the no-slip boundary conditions. Throughout the rest of the paper
we denote by C' any uniform constant, not depending on a,c, T, u.
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Lemma 3.1. We have:
(3.1) [¥1llw22p,) < CIIVT || L2(R,)-
Proof. By the standard elliptic estimates [11], we have
[1llwz2(p,y < C ([l z200) + 1A% |20, -
Using Poincaré’s inequality on [0, h] we obtain:
|rllz2pa) < ClIV|z200)-
As

V7200 < AU L2(0,) - [11]]22(D0)
we conclude that

(32) U1 ]lw22p,) < ClIAY[r2(D,)-
We multiply now the second equation in (2.11) by 97 to obtain
TC T
(3.3) / Apy -9y + ;(%)x% — ;(U, Vo) - hn | < ||[U1]l2oa) - [IVT || L2(D.)-

Furthermore, using the boundary conditions for ¢; and A, = 1y we have

[ oavevi== [ o Vo= [ v a0 = 80,

Daq
1
[ @ == [ @ Vi =3 [ (vinp). -
[ @y v=; [ (9red Ve =5 [ evieia -o
a a 0D,

Therefore, (3.3) becomes
1A 1220, < N1ll2oa) - VT 2(D4)-
Finally, in view of (2.4) and (3.2) we see that (3.1) follows. [ |
We denote by g € C%*(D,) the right hand side of the second equation in (2.11):

(3.4) g=T (—curl(Tﬁ) + lcurl(—cux +u- Vu)) :
o

The following bound follows from a standard local a-priori estimate on the reg-
ular solutions of the Stokes problem, which can be found for example in [10]. For
completeness, we sketch a possible proof.

Lemma 3.2. We have
(3.5) [ 1]lwazp.) < C (llgllr2ma) + 11l 2p.)) -
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Proof. The proof is based on the general regularity theory for elliptic systems [2].
Using the notation of this fundamental paper, the system (2.11) is described by the
matrix L, and the boundary conditions (after local flattening of the boundary) are
given by the matrix operator B:

A —1 1 0
=l d] el
where by z we denote the variable transversal to dD,. These operators act on the
column vector (1q, )"

We assign the weights t; =4, to =2, 51 = =2, s =0, ry = —4, ro = 3. To obtain
the local a-priori internal and up to the boundary estimate:

(3.6) [¢1llwere < Clllgllw—s22 + [[¢1ll 22 + [l 2]

one needs to check the related analytic Lopatinsky-Shapiro condition. To this end,
consider a single mode of the Fourier transform of the solution on the hyperplanes
parallel to the 'flattened’ boundary of D,. That is, for a fixed £ € R\ {0} consider a
solution of the form: (11, 1s) = (€41 (2), €®¢1)y(2)). It satisfies the following system
of ODEs (in z > 0):

=&Y (2) + 1 (2) =a(t),  ¥1(0) =0
—|€P¢2(2) +¥5(2) =0, ¥1(0) = 0.

It is easy to see that the only bounded solution (v1(z), 12(2)) is ¥, 192 = 0.
Consequently Theorems 10.4 and 10.5 in [2] imply (3.6). Recalling that 1y = Ay
and using an interpolation inequality [11], the uniform global bound in (3.5) follows.
|

An upper bound for various quantities in terms of ||u|| ,~ is provided by the following
lemma.

Lemma 3.3. We have
(3.7) |C|+||VT||i2<Ra>+/R f(T) < OO+ |[ullz(pa))-

This estimate can be proved exactly as in [5] (see Lemmas 2.2, 2.5 and 2.6 of this
reference), using the reaction-diffusion equation for 7. In particular, it is here that
the normalization condition (2.7) is used in order to obtain an upper bound for |¢| in
(3.7), using the maximum principle and the sliding method. Then the bound for f(T')
follows immediately after integration of the 2.1 over R,. The estimate for ||VT| 2 is
somewhat more involved — we refer the reader to [5] for details.

We will also need the following elementary lemma:

Lemma 3.4. Let a, 3,7 > 0. Then,
(1) a < B+ yal’? implies a < %+ (1 +7)2,
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(i) a < 14 B4 + Bal/* implies o < C(1 4 BY3), and the constant C' does not
depend on «, 3.

Proof. In (i) it is enough to consider a > 32. In this case however, a < (1 + v)a'!/?

and the result follows.
In the same manner, the condition in (ii) implies a < C for a > (23)%/3. |

Lemma 3.5. We have the following uniform bound:
IVT|2(r,) < C.

Proof. We start by estimating ||41||ws2(p,). Using an interpolation inequality [1] we
obtain

||wl||W3 2(Da) < C||¢1||W4 2(Dg) ||¢1||W2 2(Dg)"
where the constant C' does not depend on a. Therefore by Lemma 3.2 and Lemma 3.1
we obtain, using the definition of the function g:

1/2
[ SC(HVTHLQ(DQWL(C+\\u\\Lw(Da))||1/11HW3»2(DQ) Nl 2

) 1/2
< C (19T B + (1+ fulleon) 1l oo, IV Tl z2(r,) )

1/2 1/2 1/2
< O(IIVT gz + (1 + lll ) VTN m |l ).

where we used curl(u - Vu) = u - V(curl u) and Lemma 3.3 to bound |¢|.
Applying now Lemma 3.4 (i) with

a = [[i|lwoz(pay, 8= ClIVT 2., ¥ = CA+ |[ullp=(p) V2V || ot . -
we arrive at

(38)  lillwseon < C(1+ 19T Bar, + lullze(on IV Tl z2(r )

On the other hand, applying twice the interpolation inequality of Theorem 5.8 [1],
we obtain

1/2 1/2 1/4 3/4
(3.9) ull ze(pay < Cllullyiap, ull i,y < Cllullisap, Ul 2,

Combining (3.8), (3.9) and recalling Lemma 3.1 we deduce
lulleowy < Ol e, 1 o,
< O (V19T Bagy + il VTl ) IV T2,
< C(1+ VTSt + Il [ ) IV Tl 2 )

We use now Lemma 3.4 (ii) to arrive at

(3.10) [[ull Loe(pa) < C(L+ IV T 50,)-
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By Lemma 3.3 this yields the desired uniform estimate on ||VT||2(g,)- |
Note now that Lemma 3.5 and the estimate (3.10) imply that
[l Loe(pg) < C.

Other uniform bounds in (2.10) follow now from Lemma 3.3, Lemma 3.2, the bound
(3.8) and from standard elliptic estimates for 7" in R,. Also, the same bound as in
Lemma 3.2 holds if we replace L? (and W*?) by LP (WP respectively) for any p > 2.
This ends the proof of (2.10) and that of Theorem 2.1.

Remark 3.6. In order to obtain uniform bounds on the quantities in (2.10), we
needed to prove that ||u||z~(p,) < C. In the situation of [5], the stress-free boundary
conditions imply that 1y = curl u is zero on 0D,. Multiplying the second equation in
(2.11) by 1), one obtains then ||Vi||r2(p,) < C||VT||r2(R,)- This, in view of Lemma
3.3 implies ||u||zo(p,) < Cl|¥1]lws2p,) < C||VT||L2(r,)- In our situation, when 1, is
free on 0D,, one cannot proceed in a similar manner. A simpler case is when g does
not depend on u, which happens at the infinite Prandtl number, 1/ = 0. In this
particular case the calculations towards Lemma 3.5 are much simpler.

4. IDENTIFICATION OF THE LIMIT AND A PROOF OF THEOREM 1.1

For a proof of Theorem 1.1, we denote by c¢*, T* u® p® a solution of (2.1)-(2.2),
(2.5)-(2.7). Note that by a bootstrap argument we also have

[T |c2.0(p,_1) < C.

Therefore we may choose a sequence a,, — oo such that ¢, := ¢** converges to some ¢ €
R and T}, := T%, u, := u® converge in C;.*(D) to some T,u € C>*(D). Also, p, :=

loc
1

p® converges in C%(D) to some p € CL%(D). Obviously, ¢, T, u, p must satisfy (1.1)

and the correct boundary conditions at x = 0 and = h in (1.5). The normalization
(2.7) and its consequence (2.8) imply that

max{7 (z,y); x >0, y € [0,h]} = by.
Since VT € L*(D) N CY*(D) and u € W3%(D) N C*%(D), we obtain (1.6). Note that

by (2.10), we also have a bound for the total reaction rate:

(4.1) /D F(T) < +o0.

As in [5] (Lemma 3.2), we can prove the following lemma: we leave the minor
modifications to the reader.

Lemma 4.1. The propagation speed is positive: ¢ > 0.

Next, we show that temperature approaches constant limits at the two ends of the
domain.
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Lemma 4.2. There exist 6_,0, € [0,1] such that
wl_l}I:iloo ||T(l’, ) - 9i||Loo([07h]) =0.

Proof. We argue by contradiction. Assume, for example, that lim,, .. T(z, y,) = 61
and let lim,, ., T(Zp, §n) = 02 with some 0; # 6, and lim,, o, =, = lim,,_, o, T, = +00.
Integrating the first equation in (1.1) on S, := [z, &, X [0, k] and using the boundary
conditions we obtain

h

—C/ [T (Zn,y) = T2, y)] dy
(4.2) 0 .
= [T = D)) - (@ = Tl dy+ [ D)

0 Sn,

where u! refers to the horizontal component of the velocity vector u. Note that by
(1.6) and (4.1), the right hand side in (4.2) converges to 0 as n — oco. At the same
time, because of our assumptions on (x,,y,) and (Z,, ¥, ), together with (1.6), the left

hand side converges to —ch(fy — ;). In view of Lemma 4.1 we conclude that 6; = 6.
[ |

Now, by (4.1), Lemma 4.2 implies that
f(0-) = f(0y) =0.
As in [5] (Lemmas 3.3 and 3.4, respectively), one also has the following two results:
Lemma 4.3. The temperature limits satisfy 0_ > 6.
Lemma 4.4. For every ¢ > 0 there exists A such that for all sufficiently large n:
VT, (z,y)| <e  Y(z,y) € [A a,) x[0,h].
We now deduce:
Lemma 4.5. For every € > 0 there exists A such that for all sufficiently large n:
To(z,y)| <€ V(z,y) € [A an] X [0, ]

Proof. If the claim is not true then there is some ¢y > 0 and a sequence A,, converging
to +o00 such that:

(4.3) T (A, yn) > €o,

for some y, € [0,h] and possibly passing to a subsequence in T,. Notice that by
Lemma 4.4 it must happen that

(4.4) lim (a, — A,) = +o0.

n—-4o0o



12 PETER CONSTANTIN, MARTA LEWICKA AND LENYA RYZHIK

Now, define ®,,(x,y) = T,,(x + A,,y) and (,(x,y) = u,(x + A,,y) on domains R,
and D,, “shifted” to the left by the distance A,. Using the normalization (2.8), we
have on R, = [0,a, — A,] x [0, h]

—p (D) + G - VO, — AD, = 0.

Multiplying the last equation by ®, and integrating over R,, we obtain

Rn R ARn R,

ORn,

where v is the outward normal to OR,. Using the boundary conditions, this yields

(45) Ahkx—%naf—%m@¢4mwwwzo

where the superscript in ¢! refers to the horizontal component of the vector ¢,.

On the other hand, ®,, and (,, obviously satisfy the same uniform bounds as 7}, and
u, in (2.10) and therefore they converge (uniformly on compact sets, together with
their derivatives) to some ® and ( defined by virtue of (4.4) on whole D. Moreover,
® is a solution of

(4.6) D, + (VD — AD =0

and it converges to some &1 as r — oo (the argument is as in the proof of Lemma
4.2). Integrating (4.6) on D and using boundary conditions we obtain

C(<D— - q)'i‘) = 07

which by Lemma 4.1 implies ®_ = ®,. Thus, by the maximum principle ® must be
constant and, say, equal to ®;. Obviously, by (4.3), ®y > €y > 0. Passing to the limit
in (4.5), we obtain

h
(4.7 B [ (= 00,0 dy 2 0.
0
On the other hand, since div u,, = 0 and u,, = 0 on dD,,,, we have foh ¢H0,y) dy =0
which implies that foh ¢}(0,y) dy = 0. Finally, (4.7) becomes
—hC|(I)()|2 Z 0,
which contradicts the positivity of ¢ in Lemma 4.1. [ |

In view of Lemma 4.5 we obtain ¢, = 0, which by Lemma 4.2 proves (1.7). The
final statement, asserting that (1.8) is a sufficient condition for #_ = 1 is obtained
exactly as in Lemma 3.7 of [5]. This completes the proof of Theorem 1.1.
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