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Chapter 1

Maximum principle and the symmetry
of solutions of elliptic equations

1.1 Act I. The maximum principle enters

We will have several main characters in this chapter: the maximum principle and the sliding
and moving plane methods. The maximum principle and sliding will be introduced separately,
and then blended together to study the symmetry properties of the solutions of elliptic equa-
tions. In this introductory section, we recall what the maximum principle is. This material
is very standard and can be found in almost any undergraduate or graduate PDE text, such
as the books by Evans [60], Han and Lin [83], and Pinchover and Rubinstein [123].

We will consider equations of the form

∆u+ F (x, u) = 0 in Ω, (1.1.1)

u = g on ∂Ω.

Here, Ω is a smooth bounded domain in Rn and ∂Ω is its boundary. There are many ap-
plications where such problems appear. We will mention just two – one is in the realm of
probability theory, where u(x) is an equilibrium particle density for some stochastic process,
and the other is in classical physics. In the physics context, one may think of u(x) as the
equilibrium temperature distribution inside the domain Ω. The temperature flux is propor-
tional to the gradient of the temperature – this is the Fourier law, which leads to the term ∆u
in the overall heat balance (1.1.1). The term F (x, u) corresponds to the heat sources or sinks
inside Ω, while g(x) is the (prescribed) temperature on the boundary ∂Ω. The maximum
principle reflects a basic observation known to any child – first, if F (x, u) = 0 (there are
neither heat sources nor sinks), or if F (x, u) ≤ 0 (there are no heat sources but there may be
heat sinks), the temeprature inside Ω may not exceed that on the boundary – without a heat
source inside a room, you can not heat the interior of a room to a warmer temperature than
its maximum on the boundary. The second observation is that if one considers two prescribed
boundary conditions and heat sources such that

g1(x) ≤ g2(x) and F1(x, u) ≤ F2(x, u),

then the corresponding solutions will satisfy u1(x) ≤ u2(x) – stronger heating leads to warmer
rooms. It is surprising how such mundane considerations may lead to beautiful mathematics.
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The maximum principle in complex analysis

Most mathematicians first encounter the maximum principle in a complex analysis course.
Recall that the real and imaginary parts of an analytic function f(z) have the following
property.

Proposition 1.1.1 Let f(z) = u(z) + iv(z) be an analytic function in a smooth bounded
domain Ω ⊂ C, continuous up to the boundary Ω. Then u(z) = Ref(z), v(z) = Imf(z)
and w(z) = |f(z)| all attain their respective maxima over Ω on its boundary. In addition,
if one of these functions attains its maximum inside Ω, it has to be equal identically to a
constant in Ω.

This proposition is usually proved via the mean-value property of analytic functions (which
itself is a consequence of the Cauchy integral formula): for any disk B(z0, r) contained in Ω
we have

f(z0) =

∫ 2π

0

f(z0+reiθ)
dθ

2π
, u(z0) =

∫ 2π

0

u(z0+reiθ)
dθ

2π
, v(z0) =

∫ 2π

0

v(z0+reiθ)
dθ

2π
, (1.1.2)

and, as a consequence,

w(z) ≤
∫ 2π

0

w(z0 + reiθ)
dθ

2π
. (1.1.3)

It is immediate to see that (1.1.3) implies that if one of the functions u, v and w attains a
local maximum at a point z0 inside Ω, it has to be equal to a constant in a disk around z0.
Thus, the set where it attains its maximum is both open and closed, hence it is all of Ω and
this function equals identically to a constant.

The above argument while incredibly beautiful and simple, relies very heavily on the
rigidity of analytic functions that is reflected in the mean-value property. The same rigidity
is reflected in the fact that the real and imaginary parts of an analytic function satisfy the
Laplace equation

∆u = 0, ∆v = 0,

while w2 = u2 + v2 is subharmonic: it satisfies

∆(w2) ≥ 0.

We will see next that the mean-value principle is associated to the Laplace equation and not
analyticity in itself, and thus applies to harmonic (and, in a modified way, to subharmonic)
functions in higher dimensions as well. This will imply the maximum principle for solutions of
the Laplace equation in an arbitrary dimension. One may ask whether a version of the mean-
value property also holds for the solutions of general elliptic equations rather than just for
the Laplace equation – the answer is “yes if understood properly”: the mean value property
survives as the general elliptic regularity theory, an equally beautiful sister of the complex
analysis which is occasionally misunderstood as “technical”.
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Interlude: a probabilistic connection digression

Apart from the aforementioned connection to physics and the Fourier law, a good way to
understand how the Laplace equation comes about, as well as many of its properties, including
the maximum principle, is via its connection to the Brownian motion. It is easy to understand
in terms of the discrete equations, which requires only very elementary probability theory.
Consider a system of many particles on the n-dimensional integer lattice Zn. They all perform
a symmetric random walk: at each integer time t = k each particle jumps (independently
from the others) from its current site x ∈ Zn to one of its 2n neighbors, x± ek (ek is the unit
vector in the direction of the xk-axis), with equal probability 1/(2n). At each step we may
also insert new particles, the average number of inserted (or eliminated) particles per unit
time at each site is F (x). Let now um(x) be the average number of particles at the site x at
time m. The balance equation for um+1(x) is

um+1(x) =
1

2n

n∑
k=1

[um(x+ ek) + um(x− ek)] + F (x). (1.1.4)

Exercise 1.1.2 Derive (1.1.4) by considering how particles may appear at the position x at
the time m+ 1 – they either jump from a neighbor, or are inserted.

If the system is in an equilibrium, so that um+1(x) = um(x) for all x, then u(x) (dropping the
subscript m) satisfies the discrete equation

1

2n

n∑
k=1

[u(x+ ek) + u(x− ek)− 2u(x)] + F (x) = 0.

If we now take a small mesh size h, rather than have particles jump be of size one, the above
equation becomes

1

2n

n∑
k=1

[u(x+ hek) + u(x− hek)− 2u(x)] + F (x) = 0.

A Taylor expansion in h leads to

h2

2n

n∑
k=1

∂2u(x)

∂x2
k

+ F (x) = lower order terms.

Taking the source of the form F (x) = h2/(2n)G(x) – the small factor h2 prevents us from
inserting or removing too many particles, we arrive, in the limit h ↓ 0, at

∆u+G(x) = 0. (1.1.5)

In this model, we interpret u(x) as the local particle density, and G(x) as the rate at which
the particles are inserted (if G(x) > 0), or removed (if G(x) < 0). When equation (1.1.5) is
posed in a bounded domain Ω, we need to supplement it with a boundary condition, such as

u(x) = g(x) on ∂Ω.

This boundary condition means the particle density on the boundary is prescribed – the
particles are injected or removed if there are “too many” or “too little” particles at the
boundary, to keep u(x) at the given prescribed value g(x).
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The mean value property for sub-harmonic and super-harmonic functions

We now return to the world of analysis. A function u(x), x ∈ Ω ⊂ Rn is harmonic if it satisfies
the Laplace equation

∆u = 0 in Ω. (1.1.6)

This is equation (1.1.1) with F ≡ 0, thus a harmonic function describes a heat distribution
in Ω with neither heat sources nor sinks in Ω. We say that u is sub-harmonic if it satisfies

−∆u ≤ 0 in Ω, (1.1.7)

and it is super-harmonic if it satisfies

−∆u ≥ 0 in Ω, (1.1.8)

In other words, a sub-harmonic function satisfies

∆u+ F (x) = 0, in Ω,

with F (x) ≤ 0 – it describes a heat distribution in Ω with only heat sinks present, and no
heat sources, while a super-harmonic function satisfies

∆u+ F (x) = 0, in Ω,

with F (x) ≥ 0 – it describes an equilibrium heat distribution in Ω with only heat sources
present, and no sinks.

Exercise 1.1.3 Give an interpretation of the sub-harmonic and super-harmonic functions in
terms of particle probability densities.

Note that any sub-harmonic function in one dimension is convex:

−u′′ ≤ 0,

and then, of course, for any x ∈ R and any l > 0 we have

u(x) ≤ 1

2
(u(x+ l) + u(x− l)) , and u(x) ≤ 1

2l

∫ x+l

x−l
u(y)dy.

The following generalization to sub-harmonic functions in higher dimensions shows that lo-
cally u(x) is bounded from above by its spatial average. A super-harmonic function will be
locally above its spatial average. A word on notation: for a set S we denote by |S| its volume,
and, as before, ∂S denotes its boundary.

Theorem 1.1.4 Let Ω ⊂ Rn be an open set and let B(x, r) be a ball centered at x ∈ Rn

of radius r > 0 contained in Ω. Assume that the function u(x) is sub-harmonic, that is, it
satisfies

−∆u ≤ 0, (1.1.9)
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for all x ∈ Ω and that u ∈ C2(Ω). Then we have

u(x) ≤ 1

|B(x, r)|

∫
B(x,r)

udy, u(x) ≤ 1

|∂B(x, r)|

∫
∂B(x,r)

udS. (1.1.10)

Next, suppose that the function u(x) is super-harmonic:

−∆u ≥ 0, (1.1.11)

for all x ∈ Ω and that u ∈ C2(Ω). Then we have

u(x) ≥ 1

|B(x, r)|

∫
B(x,r)

udy, u(x) ≥ 1

|∂B(x, r)|

∫
∂B(x,r)

udS. (1.1.12)

Moreover, if the function u is harmonic: ∆u = 0, then we have equality in both inequalities
in (1.1.10).

One reason to expect the mean-value property is from physics – if Ω is a ball with no heat
sources, it is natural to expect that the equilibrium temperature in the center of the ball may
not exceed the average temperature over any sphere concentric with the ball. The opposite is
true if there are no heat sinks (this is true for a super-harmonic function). Another explanation
can be seen from the discrete version of inequality (1.1.9):

u(x) ≤ 1

2n

n∑
j=1

(u(x+ hej) + u(x− hej)).

Here, h is the mesh size, and ej is the unit vector in the direction of the coordinate axis
for xj. This discrete equation says exactly that the value u(x) is smaller than the average of
the values of u at the neighbors of the point x on the lattice with mesh size h, which is similar
to the statement of Theorem 1.1.4 (though there is no meaning to “nearest” neighbor in the
continuous case).

Proof. We will only consider a sub-harmonic function, the super-harmonic functions are
treated identically. Let us fix the point x ∈ Ω and define

φ(r) =
1

|∂B(x, r)|

∫
∂B(x,r)

u(z)dS(z). (1.1.13)

It is easy to see that, since u(x) is continuous, we have

lim
r↓0

φ(r) = u(x). (1.1.14)

Therefore, we would be done if we knew that φ′(r) ≥ 0 for all r > 0 small enough so that that
the ball B(x, r) is contained in Ω. To this end, passing to the polar coordinates z = x + ry,
with y ∈ ∂B(0, 1), we may rewrite (1.1.13) as

φ(r) =
1

|∂B(0, 1)|

∫
∂B(0,1)

u(x+ ry)dS(y).
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Then, differentiating in r gives

φ′(r) =
1

|∂B(0, 1)|

∫
∂B(0,1)

y · ∇u(x+ ry)dS(y).

Going back to the z-variables leads to

φ′(r) =
1

|∂B(x, r)|

∫
∂B(x,r)

1

r
(z − x) · ∇u(z)dS(z) =

1

|∂B(x, r)|

∫
∂B(x,r)

∂u

∂ν
dS(z).

Here, we used the fact that the outward normal to B(x, r) at a point z ∈ ∂B(x, r) is

ν = (z − x)/r.

Using Green’s formula∫
U

∆gdy =

∫
U

∇ · (∇g)dy =

∫
∂U

(ν · ∇g)dS =

∫
∂U

∂g

∂ν
dS,

gives now

φ′(r) =
1

|∂B(x, r)|

∫
B(x,r)

∆u(y)dy ≥ 0.

It follows that φ(r) is a non-decreasing function of r, and then (1.1.14) implies that

u(x) ≤ 1

|∂B(x, r)|

∫
∂B(x,r)

udS, (1.1.15)

which is the second identity in (1.1.10).
In order to prove the first equality in (1.1.10) we use the polar coordinates once again:

1

|B(x, r)|

∫
B(x,r)

udy =
1

|B(x, r)|

∫ r

0

(∫
∂B(x,s)

udS

)
ds ≥ 1

|B(x, r)|

∫ r

0

u(x)nα(n)sn−1ds

= u(x)α(n)rn
1

α(n)rn
= u(x).

We used above two facts: first, the already proved identity (1.1.15) about averages on spherical
shells, and, second, that the area of an (n− 1)-dimensional unit sphere is nα(n), where α(n)
is the volume of the n-dimensional unit ball. Now, the proof of (1.1.10) is complete. The
proof of the mean-value property for super-harmonic functions works identically. �

The maximum principle for the Laplacian

The first consequence of the mean value property is the maximum principle that says that a
sub-harmonic function attains its maximum over any domain on the boundary and not inside
the domain. From the physical point of view this is, again, obvious – a sub-harmonic function
is nothing but the heat distribution in a room without heat sources, hence it is very natural
that it attains its maximum on the boundary (the walls of the room). In one dimension this
claim is also familiar: a sub-harmonic function of a one-dimensional variable is convex, and,
of course, a smooth convex function does not have any local maxima.
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Theorem 1.1.5 (The maximum principle) Let u(x) be a sub-harmonic function in a
connected domain Ω and assume that u ∈ C2(Ω) ∩ C(Ω̄), then

max
x∈Ω̄

u(x) = max
y∈∂Ω

u(y). (1.1.16)

Moreover, if u(x) achieves its maximum at a point x0 in the interior of Ω, then u(x) is
identically equal to a constant in Ω. Similarly, if v ∈ C2(Ω) ∩ C(Ω̄) is a super-harmonic
function in Ω, then

min
x∈Ω̄

v(x) = min
y∈∂Ω

v(y), (1.1.17)

and if v(x) achieves its minimum at a point x0 in the interior of Ω, then v(x) is identically
equal to a constant in Ω.

Proof. Again, we only treat the case of a sub-harmonic function. Suppose that u(x) attains
its maximum at an interior point x0 ∈ Ω, and set

M = u(x0).

Then, for any r > 0 sufficiently small (so that the ball B(x0, r) is contained in Ω), we have

M = u(x) ≤ 1

|B(x0, r)|

∫
B(x0,r)

udy ≤M,

with the equality above holding only if u(y) = M for all y in the ball B(x0, r). Therefore,
the set S of points where u(x) = M is open. Since u(x) is continuous, this set is also
closed. Since S us both open and closed in Ω, and Ω is connected, it follows that S = Ω,
hence u(x) = M at all points x ∈ Ω. �

We should note the particularly simple proof above only applies to the Laplacian itself but
the maximum principle applies to much more general elliptic operators than the Laplacian.
In particular, already in this chapter, we will deal with slightly more general operators than
the Laplacian, of the form

Lu = ∆u(x) + c(x)u. (1.1.18)

In order to anticipate that this issue is not totally trivial, consider the following exercise.

Exercise 1.1.6 Consider the boundary value problem

−u′′ − au = f(x), 0 < x < 1, u(0) = u(1) = 0,

with a given non-negative function f(x), and a constant a ≥ 0. Show that if a < π2, then the
function u(x) is positive on the interval (0, 1).

The reader may observe that a = π2 is the leading eigenvalue of the operator Lu = −u′′ on
the interval 0 < x < 1 with the boundary conditions u(0) = u(1) = 0. This transition will be
generalized to much more general operators later on.
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1.2 Act II. The moving plane method

1.2.1 The isoperimeteric inequality and sliding

We now bring in our second set of characters, the moving plane and sliding methods. As
an introduction, we show how the sliding method can work alone, without the maximum
principle. Maybe the simplest situation when the sliding idea proves useful is in an elegant
proof of the isoperimetric inequality given by X. Cabré in [30] (see also [31]). The isoperimetric
inequality says that among all domains of a given volume the ball has the smallest surface
area.

Theorem 1.2.1 Let Ω be a smooth bounded domain in Rn. Then,

|∂Ω|
|Ω|(n−1)/n

≥ |∂B1|
|B1|(n−1)/n

, (1.2.1)

where B1 is the open unit ball in Rn, |Ω| denotes the measure of Ω and |∂Ω| is the perimeter
of Ω (the (n− 1)-dimensional measure of the boundary of Ω). In addition, equality in (1.2.1)
holds if and only if Ω is a ball.

A technical aside: the area formula

The proof will use the area formula, a generalization of the usual change of variables formula
in the multi-variable calculus. The latter says that if f : Rn → Rn is a smooth one-to-one
map (a change of variables), then∫

Rn
g(x)Jf(x)dx =

∫
Rn
g(f−1(y))dy. (1.2.2)

Here, Jf is the Jacobian of the map f :

Jf(x) =

∣∣∣∣det

(
∂fi
∂xj

)∣∣∣∣ .
For general maps we have

Theorem 1.2.2 (Area formula) Let f : Rn → Rn be a Lipschitz map with the Jacobian Jf .
Then, for each function g ∈ L1(Rn) we have∫

Rn
g(x)Jf(x)dx =

∫
Rn

 ∑
x∈f−1{y}

g(x)

 dy. (1.2.3)

Note that if f is Lipschitz then it is differentiable almost everywhere by the Rademacher
theorem [61], thus the Jacobian is defined almost everywhere as well. We will not prove the
area formula here – see [61] for the proof. We will use the following corollary.

Corollary 1.2.3 Let f : Rn → Rn be a Lipschitz map with the Jacobian Jf . Then, for each
measurable set A ⊂ Rn we have

|f(A)| ≤
∫
A

Jf(x)dx. (1.2.4)

12



Proof. For a given set S we define its characteristic function as

χS(x) =

{
1, for x ∈ S,
0, for x 6∈ S,

We use the area formula with g(x) = χA(x):

∫
A

Jf(x)dx =

∫
Rn
χA(x)Jf(x)dx =

∫
Rn

 ∑
x∈f−1{y}

χA(x)

 dy
=

∫
Rn

[#x ∈ A : f(x) = y] dy ≥
∫
Rn
χf(A)(y)dy = |f(A)|,

and we are done. �
A more general form of this corollary is the following.

Corollary 1.2.4 Let f : Rn → Rn be a Lipschitz map with the Jacobian Jf . Then, for each
nonnegative function p ∈ L1(Rn) and each measurable set A, we have∫

f(A)

p(y)dy ≤
∫
A

p(f(x))Jf(x)dx. (1.2.5)

Proof. The proof is as in the previous corollary. This time, we apply the area formula to the
function g(x) = p(f(x))χA(x):

∫
A

p(f(x))Jf(x)dx =

∫
Rn
χA(x)p(f(x))Jf(x)dx =

∫
Rn

 ∑
x∈f−1{y}

χA(x)p(f(x))

 dy
=

∫
Rn

[#x ∈ A : f(x) = y] p(y)dy ≥
∫
f(A)

p(y)dy,

and we are done. �

The proof of the isoperimetric inequality

We now proceed with Cabré’s proof of the isoperimetric inequality in Theorem 1.2.1.
Step 1: sliding. Let v(x) be the solution of the Neumann problem

∆v = k, in Ω, (1.2.6)

∂v

∂ν
= 1 on ∂Ω.

Here, ν is the outward normal at the boundary. Integrating the first equation above and using
the boundary condition, we obtain

k|Ω| =
∫

Ω

∆vdx =

∫
∂Ω

∂u

∂ν
= |∂Ω|.
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Hence, solution exists only if

k =
|∂Ω|
|Ω|

. (1.2.7)

It is a classical result (see [79], for example) that with this particular value of k there exist
infinitely many solutions that differ by addition of an arbitrary constant. We let v be any of
them. As Ω is a smooth domain, v is also smooth.

Let Γv be the lower contact set of v, that is, the set of all x ∈ Ω such that the tangent
hyperplane to the graph of v at x lies below that graph in all of Ω̄. More formally, we define

Γv = {x ∈ Ω : v(y) ≥ v(x) +∇v(x) · (y − x) for all y ∈ Ω̄.} (1.2.8)

The crucial observation is that
B1 ⊂ ∇v(Γv). (1.2.9)

Here, B1 is the open unit ball centered at the origin.

Exercise 1.2.5 Explain why (1.2.9) is trivial in one dimension.

The geometric reason for this is as follows: take any p ∈ B1 and consider the graphs of the
functions

rc(y) = p · y + c.

We will now slide this plane upward – we will start with a “very negative” c, and start
increasing it, moving the plane up. Note that there exists M > 0 so that if c < −M , then

rc(y) < v(y)− 100 for all y ∈ Ω̄,

that is, the plane is below the graph in all of Ω. On the other hand, possibly after increasing M
further, we may ensure that if c > M , then

rc(y) > v(y) + 100 for all y ∈ Ω̄,

in other words, the plane is above the graph in all of Ω. Let then

α = sup{c ∈ R : rc(y) < v(y) for all y ∈ Ω̄} (1.2.10)

be the largest c so that the plane lies below the graph of v in all of Ω. It is easy to see that
the plane rα(y) = p · y + α has to touch the graph of v: there exists a point y0 ∈ Ω̄ such
that rα(y0) = v(y0) and

rα(y) ≤ v(y) for all y ∈ Ω̄. (1.2.11)

Furthermore, the point y0 can not lie on the boundary ∂Ω since |p| < 1. Indeed, for all y ∈ ∂Ω
we have ∣∣∣∂rc

∂ν

∣∣∣ = |p · ν| ≤ |p| < 1 and
∂v

∂ν
= 1.

This means that if rc(y) = v(y) for some c, and y is on the boundary ∂Ω, then there is a
neighborhood U ∈ Ω of y such that rc(y) > v(y) for all y ∈ U . Comparing to (1.2.11),
we see that c 6= α, hence it is impossible that y0 ∈ ∂Ω. Thus, y0 is an interior point
of Ω, and, moreover, the graph of rα(y) is the tangent plane to v at y0. In particular, we
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have ∇v(y0) = p, and (1.2.11) implies that y0 is in the contact set of v: y0 ∈ Γv. We have
now shown the inclusion (1.2.9): B1 ⊂ ∇v(Γv). Note that the only information about the
function v(x) we have used so far is the Neumann boundary condition

∂v

∂ν
= 1 on ∂Ω,

but not the Poisson equation for v in Ω.
Step 2: using the area formula. A trivial consequence of (1.2.9) is that

|B1| ≤ |∇v(Γv)|. (1.2.12)

Now, we will apply Corollary 1.2.3 to the map ∇v : Γv → ∇v(Γv). The Jacobian of this map
is |det[D2v]|.

Exercise 1.2.6 Show that if Γv is the contact set of a smooth function v(x), then det[D2v]
is non-negative for x ∈ Γv, and, moreover, all eigenvalues of D2v are nonnegative on Γv.

As det[D2v] is non-negative for x ∈ Γv, we conclude from Corollary 1.2.3 and (1.2.12) that

|B1| ≤ |∇v(Γv)| ≤
∫

Γv

det[D2v(x)]dx. (1.2.13)

It remains to notice that by the classical arithmetic mean-geometric mean inequality applied
to the (nonnegative) eigenvalues λ1, . . . , λn of the matrix D2v(x), x ∈ Γv we have

det[D2v(x)] = λ1λ2 . . . λn ≤
(
λ1 + λ2 + · · ·+ λn

n

)n
. (1.2.14)

However, by a well-known formula from linear algebra,

λ1 + λ2 + · · ·+ λn = Tr[D2v],

and, moreover, Tr[D2v] is simply the Laplacian ∆v. This gives

det[D2v(x)] ≤
(

Tr[D2v]

n

)n
=

(
∆v

n

)n
for x ∈ Γv. (1.2.15)

Recall that v is the solution of (1.2.6):

∆v = k, in Ω, (1.2.16)

∂v

∂ν
= 1 on ∂Ω.

with

k =
|∂Ω|
|Ω|

.

Going back to (1.2.13), we deduce that

|B1| ≤
∫

Γv

det[D2v(x)]dx ≤
∫

Γv

(∆v

n

)n
dx ≤

(k
n

)n
|Γv| =

( |∂Ω|
n|Ω|

)n
|Γv| ≤

( |∂Ω|
n|Ω|

)n
|Ω|.
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In addition, for the unit ball we have |∂B1| = n|B1|, hence the above implies

|∂B1|n

|B1|n−1
≤ |∂Ω|n

|Ω|n−1
, (1.2.17)

which is nothing but the isoperimetric inequality (1.2.1).
In order to see that the inequality in (1.2.17) is strict unless Ω is a ball, we observe that it

follows from the above argument that for the equality to hold in (1.2.17) we must have equality
in (1.2.14), and, in addition, Γv has to coincide with Ω. This means that for each x ∈ Ω all
eigenvalues of the matrix D2v(x) are equal to each other. That is, D2v(x) is a multiple of the
identity matrix for each x ∈ Ω.

Exercise 1.2.7 Show that if v(x) is a smooth function such that

∂2v(x)

∂x2
i

=
∂2v(x)

∂x2
j

,

for all 1 ≤ i, j ≤ n and x ∈ Ω, and
∂2v(x)

∂xi∂xj
= 0,

for all i 6= j and x ∈ Ω, then there exists a = (a1, . . . , an) ∈ Rn and b ∈ R, so that

v(x) = b
[
(x1 − a1)2 + (x2 − a2)2 + · · ·+ (xn − an)2

]
+ c, (1.2.18)

for all x ∈ Ω.

Our function v(x) does satisfy the assumptions of Exercise 1.2.7, hence it must be of the
form (1.2.18). Finally, the boundary condition ∂v/∂ν = 1 on ∂Ω implies that Ω is a ball
centered at the point a ∈ Rn. �

1.3 Act III. Their first meeting

The maximum principle returns, and we study it in a slightly greater depth. At the end of
this act the maximum principle and the moving plane method are introduced to each other.

The Hopf lemma and the strong maximum principle

We now generalize the maximum principle to slightly more general operators than the Lapla-
cian, to allow for a zero-order term. Let us begin with the following exercises.

Exercise 1.3.1 Show that if the function u(x) satisfies an ODE of the form

u′′ + c(x)u = 0, a < x < b, (1.3.1)

and u(x0) = 0 for some x0 ∈ (a, b), and the function c(x) is continuous on [a, b], then u can
not attain its maximum (or minimum) over the interval (a, b) at the point x0 unless u ≡ 0.
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This exercise is relatively easy – one has to think about the initial value problem for (1.3.1)
with the data u(x0) = u′(x0) = 0. Now, look at the next exercise, which is slightly harder.

Exercise 1.3.2 Show that, once again, in one dimension, if u(x), x ∈ R satisfies a differential
inequality of the form

u′′ + c(x)u ≥ 0, a < x < b,

the function c(x) is continuous on [a, b], and u(x0) = 0 for some x0 ∈ (a, b) then u can not
attain its maximum over the interval (a, b) at the point x0 unless u ≡ 0.

The proof of the strong maximum principle relies on the Hopf lemma which guarantees
that the point on the boundary where the maximum is attained is not a critical point of u.

Theorem 1.3.3 (The Hopf Lemma) Let B = B(y, r) be an open ball in Rn with x0 ∈ ∂B, and
assume that c(x) ≤ 0 in B. Suppose that a function u ∈ C2(B)∩C(B ∪x0) is a sub-solution,
that is, it satisfies

∆u+ c(x)u ≥ 0 in B,

and that u(x) < u(x0) for any x ∈ B and u(x0) ≥ 0. Then, we have
∂u

∂ν
(x0) > 0.

Proof. We may assume without loss of generality that B is centered at the origin: y = 0.
We may also assume that u ∈ C(B̄) and that u(x) < u(x0) for all x ∈ B̄\{x0} – otherwise,
we would simply consider a smaller ball B1 ⊂ B that is tangent to B at x0.

The idea is to modify u to turn it into a strict sub-solution of the form

w(x) = u(x) + εh(x).

We also need w to inherit the other properties of u: it should attain its maximum over B̄
at x0, and we need to have w(x) < w(x0) for all x ∈ B. In addition, we would like to have

∂h

∂ν
< 0 on ∂B,

so that the inequality
∂w

∂ν
(x0) ≥ 0

would imply
∂u

∂ν
(x0) > 0.

An appropriate choice is
h(x) = e−α|x|

2 − e−αr2 ,
in a smaller domain

Σ = B ∩B(x0, r/2).

Observe that h > 0 in B, h = 0 on ∂B (thus, h attains its minimum on ∂B – unlike u which
attains its maximum there), and, in addition:

∆h+ c(x)h = e−α|x|
2 [

4α2|x|2 − 2αn+ c(x)
]
− c(x)e−αr

2

≥ e−α|x|
2[

4α2|x|2 − 2αn+ c(x)
]
≥ e−α|x|

2
[
4α2 |r|2

4
− 2αn+ c(x)

]
> 0,
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for all x ∈ Σ for a sufficiently large α > 0. Hence, we have a strict inequality

∆w + c(x)w > 0, in Σ, (1.3.2)

for all ε > 0. Note that w(x0) = u(x0) ≥ 0, thus the maximum of w over Σ is non-negative.
Suppose that w attains this maximum at an interior point x1, and w(x1) ≥ 0. As ∆w(x1) ≤ 0
and c(x1) ≤ 0, it follows that

∆w(x1) + c(x1)w(x1) ≤ 0,

which is a contradiction to (1.3.2). Thus, w may not attain a non-negative maximum inside Σ
but only on the boundary. We now show that if ε > 0 is sufficiently small, then w attains
this maximum only at x0. Indeed, as u(x) < u(x0) in B, we may find δ, so that

u(x) < u(x0)− δ for x ∈ ∂Σ ∩B.

Take ε so that
εh(x) < δ on ∂Σ ∩B,

then
w(x) < u(x0) = w(x0) for all x ∈ ∂Σ ∩B.

On the other hand, for x ∈ ∂Σ ∩ ∂B we have h(x) = 0 and

w(x) = u(x) < u(x0) = w(x0).

We conclude that w(x) attains its non-negative maximum in Σ̄ at x0 if ε is sufficiently small.
This implies

∂w

∂ν
(x0) ≥ 0,

and, as a consequence
∂u

∂ν
(x0) ≥ −ε∂h

∂ν
(x0) = εαre−αr

2

> 0.

This finishes the proof. �
The next theorem is an immediate consequence of the Hopf lemma.

Theorem 1.3.4 (The strong maximum principle) Assume that c(x) ≤ 0 in Ω, and the func-
tion u ∈ C2(Ω) ∩ C(Ω̄) satisfies

∆u+ c(x)u ≥ 0,

and attains its maximum over Ω̄ at a point x0. In this case, if u(x0) ≥ 0, then x0 ∈ ∂Ω
unless u is a constant. If the domain Ω has the internal sphere property, and u 6≡ const, then

∂u

∂ν
(x0) > 0.

Proof. Let M = supΩ̄ u(x) and define the set Σ = {x ∈ Ω : u(x) = M}, where the maximum
is attained. We need to show that either Σ is empty or Σ = Ω. Assume that Σ is non-empty
but Σ 6= Ω, and choose a point p ∈ Ω\Σ such that

d0 = d(p,Σ) < d(p, ∂Ω).
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Consider the ball B0 = B(p, d0) and let x0 ∈ ∂B0 ∩ ∂Σ. Then we have

∆u+ c(x)u ≥ 0 in B0,

and
u(x) < u(x0) = M , M ≥ 0 for all x ∈ B0.

The Hopf Lemma implies that
∂u

∂ν
(x0) > 0,

where ν is the normal to B0 at x0. However, x0 is an internal maximum of u in Ω and
hence ∇u(x0) = 0. This is a contradiction. �

Now, we may state the strong comparison principle – note that we do not make any
assumptions on the sign of the function c(x) here.

Theorem 1.3.5 (The strong comparison principle) Assume that c(x) is a bounded function,
and u ∈ C2(Ω) ∩ C(Ω̄) satisfies

∆u+ c(x)u ≥ 0. (1.3.3)

If u ≤ 0 in Ω then either u ≡ 0 in Ω or u < 0 in Ω. Similarly, if u ∈ C2(Ω) ∩ C(Ω̄) satisfies

∆u+ c(x)u ≤ 0 in Ω, (1.3.4)

with u ≥ 0 in Ω, with a bounded function c(x). Then either u ≡ 0 in Ω or u > 0 in Ω.

Proof. If c(x) ≤ 0, this follows directly from the strong maximum principle. In the general
case, as u ≤ 0 in Ω, the inequality (1.3.3) implies that, for any M > 0 we have

∆u+ c(x)u−Mu ≥ −Mu ≥ 0.

However, if M > ‖c‖L∞(Ω) then the zero order coefficient satisfies

c1(x) = c(x)−M ≤ 0,

hence we may conclude, again from the strong maximum principle that either u < 0 in Ω
or u ≡ 0 in Ω. The proof in the case (1.3.4) holds is identical. �

Separating sub- and super-solutions

A very common use of the strong maximum principle is to re-interpret it as the “untouch-
ability” of a sub-solution and a super-solution of a linear or nonlinear problem – the basic
principle underlying what we will see below. Assume that the functions u(x) and v(x) satisfy

−∆u ≤ f(x, u), −∆v ≥ f(x, v) in Ω. (1.3.5)

We say that u(x) is a sub-solution, and v(x) is a super-solution. Assume that, in addition,
we know that

u(x) ≤ v(x) for all x ∈ Ω, (1.3.6)

that is, the sub-solution sits below the super-solution. In this case, we are going to rule out
the possibility that they touch inside Ω (they can touch on the boundary, however): there
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can not be an x0 ∈ Ω so that u(x0) = v(x0). Indeed, if the function f(x, s) is differentiable
(or Lipschitz) in s, the quotient

c(x) =
f(x, u(x))− f(x, v(x))

u(x)− v(x)

is a bounded function, and the difference w(x) = u(x)− v(x) satisfies

∆w + c(x)w ≥ 0 in Ω. (1.3.7)

As w(x) ≤ 0 in all of Ω, the strong maximum principle implies that either w(x) ≡ 0, so
that u and v coincide, or w(x) < 0 in Ω, that is, we have a strict inequality: u(x) < v(x) for
all x ∈ Ω. In other words, a sub-solution and a super-solution can not touch at a point – this
very simple principle will be extremely important in what follows.

Let us illustrate an application of the strong maximum principle, with a cameo appearance
of the sliding method in a disguise as a bonus. Consider the boundary value problem

−u′′ = eu, 0 < x < L, (1.3.8)

with the boundary condition
u(0) = u(L) = 0. (1.3.9)

If we think of u(x) as a temperature distribution, then the boundary condition means that
the boundary is “cold”. On the other hand, the positive term eu is a “heating term”, which
competes with the cooling by the boundary. A nonnegative solution u(x) corresponds to
an equilibrium between these two effects. We would like to show that if the length of the
interval L is sufficiently large, then no such equilibrium is possible – the physical reason is that
the boundary is too far from the middle of the interval, so the heating term wins. This absence
of an equilibrium is interpreted as an explosion, and this model was introduced exactly in
that context in late 30’s-early 40’s. It is convenient to work with the function w = u + ε,
which satisfies

−w′′ = e−εew, 0 < x < L, (1.3.10)

with the boundary condition
w(0) = w(L) = ε. (1.3.11)

Consider a family of functions

vλ(x) = λ sin
(πx
L

)
, λ ≥ 0, 0 < x < L.

These functions satisfy (for any λ ≥ 0)

v′′λ +
π2

L2
vλ = 0, vλ(0) = vλ(L) = 0. (1.3.12)

Therefore, if L is so large that

π2

L2
s ≤ e−εes, for all s ≥ 0,
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we have

w′′ +
π2

L2
w ≤ 0, (1.3.13)

that is, w is a super-solution for (1.3.12). In addition, when λ > 0 is sufficiently small, we
have

vλ(x) ≤ w(x) for all 0 ≤ x ≤ L. (1.3.14)

Let us now start increasing λ until the graphs of vλ and w touch at some point:

λ0 = sup{λ : vλ(x) ≤ w(x) for all 0 ≤ x ≤ L.} (1.3.15)

The difference

p(x) = vλ0(x)− w(x)

satisfies

p′′ +
π2

L2
p ≥ 0,

and p(x) ≤ 0 for all 0 < x < L. In addition, there exists x0 such that p(x0) = 0, and, as

vλ(0) = vλ(L) = 0 < ε = w(0) = w(L),

it is impossible that x0 = 0 or x0 = L. We conclude that p(x) ≡ 0, which is a contradiction.
Hence, no solution of (1.3.8)-(1.3.9) may exist when L is sufficiently large.

In order to complete the picture, the reader may look at the following exercise.

Exercise 1.3.6 Show that there exists L1 > 0 so that a nonnegative solution of (1.3.8)-(1.3.9)
exists for all 0 < L < L1, and does not exist for all L > L1.

The maximum principle for narrow domains

Before we allow the moving plane method to return, we describe the maximum principle
for narrow domains, which is an indispensable tool in this method. Its proof will utilize
the “ballooning method” we have seen in the analysis of the explosion problem. As we have
discussed, the usual maximum principle in the form “∆u+c(x)u ≥ 0 in Ω, u ≤ 0 on ∂Ω implies
either u ≡ 0 or u < 0 in Ω” can be interpreted physically as follows. If u is the temperature
distribution then the boundary condition u ≤ 0 on ∂Ω means that ”the boundary is cold”.
At the same time, the term c(x)u can be viewed as a heat source if c(x) ≥ 0 or as a heat sink
if c(x) ≤ 0. The conditions u ≤ 0 on ∂Ω and c(x) ≤ 0 together mean that both the boundary
is cold and there are no heat sources – therefore, the temperature is cold everywhere, and we
get u ≤ 0. On the other hand, if the domain is such that each point inside Ω is ”close to the
boundary” then the effect of the cold boundary can dominate over a heat source, and then,
even if c(x) ≥ 0 at some (or all) points x ∈ Ω, the maximum principle still holds.

Mathematically, the first step in that direction is the maximum principle for narrow do-
mains. We use the notation c+(x) = max[0, c(x)].

Theorem 1.3.7 (The maximum principle for narrow domains) There exists d0 > 0 that
depends on the L∞-norm ‖c+‖∞ so that if there exists a unit vector e such that |(y−x)·e| < d0
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for all (x, y) ∈ Ω then the maximum principle holds for the operator ∆ + c(x). That is, if a
function u ∈ C2(Ω) ∩ C1(Ω̄) satisfies

∆u(x) + c(x)u(x) ≥ 0 in Ω, (1.3.16)

and u ≤ 0 on ∂Ω then either u ≡ 0 or u < 0 in Ω.

The main observation here is that in a narrow domain we need not assume c ≤ 0 – but “the
largest possible narrowness”, depends, of course, on the size of the positive part c+(x) that
competes against it.

Proof. Note that, according to the strong maximum principle, it is sufficient to show
that u(x) ≤ 0 in Ω. For the sake of contradiction, suppose that

sup
x∈Ω

u(x) > 0. (1.3.17)

Without loss of generality we may assume that e is the unit vector in the direction x1, and
that

Ω̄ ⊂ {0 < x1 < d}.

Suppose that d is so small that

c(x) ≤ π2/d2, for all x ∈ Ω, (1.3.18)

and consider the function
w(x) = sin

(πx1

d

)
.

It satisfies

∆w +
π2

d2
w = 0, (1.3.19)

and w(x) > 0 in Ω̄, in particular
inf
Ω̄
w(x) > 0. (1.3.20)

A consequence of the above is
∆w + c(x)w ≤ 0, (1.3.21)

so that w(x) is a super-solution to (1.3.16), while u(x) is a sub-solution. Given λ ≥ 0, let us
set wλ(x) = λw(x). As a consequence of (1.3.20), there exists Λ > 0 so large that

Λw(x) > u(x) for all x ∈ Ω.

We are going to push wλ down until it touches u(x): set

λ0 = inf{λ : wλ(x) > u(x) for all x ∈ Ω.}

Note, that, because of (1.3.17), we know that λ0 > 0. The difference

v(x) = u(x)− wλ0(x)

satisfies
∆v + c(x)v ≥ 0.
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The difference between u(x), which satisfies the same inequality, and v(x) is that we know
already that v(x) ≤ 0 – hence, we may conclude from the strong maximum principle again that
either v(x) ≡ 0, or v(x) < 0 in Ω. As wλ(x) > 0 on ∂Ω, the former contradicts the boundary
condition on u(x). It follows that v(x) < 0 in Ω. As v(x) < 0 also on the boundary ∂Ω, there
exists ε0 > 0 so that

v(x) < −ε0 for all x ∈ Ω̄,

that is,

u(x) + ε0 < wλ0(x) for all x ∈ Ω̄.

But then we may choose λ′ < λ0 so that we still have

wλ′(x) > u(x) for all x ∈ Ω.

This contradicts the minimality of λ0. Thus, it is impossible that u(x) > 0 for some x ∈ Ω,
and we are done. �

The maximum principle for small domains

The maximum principle for narrow domains can be extended, dropping the requirement that
the domain is narrow and replacing it by the condition that the domain has a small volume.
We begin with the following lemma, a simple version of the Alexandrov-Bakelman-Pucci
maximum principle, which measures how far from the maximum principle a force can push
the solution.

Lemma 1.3.8 (The baby ABP Maximum Principle) Assume that c(x) ≤ 0 for all x ∈ Ω,
and let u ∈ C2(Ω) ∩ C(Ω̄) satisfy

∆u+ c(x)u ≥ f in Ω, (1.3.22)

and u ≤ 0 on ∂Ω. Then

sup
Ω
u ≤ Cdiam(Ω)

∥∥f−∥∥
Ln(Ω)

, (1.3.23)

with the constant C that depends only on the dimension n (but not on the function c(x) ≤ 0).

Proof. The idea is very similar to what we have seen in the proof of the isoperimetric
inequality. If M := supΩ u ≤ 0, then there is nothing to prove, hence we assume that M > 0.
As u(x) ≤ 0 on ∂Ω, the maximum is achieved at an interior point x0 ∈ Ω, so that M = u(x0).
The function v = −u+, satisfies v ≤ 0 in Ω, v ≡ 0 on ∂Ω and

−M = inf
Ω
v = v(x0) < 0.

Let Γ be the lower contact set of the function v, defined as in (1.2.8): the collection of all
points x ∈ Ω such that the graph of v lies above the tangent plane at x. As v ≤ 0 in Ω, we
must have v < 0 on Γ. Hence v is smooth on Γ, and

∆v = −∆u ≤ −f(x) + c(x)u ≤ −f(x), for x ∈ Γ, (1.3.24)
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as c(x) ≤ 0 and u(x) ≥ 0 on Γ. The analog of the inclusion (1.2.9) that we will now prove is

B(0;M/d) ⊂ ∇v(Γ), (1.3.25)

with d = diam(Ω) and B(0,M/d) the open ball centered at the origin of radius M/d. One
way to see that is by sliding: let p ∈ B(0;M/d) and consider the hyperplane that is the
graph of

zk(x) = p · x− k.

Clearly, zk(x) < v(x) for k sufficiently large. As we decrease k, sliding the plane up, let k̄ be
the first value when the graphs of v(x) and zk̄(x) touch at a point x1. Then we have

v(x) ≥ zk̄(x) for all x ∈ Ω.

If x1 is on the boundary ∂Ω then v(x1) = zk̄(x1) = 0, and we have

p · (x0 − x1) = zk̄(x0)− zk̄(x1) ≤ v(x0)− 0 = −M,

whence |p| ≥ M/d, which is a contradiction. Therefore, x1 is an interior point, which means
that x1 ∈ Γ (by the definition of the lower contact set), and p = ∇v(x1). This proves the
inclusion (1.3.25).

Mimicking the proof of the isoperimetric inequality we use the area formula (cn is the
volume of the unit bal in Rn):

cn

(
M

d

)n
= |B(0;M/d)| ≤ |∇v(Γ)| ≤

∫
Γ

|det(D2v(x))|dx. (1.3.26)

Now, as in the aforementioned proof, for every point x in the contact set Γ, the matrix D2v(x)
is non-negative definite, hence (note that (1.3.24) implies that f(x) ≤ 0 on Γ)

|det[D2v(x)]| ≤
(

∆v

n

)n
≤ (−f(x))n

nn
. (1.3.27)

Integrating (1.3.27) and using (1.3.26), we get

Mn ≤ (diam(Ω))n

cnnn

∫
Γ

|f−(x)|ndx, (1.3.28)

which is (1.3.23). �
An important consequence of Lemma 1.3.8 is a maximum principle for a domain with a

small volume [6].

Theorem 1.3.9 (The maximum principle for domains of a small volume) Let a function
u ∈ C2(Ω) ∩ C(Ω̄) satisfy

∆u(x) + c(x)u(x) ≥ 0 in Ω,

and assume that u ≤ 0 on ∂Ω. Then there exists a positive constant δ which depends on the
spatial dimension n, the diameter of Ω, and ‖c+‖L∞, so that if |Ω| ≤ δ then u ≤ 0 in Ω.
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Proof. If c ≤ 0 then u ≤ 0 by the standard maximum principle. In general, assume
that u+ 6≡ 0, and write c = c+ − c−. We have

∆u− c−u ≥ −c+u.

Lemma 1.3.8 implies that (with a constant C that depends only on the dimension n)

sup
Ω
u ≤ Cdiam(Ω)‖c+u+‖Ln(Ω) ≤ Cdiam(Ω)‖c+‖∞|Ω|1/n sup

Ω
u ≤ 1

2
sup

Ω
u,

when the volume of Ω is sufficiently small:

|Ω| ≤ 1

(2Cdiam(Ω)‖c+‖∞)n
. (1.3.29)

We deduce that supΩ u ≤ 0 contradicting the assumption u+ 6≡ 0, Hence, we have u ≤ 0 in Ω
under the condition (1.3.29). �

1.4 Act IV. Dancing together

We will now use a combination of the maximum principle (mostly for small domains) and
the moving plane method to prove some results on the symmetry of the solutions to elliptic
problems. We show just the tip of the iceberg – a curious reader will find many other results
in the literature, the most famous being, perhaps, the De Giorgi conjecture, a beautiful
connection between geometry and applied mathematics.

1.4.1 The Gidas-Ni-Nirenberg theorem

The following result on the radial symmetry of non-negative solutions is due to Gidas, Ni and
Nirenberg. It is a basic example of a general phenomenon that positive solutions of elliptic
equations tend to be monotonic in one form or other. We present the proof of the Gidas-Ni-
Nirenberg theorem from [23]. The proof uses the moving plane method combined with the
maximum principles for narrow domains, and domains of small volume.

Theorem 1.4.1 Let B1 ∈ Rn be the unit ball, and u ∈ C(B̄1)∩C2(B1) be a positive solution
of the Dirichlet boundary value problem

∆u+ f(u) = 0 in B1, (1.4.1)

u = 0 on ∂B1,

with the function f that is locally Lipschitz in R. Then, the function u is radially symmetric
in B1 and

∂u

∂r
(x) < 0 for x 6= 0.

To address an immediate question the reader may have, we give the following simple exercise.
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Exercise 1.4.2 Show that the conclusion that a function u satisfying (1.4.1) is radially sym-
metric is false in general without the assumption that the function u is positive. Hint: you
may have to learn a little more about the Bessel functions and spherical harmonics.

The proof of Theorem 1.4.1 is based on the following lemma, which applies to general
domains with a planar symmetry, not just balls.

Lemma 1.4.3 Let Ω be a bounded domain that is convex in the x1-direction and symmetric
with respect to the plane {x1 = 0}. Let u ∈ C(Ω̄) ∩ C2(Ω) be a positive solution of

∆u+ f(u) = 0 in Ω, (1.4.2)

u = 0 on ∂Ω,

with the function f that is locally Lipschitz in R. Then, the function u is symmetric with
respect to x1 and

∂u

∂x1

(x) < 0 for any x ∈ Ω with x1 > 0.

Proof of Theorem 1.4.1. Theorem 1.4.1 follows immediately from Lemma 1.4.3. Indeed,
Lemma 1.4.3 implies that u(x) is decreasing in any given radial direction, since the unit ball
is symmetric with respect to any plane passing through the origin. It also follows from the
same lemma that u(x) is invariant under a reflection with respect to any hyperplane passing
through the origin – this trivially implies that u is radially symmetric. �

Proof of Lemma 1.4.3

We use the coordinate system x = (x1, y) ∈ Ω with y ∈ Rn−1. We will prove that

u(x1, y) < u(x∗1, y) for all x1 > 0 and −x1 < x∗1 < x1. (1.4.3)

This, obviously, implies monotonicity in x1 for x1 > 0. Next, letting x∗1 → −x1, we get the
inequality

u(x1, y) ≤ u(−x1, y) for any x1 > 0.

Changing the direction, we get the reflection symmetry: u(x1, y) = u(−x1, y).
We now prove (1.4.3). Given any λ ∈ (0, a), with a = supΩ x1, we take the “moving plane”

Tλ = {x1 = λ},

and consider the part of Ω that is “to the right” of Tλ:

Σλ = {x ∈ Ω : x1 > λ}.

Finally, given a point x, we let xλ be the reflection of x = (x1, x2, . . . , xn) with respect to Tλ:

xλ = (2λ− x1, x2, . . . , xn).

Consider the difference
wλ(x) = u(x)− u(xλ) for x ∈ Σλ.
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The mean value theorem implies that wλ satisfies

∆wλ = f(u(xλ))− f(u(x)) =
f(u(xλ))− f(u(x))

u(xλ)− u(x)
wλ = −c(x, λ)wλ

in Σλ. This is a recurring trick: the difference of two solutions of a semi-linear equation
satisfies a ”linear” equation with an unknown function c. However, we know a priori that the
function c is bounded:

|c(x)| ≤ Lip(f), for all x ∈ Ω. (1.4.4)

The boundary ∂Σλ consists of a piece of ∂Ω, where wλ = −u(xλ) < 0 and of a part of the
plane Tλ, where x = xλ, thus wλ = 0. Summarizing, we have

∆wλ + c(x, λ)wλ = 0 in Σλ (1.4.5)

wλ ≤ 0 and wλ 6≡ 0 on ∂Σλ,

with a bounded function c(x, λ). As the function c(x, λ) does not necessarily have a def-
inite sign, we may not directly apply the comparison principle and immediately conclude
from (1.4.5) that

wλ < 0 inside Σλ for all λ ∈ (0, a). (1.4.6)

Nevertheless, using the moving plane method, we will be able to show that (1.4.6) holds. This
implies in particular that wλ assumes its maximum (equal to zero) over Σ̄λ along Tλ. The
Hopf lemma implies then

∂wλ
∂x1

∣∣∣∣
x1=λ

= 2
∂u

∂x1

∣∣∣∣
x1=λ

< 0.

Given that λ is arbitrary, we conclude that

∂u

∂x1

< 0, for any x ∈ Ω such that x1 > 0.

Therefore, it remains only to show that wλ < 0 inside Σλ to establish monotonicity of u in x1

for x1 > 0. Another consequence of (1.4.6) is that

u(x1, x
′) < u(2λ− x1, x

′) for all λ such that x ∈ Σλ,

that is, for all λ ∈ (0, x1), which is the same as (1.4.3).
In order to show that wλ < 0 one would like to apply the maximum principle to the

boundary value problem (1.4.5). However, as we have mentioned, a priori the function c(x, λ)
does not have a sign, so the usual maximum principle may not be used. On the other hand,
there exists δc such that the maximum principle for narrow domains holds for the operator

Lu = ∆u+ c(x)u,

and domains of the width not larger than δc in the x1-direction. Note that δc depends only
on ‖c‖L∞ that is controlled in our case by (1.4.4). Moreover, when λ is sufficiently close to a:

a− δc < λ < a,
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the domain Σλ does have the width in the x1-direction which is smaller than δc. Thus, for
such λ the maximum principle for narrow domains implies that wλ < 0 inside Σλ. This is
because wλ ≤ 0 on ∂Σλ, and wλ 6≡ 0 on ∂Σλ.

Let us now decrease λ (move the plane Tλ to the left, hence the name “the moving
plane” method), and let (λ0, a) be the largest interval of values so that wλ < 0 inside Σλ

for all λ ∈ (λ0, a). If λ0 = 0, that is, if we may move the plane Tλ all the way to λ = 0,
while keeping (1.4.6) true, then we are done – (1.4.6) follows. Assume, for the sake of a
contradiction, that λ0 > 0. Then, by continuity, we still know that

wλ0 ≤ 0 in Σλ0 .

Moreover, wλ0 is not identically equal to zero on ∂Σλ0 . The strong comparison principle
implies that

wλ0 < 0 in Σλ0 . (1.4.7)

We will show that then
wλ0−ε < 0 in Σλ0−ε (1.4.8)

for sufficiently small ε < ε0. This will contradict our choice of λ0 (unless λ0 = 0).
Here is the key step and the reason why the maximum principle for domains of small

volume is useful for us here: choose a compact set K in Σλ0 , with a smooth boundary, which
is “nearly all” of Σλ0 , in the sense that

|Σλ0\K| < δ/2

with δ > 0 to be determined. Inequality (1.4.7) implies that there exists η > 0 so that

wλ0 ≤ −η < 0 for any x ∈ K.

By continuity, there exits ε0 > 0 so that

wλ0−ε < −
η

2
< 0 for any x ∈ K, (1.4.9)

for ε ∈ (0, ε0) sufficiently small. Let us now see what happens in Σλ0−ε \ K. As far as the
boundary is concerned, we have

wλ0−ε ≤ 0

on ∂Σλ0−ε – this is true for ∂Σλ for all λ ∈ (0, a), and, in addition,

wλ0−ε < 0 on ∂K,

because of (1.4.9). We conclude that

wλ0−ε ≤ 0 on ∂(Σλ0−ε\K),

and wλ0−ε does not vanish identically on ∂(Σλ0−ε\K). Choose now δ (once again, solely deter-
mined by ‖c‖L∞(Ω)), so small that we may apply the maximum principle for domains of small
volume in domains of volume less than δ. When ε is sufficiently small, we have |Σλ0−ε\K| < δ.
Applying this maximum principle to the function wλ0−ε in the domain Σλ0−ε\K, we obtain

wλ0−ε ≤ 0 in Σλ0−ε\K.
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The strong maximum principle implies that

wλ0−ε < 0 in Σλ0−ε\K.

Putting two and two together we see that (1.4.8) holds. This, however, contradicts the choice
of λ0. The proof of the Gidas-Ni-Nirenberg theorem is complete. �

1.4.2 The sliding method: moving sub-solutions around

The sliding method differs from the moving plane method in that one compares translations
of a function rather than its reflections with respect to a plane. One elementary but beautiful
application of the sliding method allows to extend lower bounds obtained on a solution of
a semi-linear elliptic equation in one part of a domain to a different part by moving a sub-
solution around the domain and observing that it may never touch a solution. This is a very
simple and powerful tool in many problems.

Lemma 1.4.4 Let u be a positive function in an open connected set D satisfying

∆u+ f(u) ≤ 0 in D

with a Lipschitz function f . Let B be a ball with its closure B̄ ⊂ D, and suppose z is a
function in B̄ satisfying

z ≤ u in B

∆z + f(z) ≥ 0, wherever z > 0 in B

z ≤ 0 on ∂B.

Then for any continuous one-parameter family of Euclidean motions (rotations and transla-
tions) A(t), 0 ≤ t ≤ T , so that A(0) = Id and A(t)B̄ ⊂ D for all t, we have

zt(x) := z(A(t)−1x) < u(x) in Bt := A(t)B. (1.4.10)

Proof. The rotational invariance of the Laplace operator implies that the function zt satisfies

∆zt + f(zt) ≥ 0, wherever zt > 0 in Bt

zt ≤ 0 on ∂Bt.

Thus the difference wt = zt − u satisfies

∆wt + ct(x)wt ≥ 0 wherever zt > 0 in Bt, (1.4.11)

with ct bounded in Bt, where, as before,

ct(x) =


f(zt(x))− f(u(x))

zt(x)− u(x)
, if zt(x) 6= u(x)

0, otherwise.

In addition, wt < 0 on ∂Bt.
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We now argue by contradiction. Suppose that there is a first t so that the graph of zt

touches the graph of u at a point x0 – such t exists by continuity. Then, for that t, we still
have wt ≤ 0 in Bt, but also wt(x0) = 0. As u > 0 in D, and zt ≤ 0 on ∂Bt, the point x0 has
to be inside Bt, which means that zt satisfies

∆zt + f(zt) ≥ 0

in the whole component G of the set of points in Bt where zt > 0 that contains x0. Thus, wt

satisfies (1.4.11) in G, and, in addition, wt ≤ 0 and wt(x0) = 0. The comparison principle
implies that wt ≡ 0 in G. In particular, we have wt(x̃) = 0 for all x̃ ∈ ∂G. But then

zt(x̃) = u(x̃) > 0 on ∂G,

which contradicts the fact that zt = 0 on ∂G. Hence the graph of zt may not touch that of u
and (1.4.10) follows. �

Lemma 1.4.4 is often used to ”slide around” a sub-solution that is positive somewhere to
show that solution itself is uniformly positive. We will use it repeatedly when we talk about
the reaction-diffusion equations later on. Here is an exercise (to which we will return later)
on how it can be applied.

Exercise 1.4.5 Let u(x) > 0 be a positive bounded solution of the equation

uxx + u− u2 = 0

on the real line x ∈ R. Show that if L is sufficiently large and λ > 0 is sufficiently small, then
the function

zλ(x) = λ sin
(πx
L

)
satisfies

∂2zλ
∂x2

+ zλ − z2
λ ≥ 0, 0 < x < L,

and u(x) ≥ zλ(x) for all 0 ≤ x ≤ L. Use this to conclude that

inf
x∈R

u(x) > 0.

Try to strengthen this result to prove that u(x) ≡ 1.

1.4.3 Monotonicity for the Allen-Cahn equation in Rn

Our next example, taken from the paper [17] by Berestycki, Hamel and Monneau, shows one
analog of the Gidas-Ni-Nirenberg theorem in the whole space Rn. Recall that for the latter
result we have considered a semi-linear elliptic equation in a ball with the Dirichlet boundary
conditions, which are compatible with radially symmetric solutions, and have shown that the
only possible non-negative solutions are, indeed, radially symmetric. In the whole space we
will impose boundary conditions that allow solutions to depend on just one variable, say, xn,
and will show that any solution satisfying these boundary conditions depends only on xn.
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We consider solutions of

∆u+ f(u) = 0 in Rn (1.4.12)

which satisfy |u| ≤ 1 together with the asymptotic conditions

u(x′, xn)→ ±1 as xn → ±∞ uniformly in x′ = (x1, . . . , xn−1). (1.4.13)

We assume that f is a smooth (actually, just assuming that f is Lipschitz would be sufficient)
function on [−1, 1], and there exists δ > 0 so that

f is non-increasing on [−1,−1 + δ] and on [1− δ, 1], and f(±1) = 0. (1.4.14)

The standard example to keep in mind is f(u) = u − u3. In that case, (1.4.12) is known as
the Allen-Cahn equation. Such problems appear in many applications, ranging from biology
and combustion to the differential geometry, as a very basic model of a diffusive connection
between two stable states. The main feature of the nonlinearity is that the corresponding
time-dependent ODE

du

dt
= f(u) (1.4.15)

has two stable solutions u ≡ −1 and u ≡ 1. Solutions of the partial differential equa-
tion (1.4.12), on the other hand, describe the diffusive transitions between regions in space
where u is close to the equilibrium u ≡ −1 and those where u is close to u ≡ 1.

In one dimension, this is simply the ODE

u′′0 + f(u0) = 0, x ∈ R, (1.4.16)

with the boundary conditions

u0(±∞) = ±1. (1.4.17)

This equation may be solved explicitly: multiplying (1.4.16) by u′0 and integrating from −∞
to x, using the boundary conditions, leads to

1

2
(u′0)2 + F (u0) = 0, u0(±∞) = ±1. (1.4.18)

Here, we have defined

F (s) =

∫ s

−1

f(u)du. (1.4.19)

Letting x → +∞ in (1.4.18) we see that a necessary condition for a solution of (1.4.18) to
exist is that F (1) = 0, or ∫ 1

−1

f(u)du = 0. (1.4.20)

Exercise 1.4.6 Show that the solutions of (1.4.16)-(1.4.17) are unique, up to a translation in
the x-variable – note that if u0(x) is a solution to (1.4.16)-(1.4.17), then so is ũ(x) = u0(x+ξ),
for any ξ ∈ R.
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Exercise 1.4.7 Show that if f(u) = u− u3 then u0(x) has an explicit expression

u0(x) = tanh
( x√

2

)
, (1.4.21)

as well as all its translates u0(x+ ξ), with a fixed ξ ∈ R.

Our goal is to show that the asymptotic conditions (1.4.13) imply that the positive solu-
tions of (1.4.12) are actually one-dimensional.

Theorem 1.4.8 Let u be any solution of (1.4.12)-(1.4.13) such that |u| ≤ 1. Then it has the
form u(x′, xn) = u0(xn) where u0 is a solution of

u′′0 + f(u0) = 0 in R, u0(±∞) = ±1. (1.4.22)

Moreover, u is increasing with respect to xn. Finally, such solution is unique up to a transla-
tion.

Without the uniformity assumption in (1.4.13), that is, imposing simply

u(x′, xn)→ ±1 as xn → ±∞, (1.4.23)

this problem is known as ”the weak form” of the De Giorgi conjecture, and was resolved
by Savin [129] who showed that all solutions are one-dimensional in n ≤ 8, and del Pino,
Kowalczyk and Wei [51] who showed that non-planar solutions exist n ≥ 9. Their work is
well beyond the scope of this chapter.

Note that (1.4.23), without the uniformity condition for the limits at infinity as in (1.4.13),
does not imply that u depends only on the variable xn. For example, any function of the
form u(x) = u0(e · x), where e ∈ Sn−1 is a fixed vector with |e| = 1 and en > 0, and u0

is any solution of (1.4.22), satisfies both (1.4.12) and (1.4.23). It will not, however, satisfy
the uniformity assumption in (1.4.13). The additional assumption of uniform convergence
at infinity made here makes this question much easier than the weak form of the De Giorgi
conjecture. Nevertheless, the proof of Theorem 1.4.8 is both non-trivial and instructive. The
full De Giorgi conjecture is that any solution of (1.4.14) in dimension n ≤ 8 with f(u) = u−u3

(without imposing any boundary conditions on u at all) such that −1 ≤ u ≤ 1 is one-
dimensional. It is still open in this generality, to the best of our knowledge. The motivation
for the conjecture comes from the study of the minimal surfaces in differential geometry but
we will not discuss this connection here.

A maximum principle in an unbounded domain

For the proof, we will need a version of the maximum principle for unbounded domains,
interesting in itself.

Lemma 1.4.9 Let D be an open connected set in Rn, possibly unbounded. Assume that D̄ is
disjoint from the closure of an infinite open (solid) cone Σ. Suppose that a function z ∈ C(D̄)
is bounded from above and satisfies

∆z + c(x)z ≥ 0 in D (1.4.24)

z ≤ 0 on ∂D.

with some continuous function c(x) ≤ 0, then z ≤ 0.
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Proof. If the function z(x) would, in addition, vanish at infinity:

lim sup
|x|→+∞

z(x) = 0, (1.4.25)

then the proof would be easy. Indeed, if (1.4.25) holds then we can find a sequence Rn → +∞
so that

sup
D̄∩{|x|=Rn}

z(x) ≤ 1

n
. (1.4.26)

The usual maximum principle applied in the bounded domain Dn = D ∩ B(0;Rn) implies
then that z(x) ≤ 1/n in Dn since this inequality holds on ∂Dn. Letting n→∞ gives

z(x) ≤ 0 in D.

Our next task is to reduce the case of a bounded function z to (1.4.25). To do this, we will
construct a harmonic function g(x) > 0 in D such that

|g(x)| → +∞ as |x| → +∞. (1.4.27)

Since g is harmonic, the ratio σ = z/g will satisfy a differential inequality in D:

∆σ +
2

g
∇g · ∇σ + cσ ≥ 0. (1.4.28)

This is similar to (1.4.24) but now σ does satisfy the asymptotic condition

lim sup
x∈D,|x|→∞

σ(x) ≤ 0,

uniformly in x ∈ D. Moreover, σ ≤ 0 on ∂D. Hence one may apply the above argument to
the function σ(x), and conclude that σ(x) ≤ 0, which, in turn, implies that z(x) ≤ 0 in D.

Exercise 1.4.10 Note that we have brazenly applied the maximum principle above to the
operator in the left side of (1.4.28), while we have previously only proved it for operators of
the form ∆ + c(x), with c(x) ≤ 0. To remedy this, consider a function φ which satisfies an
inequality of the form

∆φ+ b(x) · ∇φ+ c(x)φ ≥ 0 (1.4.29)

in a bounded domain D with c(x) ≤ 0. Show that φ can not attain a positive maximum
inside D. Hint: mimic the proof of the strong maximum principle.

In order to construct such harmonic function g(x) in D, the idea is to decrease the cone Σ

to a cone Σ̃ and to consider the principal eigenfunction ψ > 0 of the spherical Laplace-Beltrami
operator in the region G = Sn−1\Σ̃ with ψ = 0 on ∂G:

∆Sψ + µψ = 0, ψ > 0 in G,

ψ = 0 on ∂G.

Here, ∆S is simply the restriction of the standard Laplacian operator to functions of the
angular variable only (independent of the radial variable). Existence of such an eigenvalue
that corresponds to a positive eigenfunction follows from the general spectral theory of elliptic
operators. We do not expect the reader to be familiar with this theory, but for the moment,
in order to keep the flow of the presentation, we simply ask to take for granted that such
principal eigenvalue with a positive eigenfunction exists and is unique, or consult [60].
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Exercise 1.4.11 Show that µ > 0.

Going to the polar coordinates x = rξ, r > 0, ξ ∈ Sn−1, we now define the function

g(x) = rαψ(ξ), x ∈ D,

with

α(n+ α− 2) = µ.

This choice of α makes the function g be harmonic:

∆g =
∂2g

∂r2
+
n− 1

r

∂g

∂r
+

1

r2
∆Sg = [α(α− 1) + α(n− 1)− µ]rα−2Ψ = 0.

Moreover, as µ > 0, we have α > 0, and it is easy to see that there exists c0 > 0 such
that ψ(x) ≥ c0 for all x ∈ D. Thus (1.4.27) also holds, and the proof is complete. �

We will need the following corollary that we will use for half-spaces.

Corollary 1.4.12 Let f be a Lipschitz continuous function, non-increasing on [−1,−1 + δ]
and on [1− δ, 1] for some δ > 0. Assume that u1 and u2 satisfy

∆ui + f(ui) = 0 in Ω

and are such that |ui| ≤ 1. Assume furthermore that u2 ≥ u1 on ∂Ω and that either u2 ≥ 1−δ
or u1 ≤ −1 + δ in Ω. If Ω ⊂ Rn is an open connected set so that Rn\Ω̄ contains an open
infinite cone then u2 ≥ u1 in Ω.

Proof. Assume, for instance, that u2 ≥ 1− δ, and set w = u1 − u2. Then

∆w + c(x)w = 0 in Ω

with

c(x) =
f(u1)− f(u2)

u1 − u2

.

Note that c(x) ≤ 0 if w(x) ≥ 0. Indeed, if w(x) ≥ 0, then

u1(x) ≥ u2(x) ≥ 1− δ.

As, in addition, we know that u1 ≤ 1, and f is non-increasing on [1 − δ, 1], it follows
that f(u1(x)) ≤ f(u2(x)), and thus c(x) ≤ 0. Hence, if the set G = {w > 0} is not empty, we
may apply the maximum principle of Lemma 1.4.9 to the function w in G (note that w ≤ 0
on ∂G), and conclude that w ≤ 0 in G giving a contradiction. �

Proof of Theorem 1.4.8

We are going to prove that

u is increasing in any direction ν = (ν1, . . . , νn) with νn > 0. (1.4.30)
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This will mean that

1

νn

∂u

∂ν
=

∂u

∂xn
+

n−1∑
j=1

αj
∂u

∂xj
> 0

for any choice of αj = νj/νn. It follows that all ∂u/∂xj = 0, j = 1, . . . , n − 1, so that u
depends only on xn, and, moreover, ∂u/∂xn > 0. Hence, (1.4.30) implies the conclusion of
Theorem 1.4.8 on the monotonicity of the solution.

We now prove (1.4.30). Monotonicity in the direction ν can be restated as

ut(x) ≥ u(x), for all t ≥ 0 and all x ∈ D, (1.4.31)

where ut(x) = u(x+tν) are the shifts of the function u in the direction ν. We start the sliding
method with a very large t. The uniformity assumption in the boundary condition (1.4.13)
implies that there exists a real a > 0 so that

u(x′, xn) ≥ 1− δ for all xn ≥ a,

and

u(x′, xn) ≤ −1 + δ for all xn ≤ −a.

Take t ≥ 2a/νn, then the functions u and ut are such that

ut(x′, xn) ≥ 1− δ for all x′ ∈ Rn−1 and all xn ≥ −a
u(x′, xn) ≤ −1 + δ for all x′ ∈ Rn−1 and all xn ≤ −a, (1.4.32)

and, in particular,

ut(x′,−a) ≥ u(x′,−a) for all x′ ∈ Rn−1. (1.4.33)

Hence, we may apply Corollary 1.4.12 separately in the half-spaces Ω1 = {(x′, xn) : xn ≤ −a}
and Ω2 = {(x′, xn) : xn ≥ −a}. In both cases, we conclude that ut ≥ u and thus

ut ≥ u in all of Rn for t ≥ 2a/νn.

Following the philosophy of the sliding method, we start to decrease t, and let

τ = inf{t > 0, ut(x) ≥ u(x) for all x ∈ Rn}.

By continuity, we still have uτ ≥ u in Rn. Note that (1.4.31) is equivalent to τ = 0, and we
show this by contradiction. If τ > 0, there are two possibilities.

Case 1. Suppose that

inf
Da

(uτ − u) > 0, Da = Rn−1 × [−a, a]. (1.4.34)

The function u is globally Lipschitz continuous – the reader may either accept that this follows
from the standard elliptic estimates [60], or do the following exercise.
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Exercise 1.4.13 Let u(x) be a uniformly bounded solution (|u(x)| ≤ M for all x ∈ Rn) of
an equation of the form

−∆u = F (u)

in Rn, with a differentiable function F (u). Show that there exists a constant C > 0 which
depends on the function F so that |∇u(x)| ≤ CM for all x ∈ Rn. Hint: fix y ∈ Rn, and
let χ(x) be a smooth cut-off function supported in the ball B centered at y of radius r = 1.
Write an equation for the function v(x) = χ(x)u(x) of the form

−∆v = g,

with the function g that depends on u, F and χ, use the Green’s function of the Laplacian
to bound ∇v(y), and deduce a uniform bound on ∇u(y). Make sure you see why you need
to pass from u to v.

The Lipschitz continuity of u together with assumption (1.4.34) implies that there ex-
ists η0 > 0 so that for all τ − η0 < t < τ we still have

ut(x′, xn) > u(x′, xn) for all x′ ∈ Rn−1 and for all −a ≤ xn ≤ a. (1.4.35)

As u(x′, xn) ≥ 1− δ for all xn ≥ a, we know that

ut(x′, xn) ≥ 1− δ for all xn ≥ a and t > 0. (1.4.36)

We may then apply Corollary 1.4.12 in the half-spaces {xn > a} and {xn < −a} to conclude
that

uτ−η(x) ≥ u(x)

everywhere in Rn for all η ∈ [0, η0]. This contradicts the choice of τ . Thus, the case (1.4.34)
is impossible.

Case 2. Suppose that

inf
Da

(uτ − u) = 0, Da = Rn−1 × [−a, a]. (1.4.37)

This would be a contradiction to the maximum principle if we could conclude from (1.4.37)
that the graphs of uτ and u touch at an internal point. This, however, is not clear, as there
may exist a sequence of points ξk with |ξk| → +∞, such that uτ (ξk) − u(ξk) → 0, without
the graphs ever touching. In order to deal with this issue, we will use the usual trick of
moving “the interesting part” of the domain to the origin and passing to the limit. We know
from (1.4.37) that there exists a sequence ξk ∈ Da so that

uτ (ξk)− u(ξk)→ 0 as k →∞. (1.4.38)

Let us re-center: set
uk(x) = u(x+ ξk).

Differentiating the equation for u, we may bootstrap the claim of Exercise 1.4.13 to conclude
that u is uniformly bounded in C3(Rn), thus so is the sequence uk(x). The Ascoli-Arzela
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theorem implies that uk(x) converge along a subsequence to a function u∞(x), uniformly on
compact sets, together with the first two derivatives. The limit satisfies

∆u∞ + f(u∞) = 0, (1.4.39)

and, in addition, we have, because of (1.4.38):

uτ∞(0) = u∞(0),

and also
uτ∞(x) ≥ u∞(x), for all x ∈ Rn,

because uτk ≥ uk for all k. As both u∞ and uτ∞ satisfy (1.4.39), the strong maximum principle
implies that uτ∞ = u∞, that is,

u∞(x+ τν) = u∞(x) for all x ∈ Rn.

In other words, the function u∞ is periodic in the ν-direction. However, as all ξk lie in Da,
their n-th components are uniformly bounded |(ξk)n| ≤ a. Therefore, when we pass to the
limit we do not lose the boundary conditions in xn: the function u∞ must satisfy the boundary
conditions (1.4.13). This is a contradiction to the above periodicity. Hence, this case is also
impossible, and thus τ = 0. This proves monotonicity of u(x) in xn and the fact that u
depends only on xn: u(x) = u(xn).

In order to prove the uniqueness of such solution, assuming there are two such solutions u
and v, one repeats the sliding argument above but applied to the difference

wτ (xn) = u(xn + τ)− v(xn).

Exercise 1.4.14 Use this sliding argument to show that there exists τ ∈ Rn such that

u(xn + τ) = v(xn) for all xn ∈ R,

showing uniqueness of such solution, up to a shift.

This completes the proof. �
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Chapter 2

Diffusion equations

2.1 Introduction to the chapter

Parabolic equations of the form

∂u

∂t
−

n∑
i,j=1

aij(x)
∂2u

∂xi∂xj
+

n∑
j=1

bj(x)
∂u

∂xj
= f(x, u,∇u), (2.1.1)

are ubiquitous in mathematics and various applications in physics, biology, economics and
other fields. While there are many textbooks on the subject, ranging from the most elementary
to extremely advanced, most of them concentrate on the (highly non-trivial) questions of
the existence and regularity of the solutions. We have chosen instead to focus on some
striking qualitative properties of the solutions that, nevertheless, can be proved with almost
no background in analysis, using only the very basic regularity results. The unifying link in
this chapter will be the parabolic maximum principle and the Harnack inequality. Together
with the parabolic regularity, they will be responsible for the seemingly very special behavior
that we will observe in the solutions of these equations.

The chapter starts with a probabilistic introduction. While we do not try to motivate the
basic diffusion equations by models in the applied sciences here, an interested reader would
have no difficulty finding the connections between such equations and models in physics,
biology, chemistry and ecology in many basic textbooks. On the other hand, the parabolic
equations have a deep connection with probability. Indeed, some of the most famous results
in the parabolic regularity theory were proved by probabilistic tools. It is, therefore, quite
natural to introduce the chapter by explaining how the basic linear models arise, in a very
simple manner, from limits of a random walk. We reassure the reader that the motivation
from the physical or life sciences will not be absent from this book, as some of the later
chapters will precisely be motivated by problems in fluid mechanics or biology.

The probabilistic section is followed by a brief interlude on the maximum principle. There
is nothing original in the exposition, and we do not even present the proofs, as they can be
found in many textbooks on PDE. We simply recall the statements that we will need.

We then proceed to the section on the existence and regularity theory for the nonlinear
heat equations: the reaction-diffusion equations and viscous Hamilton-Jacobi equations. They
arise in many models in physical and biological sciences, and our ”true” interest is in the
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qualitative behavior of their solutions, as these reflect the corresponding natural phenomena.
However, an unfortunate feature of the nonlinear partial differential equations is that, before
talking knowledgeably about their solutions or their behavior, one first has to prove that they
exist. This will, as a matter of fact, be a central problem in the last two chapters of this
book, where we look at the fluid mechanics models, for which the existence of the solutions
is quite non-trivial. As the reaction-diffusion equations that we have in mind here and in
Chapter ?? both belong to a very well studied class and are much simpler, it would not
be inconceivable to brush their existence theory under the rug, invoking some respectable
treatises. This would not be completely right, for several reasons. The first is that we do
not want to give the impression that the theory is inaccessible: it is quite simple and can be
explained very easily. The second reason is that we wish to explain both the power and the
limitation of the parabolic regularity theory, so that the difficulty of the existence issues for
the fluid mechanics models in the latter chapters would be clearer to the reader. The third
reason is more practical: even for the qualitative properties that we aim for, we still need to
estimate derivatives. So, it is better to say how this is done.

The next section contains a rather informal guide to the regularity theory for the parabolic
equations with inhomogeneous coefficients. We state the results we will need later, and outline
the details of some of the main ideas needed for the proofs without presenting them in full
– they can be found in the classical texts we mention below. We hope that by this point
the reader will be able to study the proofs in these more advanced textbooks without losing
sight of the main ideas. This section also contains the Harnack inequality. What is slightly
different here is the statement of a (non-optimal) version of the Harnack inequality that will
be of an immediate use to us in the first main application of this chapter, the convergence
to the steady solutions in the one-dimensional Allen-Cahn equations on the line. The reason
we have chosen this example is that it really depends on nothing else than the maximum
principle and the Harnack inequality, illustrating how far reaching this property is. It is also
a perfect example of how a technical information, such as bounds on the derivatives, has a
qualitative implication – the long time behavior of the solutions.

The next section concerns the principal eigenvalue of the second order elliptic operators,
a well-treated subject in its own right. We state the Krein-Rurman theorem and, in order
to show the reader that we are not using any machinery heavier than the results we want to
prove, we provide a proof in the context of the second order elliptic and parabolic operators.
It shares many features with the convergence proof of the preceding section, and we hope
the reader will realize the ubiquitous character of the ideas presented. We then treat another
case of the large time behavior of the solutions of the viscous Hamilton-Jacobi equations, a
class of nonlinear diffusion equations. Here, the convergence will not be to a steady state but
to a one-parameter family of special solutions. The main challenge will be in the existence
proof of this family of solutions, that relies on the Krein-Rutman theorem. Once it is at
hand, the convergence will follow, with the same ideas as those of the preceding section.
Finally, we end this chapter with a brief discussion of the viscosity solutions of the first order
Hamilton-Jacobi equations, to give a glimpse of the difficulties encountered when the diffusion
coefficient vanishes.

This chapter is rather long so we ask the reader to be prepared to persevere through the
more technical places, with the hope that in the end the reader will find the effort rewarding.

A note on notation. We will follow throughout the book the summation convention:
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the repeated indices are always summed over, unless specified otherwise. In particular, we
will usually write equations such as (2.1.1) as

∂u

∂t
− aij(x)

∂2u

∂xi∂xj
+ bj(x)

∂u

∂xj
= f(x, u,∇u), (2.1.2)

or
∂u

∂t
− aij(x)∂xi∂xju+ bj(x)∂xju = f(x, u,∇u). (2.1.3)

We hope the reader will get accustomed to this convention sufficiently fast so that it causes
no confusion or inconvenience.

2.2 A probabilistic introduction to the evolution equa-

tions

Let us explain informally how the linear equations of the form (2.1.2), with g ≡ 0 arise from
random walks, in a very simple way, in the spirit of what we have done for the elliptic equations
in the previous chapter. One should emphasize that many of the qualitative properties of
the solutions of the parabolic and integral equations, such as the maximum principle and
regularity, on a very informal level, are an ”obvious” consequence of the microscopic random
walk model. For simplicity, we will mostly consider the one-dimensional case, the reader can,
and should, generalize this approach to higher dimensions – this is quite straightforward.

Discrete equations and random walks

The starting point in our derivation of the evolution equations is a discrete time Markov jump
process Xnτ , with a time step τ > 0, defined on a lattice with mesh size h:

hZ = {0,±h,±2h, . . . }.

The particle position evolves as follows: if the particle is located at a position x ∈ hZ at the
time t = nτ then at the time t = (n + 1)τ it jumps to a random position y ∈ hZ, with the
transition probability

P (X(n+1)τ = y| Xnτ = x) = k(x− y), x, y ∈ hZ. (2.2.1)

Here, k(x) is a prescribed non-negative kernel such that∑
y∈hZ

k(y) = 1. (2.2.2)

The classical symmetric random walk with a spatial step h and a time step τ corresponds to
the choice k(±h) = 1/2, and k(y) = 0 otherwise – the particle may only jump to the nearest
neighbor on the left and on the right, with equal probabilities.

In order to connect this process to an evolution equation, let us take a function f : hZ→ R,
defined on our lattice, and introduce

u(t, x) = E(f(Xt(x))). (2.2.3)
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Here, Xt(x), t ∈ τN, is the above Markov process starting at a position X0(x) = x ∈ hZ at
the time t = 0. If f ≥ 0 then one may think of u(t, x) as the expected value of a ”prize” to
be collected at the time t at a (random) location of Xt(x) given that the process starts at the
point x at the time t = 0. An important special case is when f is the characteristic function
of a set A. Then, u(t, x) is the probability that the jump process Xt(x) that starts at the
position X0 = x is inside the set A at the time t.

As the process Xt(x) is Markov, the function u(t, x) satisfies the following relation

u(t+ τ, x) = E(f(Xt+τ (x))) =
∑
y∈hZ

P (Xτ = y|X0 = x)E(f(Xt(y))) =
∑
y∈hZ

k(x− y)u(t, y).

(2.2.4)
This is because after the initial step when the particle jumps at the time τ from the starting
position x to a random position y, the process ”starts anew”, and runs for time t between the
times τ and t+ τ . Equation (2.2.4) can be re-written, using (2.2.2) as

u(t+ τ, x)− u(t, x) =
∑
y∈hZ

k(x− y)[u(t, y)− u(t, x)]. (2.2.5)

The key point of this section is that the discrete equation (2.2.5) leads to various interesting
continuum limits as h ↓ 0 and τ ↓ 0, depending on the choice of the transition kernel k(y), and
on the relative size of the spatial mesh size h and the time step τ . In other words, depending
on the microscopic model – the particular properties of the random walk, we will end up with
different macroscopic continuous models.

The heat equation and random walks

Before showing how a general parabolic equation with non-constant coefficients can be ob-
tained via a limiting procedure from a random walk on a lattice, let us show how this can be
done for the heat equation

∂u

∂t
= a

∂2u

∂x2
, (2.2.6)

with a constant diffusivity constant a > 0. We will assume that the transition probability
kernel has the form

k(x) = φ
(x
h

)
, x ∈ hZ, (2.2.7)

with a non-negative function φ(m) ≥ 0 defined on Z, such that∑
m

φ(m) = 1. (2.2.8)

This form of k(x) allows us to re-write (2.2.5) as

u(t+ τ, x)− u(t, x) =
∑
y∈hZ

φ
(x− y

h

)
[u(t, y)− u(t, x)], (2.2.9)

or, equivalently,

u(t+ τ, x)− u(t, x) =
∑
m∈Z

φ(m)[u(t, x−mh)− u(t, x)]. (2.2.10)
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In order to arrive to the heat equation in the limit, we will make the assumption that jumps
are symmetric on average: ∑

m∈Z

mφ(m) = 0. (2.2.11)

Then, expanding the right side of (2.2.10) in h and the left side in τ , we obtain

τ
∂u(t, x)

∂t
=
ah2

2

∂2u

∂x2
(t, x) + lower order terms, (2.2.12)

with

a =
∑
m

|m|2φ(m). (2.2.13)

To balance the left and the right sides of (2.2.12), we need to take the time step τ = h2 –
note that the scaling τ = O(h2) is essentially forced on us if we want to balance the two sides
of this equation. Then, in the limit τ = h2 ↓ 0, we obtain the heat equation

∂u(t, x)

∂t
=
a

2

∂2u(t, x)

∂x2
. (2.2.14)

The diffusion coefficient a given by (2.2.13) is the second moment of the jump size – in other
words, it measures the ”overall jumpiness” of the particles. This is a very simple example of
how the microscopic information, the kernel φ(m), translates into a macroscopic quantity –
the overall diffusion coefficient a in the macroscopic equation (2.2.14).

Exercise 2.2.1 Show that if (2.2.11) is violated and

b =
∑
m∈Z

mφ(m) 6= 0, (2.2.15)

then one needs to take τ = h, and the (formal limit) is the advection equation

∂u(t, x)

∂t
+ b

∂u(t, x)

∂x
= 0, (2.2.16)

without any diffusion.

Exercise 2.2.2 A reader familiar with the basic probability theory should relate the limit
in (2.2.16) to the law of large numbers and explain the relation τ = h in these terms. How
can (2.2.14) and the relation τ = h2 between the temporal and spatial steps be explained in
terms of the central limit theorem?

Parabolic equations with variable coefficients and drifts and random walks

In order to connect a linear parabolic equation with inhomogeneous coefficients, such as (2.1.2)
with the right side g ≡ 0:

∂u

∂t
− a(x)

∂2u

∂x2
+ b(x)

∂u

∂x
= 0, (2.2.17)
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to a continuum limit of random walks, we consider a slight modification of the microscopic
dynamics that led to the heat equation in the macroscopic limit. We go back to (2.2.4):

u(t+ τ, x) = E(f(Xt+τ (x))) =
∑
y∈hZ

P (Xτ = y|X0 = x)E(f(Xt(y))) =
∑
y∈hZ

k(x, y)u(t, y).

(2.2.18)
Here, k(x, y) is the probability to jump to the position y from a position x. Note that we
no longer assume that the law of the jump process is spatially homogeneous: the transition
probabilities depend not only on the difference x− y but both on x and y. However, we will
assume that k(x, y) is ”locally homogeneous”. This condition translates into taking it of the
form

k(x, y;h) = φ(x,
x− y
h

;h). (2.2.19)

The ”slow” spatial dependence of the transition probability density is encoded in the de-
pendence of the function φ(x, z, h) on the ”macroscopic” variable x, while its ”fast” spatial
variations are described by the dependence of φ(x, z, h) on the variable z.

Exercise 2.2.3 Make sure you can interpret this point. Think of ”freezing” the variable x
and only varying the z-variable.

We will soon see why we introduce the additional dependence of the transition density on
the mesh size h – this will lead to a non-trivial first order term in the parabolic equation we
will obtain in the limit. We assume that the function φ(x,m;h), with x ∈ R, m ∈ Z and
h ∈ (0, 1), satisfies ∑

m∈Z

φ(x,m;h) = 1 for all x ∈ R and h ∈ (0, 1), (2.2.20)

which leads to the analog of the normalization (2.2.2):∑
y∈hZ

k(x, y) = 1 for all x ∈ hZ. (2.2.21)

This allows us to re-write (2.2.18) in the familiar form

u(t+ τ, x)− u(t, x) =
∑
y∈hZ

φ(x,
x− y
h

;h)[u(t, y)− u(t, x)], (2.2.22)

or, equivalently,

u(t+ τ, x)− u(t, x) =
∑
m∈Z

φ(x,m;h)[u(t, x−mh)− u(t, x)], (2.2.23)

We will make the assumption that the average asymmetry of the jumps is of the size h. In
other words, we suppose that∑

m∈Z

mφ(x,m;h) = b(x)h+O(h2), (2.2.24)

that is, ∑
m∈Z

mφ(x,m; 0) = 0 for all x ∈ R ,
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and

b(x) =
∑
m∈Z

m
∂φ(x,m;h = 0)

∂h
(2.2.25)

is a given smooth function. The last assumption we will make is that the time step is τ = h2,
as before. Expanding the left and the right side of (2.2.23) in h now leads to the parabolic
equation

∂u

∂t
= −b(x)

∂u(t, x)

∂x
+ a(x)

∂2u(t, x)

∂x2
, (2.2.26)

with

a(x) =
1

2

∑
m∈Z

|m|2φ(x,m;h = 0). (2.2.27)

This is a parabolic equation of the form (2.1.2) in one dimension. We automatically satisfy
the condition a(x) > 0 (known as the ellipticity condition) unless φ(x,m;h = 0) = 0 for
all m ∈ Z \ {0}. That is, a(x) = 0 only at the positions where the particles are completely
stuck and can not jump at all. Note that the asymmetry in (2.2.24), that is, the mismatch
in the typical jump sizes to the left and right, leads to the first order term in the limit
equation (2.2.26) – because of that the first-order coefficient b(x) is known as the drift, while
the second-order coefficient a(x) (known as the diffusivity) measures ”the overall jumpiness”
of the particles, as seen from (2.2.27).

Exercise 2.2.4 Relate the above considerations to the method of characteristics for the first
order linear equation

∂u

∂t
+ b(x)

∂u

∂x
= 0.

How does it arise from similar considerations?

Exercise 2.2.5 It is straightforward to generalize this construction to higher dimensions
leading to general parabolic equations of the form (2.1.2). Verify that the diffusion matri-
ces aij(x) in (2.1.2) that arise in this fashion, will always be nonnegative, in the sense that
for any ξ ∈ Rn and all x, we have (once again, as the repeated indices are summed over):

aij(x)ξiξj ≥ 0. (2.2.28)

This is very close to the lower bound in the ellipticity condition on the matrix aij(x) which
says that there exists a constant c > 0 so that for any ξ ∈ Rn and x ∈ Rn we have

c|ξ|2 ≤ aij(x)ξiξj ≤ c−1|ξ|2. (2.2.29)

We see that the ellipticity condition appears very naturally in the probabilistic setting.

Summarizing, we see that parabolic equations of the form (2.1.2) arise as limits of random
walks that make jumps of the size O(h), with a time step τ = O(h2). Thus, the overall
number of jumps by a time t = O(1) is very large, and each individual jump is very small.
The drift vector bj(x) appears from the local non-zero mean of the jump direction and size,
and the diffusivity matrix aij(x) measures the typical jump size. In addition, the diffusivity
matrix is nonegative-definite: condition (2.2.28) is satisfied.
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Parabolic equations and branching random walks

Let us now explain how random walks can lead to parabolic equations with a zero-order term:

∂u

∂t
− aij(x)

∂2u

∂xi∂xj
+ bj(x)

∂u

∂xj
+ c(x)u = 0. (2.2.30)

This will help us understand qualitatively the role of the coefficient c(x). Once again, we will
consider the one-dimensional case for simplicity, and will only give the details for the case

∂u

∂t
− ∂2u

∂x2
+ c(x)u = 0, (2.2.31)

as the non-constant diffusion matrix aij(x) and drift bj(x) can be treated exactly as in the
case c = 0.

In order to incorporate the zero order term we need to allow the particles not only jump
but also branch – this is the reason why the zero-order term will appear in (2.2.30). As
before, our particles make jumps on the lattice hZ, at the discrete times t ∈ τN. We start
at t = 0 with one particle at a position x ∈ hZ. Let us assume that at the time t = nτ
we have a collection of Nt particles X1(t, x), . . . , XNt(t, x) (the number Nt is random, as will
immediately see). At the time t, each particle Xm(t, x) behaves independently from the other
particles. With the probability

p0 = 1− |c(Xm(t))|τ,

it simply jumps to a new location y ∈ hZ, chosen with the transition probability k(Xm(t)−y),
as in the process with no branching. If the particle at Xm(t, x) does not jump – this happens
with the probability p1 = 1 − p0, there are two possibilities. If c(Xm(t)) < 0, then it is
replaced by two particles at the same location Xm(t, x) that remain at this position until the
time t+ τ . If c(Xm(t)) > 0 and the particle does not jump, then it is removed. This process
is repeated independently for all particles X1(t, x), . . . , XNt(t, x), giving a new collection of
particles at the locations X1(t + τ, x), . . . , XNt+τ (t + τ, x) at the time t + τ . If c(x) > 0 at
some positions, then the process can terminate when there are no particles left. If c(x) ≤ 0
everywhere, then the process continues forever.

To connect this particle system to an evolution equation, given a function f , we define,
for t ∈ τN , and x ∈ hZ,

u(t, x) = E[f(X1(t, x)) + f(X2(t, x)) + · · ·+ f(XNt(t, x))].

The convention is that f = 0 inside the expectation if there are no particles left. This is similar
to what we have done for particles with no branching. If f is the characteristic function of a
set A, then u(t, x) is the expected number of particles inside A at the time t > 0.

In order to get an evolution equation for u(t, x), we look at the initial time when we have
just one particle at the position x: if c(x) ≤ 0, then this particle either jumps or branches,
leading to the balance

u(t+ τ, x) = (1 + c(x)τ)
∑
y∈hZ

k(x− y)u(t, y)− 2c(x)τu(t, x), if c(x) ≤ 0, (2.2.32)
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which is the analog of (2.2.4). If c(x) > 0 the particle either jumps or is removed, leading to

u(t+ τ, x) = (1− |c(x)|τ)
∑
y∈hZ

k(x− y)u(t, y). (2.2.33)

In both cases, we can re-write the balances similarly to (2.2.5):

u(t+ τ, x)− u(t, x) = (1− |c(x)|τ)
∑
y∈hZ

k(x− y)(u(t, y)− u(t, x))− c(x)τu(t, x). (2.2.34)

We may now take the transition probability kernel of the familiar form

k(x) = φ
(x
h

)
,

with a function φ(m) as in (2.2.7)-(2.2.8). Taking τ = h2 leads, as in (2.2.12), to the diffusion
equation but now with a zero-order term:

∂u

∂t
=
a

2

∂2u

∂x2
− c(x)u. (2.2.35)

Thus, the zero-order coefficient c(x) can be interpreted as the branching (or killing, depending
on the sign of c(x)) rate of the random walk. The elliptic maximum principle for c(x) ≥ 0
that we have seen in the previous chapter, simply means, on this informal level, that if the
particles never branch, and can only be removed, their expected number can not grow in time.

Exercise 2.2.6 Add branching to the random walk we have discussed in Section 2.2 of this
chapter, and obtain a more general parabolic equation, in higher dimensions:

∂u

∂t
− aij(x)

∂2u

∂xi∂xj
+ bj(x)

∂u

∂xj
+ c(x)u = 0. (2.2.36)

2.3 The maximum principle interlude: the basic state-

ments

As the parabolic maximum principle underlies most of the parabolic existence and regularity
theory, we first recall some basics on the maximum principle for parabolic equations. They
are very similar in spirit to what we have described in the previous chapter for the Laplace
and Poisson equations. This material can, once again, be found in many standard textbooks,
such as [60], so we will not present most of the proofs but just recall the statements we will
need.

We consider a (more general than the Laplacian) elliptic operator of the form

Lu(x) = −aij(t, x)
∂2u

∂xi∂xj
+ bj(t, x)

∂u

∂xj
, (2.3.1)

in a bounded domain x ∈ Ω ⊂ Rn and for 0 ≤ t ≤ T . Note that the zero-order coefficient
is set to be zero for the moment. As we have mentioned, the ellipticity of L means that the
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matrix aij(t, x) is uniformly positive-definite and bounded. That is, there exist two positive
constants λ > 0 and Λ > 0 so that, for any ξ ∈ Rn, and 0 ≤ t ≤ T , and any x ∈ Ω, we have

λ|ξ|2 ≤ aij(t, x)ξiξj ≤ Λ|ξ|2. (2.3.2)

We also assume that all coefficients aij(t, x) and bj(t, x) are continuous and uniformly bounded.
Given a time T > 0, define the parabolic cylinder ΩT = [0, T )×Ω and its parabolic boundary
as

ΓT = {x ∈ Ω, 0 ≤ t ≤ T : either x ∈ ∂Ω or t = 0}.
In other words, ΓT is the part of the boundary of ΩT without “the top” {(t, x) : t = T, x ∈ Ω}.

Theorem 2.3.1 (The weak maximum principle) Let a function u(t, x) satisfy

∂u

∂t
+ Lu ≤ 0, x ∈ Ω, 0 ≤ t ≤ T, (2.3.3)

and assume that Ω is a smooth bounded domain. Then u(t, x) attains its maximum over ΩT

on the parabolic boundary ΓT , that is,

sup
ΩT

u(t, x) = sup
ΓT

u(t, x). (2.3.4)

As in the elliptic case, we also have the strong maximum principle.

Theorem 2.3.2 (The strong maximum principle) Let a smooth function u(t, x) satisfy

∂u

∂t
+ Lu = 0, x ∈ Ω, 0 ≤ t ≤ T, (2.3.5)

in a smooth bounded domain Ω. Then if u(t, x) attains its maximum over Ω̄T at an interior
point (t0, x0) 6∈ ΓT then u(t, x) is equal to a constant in ΩT .

We will not prove these results here, the reader may consult [60] or other standard textbooks
on PDEs for a proof. One standard generalization of the maximum principle is to include the
lower order term with a sign, as in the elliptic case – compare to Theorem 1.3.4 in Chapter 1.
Namely, it is quite straightforward to show that if c(x) ≥ 0 then the maximum principle still
holds for parabolic equations (2.3.5) with an operator L of the form

Lu(x) = −aij(t, x)
∂2u

∂xi∂xj
+ bj(t, x)

∂u

∂xj
+ c(t, x)u. (2.3.6)

The proof can, once again, be found in [60]. However, as we have seen in the elliptic case, in
the maximum principles for narrow domains (Theorem 1.3.7 in Chapter 1) and domains of a
small volume (Theorem 1.3.9 in the same chapter), the sign condition on the coefficient c(t, x)
is not necessary for the maximum principle to hold. Below, we will discuss a more general
condition that quantifies the necessary assumptions on the operator L for the maximum
principle to hold in a unified way.

A consequence of the maximum principle is the comparison principle, a result that holds
also for operators with zero order coefficients and in unbounded domains. In general, the
comparison principle in unbounded domains holds under a proper restriction on the growth
of the solutions at infinity. Here, for simplicity we assume that the solutions are uniformly
bounded.
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Theorem 2.3.3 Let the smooth uniformly bounded functions u(t, x) and v(t, x) satisfy

∂u

∂t
+ Lu+ c(t, x)u ≥ 0, 0 ≤ t ≤ T, x ∈ Ω (2.3.7)

and
∂v

∂t
+ Lv + c(t, x)v ≤ 0, 0 ≤ t ≤ T, x ∈ Ω, (2.3.8)

in a smooth (and possibly unbounded) domain Ω, with a bounded function c(t, x). Assume
that u(0, x) ≥ v(0, x) and

u(t, x) ≥ v(t, x) for all 0 ≤ t ≤ T and x ∈ ∂Ω.

Then, we have
u(t, x) ≥ v(t, x) for all 0 ≤ t ≤ T and all x ∈ Ω.

Moreover, if in addition, u(0, x) > v(0, x) on an open subset of Ω then u(t, x) > v(t, x) for
all 0 < t < T and all x ∈ Ω.

The assumption that both u(t, x) and v(t, x) are uniformly bounded is important if the do-
main Ω is unbounded – without this condition even the Cauchy problem for the standard
heat equation in Rn may have more than one solution, while the comparison principle im-
plies uniqueness trivially. An example of non-uniqueness is discussed in detail in [87] – such
solutions grow very fast as |x| → +∞ for any t > 0, while the initial condition u(0, x) ≡ 0.
The extra assumption that u(t, x) is bounded allows to rule out this non-uniqueness issue.
Note that the special case Ω = Rn is included in Theorem 2.3.3, and in that case only the
comparison at the initial time t = 0 is needed for the conclusion to hold for bounded solutions.
Once again, a reader not interested in treating the proof as an exercise should consult [60],
or another of his favorite basic PDE textbooks. We should stress that in the rest of this book
we will only consider solutions, for which the uniqueness holds.

A standard corollary of the parabolic maximum principle is the following estimate.

Exercise 2.3.4 Let Ω be a (possibly unbounded) smooth domain, and u(t, x) be the solution
of the initial boundary value problem

ut + Lu+ c(t, x)u = 0, in Ω, (2.3.9)

u(t, x) = 0 for x ∈ ∂Ω,

u(0, x) = u0(x).

Assume (to ensure the uniqueness of the solution) that u is locally in time bounded: for
all T > 0 there exists CT > 0 such that |u(t, x)| ≤ CT for all t ∈ [0, T ] and x ∈ Ω. Assume
that the function c(t, x) is bounded, with c(t, x) ≥ −M for all x ∈ Ω, then u(t, x) satisfies

|u(t, x)| ≤ ‖u0‖L∞eMt, for all t > 0 and x ∈ Ω. (2.3.10)

The estimate (2.3.10) on the possible growth (or decay) of the solution of (2.3.9) is by no
means optimal, and we will soon see how it can be improved.

We also have the parabolic Hopf Lemma, of which we will only need the following version.
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Lemma 2.3.5 (The parabolic Hopf Lemma) Let u(t, x) ≥ 0 be a solution of

ut + Lu+ c(t, x)u = 0, 0 ≤ t ≤ T,

in a ball B(z,R). Assume that there exists t0 > 0 and x0 ∈ ∂B(z,R) such that u(t0, x0) = 0,
then we have

∂u(t0, x0)

∂ν
< 0. (2.3.11)

The proof is very similar to that of the elliptic Hopf Lemma, and can be found, for instance,
in [82].

2.4 Regularity for the nonlinear heat equations

The regularity theory for the parabolic equations is an extremely rich and fascinating subject
that is often misunderstood as ”technical”. To keep things relatively simple, we are not going
to delve into it head first. Rather, we have in mind two particular parabolic models, for
which we would like to understand the large time behavior: the semi-linear and quasi-linear
equations of the simplest form. The truth is that these two examples contain some of the
main features under which the more general global existence and regularity results hold: the
Lipschitz behavior of the nonlinearity, and the smooth spatial dependence of the coefficients
in the equation.

2.4.1 The forced linear heat equation

Before we talk about the theory of the semi-linear and quasi-linear diffusion equations, let us
have a look at the forced linear heat equation

ut = ∆u+ g(t, x), (2.4.1)

posed in the whole space x ∈ Rn, and with an initial condition

u(0, x) = u0(x). (2.4.2)

The immediate question for us is how regular the solution of (2.4.1)-(2.4.2) is, in terms of the
regularity of the initial condition u0(x) and the forcing term g(t, x). The function u(t, x) is
given explicitly by the Duhamel formula

u(t, x) = v(t, x) +

∫ t

0

w(t, x; s)ds. (2.4.3)

Here, v(t, x) is the solution of the homogeneous heat equation

vt = ∆v, x ∈ Rn, t > 0, (2.4.4)

with the initial condition v(0, x) = u0(x), and w(t, x; s) is the solution of the Cauchy problem

wt(t, x; s) = ∆w(t, x; s), x ∈ Rn, t > s, (2.4.5)
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that runs starting at the time s, and is supplemented by the initial condition at t = s:

w(t = s, x; s) = g(s, x). (2.4.6)

Let us denote the solution of the Cauchy problem (2.4.4) as

v(t, x) = et∆u0. (2.4.7)

This defines the operator et∆. It maps the initial condition to the heat equation to its solution
at the time t, and is given explicitly as

et∆f(x) =
1

(4πt)n/2

∫
Rn
e−(x−y)2/(4t)f(y)dy. (2.4.8)

With this notation, another way to write the Duhamel formula (2.4.1) is

u(t, x) = et∆u0(x) +

∫ t

0

e(t−s)∆g(s, x)ds, (2.4.9)

or, more explicitly:

u(t, x) =
1

(4πt)n/2

∫
e−(x−y)2/(4t)u0(y)dy +

∫ t

0

∫
Rn

1

(4π(t− s))n/2
e−(x−y)2/(4(t−s))g(s, y)dyds.

(2.4.10)
The first term in (2.4.10) is rather benign as far as regularity is concerned.

Exercise 2.4.1 Show that if the initial condition u0(y) is continuous and bounded then the
function v(t, x) given by the first integral in the right side of (2.4.10) is infinitely differentiable
in t and x for all t > 0 and x ∈ Rn.

The second term in (2.4.10),

J(t, x) =

∫ t

0

∫
Rn

1

(4π(t− s))n/2
e−(x−y)2/(4(t−s))g(s, y)dyds (2.4.11)

is potentially more problematic because of the term (t − s)−n/2 that blows up as s ↑ t. A
simple change of variables shows that if g(t, x) is uniformly bounded then so is J(t, x):

|J(t, x)| ≤ ‖g‖L∞
∫ t

0

∫
Rn

1

(4π(t− s))n/2
e−(x−y)2/(4(t−s))dyds =

t‖g‖L∞
πn/2

∫
e−z

2

dz = t‖g‖L∞ .

(2.4.12)

Exercise 2.4.2 Deduce this upper bound for J(t, x) directly from the parabolic maximum
principle, without explicit computations.

Let us see what we can say the regularity of J(t, x).

Proposition 2.4.3 Let g(t, x) be a bounded uniformly continuous function over [0, T ]× Rn,
that satisfies

|g(t, x)− g(t′, x′)| ≤ C
(
|t− t′|α/2 + |x− x′|α

)
(2.4.13)

for some α ∈ (0, 1). Then J(t, x) given by (2.4.11) is twice continuously differentiable in x,
and once continuously differentiable in t over (0, T )× Rn, with the corresponding derivatives
bounded over every interval of the form [ε, T ], 0 < ε < T .
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Note the difference in the Hölder exponents in t and x in the assumption (2.4.13) on the
function g(t, x). It will be clear from the proof how this disparity comes about. More generally,
it is related to the different scaling of the heat equation and other parabolic problems in time
and space.

Proof. The first inclination in an attempt to show the regularity of J(t, x) would be to
simply differentiate the integrand in (2.4.11). Let us fix some 1 ≤ i ≤ n, and compute

∂

∂xi

(
e−|x−y|

2/4(t−s)

(4π(t− s))n/2

)
= − xi − yi

2(t− s)
e−|x−y|

2/4(t−s)

(4π(t− s))n/2
,

so that after differentiation the integrand can be bounded as∣∣∣ ∂
∂xi

(
e−|x−y|

2/4(t−s)

(4π(t− s))n/2

)
g(s, y)

∣∣∣ ≤ ‖g‖L∞√
t− s

|z|e−|z|2

(4π(t− s))n/2
, z =

x− y√
t− s

. (2.4.14)

As the volume element has the form

dz =
dx

(t− s)n/2
,

this shows that the xi-derivative of the integrand is dominated by an integrable function in t
and z.

Exercise 2.4.4 Use estimate (2.4.14) to conclude that J(t, x) is C1 in the x-variables, with
bounded derivatives. Note that this bound does not use any information on the function g(t, x)
except that it is uniformly bounded. In other words, even if we only assume that g(t, x) is a
uniformly bounded measurable function, the solution of the heat equation will be continuously
differentiable in x.

The above argument can not be repeated for the time derivative: if we differentiate the
integrand in time, and make the same change of variable to z as in (2.4.14), that would bring
a non-integrable (t− s)−1 singularity instead of a (t− s)−1/2 term, as before.

Exercise 2.4.5 Verify that differentiating the integrand twice in x leads to the same kind of
singularity in (t− s) as differentiating once in t.

Our strategy, instead, will be to take δ ∈ (0, t) small, and consider an approximation

Jδ(t, x) =

∫ t−δ

0

e(t−s)∆g(s, .)(x)ds =

∫ t−δ

0

∫
Rn

1

(4π(t− s))n/2
e−(x−y)2/(4(t−s))g(s, y)dyds.

(2.4.15)
Note that Jδ(s, x) is the solution of the Cauchy problem (in the variable s, with t fixed)

∂Jδ
∂s

= ∆Jδ +H(t− s− δ)g(s, x), (2.4.16)

with the initial condition Jδ(0, x) = 0. Here, we have introduced the cut-off H(s) = 1 for s < 0
and H(s) = 0 for s > 0.

The function Jδ(t, x) is smooth both in t and x for all δ > 0 – this is easy to check
simply by differentiating the integrand in (2.4.15) in t and x, since that does not produce any
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singularity because t− s > δ. Moreover, Jδ(t, x) converges uniformly to J(t, x) as δ ↓ 0 – this
follows from the estimate

|J(t, x)− Jδ(t, x)| ≤ δ‖g‖L∞ , (2.4.17)

that can be checked as in (2.4.12). As a consequence, the derivatives of Jδ(t, x) converge
weakly, in the sense of distributions, to the corresponding weak derivatives of J(t, x). Thus,
to show that, say, the second derivatives (understood in the sense of distributions) ∂xixjJ(t, x)
are actually continuous functions, it suffices to prove that the partial derivatives ∂xixjJδ(t, x)
converge uniformly to a continuous function, and that is what we will do.

We will look in detail at ∂xixjJδ, with i 6= j. As the integrand for Jδ has no singularity
at s = t, we may simply differentiate under the integral sign

∂2Jδ(t, x)

∂xi∂xj
=

∫ t−δ

0

∫
Rn

(xi − yi)(xj − yj)
4(t− s)2(4π(t− s))n/2

e−|x−y|
2/4(t−s)g(s, y)dsdy.

The extra factor (t − s)2 in the denominator can not be removed simply by the change of
variable used in (2.4.14) – as the reader can immediately check, this would still leave a non-
integrable extra factor of (t − s)−1 that would cause an obvious problem in passing to the
limit δ ↓ 0.

A very simple but absolutely crucial observation that will come to our rescue here is that,
as i 6= j, we have ∫

Rn
(xi − yi)(xj − yj)e−|x−y|

2/4(t−s)dy = 0. (2.4.18)

This allows us to write

∂2Jδ(t, x)

∂xi∂xj
=

∫ t−δ

0

∫
Rn

(xi − yi)(xj − yj)
4(t− s)2(4π(t− s))n/2

e−|x−y|
2/4(t−s)(g(s, y)− g(t, x)

)
dsdy.

Now, we can use the regularity of g(s, y) to help us. In particular, the Hölder continuity
assumption (2.4.13) gives∣∣∣ (xi − yi)(xj − yj)

4(t− s)2(4π(t− s))n/2
e−|x−y|

2/4(t−s)(g(s, y)− g(t, x)
)∣∣∣ ≤ C|z|2e−|z|2(|t− s|α/2 + |x− y|α)

(t− s)

≤ C

(t− s)1−α/2
k(z)

(4π(t− s))n/2
, (2.4.19)

still with z = (x− y)/
√
t− s, as in (2.4.14), and

k(z) = |z|2e−|z|2/4(1 + |z|α).

As before, the factor of (t− s)n/2 in the right side of (2.4.19) goes into the volume element

dz =
dx

(t− s)n/2
,

and we only have the factor (t−s)1−α/2 left in the denominator in (2.4.19), which is integrable
in s, unlike the factor (t− s)−1 one would get without using the cancellation in (2.4.18) and
the Hölder regularity of g(t, x). Thus, after accounting for the Jacobian factor, the integrand
in the expression for ∂xixjJδ is dominated by an integrable function in z, which entails the
uniform convergence of ∂xixjJδ as δ ↓ 0. In particular, the continuity of the limit follows as
well.
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Exercise 2.4.6 Complete the argument by looking at the remaining derivatives ∂tJδ(t, x)
and ∂xixiJ(t, x). The key step in both cases is to find a cancellation such as in (2.4.18).

Let us summarize the results of this section as follows.

Theorem 2.4.7 Let u(t, x) be the solution of the Cauchy problem

∂u

∂t
= ∆u+ g(t, x), t > 0, x ∈ Rn, (2.4.20)

u(0, x) = u0(x).

Assume that u0(x) is a uniformly bounded function on Rn, and g(t, x) is a bounded uniformly
continuous function over [0, T ]× Rn, that satisfies a Hölder regularity estimate

|g(t, x)− g(t′, x′)| ≤ C
(
|t− t′|α/2 + |x− x′|α

)
(2.4.21)

for some α ∈ (0, 1). Then u(t, x) is twice continuously differentiable in x, and once contin-
uously differentiable in t over (0, T ) × Rn, with the corresponding derivatives bounded over
every interval of the form [ε, T ], 0 < ε < T .

We will come back to Theorem 2.4.7 in Section 2.5, where we will consider the regularity of
the solution of more general parabolic equations, after we have a look at the solutions of the
nonlinear heat equations.

2.4.2 Existence and regularity for a semi-linear diffusion equation

We now turn to a semi-linear parabolic equation of the form

ut = ∆u+ f(x, u). (2.4.22)

Such equations are commonly known as the reaction-diffusion equations, and are very common
in biological and physical sciences. We will consider (2.4.22) posed in Rn, and equipped with
a bounded, nonnegative, and uniformly continuous initial condition

u(0, x) = u0(x). (2.4.23)

Needless to say, the continuity and non-negativity assumptions on the initial conditions could
be relaxed, but this is a sufficiently general set-up, to which many problems can reduced, and
which allows us to explain the basic ideas. The function f is assumed to be smooth in all its
variables and uniformly Lipschitz in u:

|f(x, u)− f(x, u′)| ≤ Cf |u− u′|, for all x ∈ Rn and u, u′ ∈ R. (2.4.24)

In addition, we assume that

f(x, 0) = 0, f(x, u) < 0 if u ≥M , for some large M ≥ ‖u0‖∞. (2.4.25)

One example to keep in mind is the Fisher-KPP equation

ut = ∆u+ u(1− u), (2.4.26)
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with the predator-prey nonlinearity f(u) = u(1 − u). We refer the reader to Chapter ?? for
the discussion of how this equation arises in the biological modeling and other applications,
as well as to the explanation of its name.

Another important example is the time-dependent version of the Allen-Cahn equation we
have encountered in Chapter 1:

ut = ∆u+ u− u3. (2.4.27)

In that case, we usually assume that |u| ≤ 1 rather than positivity of u – the reader should
check that the function v = 1 + u satisfies an equation

vt = ∆v + f(v), (2.4.28)

with a nonlinearity f that satisfies assumptions we will need below.
The assumption f(x, 0) = 0 and the smoothness of f(x, u) mean that if u(t, x) is a smooth

bounded solution of (2.4.22)-(2.4.23), then u(t, x) satisfies

ut = ∆u+ c(t, x)u, (2.4.29)

with a smooth function

c(t, x) =
f(x, u(t, x))

u(t, x)
.

As v(t, x) ≡ 0 is a solution of (2.4.29), the comparison principle, Theorem 2.3.3, implies that
if u0(x) ≥ 0 for all x ∈ Rn, then u(t, x) > 0 for all t > 0 and x ∈ Rn, unless u0(x) ≡ 0. We
will prove the following existence result.

Theorem 2.4.8 Under the above assumptions on the nonlinearity f , given a bounded and
continuous initial condition u0(x) ≥ 0, there exists a unique bounded smooth solution u(t, x)
to (2.4.22)-(2.4.23), which, in addition, satisfies 0 ≤ u(t, x) ≤ M. Moreover, for all T > 0
each derivative of u is bounded over [T,+∞)× Rn.

Uniqueness of the solutions is straightforward. If the Cauchy problem (2.4.22)-(2.4.23) has
two smooth bounded solutions u1(t, x) and u2(t, x), then w = u1 − u2 satisfies

wt = ∆w + c(t, x)w, (2.4.30)

with the initial condition w(0, x) = 0 and a bounded function

c(t, x) =
f(x, u(t, x))− f(x, v(t, x))

u(t, x)− v(t, x)
.

The maximum principle then implies that w(t, x) ≤ 0 and w(t, x) ≥ 0, thus w(t, x) ≡ 0,
proving the uniqueness.

The typical approach to the existence proofs in nonlinear problems is to use a fixed point
argument, and this is exactly what we will do. To this end, it is useful, and standard, to
rephrase the parabolic initial value problem (2.4.22)-(2.4.23) as an integral equation. This
is done as follows. Given a fixed T > 0 and the given initial condition u0(x), we define an
operator T as a mapping of the space C([0, T ]× Rn) to itself via

[T u](t, x) = et∆u0(x) +

∫ t

0

e(t−s)∆f(·, u(s, ·))(x)ds (2.4.31)

= et∆u0(x) +

∫ t

0

∫
Rn

1

(4π(t− s))n/2
e−(x−y)2/(4(t−s))f(y, u(s, y))dyds,
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with the operator et∆ defined in (2.4.8). The Duhamel formula for the solution of the Cauchy
problem (2.4.22)-(2.4.23) can be now succinctly restated as

u(t, x) = [T u](t, x). (2.4.32)

In other words, any solution of the initial value problem is a fixed point of the operator T .
On the other hand, to show that a fixed point of T is a solution of the initial value problem,
we need to know that any such fixed point is differentiable.

A priori regularity

The key boot-strap observation is the following.

Lemma 2.4.9 Let u(t, x) be a fixed point of the operator T (t, x) on the time interval [0, T ].
If u(t, x) is a uniformly continuous function over [0, T ]× Rn, then u(t, x) is infinitely differ-
entiable on any time interval of the form [ε, T ] with ε > 0.

Proof. The first term in the right side of (2.4.31) is infinitely differentiable for any t > 0
and x ∈ Rn simply because it is a solution of the heat equation with a bounded and continuous
initial condition u0. Thus, we only need to deal with the Duhamel term

D[u](t, x) =

∫ t

0

∫
Rn

1

(4π(t− s))n/2
e−(x−y)2/(4(t−s))f(y, u(s, y))dyds. (2.4.33)

Assume for a moment that we can show that u(t, x) is Hölder continuous in t and x. Then,
so is f(x, u(t, x)), and Proposition 2.4.3 tells us that D[u](t, x) is differentiable in t and x.
Then, we see from (2.4.31) or (2.4.32) that so is u(t, x), and thus f(x, u(t, x)) is differentiable
as well. But then we can show that D[u](t, x) is twice differentiable, hence so are u(t, x)
and f(x, u(t, x)). We may iterate this argument, each time gaining derivatives in t and x,
and conclude that, actually, u(t, x) is infinitely differentiable in t and x. Therefore, it suffices
to show that any uniformly continuous solution u(t, x) of (2.4.32) is Hölder continuous. This
is a consequence of the following strengthened version of Proposition 2.4.3. Recall that we
denote

J(t, x) =

∫ t

0

∫
Rn

1

(4π(t− s))n/2
e−(x−y)2/(4(t−s))g(s, y)dyds. (2.4.34)

Lemma 2.4.10 Let g(t, x) be a bounded uniformly continuous function. Then J(t, x) given
by (2.4.34) is Hölder continuous for all t > 0 and x ∈ Rn.

Proof of Lemma 2.4.10. Let us freeze t > 0 and prove that J is differentiable in xi, with
some 1 ≤ i ≤ n. The proof of Proposition 2.4.3 had plenty of room, as far as differentiability
in x is concerned, so that part of the argument is identical: we write∣∣∣ ∂

∂xi

(
e−|x−y|

2/4(t−s)

(4π(t− s))n/2

)∣∣∣ =
∣∣∣− xi − yi

2(t− s)
e−|x−y|

2/4(t−s)

(4π(t− s))n/2
∣∣∣ ≤ 2‖g‖∞√

t− s
|z|e−|z|2

(4π(t− s))n/2
, (2.4.35)

with

z =
x− y√
t− s

. (2.4.36)
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This shows that the xi-derivative of the integrand is dominated by an integrable function in z,
as

dz =
dx

(t− s)n/2
,

which implies that J is C1 in its x variables, with bounded derivatives.
On the other hand, the proof of the differentiability in t of J(t, x) in Proposition 2.4.3

did rely on the Hölder regularity of the function g(t, x), something that we do not have now.
Thus, we will have to compute a difference instead of a derivative. Assume, for convenience,
that t′ ≥ t, and write

J(t, x)− J(t′, x) =

∫ t

0

∫
Rn

(
e−|x−y|

2/4(t−s)

(4π(t− s))n/2
− e−|x−y|

2/4(t′−s)

(4π(t′ − s))n/2

)
g(s, y)dyds

−
∫ t′

t

∫
Rn

e−|x−y|
2/4(t′−s)

(4π(t′ − s))n/2
g(s, y)dyds = I1(t, t′, x) + I2(t, t′, x).

(2.4.37)
The second term above satisfies the simple estimate

|I2(t, t′, x)| ≤ ‖g‖L∞|t′ − t|, (2.4.38)

obtained via the by now automatic change of variables as in (2.4.36). As for I1, we write

e−|x−y|
2/4(t′−s)

(4π(t′ − s))n/2
− e−|x−y|

2/4(t−s)

(4π(t− s))n/2
=

∫ t′

t

h(z)

(4π(τ − s))n/2+1
dτ, z =

x− y√
τ − s

,

with

h(z) =

(
−n

2
+
|z|2

4

)
e−|z|

2

.

Thus, we have, changing the variables y → z in the integral over Rn, and integrating z out:

|I1(t, t′, x)| ≤ C‖g‖L∞
∫ t

0

∫ t′

t

dτ

τ − s
ds = C‖g‖L∞

∫ t

0

log

(
t′ − s
t− s

)
ds

= C‖g‖L∞(t′ log t′ − t log t− (t′ − t) log(t′ − t)). (2.4.39)

This proves that

|I1(t, t′, x)| ≤ C‖g‖L∞ |t′ − t|α, (2.4.40)

for all α ∈ (0, 1), finishing the proof of Lemma 2.4.10, and thus also that of Lemma 2.4.9. �

The Picard iteration argument

Thus, we know that if a uniformly continuous solution u(t, x) of (2.4.32) exists, then u(t, x)
is smooth. Let us now prove the existence of such solution. We will first show this for a time
interval [0, T ] sufficiently small but independent of the initial condition u0(x). We will use
the standard Picard iteration: set u(0) = 0 and define

u(n+1)(t, x) = T u(n)(t, x). (2.4.41)
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The previous analysis shows that all u(n)(t, x) are smooth for t > 0 and x ∈ Rn, and, using
the uniform Lipschitz property (2.4.24) of the function f(x, u) in u, we obtain

|u(n+1)(t, x)− u(n)(t, x)| ≤
∫ t

0

∫
Rn

e−(x−y)2/(4(t−s))

(4π(t− s))n/2
|f(y, u(n)(s, y))− f(y, u(n−1)(s, y))|dyds

≤ Cf

∫ t

0

∫
Rn

e−(x−y)2/(4(t−s))

(4π(t− s))n/2
|u(n)(s, y)− u(n−1)(s, y)|dyds

≤ CfT sup
0≤s≤T,y∈Rn

|u(n)(s, y)− u(n−1)(s, y)|. (2.4.42)

This shows that if T < C−1
f , then the mapping T is a contraction and thus has a unique fixed

point within the uniformly continuous functions u(t, x) over [0, T ]×Rn. The only assumption
we used about the initial condition u0(x) is that it is continuous and satisfies

0 ≤ u0(x) ≤M.

However, as we have mentioned, the maximum principle and the regularity of u(t, x) im-
ply that u(T, x) satisfies the same properties if u0(x) does. The key point is that the
time T does not depend on u0. Therefore, we can repeat this argument on the time in-
tervals [T, 2T ], [2T, 3T ], and so on, eventually constructing a global in time solution to the
Cauchy problem. This finishes the proof of Theorem 2.4.8.

Exercise 2.4.11 Consider the same setting as in Theorem 2.4.8 but without the assumption
that M ≥ ‖u0‖L∞ in (2.4.25). In other words, replace (2.4.25) by the assumption

f(x, 0) = 0, f(x, u) < 0 if u ≥M , for some large M , (2.4.43)

together with the assumption that u0(x) is a bounded non-negative function. Show that
the conclusion of Theorem 2.4.8 still holds – the Cauchy problem (2.4.22)-(2.4.23) admits a
unique smooth bounded solution for such initial conditions as well, and u(t, x) satisfies

0 ≤ u(t, x) ≤ max
(
M, sup

x∈Rn
u0(x)

)
. (2.4.44)

2.4.3 The regularity of the solutions of a quasi-linear heat equation

One may wonder if the treatment that we have given to the semi-linear heat equation (2.4.22)
is too specialized as it relies on particular cancellations. To dispel this fear, we show how this
approach can be extended to equations with a drift and other quasi-linear heat equations of
the form

ut −∆u = f(x,∇u), (2.4.45)

posed for t > 0 and x ∈ Rn. The nonlinearity is now stronger: it depends not on u itself but
on its gradient ∇u. This time we do not make any sign assumptions on f , but we ask that
the nonlinear term f(x, p) satisfies the following two hypotheses: there exist C1 > 0 so that

|f(x, 0)| ≤ C1 for all x ∈ Rn, (2.4.46)
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and C2 > 0 so that

|f(x, p1)− f(x, p2)| ≤ C2|p1 − p2|, for all x, p1, p2 ∈ Rn. (2.4.47)

One consequence of (2.4.46) and (2.4.47) is a uniform bound

|f(x, p)| ≤ C3(1 + |p|), (2.4.48)

showing that f(x, p) grows at most linearly in p. We also ask that f(x, p) is smooth in x
and p.

Two of the standard examples of equations of the form (2.4.45) are parabolic equations
with constant diffusion and nonuniform drifts, such as

ut = ∆u+ bj(x)
∂u

∂xj
, (2.4.49)

with a prescribed drift b(x), and the viscous regularizations of the Hamilton-Jacobi equations,
such as

ut = ∆u+ f(|∇u|). (2.4.50)

We will encounter both of them in the sequel. Our goal is the following.

Theorem 2.4.12 Equation (2.4.45), equipped with a bounded uniformly continuous initial
condition u0, has a unique smooth solution over (0,+∞)× Rn, which is bounded with all its
derivatives over every set of the form (ε, T )× Rn.

We will use the ideas previously displayed in the proof of Theorem 2.4.8. One of the main
difficulties in looking at (2.4.45) is that it involves a nonlinear function of the gradient of the
function u, which, a priori, may not be smooth at all. Thus, a natural idea is to regularize that
term, and then pass to the limit. A relatively painless approach is to consider the following
nonlocal approximation:

uεt −∆uε = f(x,∇vε), vε = eε∆uε. (2.4.51)

When ε > 0 is small, one expects the solutions to (2.4.45) and (2.4.51) to be close as

eε∆ψ → ψ, as ε→ 0. (2.4.52)

Exercise 2.4.13 In which function spaces does the convergence in (2.4.52) hold? For in-
stance, does it hold in L2 or L∞? How about C1(R)?

A damper on our expectations is that the convergence in (2.4.52) does not automatically
translate into the convergence of the corresponding gradients, unless we already know that ψ
is differentiable. In other words, if ψ is not differentiable, there is no reason to expect that

∇(eε∆ψ)→ ∇ψ,

simply because the right side may not exist. And this is what we need to understand the
convergence of the term f(x,∇vε) in (2.4.51). Thus, something will have to be done about
this.

Nevertheless, a huge advantage of the (2.4.51) over (2.4.45) is that the function vε that
appears inside the nonlinearity is smooth if uε is merely continuous, as long as ε > 0. This
can be used to show that the Cauchy problem for (2.4.51) has a unique smooth solution.
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Exercise 2.4.14 Show that, for every ε > 0 and every bounded function u(x) bounded, we
have

‖∇(eε∆u)‖L∞ ≤
C√
ε
‖u‖L∞ . (2.4.53)

Use this fact, and the strategy in the proof of Theorem 2.4.8, to prove that (2.4.51), equipped
with the bounded uniformly continuous initial condition u0, has a unique smooth solution uε

over a set of the form (0, Tε]× Rn, with a time Tε > 0 that depends on ε > 0 but not on the
initial condition u0.

Having constructed solutions to (2.4.51) on a finite time interval [0, Tε], in order to obtain
a global in time solution to the original equation (2.4.45), we need to do two things: (1) extend
the existence of the solutions to the approximate equation (2.4.51) to all t > 0, and (2) pass
to the limit ε → 0 and show that the limit of uε exists (possibly along a sub-sequence) and
satisfies ”the true equation” (2.4.45). The latter step will require uniform bounds on ∇uε
that do not depend on ε – something much better than what is required in Exercise 2.4.14.

Global in time existence of the approximate solution

To show that the solution to (2.4.51) exists for all t > 0, and not just on the interval [0, Tε],
we use the Duhamel formula

uε(t, x) = et∆u0(x) +

∫ t

0

∫
Rn

1

(4π(t− s))n/2
e−(x−y)2/(4(t−s))f(y,∇vε(s, y))dyds. (2.4.54)

Assumption (2.4.48), together with the gradient bound (2.4.53), implies an estimate

|f(x,∇vε(t, x))| ≤ C
(

1 +
‖uε(t, ·)‖L∞√

ε

)
,

that can be used in (2.4.54) to yield

‖uε(t, ·)‖L∞ ≤ ‖u0‖L∞ + Ct+
C√
ε

∫ t

0

‖uε(s, ·)‖L∞ds. (2.4.55)

We set

Zε(t) =

∫ t

0

‖uε(s, ·)‖L∞ds,

and write (2.4.55) as
dZε
dt
≤ ‖u0‖L∞ + Ct+

C√
ε
Zε. (2.4.56)

Multiplying by exp(−Ct/
√
ε) and integrating gives

Zε(t) ≤
√
ε

C
eCt/

√
ε
(
‖u0‖L∞ + Ct

)
. (2.4.57)

Using this in (2.4.55) gives a uniform estimate

‖uε(t, ·)‖L∞ ≤
(
‖u0‖L∞ + Ct

)(
1 + eCt/

√
ε
)
. (2.4.58)

Therefore, the L∞-norm of the solution can grow by at most a fixed factor over the time
interval [0, Tε]. This allows us to restart the Cauchy problem on the time interval [Tε, 2Tε],
and then on [2Tε, 3Tε], and so on, showing that the regularized problem (2.4.51) admits a
global in time solution.
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Passing to the limit ε ↓ 0

A much more serious challenge is to send ε ↓ 0, and recover a solution of the original equa-
tion (2.4.45). To do this, we will obtain the Hölder estimates of uε and its derivatives up
to the second order in space and the first order in time, that will be independent of ε. The
Ascoli-Arzola theorem will then provide us with the compactness of the family uε, and allow
us to pass to the limit and obtain a solution of (2.4.45).

Exercise 2.4.15 Assume that there exists α ∈ (0, 1) such that, for all δ > 0 and T > δ,
there is Cδ(T ) > 0, locally bounded for T ∈ [δ,+∞), and independent of ε ∈ (0, 1), for which
we have the following Hölder regularity estimates:∣∣∣ ∂
∂t

(
uε(t, x)−uε(t′, x′)

)∣∣∣+∣∣∣D2
x

(
uε(t, x)−uε(t′, x′)

)∣∣∣ ≤ Cδ(T )
(
|t−t′|α/2 + |x−x′|α

)
, (2.4.59)

for all t, t′ ∈ [δ, T ] and x, x′ ∈ Rn. Write down a complete proof that then there exists a
subsequence uεk converges to a limit u(t, x) as k → +∞, and u(t, x) is a solution to (2.4.45).
In particular, pay attention as to why we know that ∇vε → ∇u. In which space does the
convergence take place?

This exercise gives us the road map to the construction of a solution to (2.4.45): we
”only” need to establish the Hölder estimates (2.4.59) for the solutions of the approximate
equation (2.4.51). We will use the following lemma, that is a slight generalization of the
Gronwall lemma, and which is very useful in estimating the derivatives for the solutions of
the parabolic equations.

Lemma 2.4.16 Let ϕ(t) be a nonnegative bounded function that satisfies, for all 0 ≤ t ≤ T :

ϕ(t) ≤ a√
t

+ b

∫ t

0

ϕ(s)√
t− s

ds. (2.4.60)

Then, for all T > 0, there is C(T ) > 0 that depends on T and b, such that

ϕ(t) ≤ C(T )a√
t
. (2.4.61)

Proof. First, note that we can write φ(t) = aψ(t), leading to

ψ(t) ≤ 1√
t

+ b

∫ t

0

ψ(s)√
t− s

ds. (2.4.62)

Then, iterating (2.4.60) we obtain

ψ(t) ≤
n∑
k=0

In(t) +Rn+1(t), (2.4.63)

for any n ≥ 0, with

In+1(t) = b

∫ t

0

In(s)√
t− s

ds, I0(t) =
1√
t
, (2.4.64)
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and

Rn+1(t) = b

∫ t

0

Rn(s)√
t− s

, R0(t) = ϕ(t). (2.4.65)

We claim that there exist a constant c > 0, and p > 1 so that

In(t) ≤ 1√
t

(ct)n/2

(n!)1/p
. (2.4.66)

Indeed, this bound holds for n = 0, and if it holds for In(t), then we have

In+1(t) = b

∫ t

0

In(s)√
t− s

ds ≤ bcn/2

(n!)1/p

∫ t

0

s(n−1)/2ds√
t− s

=
bcn/2t(n+1)/2

√
t(n!)1/p

∫ 1

0

τ (n−1)/2dτ√
1− τ

=
bcn/2t(n+1)/2

(n!)1/p
√
t

(∫ 1

0

τ 3(n−1)/2dτ
)1/3(∫ 1

0

dτ

(1− τ)3/4

)2/3

=
bcn/2t(n+1)/2

√
t(n!)1/p

42/3

(3n/2− 1)1/3
≤ bcn/2t(n+1)/2

√
t(n!)1/p

42/321/3

(n+ 1)1/3
. (2.4.67)

Thus, the bound (2.4.66) holds with p = 3 and c = b2 · 210/3.

Exercise 2.4.17 Use the same argument to estimate Rn(t) and show that if ϕ(t) is uniformly
bounded on [0, T ], then

ϕ(t) ≤ a√
t

+ a
∞∑
n=1

In(t). (2.4.68)

Now, the estimate (2.4.61) follows from (2.4.68) and (2.4.66). �
This lemma will now (somewhat effortlessly) bring us to (2.4.59). First, let us use the

Duhamel formula (2.4.54) to get the Hölder bound on ∇uε. The maximum principle implies
that

‖et∆u0‖L∞ ≤ ‖u0‖L∞ , (2.4.69)

and also that the gradient
∇vε = eε∆∇uε,

satisfies the bound
‖∇vε(t, ·)‖L∞ ≤ ‖∇uε(t, ·)‖L∞ . (2.4.70)

We use these estimates, together with (2.4.48) in the Duhamel formula (2.4.54), leading to

‖uε(t, ·)‖L∞ ≤ ‖u0‖L∞ + Ct+ C

∫ t

0

‖∇uε(s, ·)‖L∞ds. (2.4.71)

The next step is to take the gradient of the Duhamel formula. The first term is estimated
as in (2.4.53):

‖∇(et∆u0)‖L∞ ≤
C√
t
‖u0‖L∞ . (2.4.72)

To bound the gradient of the integral term in the Duhamel formula, we note that

‖∇e(t−s)∆f(·,∇vε)‖L∞ ≤
C√
t− s

‖f(·,∇vε(s, ·)‖L∞ . (2.4.73)
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The term in the right side is bounded, once again, using the linear growth bound (2.4.48)
and (2.4.70). Altogether these estimates lead to

‖∇uε(t, ·)‖L∞ ≤
C√
t
‖u0‖L∞ + C

√
t+ C

∫ t

0

‖∇uε(s, .)‖L∞√
t− s

ds. (2.4.74)

Writing
C√
t
‖u0‖L∞ + C

√
t ≤ C‖u0‖L∞ + CT√

t
, 0 ≤ t ≤ T,

we can put (2.4.74) into the form of (2.4.60). Lemma 2.4.16 implies then that there exists a
constant C(T ) > 0, independent of ε, such that

‖∇uε(t, ·)‖L∞ ≤
C(T )√

t
, 0 < t ≤ T. (2.4.75)

Using this estimate in (2.4.71) gives a uniform bound on uε itself:

‖uε(t, ·)‖L∞ ≤ C(T ), 0 < t ≤ T. (2.4.76)

In other words, the family uε(t, ·) is uniformly bounded in the Sobolev space W 1,∞(Rn) – the
space of L∞ functions with gradients (in the sense of distributions) that are also L∞ functions:

‖uε(t, ·)‖W 1,∞ ≤ C(T )√
t
, 0 < t ≤ T. (2.4.77)

The uniform bound on the gradient in (2.4.77) seems a far cry from what we need
in (2.4.59) – that estimate requires the second derivatives to be Hölder continuous, and so far
we only have a uniform bound on the first derivative – we do not even know yet that the first
derivatives are Hölder continuous. Surprisingly, the end of the proof is actually near. Take
some 1 ≤ i ≤ n, and set

zεi =
∂uε

∂xi
.

The equation for zεi is (using the summation convention for repeated indices)

∂tz
ε
i −∆zεi = ∂xif(x,∇vε) + ∂pjf(x,∇vε)∂xjqεi , qεi = eε∆zεi . (2.4.78)

We look at (2.4.78) as an equation for zεi , with a given ∇vε that satisfies the already proved
uniform bound

‖∇vε(t, ·)‖L∞ ≤
C(T )√

t
, 0 < t ≤ T, (2.4.79)

that follows immediately from (2.4.75). Thus, (2.4.78) is of the form

∂tz
ε
i −∆zεi = G(x,∇qεi ), qεi = eε∆zεi , (2.4.80)

with
G(x, p) = ∂xif(x,∇vε) + ∂pjf(x,∇vε)pj. (2.4.81)

The function G(x, p) satisfies the assumptions on the nonlinearity f(x, p) stated at the be-
ginning of this section – it is simply a linear function in the variable p, and it x-dependence
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is only via the function ∇vε that is uniformly bounded on any time interval [δ, T ] with δ > 0.
Hence, on any such time interval zεi satisfies an equation of the type we have just analyzed
for uε, and our previous analysis shows that

‖∇zεi (t, ·)‖L∞ ≤
C(T, δ)√
t− δ

, δ < t ≤ T. (2.4.82)

In other words, we have the bound

‖D2uε(t, ·)‖L∞ ≤
C(T, δ)√
t− δ

, δ < t ≤ T. (2.4.83)

This is almost what we need in (2.4.59) – we also need to show that D2uε are Hölder
continuous. One way to see this is to note that with the information we have already ob-
tained, we know that the right side in (2.4.80) is a uniformly bounded function, on any time
interval [δ, T ], with δ > 0. Lemma 2.4.10 implies then immediately that ∇zi(t, x) is Hölder
continuous on the time interval [2δ, T ], which is exactly what we seek for D2uε in (2.4.59).
The bound on the time derivative follows then immediately from the equation (2.4.51) for uε

– the reader may pause for a second to see why the term f(x,∇vε) is Hölder continuous.

Exercise 2.4.18 So far, we have proved that (2.4.45) has a solution u(t, x) that is uniformly
bounded in the Hölder space C2,α(Rn) on any time interval [δ, T ] with δ > 0. Differentiate
the equation for u and iterate this argument, showing that the solution is actually infinitely
differentiable.

All that is left in the proof of Theorem 2.4.12 is to prove the uniqueness of a smooth
solution. We will invoke the maximum principle again. Recall that we are looking for smooth
solutions, so the difference w = u1 − u2 between any two solutions u1 and u2 simply satisfies
an equation with a drift:

wt −∆w = b(t, x) · ∇w, (2.4.84)

with a smooth drift b(t, x) such that

f(x,∇u1(t, x))− f(x,∇u2(t, x)) = b(t, x) · [∇u1(t, x)−∇u2(t, x)].

As w(0, x) ≡ 0, the maximum principle implies that w(t, x) ≡ 0 and u1 ≡ u2. This completes
the proof of Theorem 2.4.12. �

Exercise 2.4.19 Prove that, if u0 is smooth, then smoothness holds up to t = 0. Prove that
equation (2.4.45) holds up to t = 0, that is:

ut(0, x) = ∆u0(x) + f(x,∇u0(x)).

Exercise 2.4.20 Extend the result of Theorem 2.4.12 to equations of the form

ut = ∆u+ bj(t, x)
∂u

∂xj
+ c(t, x)u, (2.4.85)

with smooth coefficients bj(t, x) and c(t, x).
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2.5 A survival kit in the jungle of regularity

In our noble endeavor to carry out out as few computations as possible, we have not touched
a very important subject: that of optimal regularity. In other words, given a linear, possibly
inhomogeneous equation of the form

ut − aij(t, x)
∂2u

∂xi∂xj
+ bj(t, x)

∂u

∂xj
+ c(t, x) = f(t, x), (2.5.1)

the coefficients aij, bj c and the right side f having a certain given degree of smoothness,
what is the maximal regularity that one may expect from u? The question is a little different
from what we did for the nonlinear equations, where one would first prove a certain, possibly
small, amount of regularity, in the hope that this would be sufficient for an iteration leading
to a much better regularity than in one iteration step. The answer to the question of maximal
regularity is, in a nutshell: if the coefficients have a little bit of continuity, such as the Hölder
continuity, then the derivatives ut and D2u have the same regularity as f . This, however, is
true up to some painful exceptions: continuity for f will not entail, in general, the continuity
of ut and D2u.

The question of the maximal regularity for linear parabolic equations has a certain degree
of maturity, an interested reader should consult [97] to admire the breadth, beauty and
technical complexity of the available results. Our goal here is much more modest: we will
explain why the Hölder continuity of f will entail the Hölder continuity of ut and D2u –
the result we have already seen for the heat equation using the explicit computations with
the Duhamel term. In the context of the parabolic equations, we say that a function g(t, x)
is α-Hölder continuous on (0, T ]×Rn, with 0 < α < 1, if for every ε > 0 there is Cε > 0 such
that

|g(t, x)−g(t′, x′)| ≤ Cε
(
|t− t′|α/2 + |x−x′|α

)
, for all ε < t, t′ < T and x ∈, x′ ∈ Rn. (2.5.2)

This is what we have already seen for the heat equation, for example, in Theorem 2.4.7. If Cε
does not blow up as ε → 0, then we say that g is α-Hölder continuous on [0, T ] × Rn. The
Hölder norm of g over [ε, T ]× Rn is

sup
ε≤t,t′≤T, x∈TN

|g(t, x)− g(t′, x′)|
|x− x′|α + |t− t′|α/2

. (2.5.3)

When aij(t, x) = δij (the Kronecker symbol), the second order term in (2.5.1) is the
Laplacian, and our work was already almost done in Theorem 2.4.7. We will try to convince
the reader, without giving the full details of all the proofs, that this carries over to variable
diffusion coefficients, and, importantly, to problems with boundary conditions. Our main
message here is that all the ideas necessary for the various proofs have already been displayed,
and that ”only” technical complexity and dexterity are involved. Our discussion follows
Chapter 4 of [97], which presents various results with much more details.

When the diffusion coefficients are not continuous, but merely bounded, the methods
described in this chapter break down. Chapter ??, based on the Nash inequality, explains to
some extent how to deal with such problems by a very different approach.
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The Hölder regularity for the forced heat equation

We begin still with the inhomogeneous heat equation, strengthening what we have done in
Theorem 2.4.7: we show that if the forcing term is α-Hölder continuous in the sense of (2.5.2),
then the Hölder continuity passes on to the corresponding derivatives of the solution.

Theorem 2.5.1 Let g be α-Hölder on (0, T ]× Rn, and let v(t, x) solve

vt −∆v = g on (0, T ]× Rn, v(0, x) = 0. (2.5.4)

Then ∂tv and D2v are α-Hölder continuous over (0, T ] × Tn. Further, their Hölder norms
over any set of the form (ε, T ]×Rn, with ε > 0, are controlled by that of g over the same set.

Proof. Our analysis follows what we did in Section 2.4.1 except we have to look at the Hölder
differences for the second derivatives. The function v(t, x) is given by the Duhamel formula

v(t, x) =

∫ t

0

∫
Rn

1

(4π(t− s))n/2
e−(x−y)2/(4(t−s))g(s, y)dyds. (2.5.5)

We are going to examine only ∂xixjv, with i 6= j, leaving the other derivatives to the reader
as a lengthy but straightforward exercise. Let us set

hij(z) =
zizj

(4π)n/2
e−|z|

2

, D(s, t, x, y) = hij

( x− y
2
√
t− s

)g(s, y)− g(t, x)

t− s
,

so that, using the fact that hij has a zero integral, we may write

∂2v(t, x)

∂xi∂xj
=

∫ t

0

∫
Rn
D(s, t, x, y)

dsdy

(t− s)n/2
. (2.5.6)

We remind the reader that the justification of expression (2.5.6) can be found in the proof of
Proposition 2.4.3. Recall, in particular, that the mean zero property of hij is absolutely crucial
as it allows us to bring the difference g(s, y)− g(t, x) under the integral sign – otherwise, the
integral would be divergent.

Now, for ε ≤ t ≤ t′ ≤ T and x, x′ in Rn, we have

∂2v(t′, x′)

∂xi∂xj
− ∂2v(t, x)

∂xi∂xj
=

∫ t′

t

∫
Rn
D(s, t′, x′, y)dsdy

+

∫ t

0

∫
Rn

(
D(s, t′, x′, y)−D(s, t, x, y)

)
dsdy = J1 + J2.

Exercise 2.5.2 Verify that no additional ideas other than what has already been devel-
oped in Section 2.4.1 are required to prove that the integral J1 satisfies an inequality of the
form (2.5.2), with the control by the Hölder norm of g.

As for the integral J2, we need to look at it a little deeper. The change of variables

z = x+ 2
√
t− sy

66



transforms (2.5.6) into

∂2v(t, x)

∂xi∂xj
=

∫ t

0

∫
Rn
hij(z)

(g(s, x+ 2
√
t− sz)− g(t, x))

t− s
dsdz

πn/2
,

and J2 becomes

J2(t, t′, x, x′)

=

∫ t

0

∫
Rn
hij(z)

[
g(s, x′ + 2

√
t′ − sz)− g(t′, x′)

t′ − s
− g(s, x+ 2

√
t− sz)− g(t, x)

t− s

]
dsdz

πn/2

=

∫ t

0

∫
Rn
hij(z)

[
g(s, x′ + 2

√
t′ − sz)− g(t′, x′)

t′ − s
− g(s, x+ 2

√
t′ − sz)− g(t′, x)

t′ − s

]
dsdz

πn/2

+

∫ t

0

∫
Rn
hij(z)

[
g(s, x+ 2

√
t′ − sz)− g(t′, x)

t′ − s
− g(s, x+ 2

√
t− sz)− g(t, x)

t− s

]
dsdz

πn/2

= J21(t, t′, x, x′) + J22(t, t′, x, x′). (2.5.7)

We estimate each term separately.
The estimate of J22(t, t′, x, x). We split the time integration domain into the intervals

A = {s : t− 1

2
(t′ − t) ≤ s ≤ t}, B = {0 ≤ s ≤ t− 1

2
(t′ − t)}.

The Hölder regularity of g(t, x) implies that

|g(s, x+ 2
√
t′ − sz)− g(t′, x)| ≤ C(t′ − s)α/2|z|,

and
|g(s, x+ 2

√
t− sz)− g(t, x)| ≤ C(t− s)α/2|z|,

Note that for s ∈ A we have

t′ − s ≤ 3

2
(t′ − t), t− s ≤ 1

2
(t′ − t),

hence the contribution to J22 by the integral over the interval A can be bounded as

JA22(t, t′, x, x′) ≤ C

∫ t

t′−(t′−t)/2

∫
Rn
|hij(z)z|

[
1

(t′ − s)1−α/2 +
1

(t− s)1−α/2

]
dsdz

πn/2

≤ C(t′ − t)α/2. (2.5.8)

To estimate the contribution to J22 by the integral over the interval B, note that for s ∈ B
both increments t − s and t′ − s are strictly positive. Let us also recall that hij has zero
integral. Thus, we may remove both g(t, x) and g(t′, x′) from the integral. In other words,
we have

JB22(t, t′, x, x′) =

∫ t−1/2(t′−t)

0

∫
Rn

(
g(s, x+ 2

√
t′ − sz)

t′ − s
− g(s, x+ 2

√
t− sz)

t− s

)
hij(z)

dsdz

πn/2
.

(2.5.9)
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Exercise 2.5.3 Show that the integrand in (2.5.9) can be bounded from above by

C|z|3e−|z|2
(
|(
√
t′ − s−

√
t− s)z|)α

t′ − s
+

1

t− s
− 1

t′ − s

)
, (2.5.10)

with the constant C that depends on the Hölder constant and the L∞-norm of the function g.

Integrating out the z-variable, and using (2.5.10) we obtain

JB22(t, t′, x, x′) ≤ C

∫ t−1/2(t′−t)

0

(
√
t′ − s−

√
t− s)α

t′ − s
ds+ C

∫ t−1/2(t′−t)

0

(
1

t− s
− 1

t′ − s

)
ds

≤ C(t′ − t)α/2 + Cε(t
′ − t), ε ≤ t ≤ t′. (2.5.11)

We conclude that
J22(t, t′, x, x′) ≤ Cε(t

′ − t)α/2, ε ≤ t ≤ t′ (2.5.12)

The estimate of J21(t, t′, x, x′). Now, we estimate

J21(t, t′, x, x′)

=

∫ t

0

∫
Rn
hij(z)

[
g(s, x′ + 2

√
t′ − sz)− g(t′, x′)

t′ − s
− g(s, x+ 2

√
t′ − sz)− g(t′, x)

t′ − s

]
dsdz

πn/2

= JA21 + JB21. (2.5.13)

The two terms above refer to the integration over the time interval A = {t−|x−x′|2 ≤ s ≤ t}
and its complement B. In the first domain, we just use the bounds

|g(s, x′ + 2
√
t′ − sz)− g(t′, x′)| ≤ C(t′ − s)α/2|z| ≤ C(|t′ − t|α/2 + |x− x′|α)|z|,

and

|g(s, x+ 2
√
t′ − sz)− g(t′, x)| ≤ C(t′ − s)α/2|z| ≤ C(|t′ − t|α/2 + |x− x′|α)|z|.

After integrating out the z-variable, this leads to

|JA21(t, t′, x, x′)| ≤ C(|t′ − t|α/2 + |x− x′|α). (2.5.14)

As hij has zero mass, and t′ − s is strictly positive when s ∈ B, we can drop the terms
involving g(t′, x′) and g(t′, x), leading to

JB21(t, t′, x, x′) =

∫ t−|x−x′|2

0

∫
Rn
hij(z)

g(s, x′ + 2
√
t′ − sz)− g(s, x+ 2

√
t′ − sz)

t′ − s
dsdz

πn/2

=

∫ t−|x−x′|2

0

∫
Rn

(
hij

( x′ − y
2
√
t′ − s

)
− hij

( x− y
2
√
t′ − s

))g(s, y)

t′ − s
dsdy

(4π(t′ − s))n/2
. (2.5.15)

Once again, because hij has zero mass we have

JB21(t, t′, x, x′)=

∫ t−|x−x′|2

0

∫
Rn

(
hij

( x′ − y
2
√
t′ − s

)
−hij

( x− y
2
√
t′ − s

))g(s, y)− g(t′, x′)

t′ − s
dsdy

(4π(t′ − s))n/2
.
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The integrand above can be re-written as(
hij

( x′ − y
2
√
t′ − s

)
− hij

( x− y
2
√
t′ − s

))g(s, y)− g(t′, x′)

t′ − s
(2.5.16)

=
1

2

∫ 1

0

g(s, y)− g(s, xσ) + g(s, xσ)− g(t′, x′)

(t′ − s)3/2
(x′ − x) · ∇hij

( xσ − y
2
√
t′ − s

)
dσ,

with xσ = σx+ (1− σ)x′. It follows that

|JB21(t, t′, x, x′)| ≤ Cg|x− x′|
∫ t−|x−x′|2

0

∫ 1

0

∫
Rn

∣∣∣∇hij( xσ − y
2
√
t′ − s

)∣∣∣ (2.5.17)

× |y − xσ|
α + |x′ − xσ|α + |t′ − s|α/2

(t′ − s)3/2

dsdydσ

(t′ − s)n/2
,

with the constant Cg that is a multiple of the Hölder constant of g. Estimating |∇h(z)|
by |z|3e−|z|2 and |x′ − xσ| by |x− x′|, and making the usual change of variable

y → z =
xσ − y

2
√
t′ − s

,

and integrating out the z-variable, we arrive at

|JB21(t, t′, x, x′)| ≤ Cg|x− x′|
∫ t−|x−x′|2

0

(
1

(t− s)(3−α)/2
+
|x− x′|α

(t− s)3/2

)
ds. (2.5.18)

Integrating out the s-variable, we obtain

|JB21(t, t′, x, x′)| ≤ C|x− x′|
(
|x− x′|2(α/2−1/2) + |x− x′|α|x− x′|−1

)
≤ C|x− x′|α, (2.5.19)

thus J21 is also Hölder continuous, finishing the proof. �

A remark on the constant coefficients case

Let us now consider solutions of general constant coefficients equations of the form

ut − aij∂xixju+ bj∂xju+ cu = f(t, x). (2.5.20)

We assume that aij, bi and c are constants, and the matrix A := (aij) is positive definite:
there exists a constant λ > 0 so that for any vector ξ ∈ Rn we have

aijξiξj ≥ λ|ξ|2. (2.5.21)

Assume also that f is an α-Hölder function over [0, T ] × Rn, and take the initial condi-
tion v(0, x) ≡ 0. The function v(t, x) = u(t, x+Bt) exp(ct), with B = (b1, . . . , bn), solves

vt − aij∂xixjv = f(t, x+Bt). (2.5.22)

The change of variable w(t, x) = v(t,
√
Ax) brings us back to the forced heat equation:

wt −∆w = f(t,
√
A(x+Bt)). (2.5.23)

We see that the conclusion of Theorem 2.5.1 also applies to other parabolic equations with
constant coefficients, as long as the ellipticity condition (2.5.21) holds.
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Exercise 2.5.4 Consider the solutions of the equation

ut − uxx + uy = f(t, x, y), (2.5.24)

in R2 and use this example to convince yourself that the ellipticity condition is necessary for
the Hölder regularity as in Theorem 2.5.1 to hold.

The Cauchy problem for the inhomogeneous coefficients

Theorem 2.5.1 is the last one that we proved fully in this section. In the rest, we will only give
a sketch of the proofs, and sometimes we will not state the results in a formal way. However,
we have all the ideas to attack the first big piece of this section, the Cauchy problem for the
parabolic equations with variable coefficients:

ut − aij(t, x)
∂2u

∂xi∂xj
+ bj(t, x)

∂u

∂xj
+ c(t, x)u = 0, t > 0, x ∈ Rn,

u(0, x) = u0(x), x ∈ Rn. (2.5.25)

We make the following assumptions on the coefficients: first, they are sufficiently regular – the
functions (aij(t, x))1≤i,j≤N , (bj(t, x))1≤j≤N and c(t, x), all α-Hölder continuous over [0, T ]×Rn.
Second, we make the ellipticity assumption, generalizing (2.5.21): there exist λ > 0 and Λ > 0
so that for any vector ξ ∈ Rn and any x ∈ Rn we have

λ|ξ|2 ≤ aij(t, x)ξiξj ≤ Λ|ξ|2. (2.5.26)

We assume that the initial condition u0(x) is a continuous function – this assumption can be
very much weakened but we do not focus on it right now.

Theorem 2.5.5 The Cauchy problem (2.5.25) has a unique solution u(t, x), whose Hölder
norm on the sets of the form [ε, T ]× Rn is controlled by the L∞ norm of u0.

Exercise 2.5.6 Show that the uniqueness of the solution is an immediate consequence of the
maximum principle.

Thus, the main issue is the construction of a solution with the desired regularity. The
idea is to construct the fundamental solution of (2.5.25), that is, the solution E(t, s, x, y)
of (2.5.25) on the time interval s ≤ t ≤ T , instead of 0 ≤ t ≤ T :

∂tE − aij(t, x)
∂E

∂xi
xj + bj(t, x)

∂E

∂xj
+ c(t, x)E = 0, t > s, x ∈ Rn, (2.5.27)

with the initial condition
E(t = s, s, x, y) = δ(x− y), (2.5.28)

the Dirac mass at x = y. The solution of (2.5.25) can then be written as

u(t, x) =

∫
Rn
E(t, 0, x, y)u0(y)dy. (2.5.29)
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Thus, if can show that E(t, s, x, y) is smooth enough (at least away from t = s), u(t, x) will
satisfy the desired estimates as well. Note that this is a very strong property: the initial
condition in (2.5.28) at t = s is a measure – and we need to show that for all t > s the
solution is actually a smooth function. On the other hand, this is exactly what happens for
the heat equation

ut = ∆u,

where the fundamental solution is

E(t, s, x, y) =
1

(4π(t− s)n/2
e−(x−y)2/(4(t−s)).

Exercise 2.5.7 Go back to the equation

ut − uxx + uy = 0.

considered in Exercise 2.5.4. Show that its fundamental solution is not a smooth function in
the y-variable. Thus, the ellipticity condition is important for this property.

The understanding of the regularity of the solutions of the Cauchy problem is also a key
to the inhomogeneous problem because of the Duhamel principle.

Exercise 2.5.8 Let f(t, x) be a Hölder-continuous function over [0, T ]×Rn. Use the Duhamel
principle to write down the solution of

ut − aij(t, x)
∂2u

∂xi∂xj
u+ bj(t, x)

∂u

∂xj
+ c(t, x)u = f(t, x), t > 0, x ∈ Rn,

u(0, x) = u0(x), x ∈ Rn, (2.5.30)

in terms of E(t, s, x, y).

Thus, everything boils down to constructing the fundamental solution E(t, s, x, y), and
a way to do it is via the parametrix method. Let us set bj = c = 0 – this does not affect
the essence of the arguments but simplifies the notation. The philosophy is that the possible
singularities of E(t, s, x, y) are localized at t = s snd x = y (as for the heat equation).
Therefore, in order to capture the singularities of E(t, s, x, y) we may try to simply freeze the
coefficients in the equation at t = s and x = y, and compare E(t, s, x, y) to the fundamental
solution E0(s, t, x, y) of the resulting equation:

∂tE0 − aij(s, y)
∂2E0

∂xi∂xj
= 0, t > s, x ∈ Rn,

E0(t = s, x) = δ(x− y), x ∈ Rn. (2.5.31)

There is no reason to expect the two fundamental solutions to be close – they satisfy different
equations. Rather, the expectation is that that E will be a smooth perturbation of E0 – and,
since E0 solves an equation with constant coefficients (remember that s and y are fixed here),
we may compute it exactly.
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To this end, let us write the equation for E(t, s, x, y) as

∂tE − aij(s, y)
∂2E

∂xi∂xj
= F (t, x), t > s, x ∈ Rn,

E(t = s, x) = δ(x− y), x ∈ Rn, (2.5.32)

with the right side

F (t, x, y) = (aij(t, x)− aij(s, y))
∂2E

∂xi∂xj
. (2.5.33)

The difference
R0 = E − E0

satisfies

∂tR0 − aij(s, y)
∂2R0

∂xi∂xj
= (aij(t, x)− aij(s, y))

∂2E0

∂xi∂xj
+ F0(t, x), t > s, (2.5.34)

with the initial condition R0(t = s, x) = 0, and

F0(t, x) = (aij(t, x)− aij(s, y))
∂2R0

∂xi∂xj
. (2.5.35)

Let us further decompose
R0 = E1 +R1.

Here, E1 is the solution of

∂tE1 − aij(s, y)
∂2E1

∂xi∂xj
= (aij(t, x)− aij(s, y))

∂2E0

∂xi∂xj
, t > s, (2.5.36)

with the initial condition E1(t = s, x) = 0. The remainder R1 solves

∂tR1 − aij(s, y)
∂2R1

∂xi∂xj
= (aij(t, x)− aij(s, y))

∂2E1

∂xi∂xj
+ F1(t, x), t > s, (2.5.37)

with R1(t = s, x) = 0, and

F1(t, x) = (aij(t, x)− aij(s, y))
∂2R1

∂xi∂xj
. (2.5.38)

Equation (2.5.36) for E1 is a forced parabolic equation with constant coefficients – as
we have seen, its solutions behave exactly like those of the standard heat equation with
a forcing, except for rotations and dilations. We may assume without loss of generality
that aij(s, y) = δij, so that the reference fundamental solution is

E0(t, s, x, y) =
1

(4π(t− s))n/2
e−(x−y)2/(4(t−s)), (2.5.39)

and (2.5.36) is simply a forced heat equation:

∂tE1 −∆E1 = [aij(t, x)− δij]
∂2E0(t, s, x, y)

∂xi∂xj
, t > s, x ∈ Rn. (2.5.40)

The functions aij(t, x) Hölder continuous, with aij(s, y) = δij. The regularity of E1 can be
approached by the tools of the previous sections – after all, (2.5.36) is just another forced
heat equation! The next exercise may be useful for understanding what is going on. .
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Exercise 2.5.9 Consider, instead of (2.5.36) the solution of

∂tz −∆z =
∂2E0(t, s, x, y)

∂xi∂xj
, t > s, x ∈ Rn, (2.5.41)

with z(t = s, x) = 0. How does its regularity compare to that of E0? Now, what can you say
about the regularity of the solution to (2.5.40), how does the factor [aij(t, x) − δij] help to
make E1 more regular than z? In which sense is E1 more regular than E0?

With this understanding in hand, one may consider the iterative process: write

R1 = E2 +R2,

with E2 the solution of

∂tE2 − aij(s, y)
∂2E2

∂xi∂xj
= (aij(t, x)− aij(s, y))

∂2E1

∂xi∂xj
, t > s, (2.5.42)

with E2(t = s, x) = 0, and R2 the solution of

∂tR2 − aij(s, y)
∂2R2

∂xi∂xj
= (aij(t, x)− aij(s, y))

∂2E2

∂xi∂xj
+ F2(t, x), t > s, (2.5.43)

with R2(t = s, x) = 0, and

F2(t, x) = (aij(t, x)− aij(s, y))
∂2R2

∂xi∂xj
. (2.5.44)

Continuing this process, we have a representation for E(t, s, x, y) as

E = E0 + E1 + · · ·+ En +Rn, (2.5.45)

with each next term Ej more regular than E0, . . . , Ej−1. Regularity of all Ej can be inferred
as in Exercise 2.5.9. One needs, of course, also to estimate the remainder Rn to obtain a ”true
theorem” but we leave this out of this chapter, to keep the presentation short. An interested
reader should consult the aforementioned references for full details. We do, however, offer the
reader another (not quite trivial) exercise.

Exercise 2.5.10 Prove that E(s, t, s, y) has Gaussian estimates of the form:

m
e−|x−y|

2/Dt

(t− s)n/2
≤ E(s, t, x, y) ≤M

e−|x−y|
2/dt

(t− s)n/2
.

The constants m and M , unfortunately, depend very much on T ; however the constants d
and D do not.
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Interior regularity

So far, we have considered parabolic problems in the whole space Rn, without any boundaries.
One of the miracles of the second order diffusion equations is that the regularity properties
are local. That is, the regularity of the solutions in a given region only depends on how regular
the coefficients are in a slightly larger region. Consider, again, the inhomogeneous parabolic
equation

ut − aij(t, x)
∂2u

∂xi∂xj
+ bj(t, x)

∂u

∂xj
+ c(t, x)u = f(t, x), t > 0, (2.5.46)

and assume that the coefficients aij(t, x), bj(t, x) and c(t, x), and forcing f(t, x), are α-Hölder
in S = [0, T ]×BR(x0). It turns out that the derivatives D2u(t, x) and ∂tu(t, x) are α-Hölder
in a smaller set of the form S = [ε, T ] × B(1−ε)R(x0), for any ε > 0. The most important
point is that the Hölder norm of u in S is controlled only by ε, R, and the Hölder norms of
the coefficients and the L∞ bound of u, both inside the larger set S. Note that the Hölder
estimates on u do not hold in the original set S, we need a small margin, going down to the
smaller set Sε.

Exercise 2.5.11 Prove this fact. One standard way to do it is to pick a nonnegative and
smooth function γ(x), equal to 1 in BR/2(x0) and 0 outside of BR(x), and to write down
an equation for v(t, x) = γ(x)u(t, x). Note that this equation is now posed on (0, T ] × Rn,
and that the whole spacee theory can be applied. The computations should be, at times
cumbersome. If in doubt, consult [60]. Looking ahead, we will use this strategy in the proof
of Lemma 2.8.3 in Section 2.8.1 below, so the reader may find it helpful to read this proof
now.

Specifying the Dirichlet boundary conditions allows to get rid of this small margin, and this
is the last issue that we are going to discuss in this section. Let us consider equation (2.5.46),
posed this time in (0, T ] × Ω, where Ω is bounded smooth open subset of Rn. As a side
remark, it is not crucial that Ω be bounded. However, if Ω is unbounded, we should ask
its boundary to oscillate not too much at infinity. Let us supplement (2.5.46) by an initial
condition u(0, x) = u0(x) in Ω, with a continuous function u0, and the Dirichlet boundary
condition

u(t, x) = 0 for 0 ≤ t ≤ T and x ∈ ∂Ω. (2.5.47)

Theorem 2.5.12 Assume aij(t, x), bj(t, x), c(t, x), and f(t, x) are α-Hölder in (0, T ]× Ω –
note that, here, we do need the closure of Ω. The above initial-boundary value problem has
a unique solution u(t, x) such that D2u(t, x) and ∂tu(t, x) are α-Hölder in [ε, T ] × Ω̄, with
their Hölder norms controlled by the L∞ bound of u0, and the Hölder norms of the coefficients
and f .

The way to prove this result parallels the way we followed to establish Theorem 2.5.5. First,
we write down an explicit solution on a model situation. Then, we prove the regularity in
the presence of a Hölder forcing in the model problem. Once this is done, we turn to general
constant coefficients. Then, we do the parametric method on the model situation. Finally,
we localize the problem and reduce it to the model situation.
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Let us be more explicit. The model situation is the heat equation in a half space

Ωn = Rn
+ := {x = (x1, . . . xn) ∈ Rn : xn > 0}.

Setting x′ = (x1, . . . xn−1), we easily obtain the solution of the initial boundary value problem

ut −∆u = 0, t > 0, x ∈ Ωn, (2.5.48)

u(t, x′, 0) = 0,

u(0, x) = u0(x),

as

u(t, x) =

∫
Rn
E0(t, x, y)u0(y)dy, (2.5.49)

with the fundamental solution

E0(t, x, y) =
e−(x′−y′)2/4t

(4πt)n/2

(
e−(xn−yn)2/4t − e−(xn+yn)2/4t

)
. (2.5.50)

Let us now generalize step by step: for an equation with a constant drift

ut −∆u+ bj∂xju = 0, t > 0, x ∈ Ωn, (2.5.51)

the change of unknowns u(t, x) = exnbn/2v(t, x) transforms the equation into

vt −∆v + bj∂x′jv −
b2
n

4
v = 0, t > 0, x ∈ Ωn. (2.5.52)

Thus, the fundamental solution, for (2.5.51) is

E(t, x, y) = etb
2
n/4−xbn/2E0(t, x− tB′, y), B′ = (b1, . . . Bn−1, 0). (2.5.53)

For an equation of the form

ut − aij∂xixju = 0, t > 0, x ∈ Ωn, (2.5.54)

with a constant positive-definite diffusivity matrix aij, we use the fact that the function

u(t, x) = v(t,
√
A−1x),

with v(t, x) a solution of the heat equation

vt = ∆v,

solves (2.5.54). For an equation mixing the two sets of coefficients, one only has to compose
the transformations. At that point, one can, with a nontrivial amount of computations, prove
the desired regularity for the solutions of

ut − aij
∂2u

∂xi∂xj
+ bj

∂u

∂xj
+ cu = f(t, x) (2.5.55)
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with constant coefficients, and the Dirichlet boundary conditions on ∂Ωn. Then, one can use
the parametrix method to obtain the result for general inhomogeneous coefficients. This is
how one proves Theorem 2.5.12 for Ωn = Rn

+.
How does one pass to a general Ω? Unfortunately, the work is not at all finished yet. One

still has to prove a local version of the already proved theorem in Ωn, in the spirit of the local
regularity in Rn, up to the fact that we must not avoid the boundary. Once this is done,
consider a general Ω. Cover its boundary ∂Ω with balls such that, in each of them, ∂Ω is a
graph in a suitable coordinate system. By using this new coordinate system, one retrieves
an equation of the form (2.5.30), and one has to prove that the diffusion coefficients satisfy a
coercivity inequality. At this point, maximal regularity for the Dirichlet problem is proved.

Of course, all kinds of local versions (that is, versions of Theorem 2.5.12 where the coef-
ficients are α-Höder only in a part of Ω) are available. Also, most of the above material is
valid for the Neumann boundary conditions

∂νu = 0 on ∂Ω,

or Robin boundary conditions

∂νu+ γ(t, x)u = 0 on ∂Ω.

We encourage the reader who might still be interested in the subject to try to produce the
full proofs, with an occasional help from the books we have mentioned.

The Harnack inequalities

We will only touch here on the Harnack inequalities, a very deep and involved topic of
parabolic equations. In a nutshell, the Harnack inequalities allow to control the infimum
of a positive solution of a parabolic equation by a universal fraction of its maximum, modulo
a time shift. They provide one possible path to regularity, but we will ignore this aspect
here. They are also mostly responsible for the behaviors that are very specific to the diffusion
equations, as will be seen in the next section.

We are going to prove what is, in a sense, a ”‘poor man’s”’ version. It is not as scale
invariant as one would wish, and uses the regularity theory instead of proving it. It is,
however, suited to what we wish to do, and already gives a good account of what is going on.
Consider our favorite equation

ut −∆u+ bj(t, x)
∂u

∂xj
+ c(t, x)u = 0, (2.5.56)

with smooth coefficients bj and c, posed for t ∈ (0, T ), and x ∈ BR+1(0). We stress that the
variable smooth diffusion coefficients could be put in the picture.

Theorem 2.5.13 Let u(t, x) ≥ 0 be a non-negative bounded solution of (2.5.56) for 0 ≤ t ≤ T
and x ∈ BR+1(0), and assume that for all t ∈ [0, T ]:

sup
|x|≤R+1

u(t, x) ≤ k2, sup
|x|≤R

u(t, x) ≥ k1. (2.5.57)
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There is a constant hR > 0, that does not depend on T , but that depends on k1 and k2, such
that, for all t ∈ [1, T ]:

hR ≤ inf
|x|≤R

u(t, x). (2.5.58)

Proof. The proof is by contradiction. Assume that there exists a sequence un of the solutions
of (2.5.56) satisfying (2.5.57), and tn ∈ [1, T ], and xn ∈ BR(0), such that

lim
n→+∞

un(tn, xn) = 0. (2.5.59)

Up to a possible extraction of a subsequence, we may assume that

tn → t∞ ∈ [1, T ] and xn → x∞ ∈ BR(0).

The Hölder estimates on un and its derivatives in Theorem 2.5.12 together with the Ascoli-
Arzela theorem, imply that the sequence un is relatively compact in C2([t∞−1/2]×BR+1/2(0)).
Hence, again, after a possible extraction of a subsequence, we may assume that un converges
to u∞ ∈ C2([t∞ − 1/2, T ] × BR+1/2(0)), together with its first two derivatives in x and
the first derivatives in t. Thus, the limit u∞(t, x) satisfies (2.5.56) for t∞ − 1/2 ≤ t ≤ T ,
and x ∈ BR+1/2(0)), and is non-negative. It also satisfies the bounds in (2.5.57), hence it
is not identically equal to zero. Moreover it satisfies u∞(t∞, x∞) = 0. This contradicts the
strong maximum principle. �

2.6 The long time behavior for the Allen-Cahn equation

We will see in this section how the possibility of comparing two solutions of the same problem
will imply their convergence in the long time limit, putting to work the two main characters
we have seen so far in this chapter: the comparison principle and the Harnack inequality.

We consider the one-dimensional Allen-Cahn equation

ut − uxx = f(u), (2.6.1)

with
f(u) = u− u3. (2.6.2)

Recall that we have already considered the steady solutions of this equation in Section 1.4.3
of Chapter 1, and, in particular, the role of its explicit time-independent solutions

φ(x) = tanh
( x√

2

)
, (2.6.3)

and its translates φx0(x) := φ(x+ x0), x0 ∈ R.

Exercise 2.6.1 We have proved in Chapter 1 that, if ψ(x) is a steady solution to (2.6.1) that
satisfies

lim
x→−∞

ψ(x) = −1, lim
x→+∞

ψ(x) = 1,

then ψ is a translate of φ. For an alternative proof, draw the phase portrait of the equation

−ψ′′ = f(ψ) (2.6.4)
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in the (ψ, ψ′) plane. For an orbit (ψ, ψ′) connecting (−1, 0) to (1, 0), show that the solution
tends to (−1, 0) exponentially fast. Multiply then (2.6.4) by ψ′, integrate from −∞ to x and
conclude.

Recall that the Allen-Cahn equation is a simple model for a physical situation when two
phases are stable, corresponding to u = ±1. The time dynamics of the initial value problem
for (2.6.1) corresponds to a competition between these two states. The fact that∫ 1

−1

f(u)du = 0 (2.6.5)

means that the two states are ”equally stable” – this is a necessary condition for (2.6.1) to
have a time-independent solution φ(x) such that

φ(x)→ ±1, as x→ ±∞. (2.6.6)

In other words, such connection between +1 and −1 exists only if (2.6.5) holds.
Since the two phases u = ±1 are equally stable, one expects that if the initial condi-

tion u0(x) for (2.6.1) satisfies

lim
x→−∞

u0(x) = −1, lim
x→+∞

u0(x) = 1, (2.6.7)

then, as t → +∞, the solution u(t, x) will converge to a steady equilibrium, that has to be
a translate of φ. This is the subject of the next theorem, that shows, in addition, that the
convergence rate is exponential.

Theorem 2.6.2 There exists ω > 0 such that for any uniformly continuous and bounded
initial condition u0 for (2.6.1) that satisfies (2.6.7), we can find x0 ∈ R and C0 > 0 such that

|u(t, x)− φ(x+ x0)| ≤ C0e
−ωt, for all x ∈ R and t > 0. (2.6.8)

Since there is a one parameter family of steady solutions, naturally, one may ask how the
solution of the initial value problem chooses a particular translation of φ in the long time limit.
In other words, one would like to know how the shift x0 depends on the initial condition u0.
However, this dependence is quite implicit and there is no simple expression for x0.

There are at least two ways to prove Theorem 2.6.2. The first one starts with the following:

Exercise 2.6.3 Verify that the energy functional

J(u) =

∫
R

(
1

2
|ux|2 − F (u)

)
dx, F (u) =

∫ u

−1

f(v)dv,

decreases in time for any solution u(t, x) of (2.6.1).

With the aid of an estimate showing that the level sets of u do not escape to infinity, one
then proves that the solution eventually comes very close to a translate φx0(x), uniformly
on R, at some (possibly very large) time τ . Next, one uses a stability argument, based on the

78



analysis of the first eigenvalue – something we will encounter soon in this chapter – of the
operator

Mu = −uxx − f ′(φx0)u.

This stability result shows that if u(t, x) is close to φx0(x) at t = τ , then u(t, x) will stay
close to φx0(x) for all t > τ . An iteration of this argument completes the proof. This is the
method devised in the beautiful paper of Fife and McLeod [71]. It has been generalized to
gradient systems in a remarkable paper of Risler [126], which proves very precise spreading
estimates of the leading edge of the solutions, only based on a one-dimensional set of energy
functionals. Risler’s ideas were put to work on the simpler example (2.6.1) in a paper by
Gallay and Risler [78].

We chose to present an alternative method, entirely based on sub and super-solutions
that come closer and closer to each other. It avoids the spectral arguments of the preceding
proof, and is more flexible as there are many reaction-diffusion problems where the comparison
principle and the Harnack inequality are available but the energy functionals do not exist. The
reader should also be aware that there are many problems, such as many reaction-diffusion
systems, where the situation is the opposite: the energy functional exists but the comparison
principle is not applicable.

Before we begin, we note that the function f satisfies

f ′(u) ≤ −1 for |u| ≥ 5/6, f ′(u) ≤ −3/2 for |u| ≥ 11/12. (2.6.9)

We will also take R0 > 0 such that

|φ(x)| ≥ 11/12 for |x| ≥ R0. (2.6.10)

A bound on the level sets

The first ingredient is to prove that the level sets of u(t, x) do not, indeed, go to infinity,
so that the region of activity, where u(t, x) is not too close to ±1, happens, essentially, in
a compact set. This crucial step had already been identified by Fife and McLeod, and we
reproduce here their argument. The idea is to squish u(t, x) between two different translates
of φ, with a correction that goes to zero exponentially in fast time.

Lemma 2.6.4 Let u0 satisfy the assumptions of the theorem. There exist ξ±∞ ∈ R, and q0 > 0,
such that

φ(x+ ξ−∞)− q0e
−t ≤ u(t, x) ≤ φ(x+ ξ+

∞) + q0e
−t, (2.6.11)

for all t ≥ 0 and x ∈ R.

Proof. For the upper bound, we are going to devise two functions ξ+(t) and q(t) such that

u(t, x) = φ(x+ ξ+(t)) + q(t) (2.6.12)

is a super-solution to (2.6.1), with an increasing but bounded function ξ+(t), and an expo-
nentially decreasing function q(t) = q0 exp(−t). One would also construct, in a similar way,
a sub-solution of the form

u(t, x) = φ(x+ ξ−(t))− q(t), (2.6.13)

79



possibly increasing q a little, with a decreasing but bounded function ξ−(t).
Let us denote

N [u] = ∂tu− uxx − f(u). (2.6.14)

Now, with u(t, x) as in (2.6.12), we have

N [u] = q̇ + ξ̇+φ′(ζ)− f(φ(ζ) + q) + f(φ(ζ)), (2.6.15)

with ζ = x+ ξ+(t). Our goal is to choose ξ+(t) and q(t) so that

N [u] ≥ 0, for all t ≥ 0 and x ∈ R, (2.6.16)

so that ū(t, x) is a super-solution to (2.6.1). We will consider separately the regions |ζ| ≤ R0

and |ζ| ≥ R0.
Step 1. The region |ζ| ≥ R0. First, we have

φ(ζ) + q(t) ≥ 11/12 for ζ ≥ R0,

as q(t) ≥ 0. If we assume that q(0) ≤ 1/12 and make sure that q(t) is decreasing in time,
then we also have

φ(ζ) + q ≤ −5/6 for ζ ≤ −R0.

We have, therefore, as long as ξ+(t) is increasing, using (2.6.9):

N [u] ≥ q̇ − f(φ(ζ) + q) + f(φ) ≥ q̇ + q, for |ζ| ≥ R0. (2.6.17)

It suffices, therefore, to choose
q(t) = q(0)e−t, (2.6.18)

with q(0) ≤ 1/12, and an increasing ξ+(t), to ensure that

N [u] ≥ 0, for all t ≥ 0 and |ζ| ≥ R0. (2.6.19)

Step 2. The region |ζ| ≤ R0. This time, we have to choose ξ+(t) properly. We write

N [u] ≥ q̇ + ξ̇+φ′(ζ)−Mfq, Mf = ‖f ′‖L∞ , (2.6.20)

and choose

ξ̇+ =
1

k0

(
− q̇ +Mfq

)
, k0 = inf

|ζ|≤R0

φ′(ζ), (2.6.21)

to ensure that the right side of (2.6.20) is non-negative. Using expression (2.6.18) for q(t), we
obtain

ξ+(t) = ξ+(0) +
q(0)

k0

(1 +Mf )(1− e−t). (2.6.22)

To summarize, with the above choices of q(t) and ξ+(t), we know that u satisfies (2.6.16).
It remains to choose q(0) and ξ+(0) so that u(t, x) is actually above u(t, x) – as we have

already established (2.6.16), the comparison principle tells us that we only need to verify that

u(0, x) ≥ u0(x), for all x ∈ R. (2.6.23)

Because u0 tends to ±1 at ±∞, there exists ξ+
0 (possibly quite large), and q0 ∈ (0, 1/12) such

that
u0(x) ≤ φ(x+ ξ+

0 ) + q0. (2.6.24)

Thus, it is enough to choose q(0) = q0, ζ+(0) = ζ+
0 . �
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Exercise 2.6.5 Follow the same strategy to construct a sub-solution u(t, x) as in (2.6.13).

Lemma 2.6.4 traps nicely the level sets of u. But will this imply convergence to a steady
solution, or will the level sets of u(t, x) oscillate inside a bounded set? First, let us restate
our findings in a more precise way. We have shown the following

Corollary 2.6.6 Assume that we have

φ(x+ ξ−0 )− q0 ≤ u0(x) ≤ φ(x+ ξ+
0 ) + q0, (2.6.25)

with 0 ≤ q0 ≤ 1/12. Then, we have

φ(x+ ξ−(t))− q(t) ≤ u0(x) ≤ φ(x+ ξ+(t)) + q(t). (2.6.26)

with q(t) = q0e
−t, and

ξ+(t) = ξ+
0 +

q0

k0

(1 +Mf )(1− e−t), ξ−(t) = ξ−0 −
q0

k0

(1 +Mf )(1− e−t). (2.6.27)

One issue here is that the gap between ξ+(t) and ξ−(t) is not decreasing in time but rather in-
creasing – the opposite of what we want! Our goal is to show that we can actually choose ξ+(t)
and ξ−(t) in (2.6.26) so that the ”sub-solution/super-solution gap” ξ+(t) − ξ−(t) would de-
crease to zero as t → +∞ – this will prove convergence of the solution to a translate of φ.
The mechanism to decrease this difference will be kindly provided by the strong maximum
principle. The idea is to iteratively trap the solutions, at an increasing sequence of times,
between translates of φ0, that will come closer and closer to each other, thus implying the
convergence. However, as there will be some computations, it is worth explaining beforehand
what the main idea is, and which difficulties we will see.

Let us consider for the moment a slightly better situation than in Lemma 2.6.4 – assume
that u0(x) is actually trapped between φ(x + ξ−0 ) and φ(x + ξ+

0 ), without the need for an
additional term q(t):

φ(x+ ξ−0 ) ≤ u0(x) ≤ φ(x+ ξ+
0 ). (2.6.28)

Then, u(t, x) is at a positive distance from one of the two translates, on compact sets, at
least for 0 ≤ t ≤ 1, say, φ(x + ξ+

0 ). This is where the strong maximum principle strikes:
at t = 1, it will make the infimum of φ(x + ξ+

0 )− u(t, x) strictly positive, at least on a large
compact set. We would like to think that then we may translate φ(x + ξ+

0 ) to the right a
little, decreasing ξ+

0 , while keeping it above u(1, x). The catch is that, potentially, the tail
of u(1, x) – that we do not control very well at the moment – might go over φ(x+ ξ), as soon
as ξ is just a little smaller than ξ+

0 . Let us ignore this, and assume that magically we have

φ(x+ ξ−0 ) ≤ u(1, x) ≤ φ(x+ ξ+
1 ), (2.6.29)

with
ξ+

1 = ξ+
0 − δ(ξ+

0 − ξ−0 ), (2.6.30)

with some δ > 0. If we believe in this scenario, we might just as well hope that the situation
may be iterated: at the time t = n, we have

φ(x+ ξ−n ) ≤ u(n, x) ≤ φ(x+ ξ+
n ), (2.6.31)
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with
ξ+
n+1 − ξ−n+1 ≤ (1− δ)(ξ+

n − ξ−n ). (2.6.32)

This would imply a geometric decay of ξ+
n − ξ−n to zero, which, in turn, would imply the

exponential convergence of u(t, x) to a translate of φ.
The gap in the previous argument is, of course, in our lack of control of the tail of u(t, x)

that prevents us from being sure that (2.6.29), with ξ+
1 as in (2.6.30), holds everywhere on R

rather than on a compact set. There is no way we can simply ignore it: we will see in
Chapter ?? that the dynamics of many respectable equations is controlled exactly by the tail
of its solutions. Such will not be the case here, but we will have to go through the pain of
controlling the tail of u at every step. This leads to the somewhat heavy proof that follows.
However, there is essentially no other idea than what we have just explained, the rest are just
technical embellishments. The reader should also recall that we have already encountered
a tool for the tail-control in the Allen-Cahn equation: Corollary 1.4.12 in Chapter 1 served
exactly that purpose in the proof of Theorem 1.4.8. We are going to use something very
similar here.

The proof of Theorem 2.6.2

As promised, the strategy is a refinement of the proof of Lemma 2.6.4. We will construct a
sequence of sub-solutions un and super-solutions un defined for t ≥ Tn, such that

un(t, x) ≤ u(t, x) ≤ un(t, x) for t ≥ Tn. (2.6.33)

Here, Tn → +∞ is a sequence of times with

Tn + T ≤ Tn+1 ≤ Tn + 2T, (2.6.34)

and the time step T > 0 to be specified later on. The sub- and super-solutions will be of the
familiar form (2.6.26)-(2.6.27):

un(t, x) = φ(x+ ξ−n (t))− qne−(t−Tn), un(t, x) = φ(x+ ξ+
n (t)) + qne

−(t−Tn), t ≥ Tn, (2.6.35)

with ξ±n (t) as in (2.6.27):

ξ+
n (t) = ξ+

n +
qn
k0

(1 +Mf )(1− e−(t−Tn)), ξ−n (t) = ξ−n −
qn
k0

(1 +Mf )(1− e−(t−Tn)). (2.6.36)

The reader has surely noticed a slight abuse of notation: we denote by ξ±n the values of ξ±n (t)
at the time t = Tn. This allows us to avoid introducing further notation, and we hope it does
not cause too much confusion.

Our plan is to switch from one pair of sub- and super-solutions to another at the times Tn,
and improve the difference in the two shifts at the ”switching” times, to ensure that

ξ+
n+1 − ξ−n+1 ≤ (1− δ)(ξ+

n − ξ−n ), (2.6.37)

with some small but fixed constant δ > 0 such that

e−T ≤ cT δ ≤
1

4
. (2.6.38)
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The constant cT will also be chosen very small in the end – one should think of (2.6.38) as the
requirement that the time step T is very large. This is natural: we can only hope to improve
on the difference ξ+

n − ξ−n , as in (2.6.37), after a very large time step T . The shifts can be
chosen so that they are uniformly bounded:

|ξ±n | ≤M, (2.6.39)

with a sufficiently large M – this follows from the bounds on the level sets of u(t, x) that we
have already obtained. As far as qn are concerned, we will ask that

0 ≤ qn ≤ cqδ(ξ
+
n − ξ−n ), (2.6.40)

with another small constant cq to be determined. Note that at t = 0 we may ensure that q0

satisfies (2.6.40) simply by taking ξ+
0 sufficiently positive and ξ−0 sufficiently negative.

As we have uniform bounds on the location of the level sets of u(t, x), and the shifts ξ±n
will be chosen uniformly bounded, as in (2.6.39), after possibly increasing R0 in (2.6.10), we
can ensure that

φ(x+ ξ±n (t)) ≥ 11/12, u(t, x) ≥ 11/12, for x ≥ R0 and t ≥ Tn, (2.6.41)

and

−1 < φ(x+ ξ±n (t)) ≤ 11/12, − 1 < u(t, x) ≤ −11/12, for x ≤ −R0 and t ≥ Tn, (2.6.42)

which implies

f ′(φ(x+ ξ±n (t))) ≤ −1, f ′(u(t, x)) ≤ −1, for |x| ≥ R0 and t ≥ Tn. (2.6.43)

Let us now assume that at the time t = Tn we have the inequality

φ(x+ ξ−n )− qn ≤ u(Tn, x) ≤ φ(x+ ξ+
n ) + qn, (2.6.44)

wth the shift qn that satisfies (2.6.40). Our goal is to find a time Tn+1 ∈ [Tn + T, Tn + 2T ],
and the new shifts ξ±n+1 and qn+1, so that (2.6.44) holds with n replaced by n+ 1 and the new
gap ξ+

n+1 − ξ−n+1 satisfies (2.6.37). We will consider two different cases.
Case 1: the solution gets close to the super-solution. Let us first assume that

there is a time τn ∈ [Tn + T, Tn + 2T ] such that the solution u(τn, x) is ”very close” to the
super-solution un(τn, x) on the interval {|x| ≤ R0 + 1}. More precisely, we assume that

sup
|x|≤R0+1

(
un(τn, x)− u(τn, x)

)
≤ δ(ξ+

n − ξ−n ). (2.6.45)

We will show that in this case we may take Tn+1 = τn, and set

ξ+
n+1 = ξ+

n (τn), ξ−n+1 = ξ−n + (ξ+
n (τn)− ξ+

n ) + δ(ξ+
n − ξ−n ), (2.6.46)

as long as δ is sufficiently small, making sure that

ξ+
n+1 − ξ−n+1 = (1− δ)(ξ+

n − ξ−n ), (2.6.47)
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and also choose qn+1 so that
qn+1 = cqδ(ξ

+
n+1 − ξ−n+1). (2.6.48)

As far as the super-solution is concerned, we note that

u(τn, x) ≤ φ(x+ ξ+
n (τn)) + qne

−(t−Tn) ≤ φ(x+ ξ+
n (τn)) + cqδ(ξ

+
n − ξ−n )e−T

≤ φ(x+ ξ+
n (τn)) + qn+1, (2.6.49)

for all x ∈ R, provided that T is sufficiently large, independent of n.
For the sub-solution, we first look at what happens for |x| ≤ R0 + 1 and use (2.6.45):

u(τn, x) ≥ φ(x+ ξ+
n (τn)) + qne

−(τn−Tn) − δ(ξ+
n − ξ−n ), for all |x| ≤ R0 + 1. (2.6.50)

Thus, for |x| ≤ R0 + 1 we have

u(τn, x) ≥ φ(x+ ξ+
n (τn))− δ(ξ+

n − ξ−n ) ≥ φ(x+ ξ+
n − CRδ(ξ+

n − ξ−n )) ≥ φ(x+ ξ−n+1), (2.6.51)

with the constant CR that depends on R0, as long as δ > 0 is sufficiently small.
It remains to look at |x| ≥ R0 + 1. To this end, recall that

u(τn, x) ≥ φ(x+ ξ−n (τn))− qne−(τn−Tn), for all x ∈ R, (2.6.52)

so that, as follows from the definition of ξ−n (t), we have

u(τn, x) ≥ φ(x+ ξ−n − Cqn)− qne−2T , for all x ∈ R. (2.6.53)

Observe that, as φ(x) is approaching ±1 as x → ±∞ exponentially fast, there exist ω > 0
and C > 0 such that, taking into account (2.6.40) we can write for |x| ≥ R0 + 1:

φ(x+ ξ−n − Cqn) ≥ φ(x+ ξ−n + (ξ+
n (τn)− ξ+

n ) + δ(ξ+
n − ξ−n ))− Cδe−ωR0(ξ+

n − ξ−n )

≥ φ(x+ ξ−n+1)− qn+1, (2.6.54)

as long as R0 is large enough. Here, we have used ξ−n+1 and q−n+1 as in (2.6.46) and (2.6.48).
We conclude that

u(τn, x) ≥ φ(x+ ξ−n+1)− qn+1, for |x| ≥ R0 + 1. (2.6.55)

Summarizing, if (2.6.45) holds, we set Tn+1 = τn, define the new shifts ξ±n+1 as in (2.6.46)
and (2.6.48), which ensures that the ”shift gap” is decreased by a fixed factor, so that (2.6.47)
holds, and we can restart the argument at t = Tn+1, because

φ(x+ ξ−n+1)− qn+1 ≤ u(Tn+1, x) ≤ φ(x+ ξ+
n+1) + qn+1, for all x ∈ R. (2.6.56)

Of course, if at some time τn ∈ [Tn + T, Tn + 2T ] we have, instead of (2.6.45) that

sup
|x|≤R0+1

(
u(τn, x)− u(τn, x)

)
≤ δ(ξ+

n − ξ−n ), (2.6.57)

then we could repeat the above argument essentially verbatim, using the fact that now the
solution is very close to the sub-solution on a very large interval.
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Case 2: the solution and the super-solution are never too close. Next, let us
assume that for all t ∈ [Tn + T, Tn + 2T ], we have

sup
|x|≤R0+1

(
un(t, x)− u(t, x)

)
≥ δ(ξ+

n − ξ−n ). (2.6.58)

Because ξ+
n (t) is increasing, we have, for all |x| ≤ R0 + 1 and t ∈ [Tn + T, Tn + 2T ]:

un(t, x) ≤ φ(x+ ξ+
n (Tn + 2T )) + qne

−T ≤ φ(x+ ξ+
n (Tn + 2T ) + qne

−Tρ0), (2.6.59)

with

ρ0 =
(

inf
|x|≤R0+M+10

φ′(x)
)−1

. (2.6.60)

Here, M is the constant in the upper bound (2.6.39) for ξ±n . Note that by choosing T
sufficiently large we can make sure that the argument in φ in the right side of (2.6.59) is
within the range of the infimum in (2.6.60). The function

wn(t, x) = φ(x+ ξ+
n (Tn + 2T ) + qne

−Tρ0)− u(t, x).

that appears in the right side of (2.6.59) solves a linear parabolic equation

∂twn − ∂xxwn + an(t, x)wn = 0, (2.6.61)

with the coefficient an that is bounded in n, t and x:

an(t, x) = −f(φ(x+ ξ+
n (Tn + 2T ) + qne

−Tρ0))− f(u(t, x))

φ(x+ ξ+
n (Tn + 2T ) + qne−Tρ0)− u(t, x)

. (2.6.62)

It follows from assumption (2.6.58) and (2.6.59) that

sup
|x|≤R0+1

wn(t, x) ≥ δ(ξ+
n − ξ−n ), for all t ∈ [Tn + T, Tn + 2T ], (2.6.63)

but in order to improve the shift, we would like to have not the supremum but the infimum
in the above inequality. And here the Harnack inequality comes to the rescue: we will use
Theorem 2.5.13 for the intervals |x| ≤ R0 + 1 and |x| ≤ R0. For that, we need to make sure
that at least a fraction of the supremum in (2.6.63) is attained on [−R0, R0]: there exists k1

so that

sup
|x|≤R0

wn(t, x) ≥ k1δ(ξ
+
n − ξ−n ), for all Tn + T ≤ t ≤ Tn + 2T . (2.6.64)

However, if there is a time Tn + T ≤ sn ≤ Tn + 2T such that

sup
|x|≤R0

wn(sn, x) ≤ δ

2
(ξ+
n − ξ−n ), (2.6.65)

then we have

ū(sn, x)− u(sn, x) ≤ δ

2
(ξ+
n − ξ−n ) for all |x| ≤ R0. (2.6.66)
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This is the situation we faced in Case 1, and we can proceed as in that case. Thus, we may
assume that

sup
|x|≤R0

wn(t, x) ≥ δ

2
(ξ+
n − ξ−n ) for all Tn + T ≤ t ≤ Tn + 2T . (2.6.67)

In that case, we may apply the Harnack inequality of Theorem 2.5.13 to (2.6.61) on the
intervals |x| ≤ R0 + 1 and |x| ≤ R0: there exists a Harnack constant hR0 that is independent
of T , such that

wn(t, x) ≥ hR0δ(ξ
+
n − ξ−n ), for all t ∈ [Tn + T + 1, Tn + 2T ] and |x| ≤ R0. (2.6.68)

Exercise 2.6.7 Show that, as a consequence, we can find ρ1 > 0 that depends on R0 but not
on n such that for |x| ≤ R0 and Tn + T + 1 ≤ t ≤ Tn + 2T , we have

w̃n(t, x) = φ
(
x+ ξ+

n (Tn + 2T ) + ρ0e
−T qn − ρ1hR0δ(ξ

+
n − ξ−n )

)
− u(t, x) ≥ 0. (2.6.69)

Let us now worry about what w̃n does for |x| ≥ R0. In this range, the function w̃n solves
another linear equation of the form

∂tw̃n − ∂xxw̃n + ãn(t, x)w̃n = 0, (2.6.70)

with ãn(t, x) ≥ 1 that is an appropriate modification of the expression for an(t, x) in (2.6.62).
In addition, at the boundary |x| = R0, we have w̃n(t, x) ≥ 0, and at the time t = Tn + T , we
have an estimate of the form

w̃n(Tn + T, x) ≥ −K(ξ+
n − ξ−n ), |x| ≥ R0. (2.6.71)

Exercise 2.6.8 What did we use to get (2.6.71)?

Therefore, the maximum principle applied to (2.6.70) implies that

w̃n(Tn + 2T, x) ≥ −Ke−T (ξ+
n − ξ−n ), |x| ≥ R0. (2.6.72)

We now set Tn+1 = Tn + 2T . The previous argument shows that we have

u(Tn+1, x) ≤ φ
(
x+ ξ+

n (Tn+1) + ρ0e
−T qn − ρ1hR0δ(ξ

+
n − ξ−n )

)
+ qn+1, (2.6.73)

with
0 ≤ qn+1 ≤ Ke−T (ξ+

n − ξ−n ). (2.6.74)

In addition, we still have the lower bound:

u(Tn + 2T ) ≥ φ(x+ ξ−n (Tn+1))− e−T qn. (2.6.75)

It only remains to define ξ±n+1 and qn+1 properly, to convert (2.6.73) and (2.6.75) into the
form required to restart the iteration process. We take

qn+1 = max(e−T qn, Ke
−T (ξ+

n − ξ−n )), ξ−n+1 = ξ−n (Tn+1), (2.6.76)

and

ξ+
n+1 = ξ+

n (Tn+1) + ρ0e
−T qn − hR0ρ1δ(ξ

+
n − ξ−n ). (2.6.77)
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It is easy to see that assumption (2.6.40) holds for qn+1 provided we take T sufficiently large,
so that

e−T � cq. (2.6.78)

The main point to verify is that the contraction in (2.6.37) does happen with the above choice.
We recall (2.6.36):

ξ+
n (Tn+1) = ξ+

n +
qn
k0

(1 +Mf )(1− e−2T ), ξ−n (Tn+1) = ξ−n −
qn
k0

(1 +Mf )(1− e−2T ). (2.6.79)

Hence, in order to ensure that

ξ+
n+1 − ξ−n+1 ≤ (1− hR0ρ1δ

2
)(ξ+

n − ξ−n ), (2.6.80)

it suffices to make sure that the term hR0ρ1δ(ξ
+
n − ξ−n ) dominates all the other multiples

of δ(ξ+
n −ξ−n ) in the expression for the difference ξ+

n+1−ξ−n+1 that come with the opposite sign.
However, all such terms are multiples of qn, thus it suffices to make sure that the constant cq
is small, which, in turn, can be accomplished by taking T sufficiently large. This completes
the proof. �

Spreading in an unbalanced Allen-Cahn equation

Let us now discuss, informally, what one would expect, from the physical considerations, to
happen to the solution of the initial value problem if the balance condition (2.6.5) fails, that
is, ∫ 1

−1

f(u)du 6= 0. (2.6.81)

To be concrete, let us consider the nonlinearity f(u) of the form

f(u) = (u+ 1)(u+ a)(1− u), (2.6.82)

with a ∈ (0, 1). so that u = ±1 are still the two stable solutions of the ODE

u̇ = f(u),

but instead of (2.6.5) we have ∫ 1

−1

f(u)du > 0.

As an indication of what happens we give the reader the following exercises. They are by
no means short but they can all be done with the tools of this section, and we strongly
recommend them to a reader interested in understanding this material well.

Exercise 2.6.9 To start, show that for f(u) given by (2.6.82), we can find a special solu-
tion u(t, x) of the Allen-Cahn equation (2.6.1):

ut = uxx + f(u), (2.6.83)
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of the form
u(t, x) = ψ(x+ ct), (2.6.84)

with c > 0 and a function ψ(x) that satisfies

cψ′ = ψ′′ + f(ψ), (2.6.85)

together with the boundary condition

ψ(x)→ ±1, as x→ ±∞. (2.6.86)

Solutions of the form (2.6.84) are known as traveling waves. Show that such c is unique,
and ψ is unique up to a translation: if ψ1(x) is another solution of (2.6.85)-(2.6.86) with c
replaced c1, then c = c1 and there exists x1 ∈ R such that ψ1(x) = ψ(x+ x1).

Exercise 2.6.10 Try to modify the proof of Lemma 2.6.4 to show that if u(t, x) is the solution
of the Allen-Cahn equation (2.6.83) with an initial condition u0(x) that satisfies (2.6.7):

u0(x)→ ±1, as x→ ±∞, (2.6.87)

then we have
u(t, x)→ 1 as t→ +∞, for each x ∈ R fixed. (2.6.88)

It should be helpful to use the traveling wave solution to construct a sub-solution that will
force (2.6.88). Thus, in the ”unbalanced” case, the ”more stable” of the two states u = −1
and u = +1 wins in the long time limit. Show that the convergence in (2.6.88) is not uniform
in x ∈ R.

Exercise 2.6.11 Let u(t, x) be a solution of (2.6.83) with an initial condition u0(x) that
satisfies (2.6.87). Show that for any c′ < c and x ∈ R fixed, we have

lim
t→+∞

u(t, x− c′t) = 1, (2.6.89)

and for any c′ > c and x ∈ R fixed, we have

lim
t→+∞

u(t, x− c′t) = −1. (2.6.90)

Exercise 2.6.12 Let u(t, x) be a solution of (2.6.83) with an initial condition u0(x) that
satisfies (2.6.87). Show that there exists x0 ∈ R (which depends on u0) so that for all x ∈ R
fixed we have

lim
t→+∞

u(t, x− ct) = ψ(x+ x0). (2.6.91)

2.7 The principal eigenvalue for elliptic operators and

the Krein-Rutman theorem

One consequence of the strong maximum principle is the existence of a positive eigenfunc-
tion for an elliptic operator in a bounded domain with the Dirichlet or Neumann boundary
conditions. Such eigenfunction necessarily corresponds to the eigenvalue with the smallest
real part. A slightly different way to put it is that the strong maximum principle makes the
Krein-Rutman Theorem applicable, which in turn, implies the existence of such eigenfunc-
tion. In this section, we will prove this theorem in the context of parabolic operators with
time periodic coefficients. We then deduce, in an easy way, some standard properties of the
principal elliptic eigenvalue.
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2.7.1 The periodic principal eigenvalue

The maximum principle for elliptic and parabolic problems has a beautiful connection to
the eigenvalue problems, which also allows to extend it to operators with a zero-order term.
We will first consider the periodic eigenvalue problems, that is, elliptic equations where the
coefficients are 1-periodic in every direction in Rn, and the sought for solutions are all 1-
periodic in Rn. It would, of course, be easy to deduce, by dilating the coordinates, the same
results for coefficients with general periods T1, . . . , Tn in the directions e1, . . . , en. We will
consider operators of the form

Lu(x) = −∆u+ bj(x)
∂u

∂xj
+ c(x)u, (2.7.1)

with bounded, smooth and 1-periodic coefficients bj(x) and c(x). We could also consider more
general operators of the form

Lu(x) = −aij(x)
∂2u

∂xi∂xj
+ bj(x)

∂u

∂xj
+ c(x)u,

with uniformly elliptic (and 1-periodic) , and regular coefficients aij,with the help of the
elliptic regularity theory. This will not, however, be needed for our purposes. In order to avoid
repeating that the coefficients and the solutions are 1-periodic, we will just say that x ∈ Tn,
the n-dimensional unit torus.

The key spectral property of the operator L comes from the comparison principle. To this
end, let us recall the Krein-Rutman theorem. It says that if M is a compact operator in a
strongly ordered Banach space X (that is, there is a solid cone K which serves for defining
an order relation: u ≤ v iff v − u ∈ K), that preserves K: Mu ∈ K for all u ∈ K, and maps
the boundary of K into its interior, then M has an eigenfunction φ that lies in this cone:

Mφ = λφ. (2.7.2)

Moreover, the corresponding eigenvalue λ has the largest real part of all eigenvalues of the
operator M . The classical reference [50] has a nice and clear presentation of this theorem
but one can find it in other textbooks, as well.

How can we apply this theorem to the elliptic operators? The operator L given by (2.7.1)
is not compact, nor does it preserve any interesting cone. However, let us assume momentarily
that c(x) is continuous and c(x) > 0 for all x ∈ Tn. Then the problem

Lu = f, x ∈ Tn (2.7.3)

has a unique solution, and, in addition, if f(x) ≥ 0 and f 6≡ 0, then u(x) > 0 for all x ∈ Tn.
Indeed, let v(t, x) be the solution of the initial value problem

vt + Lv = 0, t > 0, x ∈ Tn, (2.7.4)

with v(0, x) = f(x). The comparison principle implies a uniform upper bound

|v(t, x)| ≤ e−c̄t‖f‖L∞ , (2.7.5)
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with
c̄ = inf

x∈Tn
c(x) > 0. (2.7.6)

This allows us to define

u(x) =

∫ ∞
0

v(t, x)x. (2.7.7)

Exercise 2.7.1 Verify that if c(x) > 0 for all x ∈ Tn, then u(x) given by (2.7.7) is a solution
to (2.7.3). Use the maximum principle to show that (2.7.3) has a unique solution.

This means that we may define the inverse operator M = L−1. This operator preserves
the cone of the positive functions, and maps its boundary (non-negative functions that vanish
somewhere in Ω) into its interior – this is a consequence of the strong maximum principle
that holds if c(x) > 0. In addition, M is a compact operator from C(Tn) to itself. Hence, the
inverse operator satisfies the assumptions of the Krein-Rutman theorem.

Exercise 2.7.2 Compactness of the inverse M follows from the elliptic regularity estimates.
One way to convince yourself of this fact is to consult Evans [60]. Another way is to go back
to Theorem 2.4.12, use it to obtain the Hölder regularity estimates on v(t, x), and translate
them in terms of u(x) to show that, if f is continuous, then ∇u is α-Hölder continuous, for
all α ∈ (0, 1). The Arzela-Ascoli theorem implies then compactness of M . Hint: be careful
about the regularity of v(t, x) as t ↓ 0.

Thus, there exists a positive function f and µ ∈ R so that the function u = µf satis-
fies (2.7.3). Positivity of f implies that the solution of (2.7.3) is also positive, hence µ > 0.
As µ is the eigenvalue of L−1 with the largest real part, λ = µ−1 is the eigenvalue of L with
the smallest real part. In particular, it follows that all eigenvalues λk of the operator L have
a positive real part.

If the assumption c(x) ≥ 0 does not hold, we may take K > ‖c‖L∞ , and consider the
operator

L′u = Lu+Ku.

The zero-order coefficient of L′ is

c′(x) = c(x) +K ≥ 0.

Hence, we may apply the previous argument to the operator L′ and conclude that L′ has
an eigenvalue µ1 that corresponds to a positive eigenfunction, and has the smallest real part
among all eigenvalues of L′. The same is true for the operator L, with the eigenvalue

λ1 = µ1 −K.

We say that λ1 is the principal periodic eigenvalue of the operator L.

2.7.2 The Krein-Rutman theorem: the periodic parabolic case

As promised, we will prove the Krein-Rutman Theorem in the context of the periodic eigen-
value problems. Our starting point will be a slightly more general problem with time-periodic
coefficients:

ut −∆u+ bj(t, x)
∂u

∂xj
+ c(t, x)u = 0, x ∈ Tn. (2.7.8)
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Here, the coefficients bj(t, x) and c(t, x) are smooth, 1-periodic in x and T -periodic in t.
Let u(t, x) be the solution of the Cauchy problem for (2.7.8), with a 1-periodic, continuous
initial condition

u(t, x) = u0(x). (2.7.9)

We define the ”time T” operator ST as

[STu0](x) = u(T, x). (2.7.10)

Exercise 2.7.3 Use the results of Section 2.4 to show that ST is compact operator on C(Tn)
that preserves the cone of positive functions.

We are going to prove the Krein-Rutman Theorem for ST first.

Theorem 2.7.4 The operator ST has an eigenvalue µ̄ > 0 that corresponds to a positive
eigenfunction φ1(x) > 0. The eigenvalue µ̄ is simple: the only solutions of

(ST − µ̄)u = 0, x ∈ Tn

are multiples of φ1. If µ is another (possibly non-real) eigenvalue of ST , then |µ| < µ̄.

Proof. Let us pick any positive function φ0 ∈ C(Tn), set ψ0 = φ0/‖φ0‖L∞ , and consider the
iterative sequence (φn, ψn):

φn+1 = STψn, ψn+1 =
φn+1

‖φn+1‖L∞
.

Note that, because φ0 is positive, both φn and ψn are positive for all n, by the strong maximum
principle. For every n, let µn be the smallest µ such that

φn+1(x) ≤ µψn(x), for all x ∈ Tn. (2.7.11)

Note that (2.7.11) holds for large µ, because each of the φn is positive, hence the smallest
such µ exists. It is also clear that µn ≥ 0. We claim that the sequence µn is non-increasing.
To see that, we apply the operator ST to both sides of the inequality (2.7.11) with µ = µn,
written as

STψn(x) ≤ µnψn(x), for all x ∈ Tn. (2.7.12)

and use the fact that ST preserves positivity, to get

(ST ◦ ST )ψn(x) ≤ µnSTψn(x), for all x ∈ Tn, (2.7.13)

which is
STφn+1(x) ≤ µnφn+1(x), for all x ∈ Tn. (2.7.14)

Dividing both sides by ‖φn+1‖L∞ . we see that

STψn+1(x) ≤ µnψn+1(x), for all x ∈ Tn, (2.7.15)

hence
φn+2(x) ≤ µnψn+1(x), for all x ∈ Tn. (2.7.16)

It follows that µn+1 ≤ µn.
Thus, µn converges to a limit µ̄.
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Exercise 2.7.5 Show that, up to an extraction of a subsequence, the sequence ψn converges
to a limit ψ∞, with ‖ψ∞‖L∞ = 1.

The corresponding subsequence φnk converges to φ∞ = STψ∞, by the continuity of ST . And
we have, by (2.7.11):

STψ∞ ≤ µ̄ψ∞. (2.7.17)

If we have the equality in (2.7.17):

STψ∞(x) = µ̄ψ∞(x) for all x ∈ Tn, (2.7.18)

then ψ∞ is a positive eigenfunction of ST corresponding to the eigenvalue µ̄. If, on the other
hand, we have

STψ∞(x) < µ̄ψ∞(x), on an open set U ⊂ Tn, (2.7.19)

they we may use the fact that ST maps the boundary of the cone of non-negative functions
into its interior. In other words, we use the strong maximum principle here. Applying ST to
both sides of (2.7.17) gives then:

STφ∞ < µ̄φ∞ for all x ∈ Tn. (2.7.20)

This contradicts, for large n, the minimality of µn. Thus, (2.7.19) is impossible, and µ̄ is the
sought for eigenvalue. We set, from now on, φ1 = ψ∞:

STφ1 = µ̄φ1, φ1(x) > 0 for all x ∈ Tn. (2.7.21)

Exercise 2.7.6 So far, we have shown that µ̄ ≥ 0. Why do we know that, actually, µ̄ > 0?

Let φ be an eigenfunction of ST that is not a multiple of φ1, corresponding to an eigen-
value µ:

STφ = µφ.

Let us first assume that µ is real, and so is the eigenfunction φ. If µ ≥ 0, after multiplying φ
by an appropriate factor, we may assume without loss of generality that φ1(x) ≥ φ(x) for
all x ∈ Tn, φ1 6≡ φ, and there exists x0 ∈ Tn such that φ1(x0) = φ(x0). The strong comparison
principle implies that then

STφ1(x) > STφ(x) for all x ∈ Tn.

It follows, in particular, that
µ̄φ1(x0) > µφ(x0),

hence µ̄ > µ ≥ 0, as φ1(x0) = φ(x0) > 0. This argument also shows that µ̄ is a simple
eigenvalue.

If µ < 0, then we can choose φ (after multiplying it by a, possibly negative, constant) so
that, first,

φ1(x) ≥ φ(x), φ(x) ≥ −φ1(x), for all x ∈ Tn, (2.7.22)

and there exists x0 ∈ Tn such that

φ(x0) = φ1(x0).
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Applying ST to the second inequality in (2.7.22) gives, in particular,

µφ(x0) > −µ̄φ1(x0), (2.7.23)

thus µ̄ > −µ. In both cases, we see that |µ| < µ̄.

Exercise 2.7.7 Use a similar consideration for the case when µ is complex. In that case, it
helps to write the corresponding eigenfunction as

φ = u+ iv,

and consider the action of ST on the span of u and v, using the same comparison idea. Show
that |µ| < µ̄. If in doubt, consult [50].

This completes the proof of Theorem 2.7.4. �

2.7.3 Back to the principal periodic elliptic eigenvalue

Consider now again the operator L given by (2.7.1):

Lu(x) = −∆u+ bj(x)
∂u

∂xj
+ c(x)u, (2.7.24)

with bounded, smooth and 1-periodic coefficients bj(x) and c(x). One consequence of Theo-
rem 2.7.4 is the analogous result for the principal periodic eigenvalue for L. We will also refer
to the following as the Krein-Rutman theorem.

Theorem 2.7.8 The operator L has a unique eigenvalue λ1 associated to a positive func-
tion φ1. Moreover, each eigenvalue of L has a real part strictly larger than λ1.

Proof. The operator L falls, of course, in the realm of Theorem 2.7.4, since its time-
independent coefficients are T -periodic for all T > 0. We are also going to use the formula

Lφ = − lim
t↓0

Stφ− φ
t

, (2.7.25)

for smooth φ(x), with the limit in the sense of uniform convergence. This is nothing but an
expression of the fact that the function u(t, x) = [Stφ](x) is the solution of

ut + Lu = 0, (2.7.26)

with the initial condition u(0, x) = φ(x), and if φ is smooth, then (2.7.26) holds also at t = 0.
Given n ∈ N, let µ̄n be the principal eigenvalue of the operator S1/n, with the principal

eigenfunction φn > 0:
S1/nφn = µ̄nφn,

normalized so that ‖φn‖∞ = 1.

Exercise 2.7.9 Show that
lim
n→∞

µ̄n = 1

directly, without using (2.7.27) below.
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As (S1/n)n = S1 for all n, we conclude that φn is a positive eigenfunction of S1 with the
eigenvalue (µ̄n)n. By the uniqueness of the positive eigenfunction, we have

µ̄n = (µ̄1)1/n, φn = φ1. (2.7.27)

Note that, by the parabolic regularity, φ1 is infinitely smooth, simply because it is a multiple
of S1φ1, which is infinitely smooth. Hence, (2.7.25) applies to φ1, and

Lφ1 = − lim
n→+∞

n(S1/n − I)φ1 = − lim
n→+∞

n(µ̄
1/n
1 − 1)φ1 = −(log µ̄1)φ1.

We have thus proved the existence of an eigenvalue λ1 = − log µ̄1 of L that corresponds to a
positive eigenfunction. It is easy to see that if

Lφ = λφ,

then
S1φ = e−λφ.

It follows that L can have only one eigenvalue corresponding to a positive eigenfunction. As
we know that all eigenvalues µ of S1 satisfy |µ| < µ̄1, we conclude that λ1 is the eigenvalue
of L with the smallest real part. �

If L is symmetric – that is, it has the form

Lu = − ∂

∂xi

(
aij(x)

∂u

∂xj

)
+ c(x)u, (2.7.28)

with aij = aji, then the first eigenvalue is given by the minimization over H1(Tn) of the
Rayleigh quotient

λ1 = inf
u∈H1(Tn)

∫
Tn

(aij(x)(∂iu)(∂ju) + c(x)u2(x))dx∫
Tn
u2(x)dx

. (2.7.29)

The existence and uniqueness (up to a factor) of the minimizer is a classical exercise that
we do not reproduce here. As for the positivity of the minimizer, we notice that, if φ is a
minimizer of the Rayleigh quotient, then |φ1| is also a minimizer, thus the unique minimizer
is a positive function.

The Dirichlet principal eigenvalue, related issues

We have so far talked about the principal eigenvalue for spatially periodic elliptic problems.
This discussion applies equally well to problems in bounded domains, with the Dirichlet or
Neumann boundary conditions. In the rest of this book, we will often encounter the Dirichlet
problems, so let us explain this situation. Let Ω be a smooth bounded open subset of Rn,
and consider our favorite elliptic operator

Lu = −∆u+ bj(x)
∂u

∂xj
+ c(x)u, (2.7.30)
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with smooth coefficients bj(x) and c(x). One could easily look at the more general problem

Lu = −aij(x)
∂2u

∂xi∂xj
+ bj(x)

∂u

∂xj
+ c(x)u, (2.7.31)

with essentially identical results, as long as the matrix aij(x) is uniformly elliptic – we will
avoid this just to keep the notation simpler. We are interested in the eigenvalue problem

Lu = λu in Ω, (2.7.32)

u = 0 on ∂Ω,

and, in particular, in the existence of a positive eigenfunction φ > 0 in Ω. The strategy will
be as in the periodic case, to look at the initial value problem

ut −∆u+ bj(x)
∂u

∂xj
+ c(x)u = 0, t > 0, x ∈ Ω,

u = 0, t > 0, x ∈ ∂Ω, (2.7.33)

u(0, x) = u0(x).

The coefficients bj and c are smooth in (t, x) and T -periodic in t. Again, we set

(STu0)(x) = u(T, x).

The main difference with the periodic case is that, here, the cone of continuous functions which
are positive in Ω and vanish on ∂Ω has an empty interior, so we can not repeat verbatim the
proof of the Krein-Rutman theorem for the operators on Tn.

Exercise 2.7.10 Revisit the proof of the Krein-Rutman theorem in that case and identify
the place where the proof would fail for the Dirichlet boundary conditions.

What will save the day is the strong maximum principle and the Hopf Lemma. We are
not going to fully repeat the proof of Theorems 2.7.4 and 2.7.8, but we are going to prove a
key proposition that an interested reader can use to prove the Krein-Rutman theorem for the
Dirichlet problem.

Proposition 2.7.11 Assume u0 ∈ C1(Ω) – that is, u0 has derivatives that are continuous up
to ∂Ω, and that u0 > 0 in Ω, and both u0 = 0 and ∂νu0 < 0 on ∂Ω. Then there is µ1 > 0
defined by the formula

µ1 = inf{µ > 0 : STu0 ≤ µu0}. (2.7.34)

Moreover, if µ2 > 0 is defined as

µ2 = inf{µ > 0 : (ST ◦ ST )u0 ≤ µSTu0}, (2.7.35)

then either µ1 > µ2, or µ1 = µ2, and in the latter case (ST ◦ ST )u0 ≡ µ2STu0.

Proof. For the first claim, the existence of the infimum in (2.7.34), we simply note that

µu0 ≥ STu0,
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as soon as µ > 0 is large enough, because ∂νu0 < 0 on ∂Ω, u0 > 0 in Ω, and STu0 is a smooth
function up to the boundary. As for the second item, let us first observe that

u(t+ T, x) ≤ µ1u(t, x), (2.7.36)

for any t > 0, by the maximum principle. Let us assume that

u(2T, x) 6≡ µ1u(T, x). (2.7.37)

Then the maximum principle implies that

u(2T, x) < µ1u(T, x) for all x ∈ Ω. (2.7.38)

As
max
x∈Ω̄

[u(2T, x)− µ1u(T, x)] = 0,

the parabolic Hopf lemma, together with (2.7.36) and (2.7.37), implies the existence of δ > 0
such that

∂ν(u(2T, x)− µ1u(T, x)) ≥ δ > 0, for all x ∈ ∂Ω. (2.7.39)

It follows that for ε > 0 sufficiently small, we have

u(2T, x)− µ1u(T, x) ≤ −δ
2
d(x, ∂Ω) for x ∈ Ω such that d(x, ∂Ω) < ε.

On the other hand, once again, the strong maximum principle precludes a touching point
between u(2T, x) and µ1u(T, x) inside

Ωε = {x ∈ Ω : d(x, ∂Ω) ≥ ε}.

Therefore, there exists δ1 such that

u(2T, x)− µ1u(T, x) ≤ −δ1, for all x ∈ Ωε.

We deduce that there is a – possibly very small – constant c > 0 such that

u(2T, x)− µ1u(T, x) ≤ −cd(x, ∂Ω) in Ω.

However, u(T, x) is controlled from above by Cd(x, ∂Ω), for a possibly large constant C > 0.
All in all, we have

u(2T, x) ≤ (µ1 −
c

C
)u(T, x),

hence (2.7.37) implies that µ2 < µ1, which proves the second claim of the proposition. �

Exercise 2.7.12 Deduce from Proposition 2.7.11 the versions of Theorems 2.7.4 and 2.7.8
for operators ST and L, this time with the Dirichlet boundary conditions.

Thus, the eigenvalue problem (2.7.32), has a principal eigenvalue that enjoys all the prop-
erties we have proved in the periodic one: it has the least real part among all eigenvalues,
and is the only eigenvalue associated to a positive eigenfunction.
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Exercise 2.7.13 Assume that L is symmetric; it has the form

Lu = − ∂

∂xj

(
aij(x)

∂u

∂xi

)
+ c(x)u (2.7.40)

Then, the principal eigenvalue is given by the minimization of the Rayleigh quotient over the
Sobolev space H1

0 (Ω):

λ1 = inf
u∈H1

0 (Ω), ‖u‖L2=1

∫
Ω

(
aij(x)

∂u

∂xi

∂u

∂xj
+ c(x)u2(x)

)
dx. (2.7.41)

Exercise 2.7.14 Adapt the preceding discussion to prove the existence of a principal eigen-
value to the Nemann eigenvalue problem

Lu = λu, x ∈ Ω, (2.7.42)

∂νu = 0, x ∈ ∂Ω.

2.7.4 The principal eigenvalue and the comparison principle

Let us now connect the principal eigenvalue and the comparison principle. Since we are at
the moment dealing with the Dirichet problems, let us remain in this context. There would
be nothing significantly different about the periodic problems.

The principal eigenfunction φ1 > 0, solution of

Lφ1 = λ1φ1, in Ω, (2.7.43)

φ1 = 0 on ∂Ω,

(2.7.44)

with

Lu = −∆u+ bj(x)
∂u

∂xj
+ c(x)u, (2.7.45)

in particular, provides a special solution

ψ(t, x) = e−λ1tφ1(x) (2.7.46)

for the linear parabolic problem

ψt + Lψ = 0, t > 0, x ∈ Ω (2.7.47)

ψ = 0 on ∂Ω.

Consider then the Cauchy problem

vt + Lv = 0, t > 0, x ∈ Ω (2.7.48)

v = 0 on ∂Ω,

v(0, x) = g(x), x ∈ Ω,
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with a smooth bounded function g(x) that vanishes at the boundary ∂Ω. We can find a
constant M > 0 so that

−Mφ1(x) ≤ g(x) ≤Mφ1(x), for all x ∈ Ω.

The comparison principle then implies that for all t > 0 we have a bound

−Mφ1(x)e−λ1t ≤ v(t, x) ≤Mφ1(x)e−λ1t, for all x ∈ Ω, (2.7.49)

which is very useful, especially if λ1 > 0. The assumption that the initial condition g vanishes
at the boundary ∂Ω is not necessary but removes the technical step of having to show that
even if g(x) does not vanish on the boundary, then for any positive time t0 > 0 we can find a
constant C0 so that |v(t0, x)| ≤ C0φ1(x). This leads to the bound (2.7.49) for all t > t0.

Let us now apply the above considerations to the solutions of the elliptic problem

Lu = g(x), in Ω, (2.7.50)

u = 0 on ∂Ω,

with a non-negative function g(x). When can we conclude that the solution u(x) is also
non-negative? The solution of (2.7.50) can be formally written as

u(x) =

∫ ∞
0

v(t, x)dt. (2.7.51)

Here, the function v(t, x) satisfies the Cauchy problem (2.7.48). If the principal eigenvalue λ1

of the operator L is positive, then the integral (2.7.51) converges for all x ∈ Ω because of the
estimates (2.7.49), and the solution of (2.7.50) is, indeed, given by (2.7.51). On the other hand,
if g(x) ≥ 0 and g(x) 6≡ 0, then the parabolic comparison principle implies that v(t, x) > 0 for
all t > 0 and all x ∈ Ω. It follows that u(x) > 0 in Ω.

Therefore, we have proved the following theorem that succinctly relates the notions of the
principal eigenvalue and the comparison principle.

Theorem 2.7.15 If the principal eigenvalue of the operator L is positive then solutions of
the elliptic equation (2.7.50) satisfy the comparison principle: u(x) > 0 in Ω if g(x) ≥ 0 in Ω
and g(x) 6≡ 0.

This theorem allows to look at the maximum principle in narrow domains introduced in
the previous chapter from a slightly different point of view: the narrowness of the domain
implies that the principal eigenvalue of L is positive no matter what the sign of the free
coefficient c(x) is. This is because the “size” of the second order term in L increases as
the domain narrows, while the “size” of the zero-order term does not change. Therefore, in
a sufficiently narrow domain the principal eigenvalue of L will be positive (recall that the
required narrowness does depend on the size of c(x)). A similar philosophy applies to the
maximum principle for the domains of a small volume.

We conclude this topic with another characterization of the principal eigenvalue of an
elliptic operator in a bounded domain, which we leave as an (important) exercise for the
reader. Let us define

µ1(Ω) = sup{λ : ∃φ ∈ C2(Ω) ∩ C1(Ω̄), φ > 0 and (L− λ)φ ≥ 0 in Ω}, (2.7.52)
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and

µ′1(Ω) = inf{λ : ∃φ ∈ C2(Ω) ∩ C1(Ω̄), φ = 0 on ∂Ω, φ > 0 in Ω, and (L− λ)φ ≤ 0 in Ω}.
(2.7.53)

Exercise 2.7.16 Let L be an elliptic operator in a smooth bounded domain Ω, and let λ1 be
the principal eigenvalue of the operator L, and µ1(Ω) and µ′1(Ω) be as above. Show that

λ1 = µ1(Ω) = µ′1(Ω). (2.7.54)

As a hint, say, for the equality λ1 = µ1(Ω), we suggest, assuming existence of some λ > λ1

and φ > 0 such that
(L− λ)φ ≥ 0,

to consider the Cauchy problem

ut + (L− λ)u = 0, in Ω

with the initial data u(0, x) = φ(x), and with the Dirichlet boundary condition u(t, x) = 0
for t > 0 and x ∈ ∂Ω. One should prove two things: first, that ut(t, x) ≤ 0 for all t > 0, and,
second, that there exists some constant C > 0 so that

u(t, x) ≥ Cφ1(x)e(λ−λ1)t,

where φ1 is the principal Dirichlet eigenfunction of L. This will lead to a contradiction. The
second equality in (2.7.54) is proved in a similar way.

2.8 The long time behavior for viscous Hamilton-Jacobi

equations

A (once again, to our taste, rather striking) application of the principal elliptic eigenvalue is
a study of the long time behavior of the solutions to the viscous Hamilton-Jacobi equations,
that we now present. This problem falls in the same class as in Section 2.6, where we proved,
essentially with the sole aid of the strong maximum principle and the Harnack inequality,
the convergence of the solutions of the Cauchy problem for the Allen-Cahn equations to a
translate of a stationary solution. The main difference is that now we will have to fight a
little to show the existence of a steady state, while the long time convergence will be relatively
effortless. We are interested in the large time behaviour of the solutions u(t, x) to the Cauchy
problem for

ut −∆u = H(x,∇u), t > 0, x ∈ Rn. (2.8.1)

This is an equation of the form (2.4.45) that we have considered in Section 2.4.3, and we make
the same assumptions on the nonlinearity, that we now denote by H, the standard notation
in the theory of the Hamilton-Jacobi equations, as in that section. We assume that H is
smooth and 1-periodic in x. We also make the Lipschitz assumption on the function H(x, p):
there exists C > 0 so that

|H(x, p1)−H(x, p2)| ≤ C|p1 − p2|, for all x, p1, p2 ∈ Rn. (2.8.2)
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In addition, we assume that H is growing linearly in p at infinity: there exist α > 0 and β > 0
so that

0 < α ≤ lim inf
|p|→+∞

H(x, p)

|p|
≤ lim sup
|p|→+∞

H(x, p)

|p|
≤ β < +∞, uniformly in x ∈ Tn. (2.8.3)

One consequence of (2.8.3) is that there exist C1,2 > 0 so that

C1(1 + |p|) ≤ H(x, p) ≤ C2(1 + |p|), for all x ∈ Tn and p ∈ Rn. (2.8.4)

As we have seen in Section 2.4.3, these assumptions ensure the existence of a unique smooth 1-
periodic solution u(t, x) to (2.8.1) supplemented by a continuous, 1-periodic initial condi-
tion u0(x). In order to discuss its long time behavior, we need to introduce a special class of
solutions of (2.8.1).

Theorem 2.8.1 Under the above assumptions, there exists a unique m ∈ R so that (2.8.1)
has solutions (that we will call the wave solutions) of the form

w(t, x) = mt+ φ(x), (2.8.5)

with a 1-periodic function φ(x). The profile φ(x) is unique up to an additive constant:
if w1(t, x) and w2(t, x) are two such solutions then there exists c ∈ R so that φ1(x)−φ2(x) ≡ c
for all x ∈ Tn.

The large time behaviour of u(t, x) is summarized in the next theorem.

Theorem 2.8.2 Let u(t, x) be the solution of the Cauchy problem for (2.8.1) with a contin-
uous 1-periodic initial condition u0. There is a wave solution w(t, x) of the form (2.8.5), a
constant ω > 0 that does not depend on u0 and C0 > 0 that depends on u0 such that

|u(t, x)− w(t, x)| ≤ C0e
−ωt, (2.8.6)

for all t ≥ 0 and x ∈ Tn.

We will first prove the existence part of Theorem 2.8.1, and that will occupy most of the
rest of this section, while its uniqueness part and the convergence claim of Theorem 2.8.2 will
be proved together rather quickly in the end. Plugging the ansatz (2.8.5) into (2.8.1) and
integrating over Tn gives

m =

∫
Tn
H(x,∇φ)dx. (2.8.7)

The equation for φ can, therefore, be written as

−∆φ = H(x,∇φ)−
∫
Tn
H(x,∇φ)dx, (2.8.8)

and this will be the starting point of our analysis.
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2.8.1 Existence of a wave solution

Outline of the proof

Let us first outline how we will prove the existence of a wave solution. We are going to use
the inverse function theorem, and, as this strategy is typical for the existence proofs for many
nonlinear PDEs, it is worth sketching out the general plan, even if without stating all the
details. Instead of just looking at (2.8.8), we consider a family of equations

−∆φσ = Hσ(x,∇φσ)−
∫
Tn
Hσ(x,∇φσ)dx, (2.8.9)

with the Hamiltonians

Hσ(x, p) = (1− σ)H0(x, p) + σH(x, p), (2.8.10)

parametrized by σ ∈ [0, 1]. We start with H0(x, p) for which we know that (2.8.8) has a
solution. In our case, we can take

H0(x, p) =
√

1 + |p|2 − 1,

so that φ0(x) ≡ 0 is a solution to (2.8.8). We end with

H1(x, p) = H(x, p). (2.8.11)

The goal is show that (2.8.9) has a solution for all σ ∈ [0, 1] and not just for σ = 0 by showing
that the set Σ of σ for which (2.8.9) has a solution is both open and closed in [0, 1].

Showing that Σ is closed requires a priori bounds on the solution φσ of (2.8.9) that would
both be uniform in σ and ensure the compactness of the sequence φσn of solutions of (2.8.9)
as σn → σ in a suitable function space. The estimates should be strong enough to ensure
that the limit φσ is a solution to (2.8.9).

In order to show that Σ is open, one relies on the inverse function theorem. Let us assume
that (2.8.9) has a solution φσ(x) for some σ ∈ [0, 1]. In order to show that (2.8.9) has a
solution for σ + ε, with a sufficiently small ε, we are led to consider the linearized problem

−∆h− ∂Hσ(x,∇φσ)

∂pj

∂h

∂xj
+

∫
Tn

∂Hσ(z,∇φσ)

∂pj

∂h(z)

∂zj
dz = f, (2.8.12)

with

f(x) = H(x,∇φσ)−H0(x,∇φσ)−
∫
Tn
H(z,∇φ(z))dz +

∫
Tn
H0(z,∇φ(z))dz. (2.8.13)

The inverse function theorem guarantees existence of the solution φσ+ε, provided that the
linearized operator in the left side of (2.8.12) is invertible, with the norm of the inverse a
priori bounded in σ. This will show that the set Σ of σ ∈ [0, 1] for which the solution
to (2.8.9) exists is open.

The bounds on the operator that maps f → h in (2.8.12) also require the a priori bounds
on φσ. Thus, both proving that Σ is open and that it is closed require us to prove the a
priori uniform bounds on φ. Therefore, our first step will be to assume that a solution φσ(x)
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to (2.8.9) exists and obtain a priori bounds on φσ. Note that if φσ is a solution to (2.8.9),
then φσ+k is also a solution for any k ∈ R. Thus, it is more natural to obtain a priori bounds
on ∇φσ than on φ itself, and then normalize the solution so that φσ(0) = 0 to ensure that φσ
is bounded.

It is important to observe that the Hamiltonians Hσ(x, p) obey the same Lipschitz bound,
and estimate (2.8.4) holds with the same C1,2 > 0 for all σ ∈ [0, 1], The key bound to
prove will be to show that there exists a constant K > 0 that depends only on the Lipschitz
constant of H and the two constants in the linear growth estimate (2.8.4) such that any
solution to (2.8.8) satisfies

‖∇φ‖L∞(Tn) ≤ K. (2.8.14)

We stress that this bound will be obtained not just for one Hamiltonian but for all Hamil-
tonians with the same Lipschitz constant that satisfy (2.8.4) with the same C1,2 > 0. The
estimate (2.8.14) will be sufficient to apply the argument we have outlined above.

An a priori L1-bound on the gradient

For simplicity, we will drop the subscript σ in the proof whenever possible. Before establish-
ing (2.8.14), let us first prove that there exists a constant C > 0 such that any solution φ(x)
of (2.8.8) satisfies ∫

Tn
H(x,∇φ)dx ≤ C. (2.8.15)

Because of the lower bound in (2.8.3), this is equivalent to an a priori L1 bound on |∇φ|:∫
Tn
|∇φ(x)|dx ≤ C, (2.8.16)

with a possibly different C > 0. To prove (2.8.15), we will rely on the following ingredient,
which comes from the Krein-Rutman theorem – and this is one of the reasons why it is quite
suitable to put this example here. For an Rn-valued function v(x) we denote the divergence
of v(x) by

∇ · v =
n∑
j=1

∂vj
∂xj

.

Lemma 2.8.3 Let b(x) be a smooth vector field over Tn. The linear equation

−∆e+∇ · (eb) = 0, x ∈ Tn, (2.8.17)

has a unique solution e∗1(x) normalized so that

‖e∗1‖L∞ = 1, (2.8.18)

and such that e∗1 > 0 on Tn. Moreover, for all α ∈ (0, 1), the function e∗1 is α-Hölder contin-
uous, with the α-Hölder norm bounded by a universal constant depending only on ‖b‖L∞(Tn).

A key point here is that the Hölder regularity of the solution only depends on the L∞-norm
of b(x) but not on its smoothness or any of its derivatives – this is typical for equations in the
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divergence form, and we will see much more of this in Chapter ??. This is very different from
what we have seen so far in this chapter: we have always relied on the assumption that the
coefficients are smooth, and the Hölder bounds for the solutions depended on the regularity
of the coefficients. A very remarkable fact is that for equations in the divergence form, such
as (2.8.17), one may often obtain bounds on the regularity of the solutions that depend only
on the L∞-norm of the coefficients but not on their smoothness. Such bounds are much harder
to get for equations in the non-divergence form.

Let us first see why this lemma implies (2.8.15). An immediate consequence of the nor-
malization (2.8.18) and the claim about the Hölder norm of e∗1, together with the positivity
of e∗1 is that ∫

Tn
e∗1(x)dx ≥ C > 0, (2.8.19)

with a constant C > 0 that depends only on ‖b‖L∞ . Now, given a solution φ(x) of (2.8.8), set

bj(x) =

∫ 1

0

∂pjH(x, σ∇φ(x))dσ, (2.8.20)

so that

bj(x)
∂φ

∂xj
= H(x,∇φ)−H(x, 0), (2.8.21)

and (2.8.8) can be re-stated as

−∆φ− bj(x)
∂φ

∂xj
= H(x, 0)−

∫
Tn
H(x,∇φ)dx. (2.8.22)

Note that while b(x) does depend on ∇φ, the L∞-norm of b(x) depends only on the Lipschitz
constant of the function H(x, p) in the p-variable. Let now e∗1 be given by Lemma 2.8.3, with
the above b(x). Multiplying (2.8.22) by e∗1 and integrating over Tn yields

0 =

∫
Tn
e∗1(x)H(x, 0)dx−

(∫
Tn
e∗1(x)dx

)(∫
Tn
H(x,∇φ)dx

)
, (2.8.23)

hence ∫
Tn
H(x,∇φ)dx ≤

(∫
Tn
e∗1(x)dx

)−1
∫
Tn
e∗1(x)H(x, 0)dx, (2.8.24)

and (2.8.16) follows from (2.8.19).

Proof of Lemma 2.8.3

Let us denote

Lφ = −∆φ− bj(x)
∂φ

∂xj
. (2.8.25)

The constant functions are the principal periodic eigenfunctions of L and zero is the principal
eigenvalue:

L1 = 0. (2.8.26)
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Thus, by Theorem 2.7.8, the operator L has no other eigenvalue with a non-positive real part,
which entails the same result for the operator

L∗φ = −∆φ+∇ · (b(x)φ).

In particular, zero is the principal eigenvalue of L∗, associated to a positive eigenfunc-
tion e∗1(x) > 0:

L∗e∗1 = 0, for all x ∈ Tn,

and we can normalize e∗1 so that that (2.8.18) holds. Thus, existence of e∗1(x) is the easy part
of the proof.

The challenge is, of course, to bound the Hölder norms of e∗1 in terms of ‖b‖L∞(Tn) only.
We would like to use a representation formula, as we already did many times in this chapter.
In other words, we would like to treat the term ∇ · (e∗1b) as a force, and convolve it with the
fundamental solution of the Laplace equation in Rn. For that, we need various quantities to
be sufficiently integrable, so we first localize the equation, and then write a representation
formula. This is very similar to the proof of the interior regularity estimates that we have
mentioned very briefly in Section 2.5 – see Exercise 2.5.11. We recommend the reader to
go back to this Section after finishing the current proof, and attempt this exercise again,
setting aij(t, x) = δij in (2.5.46) for simplicity.

Let Γ(x) be a nonnegative smooth cut-off function such that Γ(x) ≡ 1 for x ∈ [−2, 2]n

and Γ(x) ≡ 0 outside (−3, 3)n. The function v(x) = Γ(x)e∗1(x) satisfies

−∆v = −2∇Γ · ∇e∗1 − e∗1∆Γ− Γ∇ · (e∗1b), x ∈ Rn. (2.8.27)

Remember that e∗1 is bounded in L∞, thus so is v. As we will see, nothing should be feared from
the cumbersome quantities like ∆Γ or ∇Γ. We concentrate on the space dimensions n ≥ 2,
leaving n = 1 as an exercise. Let E(x) be the fundamental solution of the Laplace equation
in Rn: the solution of

−∆u = f, x ∈ Rn, (2.8.28)

is given by

u(x) =

∫
Rn
E(x− y)u(y)dy. (2.8.29)

Then we have

v(x) =

∫
Rn
E(x− y)

[
− 2∇Γ(y) · ∇e∗1(y)− e∗1(y)∆Γ(y)− Γ(y)∇ · (e∗1(y)b(y))

]
dy. (2.8.30)

After an integration by parts, we obtain

v(x) =

∫
Rn

(
(∇E(x−y) ·∇Γ(y))e∗1(y)+E(x−y)e∗1(y)∆Γ(y)+∇(E(x−y)Γ(y)) · b(y)e∗1(y)

)
dy.

(2.8.31)
The key point is that no derivatives of b(x) or e∗1(x) appear in the right side of (2.8.31) – this
is important as the only a priori information that we have on these functions is that they are
bounded in L∞. Thus, the main point is to prove that integrals of the form

P (x) =

∫
Rn
E(x− y)G(y)dy, (2.8.32)
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with a bounded and compactly supported function G(x), and

I(x) =

∫
Rn
∇E(x− y) · F (y)dy, (2.8.33)

with a bounded and compactly supported vector-valued function F : Rn 7→ Rn, are α-Hölder
continuous for all α ∈ (0, 1), with the Hölder constants depending only on α and the L∞-norms
of F and G. Both F and G are supported inside the cube [−3, 3]n. We will only consider the
integral I(x), as this would also show that ∇P (x) is α-Hölder. Using the expression

∇E(z) = cn
z

|z|n
,

we see that
|I(x)− I(x′)| ≤ cn‖F‖L∞K(x, x′), (2.8.34)

with

K(x, x′) =

∫
(−3,3)n

∣∣∣∣ x− y|x− y|n
− x′ − y
|x′ − y|n

∣∣∣∣dy. (2.8.35)

Pick now α ∈ (0, 1). We estimate K by splitting the integration domain into two disjoint
pieces:

Ax = {y ∈ (−3, 3)n : |x− y| ≤ |x− x′|α}, Bx = {y ∈ (−3, 3)n : |x− y| > |x− x′|α},

and denote by KA(x, x′) and KB(x, x′) the contribution to K(x, x′) by the integration over
each of these two regions. To avoid some unnecessary trouble, we assume that |x− x′| ≤ lα,
with lα such that

3l ≤ lα for all l ∈ [0, lα]. (2.8.36)

With this choice, we have

|x′ − y| ≤ |x′ − x|+ |x− y| ≤ 2|x− x′|α if y ∈ Ax, (2.8.37)

and
|x′ − y| ≥ |x− y| − |x′ − x| ≥ 2|x− x′| if y ∈ Bx. (2.8.38)

It follows that

KA(x, x′) ≤
∫
|x−y|≤|x−x′|α

dy

|x− y|n−1
+

∫
|x′−y|≤2|x−x′|α

dy

|x′ − y|n−1
≤ C|x− x′|α. (2.8.39)

To estimate KB, we write∣∣∣∣ x− y|x− y|n
− x′ − y
|x′ − y|n

∣∣∣∣≤ C|x− x′|
∫ 1

0

dσ

|xσ − y|n
, xσ = σx+ (1− σ)x′. (2.8.40)

Note that for all y ∈ Bx we have

|xσ − y| ≥ |x− y| − |x− xσ| ≥ |x− x′|α − |x− x′| ≥ 2|x′ − x|,

and |y| ≤ 3
√
n, hence

KB(x, x′) ≤ |x− x′|
∫ 1

0

dσ

∫
Bx

dy

|xσ − y|n
≤ |x− x′|

∫ 1

0

dσ

∫
|xσ−y|≥|x−x′|

χ(|y| ≤ 3
√
n)dy

|xσ − y|n

≤ C|x− x′| log |x− x′|, (2.8.41)

which implies the uniform α-Hölder bound for I(x), for all α ∈ (0, 1). �
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An a priori L∞ bound on the gradient

So far, we have obtained an a priori L1-bound for the gradient of any solution φ to (2.8.8).
Now, we improve this estimate to an L∞ bound.

Proposition 2.8.4 There is C > 0, universal, such that any solution φ of (2.8.8) satisfies

‖∇φ‖L∞(Tn) ≤ C. (2.8.42)

As a consequence, if φ is normalized such that φ(0) = 0, then we also have ‖φ‖L∞(Tn) ≤ C.

Proof. We borrow the strategy in the proof of Lemma 2.8.3. Let φ be a solution of (2.8.8)
such that φ(0) = 0. The only estimate we have so far is an L1-bound for ∇φ – the idea is to
estimate ‖φ‖L∞(Tn) and ‖∇φ‖L∞(T) solely from this quantity and the equation. Let Γ(x) be
as in the preceding proof: a nonnegative smooth function equal to 1 in [−2, 2]n and to zero
outside (−3, 3)n, and set ψ(x) = Γ(x)φ(x). The function ψ(x) satisfies an equation similar
to (2.8.27):

−∆ψ = −2∇Γ · ∇φ− φ∆Γ + F (x), x ∈ Rn, (2.8.43)

with

F (x) = Γ(x)
[
H(x,∇φ(x))−

∫
Tn
H(z,∇φ(z))dz

]
. (2.8.44)

The only a priori information we have about F (x) and the term ∇Γ · ∇φ(x) so far is that
they are supported inside [−3, 3]n and are uniformly bounded in L1(Rn). It helps to combine
them:

G(x) = F (x)− 2∇Γ(x) · ∇φ(x), (2.8.45)

with G(x) supported inside [−3, 3]n, and∫
Rn
|G(x)|dx ≤ C. (2.8.46)

We also know that
|G(x)| ≤ C(1 + |∇φ(x)|. (2.8.47)

Then, we write

ψ(x) =

∫
Rn
E(x− y)[G(y)− φ(y)∆Γ(y)]dy. (2.8.48)

Differentiating in x gives

∇ψ(x) =

∫
Rn
∇E(x− y)[G(y)− φ(y)∆Γ(y)

]
dy. (2.8.49)

The function ∇E(x−y) has an integrable singularity at y = x, of the order |x−y|−n+1 and is
bounded everywhere else. Thus, for all ε > 0 we have, with the help of (2.8.45) and (2.8.47):∣∣∣∣∫

Rn
G(y)∇E(x− y)dy

∣∣∣∣≤ ∣∣∣∣∫
|x−y|≤ε

G(y)∇E(x− y)dy

∣∣∣∣+∣∣∣∣∫
|x−y|≥ε

G(y)∇E(x− y)dy

∣∣∣∣
≤ C(1 + ‖∇φ‖L∞)

∫
|x−y|≤ε

dy

|x− y|n−1
+ ε−n+1

∫
|x−y|≥ε

|G(y)|dy

≤ Cε(1 + ‖∇φ‖L∞) + Cε1−n. (2.8.50)
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The integral in (2.8.49) also contains a factor of φ, whereas our bounds so far deal with∇φ.
However, we may assume without loss of generality that φ(0) = 0, and then

φ(y) =

∫ 1

0

y · ∇φ(sy)ds =

∫ ε

0

y · ∇φ(sy)ds+

∫ 1

ε

y · ∇φ(sy)ds,

so that

|φ(y)| ≤ ‖∇φ‖L∞ , (2.8.51)

and ∫
Tn
|φ(y)|dy ≤ Cε‖∇φ‖L∞ +

∫ 1

ε

∫
Tn
|y||∇φ(sy)|dyds

≤ Cε‖∇φ‖L∞ + C

∫ 1

ε

∫
s−1Tn

|∇φ(y)|dyds
s
≤ Cε‖∇φ‖L∞ + C

∫ 1

ε

ds

s1+n

≤ Cε‖∇φ‖L∞ + Cε−n. (2.8.52)

We used above the a priori bound (2.8.16) on ‖∇φ‖L1(Tn). Combining (2.8.51) and (2.8.52),
we obtain, as in (2.8.50):∣∣∣∣∫

Rn
φ(y)∆Γ(y)∇E(x− y)dy

∣∣∣∣≤ ∫
|x−y|≤ε

|φ(y)||∆Γ(y)|∇E(x− y)|dy

+

∫
|x−y|≥ε

|φ(y)||∆Γ(y)||∇E(x− y)|dy ≤ Cε‖∇φ‖L∞ + Cε1−2n. (2.8.53)

Now, because Γ ≡ 1 in [−2, 2]n and φ is 1-periodic, we have

‖∇φ‖L∞(Tn) = ‖∇(Γφ)‖L∞([−1,1]n) ≤ ‖∇(Γφ)‖L∞([−3,3]n) = ‖∇ψ‖L∞ . (2.8.54)

Together with the previous estimates, this implies

‖∇φ‖L∞ ≤ Cε‖∇φ‖∞ + Cε, (2.8.55)

with a universal constant C > 0 and Cε that does depend on ε. Now, the proof is concluded
by taking ε > 0 small enough. �

Going back to the equation (2.8.8) for φ:

−∆φ = H(x,∇φ)−
∫
Tn
H(x,∇φ)dx, (2.8.56)

the reader should do the following exercise.

Exercise 2.8.5 Use the L∞-bound on ∇φ in Proposition 2.8.4 to deduce from (2.8.56) that,
under the assumption that H(x, p) is smooth in both variables x and p, the function φ(x)
is, actually, infinitely differentiable, with all its derivatives of order n bounded by a priori
constants Cn that do not depend on φ.
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The linearized problem

We need one last ingredient to finish the proof of the existence part of Theorem 2.8.1: to
set-up an application of the inverse function theorem. Let φ be a solution to (2.8.8) and let
us consider the linearized problem, with an unknown h:

−∆h− ∂pjH(x,∇φ)∂xjh+

∫
Tn
∂pjH(y,∇φ)∂xjh(y)dy = f x ∈ Tn. (2.8.57)

We assume that f ∈ C1,α(Tn) for some α ∈ (0, 1), and f has zero mean over Tn:∫
Tn
f(x)dx = 0.

Proposition 2.8.6 Equation (2.8.57) has a unique solution h ∈ C3,α(Tn) with zero mean.
The mapping f 7→ h is continuous from the set of C1,α functions with zero mean to C3,α(Tn).

Proof. The Laplacian is a one-to-one map between the set of Cm+2,α functions with zero
mean and the set of Cm,α(Tn) functions with zero mean, for any m ∈ N. Thus, we may talk
about its inverse that we denote by (−∆)−1. Equation (2.8.57) is thus equivalent to

(I +K)h = (−∆)−1f, (2.8.58)

with the operator

Kh = (−∆)−1

(
−∂pjH(x,∇φ)∂xjh+

∫
Tn
∂pjH(y,∇φ)∂xjh(y)dy

)
. (2.8.59)

Exercise 2.8.7 Show that K is a compact operator on the set of functions in C1,α(Tn) with
zero mean.

The problem has been now reduced to showing that the only solution of

(I +K)h = 0 (2.8.60)

with h ∈ C1,α(Tn) with zero mean is h ≡ 0. Note that (2.8.60) simply says that h is a solution
of (2.8.57) with f ≡ 0. Let e∗1 > 0 be given by Lemma 2.8.3, with

bj(x) = −∂pjH(x,∇φ). (2.8.61)

That is, e∗1 is the positive solution of the equation

−∆e∗1 +∇ · (e∗1b) = 0, (2.8.62)

normalized so that ‖e∗1‖L∞(Tn) = 1. The uniform Lipschitz bound on H(x, p) in the p-variable
implies that b(x) is in L∞(Tn), and thus Lemma 2.8.3 can be applied. Multiplying (2.8.57)
with f = 0 by e∗1 and integrating gives, as e∗1 > 0:∫

Tn
∂pjH(y,∇φ)∂xjh(y)dy = 0.

But then, the equation for h becomes simply

−∆h+ bj(x)∂xjh = 0, x ∈ Tn,

which entails that h is constant, by the Krein-Rutman theorem. Because h has zero mean,
we get h ≡ 0. �

108



Exercise 2.8.8 Let H0(x, p) satisfy the assumptions of Theorem 2.8.2, and assume that
equation (2.8.16), with H = H0, has a solution φ0. Consider H1(x, p) ∈ C∞(T× Rn). Prove,
with the aid of Propositions 2.8.4 and 2.8.6, and the implicit function theorem, the existence
of R0 > 0 and ε0 > 0 such that if

|H1(x, p)| ≤ ε, for x ∈ Tn and |p| ≤ R0, (2.8.63)

then equation (2.8.16) with H = H0 +H1 has a solution φ.

Existence of the solution

We finally prove the existence part of Theorem 2.8.1. Consider H(x, p) satisfying the assump-
tions of the theorem. Let us set

H0(x, p) =
√

1 + |p|2 − 1,

and
Hσ(x, p) = H0(x, p) + σ(H(x, p)−H0(x, p)),

so that H1(x, p) = H(x, p). Consider the set

Σ = {σ ∈ [0, 1] : equation (2.8.16), with H = Hσ, has a solution.}

We already know that Σ is non empty, because 0 ∈ Σ: indeed, φ0(x) ≡ 0 is a solution
to (2.8.16) with H(x, p) = H0(x, p). Thus, if we show that Σ is both open and closed
in [0, 1], this will imply that Σ = [0, 1], and, in particular, establish the existence of a solution
to (2.8.16) for H1(x, p) = H(x, p).

Now that we know that the linearized problem is invertible, the openness of Σ is a direct
consequence of the inverse function theorem. Closedness of Σ is not too difficult to see either:
consider a sequence σn ∈ [0, 1] converging to σ̄ ∈ [0, 1], and let φn be a solution to (2.8.16)
with H(x, p) = Hσn(x, p), normalized so that

φn(0) = 0. (2.8.64)

Proposition 2.8.4 implies that
‖∇φn‖L∞(Tn) ≤ C,

and thus
‖H(x,∇φn)‖L∞ ≤ C.

However, this means that φn solve an equation of the form

−∆φn = Fn(x), x ∈ Tn, (2.8.65)

with a uniformly bounded function

Fn(x) = H(x,∇φn)−
∫
Tn
H(z,∇φn(z))dz. (2.8.66)

It follows that that φn is bounded in C1,α(Tn), for all α ∈ [0, 1):

‖φn‖C1,α(Tn) ≤ C. (2.8.67)
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But this implies, in turn, that the functions Fn(x) in (2.8.66) are also uniformly bounded
in C1,α, hence φn are uniformly bounded in C2,α(Tn):

‖φn‖C2,α(Tn) ≤ C. (2.8.68)

Now, the Arzela-Ascoli theorem implies that a subsequence φnk will converge in C2(Tn) to
a function φ̄, which is a solution to (2.8.16) with H = Hσ̄. Thus, σ∞ ∈ Σ, and Σ is closed.
This finishes the proof of the existence part of the theorem.

2.8.2 Long time convergence and uniqueness of the wave solutions

We will now prove simultaneously the claim of the uniqueness of m and of the profile φ(x) in
Theorem 2.8.1, and the long time convergence for the solutions of the Cauchy problem stated
in Theorem 2.8.2.

Let u(t, x) be the solution of (2.8.1)

ut = ∆u+H(x,∇u), t > 0, x ∈ Tn, (2.8.69)

with u(0, x) = u0(x) ∈ C(Tn). We also take a solution φ(x) of

−∆φ−H(x,∇φ) = m. (2.8.70)

We wish to prove that there exists k̄ ∈ R so that u(t, x) − mt is attracted exponentially
to φ(x) + k̄:

|u(t, x)−mt− k̄ − φ(x)| ≤ Ce−ωt, (2.8.71)

with some C > 0 and ω > 0. The idea is the same as in the proof of Theorem 2.6.2, but
the situation here is much simpler: we do not have any tail to control, because we are now
considering the problem for x ∈ Tn. Actually, the present setting realizes what would be the
dream scenario for the Allen-Cahn equation.

We may assume that m = 0, just by setting

H ′(x, p) = H(x, p)−m,

and dropping the prime. Let φ be any solution of (2.8.70), and set

k−0 = sup{k : u(t, x) ≥ φ(x) + k for all x ∈ Tn},

and
k+

0 = inf{k : u(t, x) ≤ φ(x) + k for all x ∈ Tn.}

Because φ(x)− k±0 solve (2.8.70), we have, by the maximum principle:

φ(x) + k−0 ≤ u(t, x) ≤ φ(x) + k+
0 , for all t ≥ 0 and x ∈ Tn.

Now, for all p ∈ N, let us set

k−p = sup{k : u(t = p, x) ≥ φ(x) + k for all x ∈ Tn} = inf
x∈Tn

[u(t = p, x)− φ(x)], (2.8.72)
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and

k+
p = inf{k : u(t = p, x) ≤ φ(x) + k for all x ∈ Tn} = sup

x∈Tn
[u(t = p, x)− φ(x)]. (2.8.73)

The maximum principle implies that the sequence k−p is increasing, whereas k+
p is decreasing.

The theorem will be proved if we manage to show that

0 ≤ k+
p − k−p ≤ Cap, for all p ≥ 0, (2.8.74)

with some C ∈ R and a ∈ (0, 1). However, this is easy: the function

w(t, x) = u(t, x)− φ(x)− k−p

is nonnegative for t ≥ p, and solves an equation of the form

∂tw −∆w + bj(t, x)∂xjw = 0, t > p, x ∈ Tn, (2.8.75)

with a Lipschitz drift b(t, x) such that

b(t, x) · [∇u(t, x)−∇φ(x)] = H(x,∇u)−H(x,∇φ(x)).

In particular, we know that

sup
x∈Tn

w(p, x) ≥ sup
x∈Tn

w(t, x), for all t ≥ p. (2.8.76)

The Harnack inequality implies that there exists q0 > 0 such that

inf
x∈Tn

w(p+ 1, x) ≥ q0 sup
x∈Tn

w(p, x). (2.8.77)

Using (2.8.72) and (2.8.73), we may rewrite this inequality as

k−p+1 − k−p ≥ q0(k+
p − k−p ), (2.8.78)

which implies

k+
p+1 − k−p+1 ≤ k+

p − k−p − q0(k+
p − k−p ) ≤ (1− q0)(k+

p − k−p ). (2.8.79)

This implies the geometric decay as in (2.8.74), hence the theorem. Note that the constant

a = 1− q0

comes from the Harnack inequality and does not depend on the initial condition u0. �

Exercise 2.8.9 Why does the uniqueness of m and of the profile φ(x) follow?

Exercise 2.8.10 There is a certain recklessness in the way we have applied the Harnack
inequality. We have proved the Harnack inequality in Theorem 2.5.13 for a fixed smooth
drift b(t, x). Here, we use it a family of drifts b(t, x) that depend on u(t, x) and φ(x) – how
do we know that the constant q0 does not degenerate to zero? Hint: revisit the proof of
Theorem 2.5.13 and show that the bounds we have on b(t, x) are sufficient to bound q0 from
below.
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2.9 The inviscid Hamilton-Jacobi equations

In this section, we will consider the Hamilton-Jacobi equations

ut +H(x,∇u) = 0 (2.9.1)

on the unit torus Tn ⊂ Rn. Note that here, unlike in the viscous Hamilton-Jacobi equations
we have considered so far, the diffusion coefficient vanishes. One may thus question why we
consider it in the chapter on the diffusion equations – the answer is to emphasize the new diffi-
culties and new phenomena that one encounters in the absence of diffusion. Another possible
answer is that, philosophically, solutions to (2.9.1) behave very much like the solutions of

uεt +H(x,∇uε) = ε∆uε, (2.9.2)

with a small diffusivity ε > 0. Most of the techniques we have introduced so far deteriorate
badly when the diffusion coefficient is small. We will see here that, actually, some of the
bounds may survive, because they are helped by the nonlinear Hamiltonian H(x,∇u). Obvi-
ously, not every nonlinearity is beneficial: for example, solutions of the rather benign looking
advection equation

ut + b(x) · ∇u(x) = 0, (2.9.3)

are no better than the initial condition u0(x) = u(0, x), no matter how smooth the drift b(x)
is. Therefore, we will have to restrict ourselves to some class of Hamiltonians H(x, p) that do
help regularize the problem.

As in the viscous case, we will be interested both in the Cauchy problem, that is, (2.9.1)
supplemented with an initial condition

u(0, x) = u0(x), (2.9.4)

and in a stationary version of (2.9.1):

H(x,∇u) = c, x ∈ Tn. (2.9.5)

After what we have done in Section 2.8, it should be clear to the reader why (2.9.5) has a
constant c in the right side – solutions of (2.9.5) lead to the wave solutions for the time-
dependent problem (2.9.1). As in the viscous case, we will prove that under reasonable
assumptions, solutions of (2.9.5) exist only for a unique value of c which has no reason to be
equal to zero. Thus, the “standard” steady equation

H(x,∇u) = 0

typically would have no solutions. Alas, even though the speed c is unique, we will lose
the uniqueness of the profile of the study solutions – unlike in the diffusive case, (2.9.5)
may have non-unique solutions, even up to a translation. This is a major difference with the
diffusive Hamilton-Jacobi equations, and one point we would like to emphasize in this section.
However, we need to understand first what we mean by a solution to (2.9.1) or (2.9.5), and
this will take some time.
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A reader familiar with the theory of conservation laws, would see immediately the con-
nection between them and the Hamilton-Jacobi equations: in one dimension, n = 1, differen-
tiating (2.9.1) in x, we get a conservation law for v = ux:

vt + (H(x, v))x = 0. (2.9.6)

The basic conservation laws theory tells us that it is reasonable to expect that v(t, x) becomes
discontinuous in x at a finite time t. However, an entropy solution v(t, x) to (2.9.6) will remain
uniformly bounded in time. This means that the function u(t, x) will fail to be C1 but will
remain Lipschitz. In agreement with this intuition, it is well known that, for a smooth
initial condition u0 on Tn, the Cauchy problem (2.9.1), (2.9.4) has a unique local smooth
solution. That is, there exists a time t0 > 0, which depends on u0, such that (2.9.1) has a C1

solution u(t, x) on the time interval [0, t0] such that u(0, x) = u0(x). However, this solution
is not global in time: in general, it is impossible to extend it in a smooth fashion to t = +∞.
This is described very nicely in [60].

On the other hand, if we relax the constraint ”u is C1”, and replace it by ”u is Lipschitz”,
and require (2.9.1) and (2.9.4) to hold almost everywhere, there are, in general, several solu-
tions to the Cauchy problem. This parallels the fact that the weak solutions to the conserva-
tion laws are not unique – for uniqueness, one must require that the weak solution satisfies
the entropy condition. See, for instance, [100] for a discussion of these issues. A natural ques-
tion is, therefore, to know if an additional condition, less stringent than the C1-regularity,
but stronger than the mere Lipschitz regularity, enables us to select a unique solution to the
Cauchy problem – as the notion of the entropy solutions does for the conservation laws.

The above considerations have motivated the introduction, by Crandall and Lions [48],
at the beginning of the 80’s, of the notion of a viscosity solution to (2.9.1). The idea is to
select, among all the solutions of (2.9.1), “the one that has a physical meaning” – though
understanding the connection to physics may require some thought from the reader. Being
weaker than the notion of a classical solution, it introduces new difficulties to the existence
and uniqueness issues. Note that even if there is a unique viscosity solution to the Cauchy
problem (2.9.1), (2.9.4), the stationary equation (2.9.5) has no reason to have a unique steady
solution – unlike what we have seen in the diffusive situation of the previous section.

As a concluding remark to the introduction, we must mention that we will by no means
do justice to a very rich subject in this short section, an interested reader can, and should
happily delve into the sea of excellent papers on the Hamilton-Jacobi equations.

2.9.1 Viscosity solutions

Here, we present the basic notions of the viscosity solutions for the first order Hamilton-Jacobi
equations, and prove a uniqueness result which is typical in this theory. The reader interested
in all the subtleties of the theory may enjoy reading Barles [7], or Lions [100].

The definition of a viscosity solution

Let us begin with more general equations than (2.9.1) – we will restrict the assumptions as
the theory develops. Consider the Cauchy problem

ut + F (x, u,∇u) = 0, t > 0, x ∈ Tn, (2.9.7)
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with a continuous initial condition u(0, x) = u0(x), and F ∈ C(Tn × R× Rn;R).
In order to motivate the notion of a viscosity solution, one takes the point of view that

the smooth solutions of the regularized problem

uεt + F (x, uε,∇uε) = ε∆uε (2.9.8)

are a good approximation to u(t, x). Note that existence of the solution of the Cauchy problem
for (2.9.8) for ε > 0 is not an issue – we have already seen how this can be proved. Hence,
a natural attempt would be to pass to the limit ε ↓ 0 in (2.9.8). This, however, is too blunt
to succeed in general. To motivate a different route, instead, consider a smooth sub-solution
of (2.9.8):

ut + F (x, u,∇u) ≤ ε∆u. (2.9.9)

Let us take a smooth function φ(t, x) such that the difference φ− u attains its minimum at a
point (t0, x0). One may simply think of the case when φ(t0, x0) = u(t0, x0) and φ(t, x) ≥ u(t, x)
elsewhere. Then, at this point we have

ut(t0, x0) = φt(t0, x0), ∇φ(t0, x0) = ∇u(t0, x0),

and
D2φ(t0, x0) ≥ D2u(t0, x0),

in the sense of the quadratic forms. It follows that

φt(t0, x0) + F (x0, u(t0, x0),∇φ(t0, x0))− ε∆φ(t0, x0) (2.9.10)

≤ ut(t0, x0) + F (x0, u(t0, x0),∇u(t0, x0))− ε∆u(t0, x0) ≤ 0.

In other words, if u is a smooth sub-solution, and φ is a smooth function that touches u
at (t0, x0) from above, then φ is a sub-solution to our equation at this point.

In a similar vein, if u(t, x) is a smooth super-solution to the regularized problem:

ut + F (x, u,∇u) ≥ ε∆u, (2.9.11)

we consider a smooth function φ(t, x) such that the difference φ− u attains its maximum at
a point (t0, x0). Again, we may assume without loss of generality that φ(t0, x0) = u(t0, x0)
and φ(t, x) ≤ u(t, x) elsewhere. Then, at this point we have

φt(t0, x0) + F (x0, u(t0, x0),∇φ(t0, x0))− ε∆φ(t0, x0) ≥ 0. (2.9.12)

In other words, if u is a smooth super-solution, and φ is a smooth function that touches u
at (t0, x0) from below, then φ is a super-solution to our equation at this point.

These two observations lead to the following definition.

Definition 2.9.1 A continuous function u(t, x) is a viscosity sub-solution to (2.9.7) if, for
all test functions φ ∈ C1([0,+∞)×Tn) and all (t0, x0) ∈ (0,+∞)×Tn such that (t0, x0) is a
local minimum for φ− u, we have:

φt(t0, x0) + F (x0, u(t0, x0),∇φ(t0, x0)) ≤ 0. (2.9.13)
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Furthermore, a continuous function u(t, x) is a viscosity super-solution to (2.9.7) if, for all
test functions φ ∈ C1((0,+∞)×Tn) and all (t0, x0) ∈ (0,+∞)×Tn such that the point (t0, x0)
is a local maximum for the difference φ− u, we have:

φt(t0, x0) + F (x0, u(t0, x0),∇φ(t0, x0)) ≥ 0. (2.9.14)

Finally, u(t, x) is a viscosity solution to (2.9.7) if it is both a viscosity sub-solution and a
viscosity super-solution to (2.9.7).

Definition 2.9.1 trivially extends to steady equations of the type

F (x, u,∇u) = 0 on Tn.

Exercise 2.9.2 Show that a C1 solution to (2.9.7) is a viscosity solution. Also show that the
maximum of two viscosity subsolutions is a viscosity subsolution, and the minimum of two
viscosity supersolutions is a viscosity supersolution.

The following exercise may help the reader gain some intuition.

Exercise 2.9.3 Consider the Hamilton-Jacobi equation

ut + u2
x = 0, x ∈ R, (2.9.15)

with a zigzag initial condition u0(x) = u(0, x):

u0(x) =

{
x, 0 ≤ x ≤ 1/2,

1− x, 1/2 ≤ x ≤ 1,
(2.9.16)

extended periodically to R. How will the solution u(t, x) of the Cauchy problem look like?
Where will it be smooth, and where will it be just Lipschitz? Hint; it may help to do this in
at least three ways: (1) use the definition of the viscosity solution, (2) use the notion of the
entropy solution for the Burgers’ equation for v(t, x) = ux(t, x), and (3) add the term εuxx to
the right side of (2.9.15), us the Hopf-Cole transformation z(t, x) = exp(u(t, x)/ε), solve the
linear problem for z(t, x) and then pass to the limit ε→ 0.

The reader may justly wonder whether such a seemingly weak definition has any selective
power – can it possibly ensure uniqueness of the solution? This is the case, and we give below,
without proof, a list of some basic properties of the viscosity solutions to (2.9.7), as exercises
to the reader. These exercises are not as easy as Exercise 2.9.2, but the hints below should
be helpful.

Exercise 2.9.4 (Stability) Let Fj be a sequence of functions in C(Tn × R × Rn), which
converges locally uniformly to F ∈ C(Tn ×R×Rn). Let uj be a viscosity solution to (2.9.7)
with F = Fj, and assume that uj converges locally uniformly to u ∈ C([0,+∞),Tn). Show
that then u is a viscosity solution to (2.9.7). Hint: this is not difficult.

The above exercise is extremely important: it shows that, somewhat similar to the weak
solutions, we do not need to check the convergence of the derivatives of uj to the derivatives
of u to know that u is a viscosity solution – this is an extremely useful property to have.
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Exercise 2.9.5 Let u be a locally Lipschitz viscosity solution to (2.9.7). Then it satis-
fies (2.9.7) almost everywhere. Hint: if u is Lipschitz, then u is differentiable almost every-
where. Prove that, at a point of differentiability (t0, x0), one may construct a C1 test func-
tion φ(t, x) such that (t0, x0) is a local maximum (respectively, a local minimum) of φ− u. If
you have no idea of how to do it, see [48].

Exercise 2.9.6 (The maximum principle) Assume that F (x, u, p) = H(x, p), with a contin-
uous function H that satisfies the following (coercivity) property:

lim
|p|→+∞

H(x, p) = +∞, uniformly in x ∈ Tn. (2.9.17)

Let u1(t, x) and u2(t, x) be the viscosity solutions for (2.9.7) with the initial conditions u10

and u20 such that u10(x) ≤ u20(x) for all x ∈ Tn. Show that then u1(t, x) ≤ u2(t, x) for
all t ≥ 0 and x ∈ Tn. This proves the uniqueness of the viscosity solutions. Hint: try to
reproduce the proof of Proposition 2.9.7 below.

Definition 2.9.1 has been introduced by Crandall and Lions in their seminal paper [48].
Let us notice one of the main advantages of the notion: Exercise 2.9.4 asserts that one may
safely “pass to the limit” in equation (2.9.7), as soon as estimates on the moduli of continuity
of the solutions are available rather than on the derivatives. Exercise 2.9.6 implies uniqueness
of the solutions to the Cauchy problem – without, however, implying existence.

The name “viscosity solution” comes out of trying to identify a “physically meaningful”
solution to (2.9.7). As we have mentioned, a natural idea is to regularize (2.9.7) by a second
order dissipative term, and to solve (2.9.8):

ut + F (x, u,∇u) = ε∆u. (2.9.18)

Then one tries to pass to the limit ε → 0. This can be carried out when the Hamilto-
nian F (x, u, p) has, for instance, the form H(x, p). It is possible to prove that there is a
unique limiting solution and that one actually ends up with a nonlinear semigroup. In partic-
ular, one may show that, if we take this notion of solution as a definition, there are uniqueness
and contraction properties analogous to above – see [100] for further details. We will see be-
low, in the proof of the Lions-Papanicolaou-Varadhan theorem how that can be done in one
simple example. Taking (2.9.18) as a definition is, however, not intrinsic: there is always
the danger that the solution depends on the underlying regularization (why regularize with
the Laplacian?), and Definition 2.9.1 bypasses this philosophical question, much like the no-
tion of an entropy solution does this for the conservation laws. Let us finally note that the
notion of a viscosity solution has turned out to be especially relevant to the second order
elliptic and parabolic equations – especially those fully nonlinear with respect to the Hessian
of the solution. There have been spectacular developments, which are out of the scope of this
chapter.

Warning. For the rest of this section, a solution of (2.9.1) or (2.9.5) will always be meant
in the viscosity sense.
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Uniqueness of the viscosity solutions

One of the main issues of the theory of the viscosity solutions is uniqueness. Let us give
the simplest uniqueness result, and prove it by the method of doubling of variables. This
argument appears in almost all uniqueness proofs, in more or less elaborate forms.

Proposition 2.9.7 Assume that the Hamiltonian H(x, p) is continuous in all its variables,
and satisfies the coercivity assumption (2.9.17). Consider the equation

H(x,∇u) + u = 0, x ∈ Tn. (2.9.19)

Let u and u be, respectively, a viscosity sub- and a super-solution to (2.9.1), then u ≤ u.

Proof. Assume for a moment that both u and u are C1-functions. If x0 is a maximum of u−u
we have,

H(x0,∇u(x0)) + u(x0) ≥ 0, (2.9.20)

as u is a super-solution, and u can be considered a test function, since it is differentiable. On
the other hand, u− u attains its minimum at the same point x0, and, as u is a sub-solution,
and u can serve as a test function, we have

H(x0,∇u(x0)) + u(x0) ≤ 0. (2.9.21)

As x0 is a minimum of u − u, and u and u are differentiable, we have ∇u(x0) = ∇u(x0),
whence (2.9.20) and (2.9.21) imply

u(x0) ≤ u(x0).

Once again, as u− u attains its minimum at x0, we conclude that u(x) ≥ u(x) for all x ∈ Tn
if both of these functions are in C1(Tn).

Unfortunately, we only know that u and u are continuous, so we can not use the argument
above unless we know, in addition, that they are both C1-functions. In the general case, we
use the method of doubling the variables. Let us define, for all ε > 0, the penalization

uε(x, y) = u(x)− u(y) +
|x− y|2

2ε2

and let (xε, yε) be a minimum for uε(x, y).

Exercise 2.9.8 Show that
lim
ε→0
|xε − yε| = 0.

and that the family (xε, yε) converges, as ε → 0, up to a subsequence, to a point (x0, x0),
where x0 is a minimum to u(x)− u(x).

Consider the function

φ(x) = u(yε)−
|x− yε|2

2ε2
,

as a (smooth) function of the variable x. The difference

φ(x)− u(x) = −uε(x, yε)
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attains its maximum, as a function of x, at the point x = xε. As u(x) is a super-solution, we
have

H(xε,
yε − xε
ε2

) + u(xε) ≥ 0. (2.9.22)

Next, we apply the sub-solution part of Definition 2.9.13 to the test function

ψ(y) = u(xε) +
|xε − y|2

2ε2
.

The difference

ψ(y)− u(y) = u(xε) +
|xε − y|2

2ε2
− u(y) = uε(xε, y)

attains its minimum at y = yε, hence

H(yε,
yε − xε
ε2

) + u(yε) ≤ 0; (2.9.23)

The coercivity of the Hamiltonian and (2.9.23), together with the boundedness of uε, imply
that |xε − yε|/ε2 is bounded, uniformly in ε. Hence, as |xε − yε| → 0, it follows that

H(yε,
yε − xε
ε2

) = H(xε,
yε − xε
ε2

) + o(1), as ε→ 0.

Subtracting (2.9.23) from (2.9.22), we obtain

u(xε)− u(yε) ≥ o(1), as ε→ 0.

Sending ε→ 0 implies

u(x0)− u(x0) ≥ 0,

and, as x0 is the minimum of u− u, the proof is complete. �
An immediate consequence is that (2.9.19) has at most one solution.

2.9.2 Steady solutions

We will now look for the wave solutions of (2.9.1) of the form

−ct+ u(x),

with a constant c ∈ R, as we did in the viscous case. Such function u solves

H(x,∇u) = c, x ∈ Tn. (2.9.24)

Let us point out that (2.9.24) may have solutions for at most one c. Indeed, assume there
exist c1 6= c2, such that (2.9.24) has a solution u1 for c = c1 and another solution u2 for c = c2.
Let K > 0 be such that

u1(x)−K ≤ u2(x) ≤ u1(x) +K, for all x ∈ Tn.
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The functions −c1t+ u1(x)±K and −c2t+ u2(x) solve the Cauchy problem (2.9.1) with the
respective initial conditions u1(x)±K and u2(x). By the maximum principle (Exercise 2.9.6),
we have

−c1t+ u1(x)−K ≤ −c2t+ u2(x) ≤ −c1t+ u1(x) +K, for all t ≥ 0 and x ∈ Tn.

This is a contradiction since c1 6= c2, and the functions u1 and u2 are bounded.
The main result of this section is the following theorem, due to Lions, Papanicolaou,

Varadhan [101], that asserts the existence of a constant c for which (2.9.24) has a solution.

Theorem 2.9.9 Assume that H(x, p) is continuous, uniformly Lipschitz:

|H(x, p1)−H(x, p2)| ≤ C|p1 − p2|, for all x ∈ Tn, and p1, p2 ∈ Rn, (2.9.25)

the coercivity condition (2.9.17) holds, and

|∇xH(x, p)| ≤ C(1 + |p|), for all x ∈ Tn, and p ∈ Rn. (2.9.26)

There is a unique c ∈ R for which (2.9.24) has a solution.

It is important to point out that the periodicity assumption in x on the Hamiltonian is
indispensable – for instance, when H(x, p) is a random function (in x) on Rn × Rn, the
situation is totally different – an interested reader should consult the literature on stochastic
homogenization of the Hamilton-Jacobi equations, a research area that is active and evolving
at the moment of this writing.

The homogenization connection

Before proceeding with the proof of the Lions-Papanicolaou-Varadhan theorem, let us explain
how the steady equation (2.9.24) appears in the context of periodic homogenization, which
was probably the main motivation behind this theorem. We can not possibly do justice to the
area of homogenization here – an interested reader should explore the huge literature on the
subject, with the book [120] by G. Pavliotis and A. Stuart providing a good starting point. Let
us just briefly illustrate the general setting on the example of the periodic Hamilton-Jacobi
equations. Consider the Cauchy problem

uεt +H(x,∇uε) = 0, (2.9.27)

in the whole space x ∈ Rn (and not on the torus). We assume that the initial condition is
slowly varying and large:

uε(0, x) = ε−1u0(εx). (2.9.28)

The general issue of homogenization is how the ”microscopic” variations in the Hamiltonian
that varies on the scale O(1) affect the evolution of the initial condition that varies on the
”macroscopic” scale O(ε−1). The goal is to describe the evolution on purely ”macroscopic”
terms, and extract an effective macroscopic problem that approximates the full microscopic
problem well. This allows to avoid, say, in numerical simulations, modeling the microscopic
variations of the Hamiltonian, and do the simulations on the macroscopic scale – a huge
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advantage in the engineering problems. It also happens that from the purely mathematical
view point, homogenization is also an extremely rich subject.

This general philosophy translates into the following strategy. As the initial condition
in (2.9.28) is slowly varying, one should observe the solution on a macroscopic spatial scale,
in the slow variable y = εx. Since uε(0, x) is also very large itself, of the size O(ε−1), it
is appropriate to rescale it down. In other words, instead of looking at uε(t, x) directly, we
would represent it as

uε(t, x) = ε−1wε(t, εx),

and consider the evolution of wε(t, y), which satisfies

wεt + εH(
y

ε
,∇wε) = 0, (2.9.29)

with the initial condition wε(0, y) = u0(y) that is now independent of ε. However, we see
that wε evolves very slowly in t – its time derivative is of the size O(ε). Hence, we need
to wait a long time until it changes. To remedy this, we introduce a long time scale of the
size t = O(ε−1). In other words, we write

wε(t, y) = vε(εt, y).

In the new variables the problem takes the form

vεs +H
(y
ε
,∇vε

)
= 0, y ∈ Rn, s > 0, (2.9.30)

with the initial condition vε(0, y) = u0(y).
It seems that we have merely shifted the difficulty – we used to have ε in the initial

condition in (2.9.28) while now we have it appear in the equation itself – the Hamiltonian
depends on y/ε. However, it turns out that we may now find an ε-independent problem that
has a spatially uniform Hamiltonian that provides a good approximation to (2.9.30). The
reason this is possible is that we have chosen the correct temporal and spatial scales to track
the evolution of the solution.

Here is how one finds the approximating problem. Let us seek the solution in the form of
an asymptotic expansion

vε(s, y) = v̄(s, y) + εv1(s, y,
y

ε
) + ε2v2(s, y,

y

ε
) + . . . (2.9.31)

The functions vj(s, y, z) are assumed to be periodic in the “fast” variable z. Inserting this
expansion into (2.9.30), we obtain in the leading order in ε:

v̄s(s, y) +H
(y
ε
,∇yv̄(s, y) +∇zv1(s, y,

y

ε
)
)

= 0. (2.9.32)

As is standard in such multiple scale expansions, we consider (2.9.32) as

v̄s(s, y) +H(z,∇yv̄(s, y) +∇zv1(s, y, z)) = 0, (2.9.33)

an equation for v1 as a function of the fast variable z ∈ Tn, for each s > 0 and y ∈ Rn fixed.
In other words, for each pair of the ”macroscopic” variables s and y we consider a microscopic
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problem in the z-variable. In the area of numerical analysis, one would call this ”sub-grid
modeling”: the variables t and x live on the macroscopic grid, and the z-variable lives on the
microscopic sub-grid.

The function v̄(s, y) will then be found from the solvability condition for (2.9.32). Indeed,
the terms v̄s(s, y) and ∇yv̄(s, y) in (2.9.33) do not depend on the fast variable z and should
be treated as constants – we solve (2.9.33) independently for each s and y. Let us then, for
each fixed p ∈ Rn, consider the problem

H(z, p+∇zw) = H̄(p), (2.9.34)

posed on the torus z ∈ Tn, for an unknown function w(z). Here, H̄(p) is the unique constant
(that depends on p), whose existence is guaranteed by the Lions-Papanicolaou-Varadhan
theorem, for which the equation

H(z, p+∇zw) = c, (2.9.35)

has a solution. Then, the solvability condition for (2.9.33) is that the function v̄(s, y) satisfies
the homogenized (or effective) equation

v̄s + H̄(∇yv̄) = 0, v̄(0, y) = u0(y), s > 0, y ∈ Rn, (2.9.36)

and the function H̄(p) is called the effective, or homogenized Hamiltonian. Note that the
effective Hamiltonian does not depend on the spatial variable – the “small scale” variations are
averaged out via the above homogenization procedure. The point is that the solution vε(s, y)
of (2.9.30), an equation with highly oscillatory coefficients is well approximated by v̄(s, y),
the solution of (2.9.36), an equation with uniform coefficients, that is much simpler to study
analytically or solve numerically.

Thus, the existence and uniqueness of the constant c for which solution of the steady
equation (2.9.35) exists, is directly related to the homogenization (long time behavior) of the
solutions of the Cauchy problem (2.9.27) with slowly varying initial conditions as it provides
the corresponding effective Hamiltonian. Unfortunately, there is a catch: very little is known
in general on how the effective Hamiltonian H̄(p) depends on the original HamiltonianH(x, p),
except for some very generic properties.

The proof of the Lions-Papanicolaou-Varadhan theorem

As we have already proved uniqueness of the constant c, it only remains to prove its existence.
We will use the viscosity solution to the auxiliary problem

H(x,∇uε) + εuε = 0, x ∈ Tn, (2.9.37)

with ε > 0. We have already shown that this problem has at most one solution. Let us for
the moment accept that the solution exists and show how one can finish the proof from here.
Then, we will come back to the construction of a solution to (2.9.37). Our task is to pass to
the limit ε ↓ 0 in (2.9.37).

Exercise 2.9.10 Show that for all ε > 0, the solution uε(x) of (2.9.37) satisfies

−‖H(·, 0)‖L∞
ε

≤ uε(x) ≤ ‖H(·, 0)‖L∞
ε

, (2.9.38)

for all x ∈ Tn.
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Note that the fact that uε(x) is of the size ε−1 is not a fluke of the estimate – we will see
that εuε(x) converges as ε ↓ 0 to a constant limit c that will be the speed. In order to pass
to the limit ε ↓ 0 in (2.9.37), we need a modulus of continuity estimate that does not depend
on ε ∈ (0, 1).

Lemma 2.9.11 There is C > 0 independent of ε such that |Lip uε| ≤ C.

Proof. Again, we use the doubling of the independent variables. Fix x ∈ Tn and, for K > 0,
consider the function

ζ(y) = uε(y)− uε(x)−K|y − x|.

Let x̂ be a maximum of ζ(y) (the point x̂ depends on x). If x̂ = x for all x ∈ Tn, we have

uε(y)− uε(x) ≤ K|x− y|,

for all x, y ∈ Tn, which implies that uε is Lipschitz. If there exists some x such that x̂ 6= x,
then the function

ψ(y) = uε(x) +K|y − x|

is, in a vicinity of the point y = x̂, an admissible test function, as a function of y. Moreover,
the difference

ψ(y)− uε(y) = −ζ(y)

attains its minimum at y = x̂. The sub-solution condition (2.9.13) at this point gives:

H
(
x̂, K

x̂− x
|x̂− x|

)
+ εuε(x̂) ≤ 0.

As εuε(x) is bounded by ‖H(·, 0)‖L∞ , the coercivity condition (2.9.17) implies the existence
of a constant C > 0 independent of ε such that K ≤ C. Therefore, if we take K = 2C, we
must have x̂ = x for all x ∈ Tn, which implies

u(y)− u(x)− 2C|y − x| ≤ 0.

The points x and y being arbitrary, this finishes the proof. �
In order to finish the proof of Theorem 2.9.9, denote by 〈uε〉 the mean of uε over Tn, and

set
vε = uε − 〈uε〉.

This function satisfies
H(x,∇vε) + ε〈uε〉+ εvε = 0.

Because of Lemma 2.9.11, the family vε converges uniformly, up to a subsequence, to a
function v ∈ C(Tn), and εvε → 0. The bound (2.9.38) implies that the family ε〈uε〉 is
bounded. We may, therefore, assume its convergence (along a subsequence) to a constant
denoted by −c. By the stability result in Exercise 2.9.4, v is a viscosity solution of

H(x,∇v) = c. (2.9.39)

This finishes the proof of Theorem 2.9.9 except for the construction of a solution to (2.9.37).
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Existence of the solution to the auxiliary problem

Let us now construct a solution to (2.9.37):

H(x,∇u) + εu = 0. (2.9.40)

We will do this in the most pedestrian way possible. We take a function f ∈ C(Tn), and
consider an approximation problem

−δ∆uγ,δ +H(x,∇uγ,δ) + εuγ,δ = fγ(x), x ∈ Tn, (2.9.41)

with ε > 0 and γ > 0, and
fγ = Gγ ? f. (2.9.42)

Here, Gγ is a smooth approximation of a δ-function:

Gγ(x) = γ−nG(x), G(x) ≥ 0,

∫
Rn
G(x)dx = 1,

so that fγ(x) is smooth, and fγ → f in C(Tn). It is straightforward to adapt what we
have done in Section 2.4.3 for the time-dependent problems to show that (2.9.41) admits a
solution uγ,δ for each γ > 0 and δ > 0. The difficulty is to pass to the limit δ ↓ 0, followed
by γ ↓ 0 to construct in the limit a viscosity solution to (2.9.40).

We claim that there exists M > 0 so that if ε > M then uγ,δ obeys a gradient bound

|∇uγ,δ(x)| ≤ Cγ for all x ∈ Tn. (2.9.43)

To see that, let us look at the point x0 where |∇uγ,δ(x)|2 attains its maximum. Note that
(we drop the super-scripts γ and δ for the moment)

∂

∂xi
(|∇u|2) = 2

∂u

∂xj

∂2u

∂xi∂xj
,

so that

∆(|∇u|2) = 2
n∑

i,j=1

( ∂2u

∂xi∂xj

)2

+ 2
n∑
j=1

∂u

∂xj

∂∆u

∂xj
= 2

n∑
i,j=1

( ∂2u

∂xi∂xj

)2

+
2ε

δ
|∇u|2

+
2

δ

n∑
j=1

∂u

∂xj

∂H(x,∇u)

∂xj
+

2

δ

n∑
k,j=1

∂u

∂xj

∂H(x,∇u)

∂pk

∂2u

∂xj∂xk
− 2

δ

n∑
j=1

∂u

∂xj

∂fγ
∂xj

= 2
n∑

i,j=1

( ∂2u

∂xi∂xj

)2

+
2ε

δ
|∇u|2 +

2

δ

n∑
j=1

∂u

∂xj

∂H(x,∇u)

∂xj
+
ε

δ

n∑
k=1

∂H(x,∇u)

∂pk

∂|∇u|2

∂xk

−2

δ

n∑
j=1

∂u

∂xj

∂fγ
∂xj

.

Thus, at x0 we have

0 ≥ ∆(|∇u|2)(x0) = 2
n∑

i,j=1

( ∂2u

∂xi∂xj

)2

+
2ε

δ
|∇u|2 +

2

δ

n∑
j=1

∂u

∂xj

∂H(x,∇u)

∂xj
− 2

δ

n∑
j=1

∂u

∂xj

∂fγ
∂xj

.

(2.9.44)
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Let us recall the gradinet bound (2.9.26) on H(x, p):

|∇xH(x, p)| ≤ C(1 + |p|). (2.9.45)

Exercise 2.9.12 Use (2.9.44) and (2.9.45) to show that there exists M > 0, independent
of γ > 0, so that if ε > M , then uγ,δ obeys an a priori bound (2.9.43) with a constant Cγ > 0
that may depend on γ but not on δ or ε. Show also that there exists a constant C ′ε > 0 that
depends on ε > 0 but not on γ > 0 such that

|uγ,δ(x)| ≤ C ′ε for all x ∈ Tn. (2.9.46)

The Lipschitz bound (2.9.43) and (2.9.46) show that, after passing to a subsequence δk → 0,
the family uγ,δk(x) converges uniformly in x ∈ Tn, to a function uγ(x).

Exercise 2.9.13 Show that uγ(x) is the viscosity solution to

H(x,∇uγ) + εuγ = fγ(x), x ∈ Tn. (2.9.47)

Hint: Exercise 2.9.4 and its solution should be helpful here.

So far, we have constructed a solution to the γ-regularized problem (2.9.47) for ε > 0
sufficiently large – this seems very far from what we want since we plan to send ε to zero
eventually but the end is not that far. The next step is to send γ → 0.

Exercise 2.9.14 Mimic the proof of Lemma 2.9.11 to show that uγ(x) are uniformly Lips-
chitz: there exists a constant C > 0 independent of γ ∈ (0, 1) such that |Lip uγ| ≤ C. Note
that you can not use the derivatives of fγ in x as these may blow up as γ ↓ 0 – we only know
that f ∈ C(Tn).

This exercise shows that uγk converges, along as subsequence γk ↓ 0, uniformly in x ∈ Tn,
to a limit u(x) ∈ C(Tn) that obeys the same uniform Lipschitz bound in Exercise 2.9.14.
Invoking again the stability result of Exercise 2.9.4 shows that u(x) is the unique viscosity
solution to

H(x,∇u) + εu = f(x), x ∈ Tn. (2.9.48)

The final task is to remove the restriction ε ≥ M . Let us take ε < M , and re-write (2.9.48)
as

H(x,∇u) +Mu = (M − ε)u, x ∈ Tn. (2.9.49)

Consider the following map S: given a function v(x) ∈ C(Tn), let u = Sv be the solution of

H(x,∇u) +Mu = (M − ε)v, x ∈ Tn. (2.9.50)

We claim that S is a contraction in C(Tn). Indeed, given v1, v2 ∈ C(Tn), let us go back to
the corresponding δ, γ-problems:

−δ∆uγ,δ1 +H(x,∇uγ,δ1 ) +Muγ,δ1 = (M − ε)v1,γ, x ∈ Tn, (2.9.51)

and
−δ∆uγ,δ2 +H(x,∇uγ,δ2 ) +Muγ,δ2 = (M − ε)v2,γ, x ∈ Tn. (2.9.52)
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Assume that the difference
w = uγ,δ1 − u

γ,δ
2

attains its maximum at a point x0. The function w satisfies

−δ∆w +H(x,∇uγ,δ1 )−H(x,∇uγ,δ2 ) +Mw = (M − ε)(v1,γ − v2,γ), x ∈ Tn. (2.9.53)

Evaluating this at x = x0, we see that

−δ∆w(x0) +Mw(x0) = (M − ε)(v1,γ(x0)− v2,γ(x0)), x ∈ Tn, (2.9.54)

hence

w(x0) ≤ M − ε
M
‖v1,γ − v2,γ‖C(Tn).

Using an identical computation for the minimum, we conclude that

‖uγ,δ1 − u
γ,δ
2 ‖C(Tn) ≤

M − ε
M
‖v1,γ − v2,γ‖C(Tn). (2.9.55)

Passing to the limit δ ↓ 0 and γ ↓ 0, we obtain

‖u1 − u2‖C(Tn) ≤
M − ε
M
‖v1 − v2‖C(Tn), (2.9.56)

hence S is a contraction on C(Tn). Thus, this map has a fixed point, which is the viscosity
solution of

H(x,∇u) + εu = 0, x ∈ Tn. (2.9.57)

This completes the proof.

Non-uniqueness of the steady solutions

Once the correct c has been identified, one may wonder about the uniqueness of the solution
for equation (2.9.24). Clearly, if u is a solution, u + q is also a solution for every constant q.
However, uniqueness modulo constants is also not true. Consider a very simple example

|u′| = f(x), x ∈ T1. (2.9.58)

Assume that f ∈ C1(T1) is 1/2-periodic, satisfies

f(x) > 0 on (0, 1/2) ∪ (1/2, 1), and f(0) = f(1/2) = f(1) = 0.

and is symmetric with respect to x = 1/4 (and thus x = 3/4). Let u1 and u2 be 1-periodic
and be defined, over a period, as follows:

u1(x) =


∫ x

0

f(y) dy 0 ≤ x ≤ 1

2∫ 1

x

f(y) dy
1

2
≤ x ≤ 1

u2(x) =



∫ x

0

f(y) dy 0 ≤ x ≤ 1

4∫ 1/2

x

f(y) dy
1

4
≤ x ≤ 1

2

u2 is
1

2
-periodic.
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Exercise 2.9.15 Verify that both u1 and u2 are viscosity solutions of (2.9.58), and u2 cannot
be obtained from u1 by the addition a constant. Pay attention to what happens at x = 1/4
and x = 3/4 with u2(x). Why can’t you construct a solution that would have a corner at a
minimum rather than the maximum?

A very remarkable study of the non-uniqueness may be found in Lions [100] for a multi-
dimensional generalization of (2.9.58), that is,

|∇u| = f(x), x ∈ Ω

where Ω is a bounded open subset of RN and f is nonnegtive and vanishes only at a finite
number of points. The zero set of f is shown to play an important role: essentially, imposing u
at those points ensures uniqueness – but not always existence.
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Chapter 3

The two dimensional Euler equations

3.1 The derivation of the Euler equations

In this chapter, we will study some of the very basic questions concerning the behavior of
the solutions to the two-dimensional incompressible Euler equations of the fluid mechanics.
These equations describe the flow of an incompressible, inviscid fluid, and were first derived
by Leonhard Euler in 1755 [59] – and appear to be the second PDE ever written! The first
one was the wave equation, published by D’Alambert just eight years earlier [49].

The incompressibility constraint

Let us first explain how the Euler equations are derived, either in two or three dimensions.
Each fluid particle is following a trajectory governed by the fluid velocity u(t, x):

dΦt(x)

dt
= u(t,Φt(x)), Φt(x) = x. (3.1.1)

Here, x is the starting position of the particle at the time t = 0, and is sometimes called
“the label”, and the inverse map At : Φt(x) → x is called the “back-to-the-labels” map. If
the flow u(t, x) is sufficiently smooth, the forward map x → Φt(x) should preserve the total
mass, as no fluid particles are created or destroyed. In addition, we will assume that the fluid
density ρ is a constant – physically, this means that the fluid is incompressible. Then, mass
preservation is equivalent to the conservation of the volume. That is, if V0 ⊂ Rd (d = 2, 3) is
an initial volume, then the set

V (t) = {Φt(x) : x ∈ V0},

which is the image of V0 under the evolution by the flow, should have the same volume as V0.
In order to quantify this property, let us define the Jacobian of the map x→ Φt(x):

J(t, x) = det

(
∂Φi

t(x)

∂xj

)
.

Volume preservation is equivalent to the condition

J(t, x) ≡ 1. (3.1.2)
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As Φ0(x) = x, we have J(0, x) ≡ 1, hence (3.1.2) can be restated as

dJ

dt
≡ 0.

The full matrix of the derivatives

Hij(t, x) =
∂Φi

t(x)

∂xj

obeys the evolution equation
dHij

dt
=

n∑
k=1

∂ui
∂xk

∂Φk
t

∂xj
, (3.1.3)

obtained by differentiating (3.1.1) with respect to the labels xj. That is, we have, in the
matrix form

dH

dt
= (∇u)H, (3.1.4)

with

(∇u)ik =
∂ui
∂xk

.

In order to find dJ/dt from (3.1.3), we consider the evolution of a general n×n matrix Aij(t)
and decompose, for each i = 1, . . . , n fixed:

detA =
n∑
j=1

(−1)i+jMijAij.

Here, Mij are the minors of the matrix A. Note that, for all 1 ≤ j′ ≤ n, the minors Mij′ do
not depend on the matrix element Aij, hence

∂

∂Aij
(detA) = (−1)i+jMij.

We conclude that

d

dt
(detA) =

n∑
i,j=1

∂

∂Aij
(detA)

dAij
dt

=
n∑

i,j=1

(−1)i+jMij
dAij
dt

.

Recall also that the inverse matrix A−1 has the elements

(A−1)ij =
1

detA
(−1)i+jMji,

meaning that
n∑
j=1

(−1)j+iMijAkj = (detA)δik.

We apply now this consideration to the matrix Hij(t, x) and obtain

dJ

dt
=

n∑
i,j=1

(−1)i+jMij
d

dt

(∂Φi
t(t, x)

∂xj

)
,
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and

Jδik =
n∑
j=1

(−1)j+iMij
∂Φk

t

∂xj
. (3.1.5)

Here, Mij are the minors of the matrix Hij. As

d

dt

(∂Φi
t(t, x)

∂xj

)
=

∂

∂xj
(ui(t,Φt(x))) =

n∑
k=1

∂ui
∂xk

∂Φk
t

∂xj
,

we get
dJ

dt
=

n∑
i,j,k=1

(−1)i+jMij
∂ui
∂xk

∂Φk
t

∂xj
=

n∑
i,k=1

∂ui
∂xk

Jδik = J(∇ · u). (3.1.6)

Thus, preservation of the volume is equivalent to the incompressibility condition:

∇ · u = 0. (3.1.7)

Exercise 3.1.1 More generally, if the density is not constant, mass conservation would re-
quire that for any initial volume V0 the fluid density ρ(t, x) would satisfy

d

dt

∫
V (t)

ρ(t, x)dx = 0. (3.1.8)

Use this condition to obtain the continuity equation

∂ρ

∂t
+∇ · (ρu) = 0, (3.1.9)

which reduces to (3.1.7) when the density ρ(t, x) is constant in time and space.

Newton’s second law in an inviscid fluid

The incompressibility condition (3.1.7) should be supplemented by an evolution equation for
the fluid velocity u(t, x). This will come from Newton’s second law of motion, which we will,
once again, derive under the assumption that the fluid density is constant. Consider a fluid
volume V . If the fluid is inviscid, so that there is no “internal friction” in the fluid, the only
force acting on this volume is due to the fluid pressure:

F = −
∫
∂V

pνdS = −
∫
V

∇pdx, (3.1.10)

where ∂V is the boundary of V , and ν is the outside normal to ∂V . Taking V to be an
infinitesimal volume at a point X(t), which moves with the fluid, Newton’s second law of
motion leads to the balance

ρẌ(t) = −∇p(t,X(t)). (3.1.11)

We may compute Ẍ(t) starting from the trajectory equation (3.1.1):

Ẍj(t) =
d

dt
(uj(t,X(t)) =

∂uj(t,X(t))

∂t
+
∑
k

Ẋk(t)
∂uj(t,X(t))

∂xk
(3.1.12)

=
∂uj(t,X(t))

∂t
+ u(t,X(t)) · ∇uj(t,X(t)).
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Therefore, we have the following equation of motion:

ρ
(∂u
∂t

+ u · ∇u
)

+∇p = 0. (3.1.13)

The Euler equations

Equations (3.1.7) and (3.1.13) together form the system of the Euler equations for an incom-
pressible inviscid fluid:

ut + (u · ∇)u+∇p = 0, (3.1.14)

∇ · u = 0.

We have set ρ = 1 for convenience. The system (3.1.14) should be supplemented by the initial
condition u(0, x) = u0(x). Moreover, if it is posed in a domain D, we also need to impose
a boundary condition on the flow u(t, x). If the boundary is impenetrable, then the natural
boundary condition is

u · ν|∂D = 0, (3.1.15)

Here, ν is the normal at the boundary ∂D. The Euler equations are also often considered in
the whole space Rd, with the decay conditions at infinity, or on a torus – which is equivalent
to taking periodic initial data in Rd. There are many great textbooks outlining the basic
properties of the Euler equations – see, for example, [36], [102], [56] and [105]. Throughout
this section, we will consider the 2D Euler equations in a smooth bounded domain D, or on
a torus T2.

The Euler equations are some of the most fundamental and widely used partial differential
equations. They are nonlinear and nonlocal, the latter property a consequence of the nonlocal
dependence of the pressure on the fluid velocity. On the physical level, this reflects that
pushing the fluid in one region produces an instantaneous pressure in a different region,
because of the fluid incompressibility. Mathematically, taking the divergence of (3.1.14) and
using the incompressibility of u, we obtain the Poisson equation for the pressure:

−∆p = ∇ · (u · ∇u).

Since the well-known formulas for inversion of the Laplacian are non local, this shows the
non locality of the pressure-velocity relation. This will be even more clear from the nonlocal
Biot-Savart law for the vorticity formulation of the equation presented below. This explains,
from the mathematical point of view, why the analysis of the Euler equations is challenging.
From the intuitive point of view, anyone who observed the flow of a river, or the intricate
structures of the fluid motion in a rising smoke, or a tornado, can understand that only a very
rich and complex system of equations has a chance of modeling these exquisite phenomena.
The solutions of the Euler equations are often very unstable, and prone to creation of small
scale structures. Due to the central role of these equations in mathematical physics, a lot
of studies have focused on these problems over the 250 years that have passed since their
discovery. We have no hope of covering much of this research here, so after a brief overview
we will focus on a few specific questions, including some very recent developments.
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The vorticity formulation of the Euler equations

The theory of the existence, uniqueness and regularity of the solutions to the Euler equations
is quite different in two and three spatial dimensions. In the two dimensional case, there exists
a unique global in time smooth solution for smooth initial data, while for the three dimensional
case an analogous result is only known locally in time. The question of the global existence of
smooth solutions to the Euler equations in three dimensions is a major open problem. This
difference can be illustrated on a basic level by rewriting the Euler equations in a different
form. An important quantity in the fluid mechanics is the vorticity ω = ∇×u, which describes
the rotational motion of the fluid. In three dimensions, if we apply the curl operator to the
system (3.1.14), we obtain the Euler equation in the vorticity form:

ωt + (u · ∇)ω = (ω · ∇)u, (3.1.16)

with the initial condition ω(0, x) = ω0(x).

Exercise 3.1.2 Use vector algebra to derive the vorticity equation (3.1.16) in three dimen-
sions.

The vector field u can be recovered from ω via the Biot-Savart law. In order to obtain this
law in R3, consider the (vector-valued) stream function ψ defined (in terms of the vorticity)
as the solution of the Poisson equation

−∆ψ = ω, in R3. (3.1.17)

Then, one can show via vector algebra that u is given by (see, for example, [56, 102])

u = ∇× ψ. (3.1.18)

That is, if u and ω are related via (3.1.17) and (3.1.18), then ω = ∇× u. Together, (3.1.17)
and (3.1.18) form the Biot-Savart law which expresses the velocity u via the vorticity ω.

Exercise 3.1.3 Verify that u given by (3.1.17)-(3.1.18) satisfies ∇× u = ω. You have to use
the divergence free property of u and some vector identities (or brute force computations).

On the other hand, in the two dimensional case the term in the right side of (3.1.16)
vanishes. Indeed, the solutions of the two-dimensional Euler equations can be thought of as
solutions of the three-dimensional equations of the special form (u1(x1, x2), u2(x1, x2), 0). In
that case, the vorticity vector has only one non-zero component:

ω = (0, 0, ∂1u2 − ∂2u1),

and can be regarded as a scalar. Then, the term in the right side of (3.1.16) is simply

(ω · ∇)u = ω3∂3u,

but the two dimensional u does not depend on x3. Thus, in two dimensions, the vorticity
equation simplifies. We will use the notation

ω = ∂1u2 − ∂2u1, (3.1.19)
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instead of ω3. Given a smooth bounded domain D, let us also define the operator (−∆D)−1 as
follows: given a function ψ, we denote by η = (−∆D)−1ψ the unique solution of the boundary
value problem

−∆η = ψ, in Ω, (3.1.20)

ψ = 0, on ∂Ω.

The vorticity formulation of the two-dimensional Euler equations is the following system:

∂tω + (u · ∇)ω = 0, (3.1.21)

u = ∇⊥(−∆D)−1ω, (3.1.22)

ω(0, x) = ω0(x),

where ∇⊥ = (∂2,−∂1). Note that the flow u defined by (3.1.22) automatically satisfies the
boundary condition

u · ν = 0 on ∂D. (3.1.23)

This is because the gradient of the stream function

ψ = (−∆D)−1ω, u = ∇⊥ψ,

is normal to ∂D at the boundary.

Exercise 3.1.4 Verify that if u(t, x) satisfies the Euler equations in two dimensions, then
the vorticity ω(t, x) given by (3.1.19) satisfies (3.1.21), and u(t, x) and ω(t, x) are related
via (3.1.22).

The vorticity formulation of the Euler equations in two dimensions has significant con-
sequences. As we will see, any Lp norm of the vorticity is conserved for smooth solutions
of (3.1.21). In particular, ‖ω‖L∞ does not change. In contrast, in three dimensions, the
amplitude of vorticity can and often does grow due to the non-zero term in the right side
of (3.1.16). This term is often called the vortex stretching term in the literature.

Our focus in the present chapter will be on the basic questions of existence, uniqueness,
and regularity properties of the solutions to the two dimensional Euler equations. First, we
will present the existence and uniqueness theory of solutions due to Yudovich [142] which
works for a very natural class of initial data. We will then study the small scale formation in
the smooth solutions of the 2D Euler equations, proving an upper bound for the growth of
the derivatives of the solution as well as constructing examples that show that in general this
upper bound is sharp. The set of techniques we will need in this chapter is a rich mix of the
Fourier analysis, ODE methods, comparison principles, and all sorts of other PDE estimates.

3.2 The Yudovich theory

The Yudovich theory addresses the existence and uniqueness of the solutions to the 2D Euler
equations with a bounded initial vorticity. The L∞ class for the vorticity is very natural since
it is preserved by the evolution. In addition, many phenomena in nature, such as hurricanes
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or tornados, feature vorticities with a very sharp variation, hence the theory of solutions with
rough vorticities is not a purely mathematical issue. As we will see, if the initial condition
is more regular, this regularity is reflected in the additional regularity of the solution, even
though the quantitative estimates can deteriorate very quickly. Our exposition in this section
roughly follows [105].

It is not immediately clear how one can define the low regularity solutions (such as L∞) of
the vorticity equation (3.1.21) since we need to take derivatives. A “canonical” way around
that is to define a weak solution of a nonlinear equation via the multiplication of the equation
by a test function and integration by parts, and then to try to obtain some a priori bounds and
use compactness arguments to show that such weak solution exists. However, there is a more
elegant (and efficient) approach for the two-dimensional Euler equations, via a reformulation
of the problem that allows us to define a weak solution in a different way. Given a divergence-
free flow u(t, x), recall our definition of the particle trajectories Φt(x):

dΦt(x)

dt
= u(t,Φt(x)), Φ0(x) = x. (3.2.1)

As we have seen, if u is sufficiently regular and incompressible, (3.2.1) defines a volume
preserving map x→ Φt(x) for each t.

A direct calculation, using the method of characteristics. shows that if ω(t, x) is a smooth
solution of (3.1.21), then

ω(t,Φt(x)) = ω0(x), thus ω(t, x) = ω0(Φ−1
t (x)). (3.2.2)

In addition, if we denote, as before, by GD(x, y) the Green’s function for the Dirichlet Lapla-
cian in a domain D, in the sense that the solution of (3.1.20) is given by

η(x) =

∫
D

GD(x, y)ψ(y)dy, x ∈ D, (3.2.3)

and set
KD(x, y) = ∇⊥xGD(x, y), (3.2.4)

then the Biot-Savart law in two dimensions can be written as

u(t, x) =

∫
D

KD(x, y)ω(t, y) dy. (3.2.5)

A classical C1 solution of the two-dimensional Euler equations (3.1.21) satisfies the sys-
tem (3.2.1), (3.2.2) and (3.2.5). On the other hand, a direct computation shows that a smooth
solution of (3.2.1), (3.2.2) and (3.2.5) gives rise to a classical solution of (3.1.21). Thus, for
smooth solutions the two problems are equivalent. We will generalize the notion of the so-
lution to the 2D Euler equations by saying that a triple (ω, u,Φt(x)) solves the 2D Euler
equations if it satisfies (3.2.1), (3.2.2) and (3.2.5). The obvious next task is to make sense of
the solutions of the latter system with the only requirement that ω0 ∈ L∞. Classically, for the
trajectories of (3.2.1) to be well-defined, the flow u(t, x) needs to be Lipschitz in x. Thus, if it
were true that if ω(t, x) is in L∞, the Biot-Savart law would give a Lipschitz function u(t, x),
then it would be very reasonable to expect (3.2.1), (3.2.2) and (3.2.5) to be a well-posed
system. This is not totally unreasonable – (3.1.22) indicates that u is “one derivative better
than ω”, but is not quite true – the regularity for u(t, x) when ω ∈ L∞ is slightly lower than
Lipschitz. Nevertheless, we will see that this lower regularity is sufficient to define the unique
trajectories of the ODE (3.2.1), making the system well-posed.
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3.2.1 The regularity of the flow

In order to construct the solutions of the 2D Euler equations in the trajectory formula-
tion (3.2.1)-(3.2.5) with the vorticity ω0 ∈ L∞, we first need to establish the regularity of
the fluid flow given by (3.2.5) for a vorticity in L∞. This question is clearly related to the
regularity of the kernel KD(x, y). The following proposition summarizes some well known
properties of the Dirichlet Green’s function (see, for instance, [60, 80]).

Proposition 3.2.1 If D ⊂ R2 is a domain with a smooth boundary, the Dirichlet Green’s
function GD(x, y) has the form

GD(x, y) =
1

2π
log |x− y|+ h(x, y).

Here, for each y ∈ D, h(x, y) is a harmonic function solving

∆xh = 0, h|x∈∂D = − 1

2π
log |x− y|. (3.2.6)

We have GD(x, y) = GD(y, x) for all (x, y) ∈ D, and GD(x, y) = 0 if either x or y belongs
to ∂D. In addition, we have the estimates

|GD(x, y)| ≤ C(D)(log |x− y|+ 1) (3.2.7)

|∇GD(x, y)| ≤ C(D)|x− y|−1, (3.2.8)

|∇2GD(x, y)| ≤ C(D)|x− y|−2. (3.2.9)

The function GD can be sometimes computed explicitly in a closed form (for example for
a plane, a half-plane, a disk, a corner, see e.g. [60]), or as an infinite series (for example
for a square or a rectangle, or a torus). For most domains only estimates as in the above
proposition are available.

Exercise 3.2.2 Use the explicit form of the Green’s function in a disk to show that the
estimates in Proposition 3.2.1 are sharp.

The following lemma outlines a key regularity property of the Green’s function which allows
to construct unique solutions of the Euler equations for the initial vorticity in L∞.

Lemma 3.2.3 The kernel KD(x, y) = ∇⊥GD(x, y) satisfies∫
D

|KD(x, y)−KD(x′, y)| dy ≤ C(D)φ(|x− x′|), (3.2.10)

where

φ(r) =

{
r(1− log r) r < 1
1 r ≥ 1,

(3.2.11)

with a constant C(D) which depends only o the domain D.
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Proof. In what follows, C(D) denotes constants that may depend only on the domain D,
and may change from line to line. To show (3.2.10), we may assume that r = |x − x′| < 1,
otherwise (3.2.10) follows from the simple observation that

|KD(x, y)| ≤ C(D)|x− y|−1,

so that ∫
D

|KD(x, y)|dy ≤ C(D),

which implies (3.2.10) for x, x′ ∈ D such that |x− x′| ≥ 1.

Assume now that r < 1 and suppose first that the interval connecting the points x and x′

lies entirely inside D. Let us set

A = {y ∈ D : |y − x| ≤ 2r}.

The estimate (3.2.8) implies∫
D∩A
|KD(x, y)−KD(x′, y)| dy ≤ C(D)

∫
B2r(x)

1

|x− y|
dy ≤ C(D)r.

To bound the remainder of the integral, observe that for every y,

|KD(x, y)−KD(x′, y)| ≤ r|∇KD(x′′(y), y)|, (3.2.12)

where x′′(y) lies on the interval connecting x and x′. This follows from the mean value theorem
and the assumption that the interval connecting x and x′ lies in D. Then, by (3.2.9) and the
choice of the set A, so that the distances |x − y|, |x′ − y| and |x′′ − y| are all comparable
if y ∈ Ac, we have∫

D∩Ac
|KD(x, y)−KD(x′, y)| dy ≤ C(D)r

∫
D∩Ac

dy

|x′′(y)− y|2

≤ C(D)r

∫ C(D)

r

s−1 ds ≤ C(D)r(1− log r).

The case where the interval connecting x and x′ does not lie entirely in D is similar, one
just needs to replace this interval by a curve connecting x and x′ with the length of the order r.
We briefly sketch the argument. The following lemma can be proved by standard methods
using the compactness of the domain and the regularity of the boundary, so we do not present
its proof.

Lemma 3.2.4 Fix ε > 0 and let D ⊂ R2 be bounded domain with a smooth boundary. Then
there exists r0 = r0(D, ε) > 0 such that if x0 ∈ ∂D, and r ≤ r0, then Br(x0) ∩ ∂D is a
curve that, by a rotation and a translation of the coordinate system, can be represented as a
graph x2 = f(x1), with x0 = (0, 0). The function f is C∞, and f ′(x0,1) = 0. Moreover, the part
of the boundary ∂D within Br(x0) lies in the narrow angle between the the lines x2 = ±εx1.
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With this lemma, suppose we have x and x′ such that the interval connecting these points
does not lie in D. It is enough to consider the case where |x−x′| = r < r0/2, where r0 is as in
Lemma 3.2.4 corresponding to a sufficiently small ε. Indeed, the larger values of |x− x′| can
be handled by adjusting C(D) in (3.2.10). Find a point x0 ∈ ∂D closest to x (it does not have
to be unique). Note that by the assumption that the interval (x, x′) crosses the boundary, we
must have |x − x0| ≤ r0/2 and |x′ − x0| < r0. Thus, both x and x′ lie in the disk B(x0, r0)
where ∂D lies between the lines x2 = ±εx1. It is also not hard to see that x must lie on
the vertical x2-axis of a system of coordinates centered at x0, with the horizontal x1-axis
tangent to ∂D at x0. Since by assumption the interval between x and x′ does not lie in D,
we know that x′ must lie in the narrow angle between the lines x2 = ±εx1. Otherwise, the
interval (x, x′) could not have crossed the boundary. Now take a curve connecting x and x′

consisting of a straight vertical interval from x′ to a point on one of the lines x2 = ±εx1 which
is closest to x, and then an interval connecting this point to x. We can smooth out this curve
without changing its length by much. It is easy to see that the length of this curve does not
exceed 2r if ε is small enough. The rest of the proof goes through as before. �

Now we can state the regularity result for the fluid velocity.

Corollary 3.2.5 The fluid velocity u satisfies

‖u‖L∞ ≤ C(D)‖ω‖L∞ , (3.2.13)

and
|u(x)− u(x′)| ≤ C‖ω‖L∞φ(|x− x′|), (3.2.14)

with the function φ(r) defined in (3.2.11).

Proof. By (3.2.8), we have, for any x, y ∈ D,

|KD(x, y)| ≤ C(D)|x− y|−1,

so that ∣∣∣∣∫
D

KD(x, y)ω(y) dy

∣∣∣∣ ≤ C(D)‖ω‖L∞
∫
D

1

|x− y|
dy ≤ C(D)‖ω‖L∞ ,

which is (3.2.13). The proof of (3.2.14) is immediate from Lemma 3.2.3, as

u(t, x) =

∫
D

KD(x, y)ω(t, y)dy,

and we are done. �
We say that u is log-Lipschitz if it satisfies (3.2.14). We will see that this bound is in fact

sharp: there are velocities that correspond to bounded vorticities which are just log-Lipschitz
and in particular fail to be Lipschitz.

3.2.2 Trajectories for log-Lipschitz velocities

As the fluid velocity with an L∞-vorticity is not necessarily Lipschitz but only log-Lipschitz,
we may not use the classical results on the existence and uniqueness of the solutions of ODEs
with Lipschitz velocities. Nevertheless, as we show next, the log-Lipschitz regularity is suffi-
cient to determine the fluid trajectories uniquely.
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Lemma 3.2.6 Let D be a bounded smooth domain in Rd. Assume that the velocity field b(t, x)
satisfies, for all t ≥ 0:

b ∈ L∞([0,∞)× D̄) |b(t, x)− b(t, y)| ≤ Cφ(|x− y|), b(t, x) · ν|∂D = 0. (3.2.15)

Here, the function φ(r) is given by (3.2.11) and ν is the unit normal to ∂D at point x. Then
the Cauchy problem in D̄

dx

dt
= b(t, x), x(0) = x0, (3.2.16)

has a unique global solution. Moreover, if x0 /∈ ∂D, then x(t) /∈ ∂D for all t ≥ 0. If x0 ∈ ∂D,
then x(t) ∈ ∂D for all t ≥ 0.

Note that the log-Lipschitz regularity is border-line: the familiar example of the ODE

ẋ = xβ, x(0) = 0,

with β ∈ (0, 1) has two solutions: x(t) ≡ 0, and

x(t) =
tp

pp
, p =

1

1− β
,

hence ODE’s with Hölder (with an exponent smaller than one) velocities may have more
than one solution. Existence of the solutions, on the other hand, does not really require the
log-Lipschitz condition: uniform continuity of b(t, x) and at most linear growth as |x| → +∞
would be sufficient, see e.g. [37] for the Peano existence theorem.

Proof. Let us first show the existence and uniqueness of a local solution using a version
of the standard Picard iteration: set

xn(t) = x0 +

∫ t

0

b(s, xn−1(s)) ds, x0(t) ≡ x0.

Let us also assume first that x0 ∈ D. Then, as usual, we have, using the log-Lipschitz property
of b:

|xn(t)− xn−1(t)| ≤
∫ t

0

|b(s, xn−1(s))− b(s, xn−2(s))| ds ≤ C

∫ t

0

φ(|xn−1(s)− xn−2(s)|) ds.

(3.2.17)
As the function φ(r) is concave, we have

φ(r) ≤ φ(ε) + φ′(ε)(r − ε) = ε(1 + log ε−1) + (r − ε) log ε−1 = ε+ r log ε−1,

for every ε < 1. Using this in (3.2.17) gives

|xn(t)− xn−1(t)| ≤ C log(ε−1)

∫ t

0

|xn−1(s)− xn−2(s)| ds+ Ctε.

Exercise 3.2.7 Use an induction argument to show that (3.2.17) implies, for any 0 ≤ t ≤ T :

|xn(t)− xn−1(t)| ≤ CTε
n−2∑
k=0

Ck(log ε−1)ktk

k!
+
Cn−1tn−1(log ε−1)n−1

(n− 1)!
sup0≤t≤T |x1(t)− x0|.

(3.2.18)
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As
|x1(t)− x0| ≤ Ct,

we have

|xn(t)− xn−1(t)| ≤ CTε exp(CT log ε−1) +
CnT n(log ε−1)n−1

(n− 1)!
,

for any ε > 0 and all n ≥ 2, with a constant C that is independent of ε > 0 or n. We may
now choose ε = exp(−n) and T sufficiently small so that 1− CT > 1/2. This leads to

|xn(t)− xn−1(t)| ≤ CT exp(−n/2) +
CnT nnn−1

(n− 1)!
.

The Stirling formula

n! ∼
√

2πn
(n
e

)n
,

implies that if T is sufficiently small (independently of n), then

|xn(t)− xn−1(t)| ≤ αn,

with α < 1. Thus, xn(t) converges uniformly to a limit x(t). The uniformity of the convergence
implies that the limit satisfies the integral equation

x(t) = x0 +

∫ t

0

b(s, x(s)) ds. (3.2.19)

We also need to choose T so that |x(t)− x0| ≤ dist(x0, ∂D). Taking

T < ‖b‖−1
L∞dist(x0, ∂D), (3.2.20)

would suffice. As b is bounded, we may differentiate (3.2.19) and obtain the desired ODE

dx(t)

dt
= b(t, x(t)), x(0) = x0,

for a.e. t on the time interval 0 ≤ t ≤ T .
Next, we show the uniqueness of this local solution – here, the log-Lipchitz property will

play a crucial role. We will prove a little more general stability estimate than needed for
the uniqueness, as we will need it later. Let σ > 0 be a small number. Suppose that x(t)
and y(t) are two different solutions of (3.2.16) with the initial data satisfying |x0 − y0| < σ.
Set z(t) = x(t)− y(t). Then, by the log-Lipschitz assumption on b, we have

|ż(t)| ≤ Cφ(z(t)), |z(0)| < σ.

In order to control z(t), define fδ(t) as the solution of

ḟδ = 2Cφ(fδ(t)), fδ(0) = δ > σ > 0.

We claim that |z(t)| ≤ fδ(t) for all t. Indeed, this is true for some initial time interval, simply
because δ > σ > 0 and both z(t) and fδ(t) are continuous. Let t1 > 0 be the smallest time
such that z(t1) = fδ(t1) (the case z(t1) = −fδ(t1) is similar). At this time we have

ż(t1)− ḟδ(t1) ≤ −Cφ(z(t1)) < 0,
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contradicting the definition of t1. Thus, no such t1 exists and

|z(t)| ≤ fδ(t) for all t ≥ 0, and all δ > σ > 0. (3.2.21)

Now, we need an estimate on fδ(t). Let us show that for any t > 0 fixed we have

lim
δ→0+

fδ(t) = 0. (3.2.22)

It suffices to consider the case where δ is small and times are small enough so that fδ(t) < 1.
Then we have

d

dt
log fδ(t) = 2C(1− log fδ(t)).

Solving this differential equation leads to

1− log fδ(t) = (1− log δ)e−2Ct,

or
fδ(t) = δexp(−2Ct) exp(1− exp(−2Ct)), (3.2.23)

whence (3.2.22) follows. If the initial conditions for x(t) and y(t) are the same, so that σ = 0,
then |z(t)| ≤ fδ(t) for every δ > 0. Then, (3.2.21) and (3.2.22) imply that z(t) ≡ 0, hence the
solution x(t) of (3.2.16) is unique.

Exercise 3.2.8 Identify the place in the uniqueness proof above, where we have used the
log-Lipschitz condition on the function b(t, x), that is, where the proof would have failed, for
example, for φ(r) = rβ, with β ∈ (0, 1).

We now address the question of the global existence. Having constructed a local solution
until a time t, we can continue to extend our local solution from t to a time t + ∆t, using
the local in time existence we have just proved, since x(t) is inside D. However, as (3.2.20)
shows, the time step ∆t depends on the distance from x(t) to ∂D. Thus, in order to construct
a global in time solution we need to control this distance. Let us set

d(t) = dist(x(t), ∂D),

with d(0) ≡ d0 > 0 since x0 ∈ D. Our goal is to get a lower bound on d(t). Note first that
since b ∈ L∞, the function d(t) is Lipschitz in time. Thus, by the Rademacher theorem (see,
for instance, [61]), d′(t) exists almost everywhere, and

d(t) = d0 +

∫ t

0

d′(s) ds.

We will now estimate d′(t) from below at any given time t for which the local solution is
defined. Consider the set

S = {P ∈ ∂D ||x(t)− P | = d(t).}

This set depends on the time t, of course, but we will suppress this dependence in the notation.
Given κ > 0, define

Sκ = {Q ∈ ∂D |∃P ∈ S, |Q− P | < κ.} .
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We can think of the set Sκ as the points on ∂D that are very close to the points at which the
distance between x(t) and ∂D is realized. Therefore, we expect these points to be important
for the estimate of how the distance changes. Fix some small ε > 0. Let us choose κ so that
if Q ∈ Sκ, then there exists P ∈ S such that∣∣∣∣ Q− x(t)

|Q− x(t)|
− νP

∣∣∣∣ < ε

‖b‖L∞
. (3.2.24)

Here, νP is the outside unit normal to ∂D at the point P. Such κ(ε) exists due to the
smoothness of the boundary ∂D.

Exercise 3.2.9 Assume that the boundary ∂D can be represented around the point P as
a graph ∂D = (w, g(w)) with P = (0, 0) and g′(0) = 0. Assume that the function g(w) is
bounded in C2 and find an explicit bound for κ which ensures that (3.2.24) holds.

Let us now proceed to estimate d(s) for times s slightly large than t. Consider first any
point Q ∈ ∂D\Sκ. The set ∂D\Sκ is compact, and dist(x(t), Q) > d(t) for every Q ∈ ∂D\Sκ.
Therefore, there exists γ > 0 such that

|x(s)−Q| ≥ d(t) + γ − ‖b‖L∞(s− t).

Thus, if
0 < s− t ≤ γ‖b‖−1

L∞ ,

then |x(s)−Q| ≥ d(t) for any Q ∈ ∂D \ Sκ.
Next, suppose that Q ∈ Sκ. We have

x(s)−Q = x(t) +

∫ s

t

b(r, x(r)) dr −Q,

so that

|x(s)−Q| ≥
(
x(t)−Q+

∫ s

t

b(r, x(r)) dr

)
·
(
x(t)−Q
|x(t)−Q|

)
≥

≥ |x(t)−Q| −
∣∣∣∣∫ s

t

b(r, x(r)) · νP dr
∣∣∣∣− ‖b‖L∞(s− t)ε‖b‖−1

L∞

≥ |x(t)−Q| −
∣∣∣∣∫ s

t

(b(r, x(r))− b(r, P )) · νP dr
∣∣∣∣− ε(s− t)

≥ d(t)− C
∫ s

t

φ(|x(r)− P |)dr − ε(s− t). (3.2.25)

Here, in the second step we used (3.2.24), in the third step we used the boundary condition

b(r, P ) · nP = 0,

and in the last step we used the log-Lipschitz condition on b. Now, if s satisfies

0 < s− t < d(t)

2‖b‖L∞
,
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then
|x(r)− P | ≤ 2d(t) for every r ∈ [t, s],

and
φ(|x(r)− P |) ≤ 2φ(d(t)).

Using this in (3.2.25) gives

d(s) ≥ d(t)− (2Cφ(d(t)) + ε) (s− t)

for all s > t sufficiently close to t. Since ε > 0 is arbitrary, it follows that

d′(t) ≥ −2Cφ(d(t))

at every t such that the derivative exists. Solving this differential inequality, similarly
to (3.2.23), we obtain

d(t) ≥ d
exp(Ct)
0 exp(1− exp(Ct)). (3.2.26)

Therefore, the local solution can be continued indefinitely in time, and x(t) will never arrive
at ∂D if x0 /∈ ∂D.

It remains to consider the case where x0 ∈ ∂D. In this case, take xn ∈ D, n = 1, . . . , such
that

lim
n→∞

xn = x0,

and consider the corresponding solutions xn(t). Due to the estimates (3.2.21) and (3.2.23),
the sequence xn(t) is Cauchy in C([0, T ],Rd) for any T < ∞. Therefore it has a limit x(t)
in this space, and this limit satisfies the integral form (3.2.19). We can then differentiate
it in time, arriving at (3.2.16) for a.e. t. Finally, we claim that x(t) ∈ ∂D for all times
if x0 ∈ ∂D. Indeed, suppose there exists t0 such that x(t0) /∈ ∂D. Let us invert time and solve
the characteristic backwards:

dy

ds
= −b(t0 − s, y(s)), y(0) = x(t0). (3.2.27)

Then y(s) and x(t0 − s) satisfy the same differential equation with log-Lipschitz coefficient,
so by our previous result on uniqueness, we know that y(s) = x(t0 − s). But this means
that y(s) starts at x(t0) ∈ D and arrives at x0 ∈ ∂D in a finite time. This contradicts our
earlier estimates that apply in the same fashion to the backwards equation (3.2.27). �

3.2.3 The approximation scheme

Let us return to our strategy of constructing a triple (ω, u,Φt(x)) solving (3.2.1), (3.2.2)
and (3.2.5), with the initial vorticity ω0 ∈ L∞. We define an iterative sequence of approxi-
mations

d

dt
Φn
t (x) = un(t,Φn

t (x)), (3.2.28)

un(t, x) =

∫
D

KD(x, y)ωn−1(t, y) dy, (3.2.29)

ωn(t, x) = ω0((Φn
t )−1(x)), (3.2.30)
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with ω0(t, x) ≡ ω0(x) ∈ L∞ for all t ≥ 0. Note that since the velocities un defined by (3.2.29)
satisfy the no flow boundary conditions at ∂D, and by Corollary 3.2.5 and Lemma 3.2.6, the
solutions of the trajectory equation (3.2.28) exist and are unique. Moreover, the trajectory
maps Φn

t (x) are injective due to the uniqueness of the backward trajectories and surjective due
to the global existence of these backward trajectories. Therefore, the inverse maps (Φn

t )−1(x)
in (3.2.30) are well-defined. Both the direct and the inverse trajectory maps are also continu-
ous in x for each t on D̄ due to the estimates (3.2.21) and (3.2.23), and map D to D and ∂D
to ∂D. In fact, it follows from (3.2.23) that these maps also satisfy the Hölder regularity
bounds, which we will spell out precisely in a moment.

Intuitively, each successive approximation involves solving a linear problem

ωnt + (un · ∇)ωn = 0, (3.2.31)

with the flow

un(t, x) =

∫
D

KD(x, y)ωn−1(t, y) dy,

computed from the previous iteration. Note that each ωn ∈ L∞, with

‖ωn(t)‖L∞ ≤ ‖ω0‖L∞ .

However, one can not take (3.2.31) too literally, since we only know that ω0 is in L∞.
The next step is to obtain uniform bounds on the solutions of the approximation scheme

that will allow us to pass to the limit n→∞ and get a solution of (3.2.1)-(3.2.5).

The Hölder regularity of the approximate trajectories

We will now obtain a uniform continuity bound on the trajectories Φn
t (x). Note first that

Corollary 3.2.5 implies that all un(t, x) are uniformly bounded and log-Lipschitz:

|un(t, x)− un(t, x′)| ≤ C(D)φ(|x− x′|). (3.2.32)

Let us first recall the following result.

Exercise 3.2.10 Let u(t, x) be a uniformly Lipschitz function in x: there exists a constant C
so that

|u(t, x)− u(t, y)| ≤ C|x− y|, for all t ≥ 0 and x, y ∈ Rd. (3.2.33)

Show that the solution of (3.2.28) satisfies a Lipschitz bound

|Φt(x)− Φt(y)| ≤ eCt|x− y|. (3.2.34)

In contrast to (3.2.34), we have the following Hölder estimate for the flow map when the
velocity is only log-Lipschitz.

Lemma 3.2.11 Suppose that D ⊂ Rd is a smooth bounded domain, and the map Φt(x) is
generated by a log-Lipschitz vector field b(t, x) satisfying assumptions of Lemma 3.2.6. Then
for every x, y ∈ D̄ with |x− y| ≤ 1/2, and while |Φt(x)− Φt(y)| ≤ 1/2, we have

|x− y|eCt ≤ |Φt(x)− Φt(y)| ≤ |x− y|e−Ct . (3.2.35)

The constant C in (3.2.35) only depends on the constant in the log-Lipschitz bound for b.
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Of course, one can write the corresponding bounds for all x, y ∈ D (recall that D is bounded,
so |x− y| ≤ C(D)). We restrict to the ≤ 1/2 range to simplify the argument. Also note that
the bound similarly applies to Φ−1

t (x).
This is a rather remarkable estimate: we can show that Φt(x) is Hölder continuous in

space for any t ≥ 0, but the Hölder exponent deteriorates in time. This is a reflection of
the complexity of the dynamics: the exponent in the upper bound in (3.2.35) tends to zero
as t → +∞ because two trajectories that start very close at t = 0 may diverge very far at
large times. On the other hand, the exponent in the lower bound in (3.2.35) grows as t→ +∞
because even if at the time t = 0 the starting points x and y are ”relatively far apart” (but
with |x − y| ≤ 1), they can be extremely close at large times. This deterioration of the
estimates is not an artefact of the proof – we will later see that the trajectories of the Euler
equations can get extremely close at large times.

Proof. The result is of course closely related to the estimates (3.2.21) and (3.2.23). Let
us fix x and y, and set F (t) = |Φt(x)− Φt(y)|. We compute∣∣∣∣ ddtF 2(t)

∣∣∣∣ = 2 |(Φt(x)− Φt(y)) · (b(Φt(x), t)− b(Φt(y), t))| ≤ 2C(D, ‖ω0‖L∞)F (t)φ(F (t)),

so that

|F ′(t)| ≤ CF (t)max(1, 1− logF (t)).

Recall that we only need to consider the case when F (t) ≤ 1/2. Then, we have

|F ′(t)| ≤ CF (t) logF (t)−1

with an adjusted constant C, which leads to

[logF (0)]eCt ≤ logF (t) ≤ [logF (0)]e−Ct.

The estimate (3.2.35) follows immediately from exponentiating this inequality and taking into
account that F (0) = |x− y|.

The flow map corresponding to divergence free log-Lipschitz velocity is measure
preserving

It will be also useful for us to know that the trajectory maps corresponding to log-Lipschitz
vector fields are measure preserving. We have discussed that if u is smooth and ∇ · u = 0,
then the associated trajectories map is measure preserving. However, this argument does
not apply directly when the vector field u(t, x) is just log-Lipschitz in the spatial variable.
Indeed, we only have the weakening in time Hölder estimates for the trajectories map. Hence,
taking its derivatives and their products to study the Jacobian is not straightforward. We
will instead use an approximation argument to establish this property.

Lemma 3.2.12 Let D ∈ Rd and b(t, x) satisfy the assumptions of Lemma 3.2.6. Assume, in
addition, that ∇ · b = 0 in the distributional sense. Then, the trajectory map Φt(x) defined by
the vector field b(t, x) according to (3.2.1) is measure preserving on D.
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Proof. From the proof of Lemma 3.2.6 and Lemma 3.2.11, we already know that Φt(x),
is a Hölder continuous bijection on D. It suffices to check the preservation of measure for
an arbitrary d-dimensional interval lying in D, at a positive distance from ∂D. Fix such
interval I and an arbitrary time T > 0. We will use a smooth incompressible flow that
approximates b(t, x) in a neighborhood of Φt(I). It is constructed as follows. According to
the estimate (3.2.26), there exists κ > 0 such that

dist(Φt(I), ∂D) ≥ κ for all 0 ≤ t ≤ T.

Take any δ < κ/2, and set

Iδ := {x ∈ D |dist(x, I) < δ} .

Further decreasing δ if necessary, we may ensure that

dist(Φt(Iδ), ∂D) ≥ κ/2 for all 0 ≤ t ≤ T.

Let η(x) be a standard mollifier:

η ∈ C∞0 (Rd), η(x) = 0 if |x| ≥ 1, and

∫
Rd
η(x) dx = 1.

Take any ε < κ/4, and define

bε = ηε ∗ b,

with ηε(x) = η(x/ε). The flow bε(t, x) is defined for all x such that dist(x, ∂D) < ε. In
addition, it is smooth, and it is easy to check that bε(t, x) is divergence free. Let us denote
the trajectory map corresponding to bε(t, x) by Φε

t(x). We have

|Φt(x)− Φε
t(x)| ≤

∣∣∣∣∫ t

0

(b(s,Φs(x))− b(s,Φε
s(x))) ds

∣∣∣∣+

∣∣∣∣∫ t

0

(b(s,Φε
s(x)))− bε(s,Φε

s(x))) ds

∣∣∣∣
≤ C

∫ t

0

φ(|Φs(x)− Φε
s(x)|) + Cφ(ε)t. (3.2.36)

Here we used the log-Lipschitz bound on b to estimate both terms. We have assumed above
that Φε

t(x) does not come within distance ε to the boundary ∂D, and we now verify that this
indeed does not happen if we choose ε to be small enough. One can see from (3.2.36) that

|Φt(x)− Φε
t(x)| ≤ g(t),

where g(t) satisfies

g′(t) = Cφ(g(t)) + Cφ(ε), g(0) = 0.

Exercise 3.2.13 Let h(t) be the solution of

h′(t) = Cφ(h(t)), h(0) = Cφ(ε)T.

Show that g(t) ≤ h(t), for 0 ≤ t ≤ T.
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We can find h(t) explicitly (at least while h(t) ≤ 1):

h(t) = (Cφ(ε)T )exp(−Ct) exp(1− exp(−Ct)).

Therefore, there exists β = β(T ) > 0 such that

|Φt(x)− Φε
t(x)| ≤ Cεβ (3.2.37)

for all 0 ≤ t ≤ T. We can then choose ε so that, in particular, we have

|Φt(x)− Φε
t(x)| ≤ κ/4 for all 0 ≤ t ≤ T ,

and so Φε
t(x) stays at least distance ε away from ∂D for all x ∈ Iδ during this time interval.

Next, take a cut-off function f ∈ C∞0 (Iδ) such that

0 ≤ f(x) ≤ 1, ‖∇f(x)‖L∞ ≤ Cδ−1, and f(x) = 1 if x ∈ I,

Observe that

|Φ−1
t (I)| =

∫
D

χI(Φt(x)) dx ≤
∫
D

f(Φt(x)) dx ≤
∫
D

χIδ(Φt(x)) dx = |Φ−1
t (Iδ)|, (3.2.38)

and

|I| = |(Φε
t)
−1(I)| ≤

∫
D

f(Φε
t(x)) dx ≤ |(Φε

t)
−1(Iδ)| = |Iδ|. (3.2.39)

We used in (3.2.39) the fact that (Φε
t)
−1 is measure preserving since this map is generated by

a smooth incompressible velocity field. On the other hand, for 0 ≤ t ≤ T we have∣∣∣∣∫
D

f(Φt(x)) dx−
∫
D

f(Φε
t(x)) dx

∣∣∣∣ ≤ ‖∇f‖L∞|D| sup
x∈Iδ,0≤t≤T

|Φt(x)− Φε
t(x)| ≤ C(D)εβ

δ
.

(3.2.40)
We used (3.2.37) in the last step. Taking δ to zero, and simultaneously taking ε = δ2/β to
zero (so that the right hand side of (3.2.40) goes to zero too), and using (3.2.38), (3.2.39)
and (3.2.40), we conclude that

|Φ−1
t (I)| ≤ |I|,

for every interval I ⊂ D at a positive distance from ∂D, and any 0 ≤ t ≤ T. It follows that
the same is true for any open set Ω ⊂ D : |Φ−1

t (Ω)| ≤ |Ω|. An analogous argument using∫
D

f(Φ−1
t (x)) dx, and

∫
D

f((Φε
t)
−1(x)) dx,

leads to the inequality |Φt(Ω)| ≤ |Ω|. Since Φt, Φ−1
t are continuous and bijective, these two

inequalities together imply that these maps are measure preserving.
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Convergence of the approximation scheme

Let us now investigate the convergence of the sequence (ωn, un,Φn
t ). The estimate (3.2.35)

implies that for every T > 0, we have

Φn
t (x) ∈ Cα(T )([0, T ]× D̄),

for some α(T ) > 0. The Arzela-Ascoli theorem implies that we can find a subsequence nj such
that Φ

nj
t (x) converges uniformly to Φt(x) ∈ C([0, T ]×D). Moreover, since (3.2.35) is uniform

in n, the limit Φt(x) also satisfies (3.2.35), thus

Φt(x) ∈ Cα(T )([0, T ]× D̄).

In addition, as all Φn
t are measure-preserving, so is Φt(x).

Exercise 3.2.14 Prove this statement. You can use an argument similar to the proof of
Lemma 3.2.12, or try a more direct approach.

The lower bound in (3.2.35) which applies to Φn
t uniformly implies that Φt(x) is invertible.

As Φ−1
t satisfies the same estimate (3.2.35), it also belongs to Cα(T )([0, T ]× D̄). We may then

define the corresponding vorticity

ω(t, x) = ω0(Φ−1
t (x)),

and the fluid velocity

u(t, x) =

∫
D

KD(x, y)ω(t, y) dy.

For the simplicity of notation, we relabel the subsequence nj by n.

Lemma 3.2.15 We have |u(t, x)−un(t, x)| → 0, as n→∞, uniformly in D̄ for all t ∈ [0, T ].

Proof. Note that

|u(t, x)− un(t, x)| =
∣∣∣∣∫
D

(KD(x,Φt(z))−KD(x,Φn
t (z)))ω0(z) dz

∣∣∣∣ .
Given ε > 0, choose N so that |Φt(x)−Φn

t (x)| < δ, for all n ≥ N and for all x ∈ D̄, t ∈ [0, T ],
with δ > 0 to be determined later. Then we have

|u(t, x)− un(t, x)| ≤ ‖ω0‖L∞
∫
D

|KD(x, z)−KD(x, y(z))| dz. (3.2.41)

Note that by Lemma 3.2.12 the map y(z) = Φn
t ◦ Φ−1

t (z) is measure preserving, and

|y(z)− z| = |Φn
t (Φ−1

t (z))− Φt(Φ
−1
t (z))| < δ,

for every z. As usual, we split the integral in (3.2.41) into two regions: in the first one we
have ∫

B3δ(x)∩D
|KD(x, z)−KD(x, y(z))| dz ≤ 2C

∫
B3δ(x)

dz

|x− z|
≤ 2Cδ,
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while in the second∫
Bc3δ(x)∩D

|KD(x, z)−KD(x, y(z))| dz ≤ Cδ

∫
Bc3δ(x)∩D

|∇KD(x, p(z))| dz

≤ Cδ

∫
Bcδ

dz

|x− z|2
≤ Cδ log δ−1. (3.2.42)

Here, p(z) is a point on a curve of length ≤ 2δ that connects z and y(z). If the interval
connecting these points lies in D̄ then this interval can be used as this curve. If not, one can
use an argument similar to that in the proof of Lemma 3.2.3. Thus choosing δ sufficiently
small we can make sure that the difference of the velocities does not exceed ε.

Exercise 3.2.16 Fill in all the details in the last step in the proof of the Lemma.

We are now ready to show that

d

dt
Φt(x) = u(t,Φt(x)).

Indeed, we have

Φn
t (x) = x+

∫ t

0

un(Φn
s (x), s) ds,

and, taking n→∞, using Lemma 3.2.15 and the definition of Φt(x), we obtain

Φt(x) = x+

∫ t

0

u(Φs(x), s) ds.

Thus, the limit triple (ω(t, x), u(t, x),Φt(x)) satisfies the Euler equations in our generalized
sense, completing the proof of the existence of solutions. �

3.3 Existence and uniqueness of the solutions

Let us now, finally, state the main result on the existence and uniqueness of the solutions
of the two-dimensional Euler equations with ω0 ∈ L∞. The existence part of this theorem
summarizes what has been proved above using the approximation scheme.

Theorem 3.3.1 Given T > 0, there exists α(T ) > 0 so that for any ω0 ∈ L∞(D) there
is a unique triple (ω(t, x), u(t, x),Φt(x)), with the vorticity ω ∈ L∞([0, T ], L∞(D)), the fluid
velocity u(t, x) uniformly bounded and log-Lipschitz in x, and Φt ∈ Cα(T )([0, T ]×D̄) a measure
preserving, invertible mapping of D̄, which satisfy

dΦt(x)

dt
= u(Φt(x)), Φ0(x) = x, (3.3.1)

ω(t, x) = ω0(Φ−1
t (x)),

u(t, x) =

∫
D

KD(x, y)ω(y, t) dy.
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It is clear from the statement of the theorem that ω(t, x) converges to ω0(x) as t→ 0 in the
weak-∗ sense in L∞: for any test function η ∈ L1(D) we have∫

D

ω(t, x)η(x)dx =

∫
D

ω0(Φ−1
t (x))η(x)dx =

∫
D

ω0(x)η(Φt(x))dx→
∫
D

ω0(x)η(x)dx, (3.3.2)

as t→ 0. Indeed, as ω is uniformly bounded in L∞(D), it suffices to check (3.3.2) for smooth
functions η, for which we have∫

D

|η(Φt(x))− η(x)|dx ≤ ‖∇η‖L∞
∫
D

|Φt(x)− x|dx ≤ C(D)‖∇η‖L∞‖u‖L∞t.

Proof of Theorem 3.3.1. As we have already established the existence and regularity of
the solutions, it remains only to prove the uniqueness. Suppose that there are two solution
triples (ω1, u1,Φ1

t ) and (ω2, u2,Φ2
t ) satisfying the properties described in Theorem 3.3.1, and

set

η(t) =
1

|D|

∫
D

|Φ1
t (x)− Φ2

t (x)| dx.

Let us write

|Φ1
t (x)− Φ2

t (x)| ≤
∫ t

0

|u1(s,Φ1
s(x))− u1(s,Φ2

s(x))| ds+

∫ t

0

|u1(s,Φ2
s(x))− u2(s,Φ2

s(x))| ds.

(3.3.3)
By Corollary 3.2.5, the first integral in the right side of (3.3.3) can be bounded by

C‖ω0‖L∞
∫ t

0

φ(|Φ1
s(x)− Φ2

s(x)|) ds.

For the second integral in (3.3.3), consider the difference

u1(s,Φ2
s(x))− u2(s,Φ2

s(x)) =

∫
D

KD(Φ2
s(x), y)ω1(s, y) dy −

∫
D

KD(Φ2
s(x), y)ω2(s, y) dy

=

∫
D

(
KD(Φ2

s(x),Φ1
s(y))−KD(Φ2

s(x),Φ2
s(y))

)
ω0(y) dy,

where we used the vorticity evolution formula in (3.3.1). Averaging (3.3.3) in x, we now
obtain

η(t) ≤ C‖ω0‖L∞
|D|

∫ t

0

ds

∫
D

φ(|Φ1
s(x)− Φ2

s(x)|) dx

+
C

|D|

∫ t

0

ds

∫
D

|ω0(y)|
∫
D

|KD(x,Φ1
s(y))−KD(x,Φ2

s(y))| dxdy

≤ C(D)‖ω0‖L∞
∫ t

0

ds

∫
D

φ(|Φ1
s(x)− Φ2

s(x)|) dx
|D|

. (3.3.4)

We used Lemma 3.2.3 in the last step. As the function φ is concave, we may use Jensen’s
inequality to exchange φ and averaging in the last expression in (3.3.4):

η(t) ≤ C(D)‖ω0‖L∞
∫ t

0

φ(η(s)) ds.
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In addition, we have η(0) = 0. An argument very similar to the proof of uniqueness in
Lemma 3.2.6 (based on the log-Lipschitz property of the function φ) can be now used to
prove that η(t) = 0 for all t ≥ 0.

Exercise 3.3.2 Work out the details of this argument.

This completes the proof of the theorem.

Regularity of the solutions for regular initial data

So far, we have only assumed that ω0 ∈ L∞. Of course, the Yudovich construction applies
also if the initial condition ω0 possesses additional regularity. In that case, the solution ω(t, x)
inherits this extra regularity. This is expressed by the following theorem.

Theorem 3.3.3 Suppose that ω0 ∈ Ck(D̄), k ≥ 1. Then the solution described in Theo-
rem 3.3.1, satisfies, in addition, the following regularity properties, for each t > 0 fixed:

ω(t) ∈ Ck(D̄), Φt(x) ∈ Ck,α(t)(D̄), and u ∈ Ck,β(D̄),

for all β < 1. In addition, the kth order derivatives of u are log-Lipschitz.

The regularity of the flow u(t, x) is similar in spirit to that in Theorem 3.3.1 – there, L∞

initial data for vorticity led to log-Lipschitz u(t, x). Here, Ck initial condition ω0(x) leads to
a flow u(t, x) which has a log Lipschitz derivative of the order k. The first proof of a result
similar to Theorem 3.3.3 goes back to the work of Wolibner and of Hölder in the early 1930s.
We will provide a detailed argument for the case of k = 1, larger values of k will be left as an
exercise for the reader. The following result is classical.

Theorem 3.3.4 Suppose that D is a domain in Rd with smooth boundary, and let ψ be the
solution of the Dirichlet problem

−∆ψ = ω,

ψ|∂D = 0.

If ω ∈ Cα(D̄), α > 0, then ψ ∈ C2,α(D̄), and

‖∂iψ‖C1,α ≤ C(α,D)‖ω‖Cα.

This result was originally proved by Kellogg in 1931. Schauder later established a similar
bound for more general elliptic operators. Such estimates are commonly called the Schauder
estimates, the reader may consult [60, 80] for the proof. We will use this estimate for the
stream function

ψ(t, x) = (−∆D)−1ω, u(t, x) = ∇⊥ψ(t, x).

We have already proved that if ω0 ∈ L∞(D̄), then Φ−1
t (x) ∈ Cα(t)(D̄) for all t ≥ 0,

with α(t) = e−Ct. Since
ω(t, x) = ω0(Φ−1

t (x)),

if, in addition, we know that ω0 ∈ C1(D̄), we then automatically have ω(t, x) ∈ Cα(t)(D̄), so
that the vorticity is Hölder continuous. By Theorem 3.3.4, we deduce that the flow u(t, x) has a
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Hölder continuous derivative: u(t, x) ∈ C1,α(t)(D̄). However, this a priori Hölder exponent α(t)
decreases as t grows, while we are looking to prove that u(t, x) ∈ C1,β(D̄), for all β ∈ (0, 1),
hence this a priori information is not sufficient.

A simple calculation starting with the trajectories equation leads to

d

dt
|Φt(x)− Φt(y)|2 ≤ 2‖∇u(t, ·)‖L∞|Φt(x)− Φt(y)|2, (3.3.5)

where we now know that the derivatives of u are bounded for all t, even though their size
may grow with time. Integrating (3.3.5) in time and using the initial condition

|Φ0(x)− Φ0(y)| = |x− y|,

we obtain

exp
{
−
∫ t

0

‖∇u(s, ·)‖L∞ ds
}
≤ |Φt(x)− Φt(y)|

|x− y|
≤ exp

{∫ t

0

‖∇u(s, ·)‖L∞ ds
}
. (3.3.6)

This inequality will be useful for us later. For now, we observe that it implies that Φt(x)
is Lipschitz for every t ≥ 0. We would like to show that, in fact, Φt(x) ∈ C1,α(t)(D̄) for
all t ≥ 0. For this purpose we need a couple of technical lemmas. In what follows, we adopt
the summation convention: we sum over repeated indexes.

Lemma 3.3.5 There exists a set S ⊆ D of full measure so that for all x ∈ S we have

∂jΦ
k
t (x) = δjk +

∫ t

0

∂lu
k(s,Φs(x))∂jΦ

l
s(x) ds, (3.3.7)

for all t ≥ 0.

Proof. By the Rademacher theorem (see, e.g. [61]), it follows from (3.3.6) that Φt(x) is
differentiable in x a.e. in D̄, for each t fixed. Next, note that by the Fubini theorem, it
follows that for a.e. x, Φt(x) is differentiable in x for a.e. t. We let S be the set of such x.

Let now x ∈ S, set

y = x+ ej∆x,

where ej is a unit vector in jth direction, and consider the finite differences

Φk
t (y)− Φk

t (x)

∆x
= δjk +

∫ t

0

uk(s,Φs(y))− uk(s,Φs(x))

∆x
ds. (3.3.8)

We may write, explicitly listing the coordinates

uk(s,Φs(y))− uk(s,Φs(x))

∆x
=
uk(s,Φ1

s(y),Φ2
s(y))− uk(s,Φ1

s(x),Φ2
s(y))

Φ1
s(y)− Φ1

s(x)

Φ1
s(y)− Φ1

s(x)

∆x

+
uk(s,Φ1

s(x),Φ2
s(y))− uk(s,Φ1

s(x),Φ2
s(x))

Φ2
s(y)− Φ2

s(x)

Φ2
s(y)− Φ2

s(x)

∆x
.
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Since u ∈ C1,α(D̄), it is not difficult to show, using the mean value theorem, that the
first factors in the two products in the right side converge, as ∆x → 0, uniformly in x,
to ∂lu

k(s,Φs(x)), l = 1, 2 respectively. On the other hand, the ratios

Φl
s(y)− Φl

s(x)

∆x

are controlled in L∞ by the Lipschitz estimate (3.3.6). Moreover, for x ∈ S, the ratio converges
to ∂jΦ

l
s(x) for a.e. s ∈ [0, t]. By the Lebesgue dominated convergence theorem, we have the

convergence of the integral in (3.3.8) to the integral in (3.3.7). �
Now, for x, y ∈ S we find from (3.3.7) that

∂t∂jΦ
k
t (x) = ∂lu

k(t,Φt(x))∂jΦ
l
t(x)

for all t, and similarly for y. Without loss of generality, we may confine our considerations
to x, y such that |x− y| ≤ 1. Consider the expression

∂t(∂jΦ
k
t (x)− ∂jΦk

t (y)) = (∂lu
k(t,Φt(x))− ∂luk(t,Φt(y)))∂jΦ

l
t(x)

+ ∂lu
k(t,Φt(y))(∂jΦ

l
t(x)− ∂jΦl

t(y)).

It follows that

∂t|∂jΦk
t (x)− ∂jΦk

t (y)| ≤ ‖Φt‖Lip‖∇u‖Cα(t) |Φt(x)− Φt(y)|α(t) + ‖∇u‖L∞|∂jΦl
t(x)− ∂jΦl

t(y)|,

where we denote by ‖Φt‖Lip the Lipschitz bound we have on Φt(x) in x for a given t. Let us
denote

F (t) =
∑
k,j

|∂jΦk
t (x)− ∂jΦk

t (y)|.

Then we get
Ḟ (t) ≤ ‖∇u(·, t)‖L∞F (t) + |x− y|α(t)‖Φt‖2

Lip‖∇u‖Cα(t) .

This inequality holds for every t > 0 with the corresponding value of α(t). Fix an arbitrary
time interval [0, T ]. By applying the Gronwall inequality, we conclude that for all x, y ∈ S
and all t ∈ [0, T ] we have

|∂jΦk
t (x)− ∂jΦk

t (y)| ≤ C(‖ω0‖C1 , T )|x− y|α(T ). (3.3.9)

Note that the dependence of the constant in (3.3.9) on T can be pretty complex – it is
controlled by the size of norms that we showed to be finite for every time but never traced
their growth. We will obtain a more clear cut, quantitative bound on the possible growth
later.

Now we need one more elementary lemma.

Lemma 3.3.6 Suppose that f : D̄ ⊂ Rd 7→ R is Lipschitz. Suppose there exists a set of full
measure S such that ∇f(x) exists for x ∈ S, and moreover for every x, y ∈ S we have

|∇f(x)−∇f(y)| ≤ C|x− y|γ (3.3.10)

for some fixed constant C and 0 < γ < 1. Then f ∈ C1,γ(D̄).
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Proof. Since S is full measure, we can extend ∇f by continuity to a function g = (g1, . . . , gd)
defined on all D̄. Namely, we set g(x) = ∇f(x) if x ∈ S. If x /∈ S, then we take any
sequence xn ∈ S → x, and define g(x) = limn→∞∇f(xn). Note that the sequence ∇f(xn) is
Cauchy due to (3.3.10), so the limit is well-defined. It is also straightforward to check that
the definition is unambiguous (different sequences in S lead to the same limit), and that the
resulting function g ∈ Cγ(D̄). It remains to show that in fact f is everywhere differentiable
and ∇f(x) ≡ g(x).

Without loss of generality, let us consider ∂1f. Let x = (x1, x̃) ∈ D, where x̃ = (x2, . . . , xd);
the case x ∈ ∂D is similar. Given x1, let us denote the set of x̃ such that (x1, x̃) ∈ D by
F. Suppose first that x̃ is such that ∇f(y1, x̃) exists for a.e. y1 such that (y1, x̃) ∈ D. We
know that a.e. x̃ ∈ F is like that, and we denote this set by G. We also know that if x̃ ∈ G,
then ∇f(y1, x̃) = g(y1, x̃) for those a.e. y1 where it exists. Then for every (y1, x̃) ∈ D and
sufficiently close to (x1, x̃), we have

f(y1, x̃) = f(x1, x̃) +

∫ y1

x1

∂1f(z1, x̃) dz1 = f(x1, x̃) +

∫ y1

x1

g1(z1, x̃) dz1.

But this implies that ∂1f(x1, x̃) exists and is equal to g(x1, x̃). Assume now that x̃ belongs to
the exceptional measure zero set F \G where ∇f(y1, x̃) fails to exist for a set of y1 of positive
measure. But then we can find x̃n ∈ G such that x̃n → x̃ as n→∞. For each x̃n, we have

f(y1, x̃n) = f(x1, x̃n) +

∫ y1

x1

g1(z1, x̃n) dz1

for all y1 close enough to x1. Passing to the limit in this equality, we find

f(y1, x̃) = f(x1, x̃) +

∫ y1

x1

g1(z1, x̃) dz1.

This implies that ∂1f(x1, x̃) exists and is equal to g1(x1, x̃) in this case, too. �

Exercise 3.3.7 Work out the details of the above argument in the case of (x1, x̃) ∈ ∂D.

We conclude that the following lemma holds.

Lemma 3.3.8 For every t ≥ 0, the function ∂jΦ
k
t (x) belongs to Cα(t)(D̄) and (3.3.7) holds

for all x, t.

Now, the proof of Theorem 3.3.3 in the case k = 1 is straightforward.
Proof. Indeed, since Φt(x) is measure preserving, we have

det∇Φt = 1,

and then the derivatives of the inverse map Φ−1
t (x) satisfy the bounds analogous to those

of Φt (this can also be derived by solving the backwards characteristic equation). Then,
Lemma 3.3.8 implies immediately that

ω(t, x) = ω0(Φ−1
t (x))

is C1(D̄) for all times. �

Exercise 3.3.9 Carry out the analogous computations for k > 1, proving Theorem 3.3.3 in
this case.
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3.4 Examples of stationary solutions of the 2D Euler

equations

Here, we discuss some basic examples of the stationary 2D Euler flows. We will construct
them on the two-dimensional torus T2 = [−π, π]× [−π, π] rather than in a bounded domain,
as the periodic boundary conditions are particularly convenient for explicit computations. In
the periodic case, the Biot-Savart law has the form

u = ∇⊥(−∆)−1ω,

where (−∆) is the Lapalacian on T2. The inverse of the Laplacian is easiest to define through
the Fourier transform:

(−∆)−1f(x) =
∑
k∈Z2

eikx|k|−2f̂(k),

where

f̂(k) =

∫
T2

e−ikxf(x)
dx

(2π)2
.

Note that the inverse Laplacian is only defined for functions which have mean zero. We will
assume in this section that ω0 satisfies this condition:∫

T2

ω0(x)dx = 0.

As the solution Φt(x) of the 2D Euler equations is measure-preserving, we see that then∫
T2

ω(t, x)dx =

∫
T2

ω0(Φ−1
t (x))dx =

∫
T2

ω0(x)dx = 0,

so that the mean-zero condition on the vorticity holds for all times.
A stationary solution of the 2D Euler equations satisfies

(u · ∇)ω = 0,

or
(∇⊥(−∆)−1ω) · ∇ω = 0, (3.4.1)

at every x. Let us denote by
ψ = (−∆)−1ω

the stream function of the flow, so that u = ∇⊥ψ, and (3.4.1) is

∇⊥ψ · ∇ω = 0.

As
ω = −∆ψ,

the flow is clearly stationary if the stream function satisfies

−∆ψ = f(ψ),

for some smooth function f. The simplest examples of stream functions of stationary flows
are the eigenfunctions of the periodic Laplacian, with f(ψ) = λψ.
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A shear flow

Consider a flow with the stream function

ψ(x1, x2) = ω(x1, x2) = cos x2,

which is an eigenfunction of the Laplacian on the torus. The corresponding flow, called a
shear flow, is unidirectional:

u(x1, x2) = (− sinx2, 0). (3.4.2)

The trajectories of such shear flow are horizontal straight lines:

X1(t) = x1 − t sinx2, X2(t) = x2. (3.4.3)

Exercise 3.4.1 Describe how a vertical interval γ0 = {(0, x2), − π ≤ x2 ≤ π} is evolved by
the shear flow.

A cellular flow

A cellular flow has the stream function

ψ(x1, x2) =
1

2
ω(x1, x2) = − sinx1 sinx2,

which is also an eigenfunction of the Laplacian on the torus, and the corresponding flow is

u(x1, x2) = (− cosx2 sinx1, cosx1 sinx2).

This flow has four vortices in the four quadrants of the torus [−π, π] × [−π, π], and, in
particular, a hyperbolic point at the origin. More generally, we informally refer to a flow as
cellular if it is smooth, and its streamlines have the same geometry: four vortices separated
by separatrices which are straight lines.

The “singular cross”

An important example of a Yudovich solution of the 2D Euler equations is the “singular cross”
flow, considered by Bahouri and Chemin [5]. It corresponds to the vorticity ω0 which equals
to (−1) in the first and third quadrants of the torus (−π, π] × (−π, π], and to (+1) in the
other two quadrants:

ω0(x1, x2) = −1 for {0 ≤ x1, x2 ≤ π} and {−π ≤ x1, x2 ≤ 0}, (3.4.4)

ω0(x1, x2) = 1 for {0 ≤ x1 ≤ π, −π ≤ x2 ≤ 0}, and {−π ≤ x1 ≤ 0, 0 ≤ x2 ≤ π}.

As for a cellular flow, the singular cross has four vortices, one in each quadrant of the torus,
and a hyperbolic point at the origin. We will next verify that the above ω0 is a stationary
Yudovich solution of the Euler equations. To do this, we will consider the vorticity equation
with the initial condition ω0 and show that the solution equals to ω0 for all t ≥ 0. We will see
that for this initial condition, the fluid velocity u is just log-Lipschitz, and the flow map Φt(x)
is indeed only Hölder continuous with the exponent that is exponentially decaying in time.

The first step is an important conservation of symmetry. Note that ω0 has the symmetries

ω0(x1, x2) = −ω0(−x1, x2) = −ω0(x1,−x2) (3.4.5)

on the torus (−π, π]× (−π, π].
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Lemma 3.4.2 If the initial condition ω0 ∈ L∞, and satisfies the symmetries (3.4.5), then
the Yudovich solution of the 2D Euler equations satisfies the same symmetries for all t ≥ 0:

ω(t, x1, x2) = −ω(t,−x1, x2) = −ω(t, x1,−x2). (3.4.6)

This result, and the proof below, also apply when the 2D Euler equations are set in a domain D
that is symmetric with respect to the coordinate axes.

Proof. Clearly, it is sufficient to prove the conservation of the odd symmetry with respect
to the {x1 = 0} axis, since the choice of the coordinates does not affect the properties of the
solutions. Suppose that the triple (ω(t, x1, x2), u(t, x1, x2), Φt(t, x1, x2)) is a Yudovich solution
of the 2D Euler equations, and set

ω(1)(t, x1, x2) = −ω(t,−x1, x2).

The stream functions ψ(t, x1, x2) and ψ(1)(t, x1, x2) satisfy

−∆ψ(t, x1, x2) = ω(t, x1, x2),

and
−∆ψ(1)(t, x1, x2) = ω(1)(t, x1, x2) = −ω(t,−x1, x2).

It is easy to see that these stream functions are related via

ψ(1)(t, x1, x2) = −ψ(t,−x1, x2). (3.4.7)

Hence, the corresponding flows

u(t, x1, x2) = ∇⊥ψ(t, x1, x2),

and
u(1)(t, x1, x2) = ∇⊥ψ(1)(t, x1, x2),

are related by

u(1)(t, x1, x2) = (∂2ψ
(1)(t, x1, x2),−∂1ψ

(1)(t, x1, x2)) = (−∂2ψ(t,−x1, x2),−∂1ψ(t,−x1, x2))

= (−u1(t,−x1, x2), u2(t,−x1, x2)). (3.4.8)

The flow map corresponding to u(1) is the solution of

dΦ
(1)
t,1

dt
= −u1(t,−Φ

(1)
t,1 ,Φ

(1)
t,2 ),

dΦ
(1)
t,2

dt
= u2(t,−Φ

(1)
t,1 ,Φ

(1)
t,2 ), Φ

(1)
t (0, x1, x2) = (x1, x2),

and is given by
Φ

(1)
t (t, x1, x2) = (−Φ1

t (−x1, x2),Φ2
t (−x1, x2)).

Note that Φ
(1)
t is bijective on D and measure preserving since u(1) is incompressible and

log-Lipschitz. Next, note that

ω(1)
(
t,Φ

(1)
t,1 (x),Φ

(1)
t,2 (x)

)
= ω(1)

(
t,−Φ1

t (−x1, x2),Φ2
t (−x1, x2)

)
= −ω

(
t,Φ1

t (−x1, x2),Φ2
t (−x1, x2)

)
= −ω0(−x1, x2) = ω(1)(0, x1, x2) ≡ ω

(1)
0 (x1, x2).

155



Therefore, ω(1) satisfies

ω(1)(t, x) = ω
(1)
0

(
(Φ

(1)
t )−1(x)

)
.

Hence, the triple

(ω(1)(t, x1, x2)), u(1)(t, x1, x2),Φ
(1)
t (t, x1, x2))

is also a Yudovich solution of the 2D Euler equations with the initial condition

ω
(1)
0 (x1, x2) = −ω0(−x1, x2).

If ω0 is odd with respect to x1, the initial data for (ω, u,Φt) and (ω(1), u(1),Φ
(1)
t ) coincide.

Hence by uniqueness of solutions these two solutions must coincide, and the therefore the
symmetry is preserved in time. �

Now we can verify that the singular cross solution is a stationary solution.

Lemma 3.4.3 The solution of the 2D Euler equations with the ”singular cross” initial con-
dition ω0 is stationary, that is, ω(t, x) ≡ ω0(x) for all t ≥ 0.

Proof. Since ω0 is odd with respect to both x1 and x2, by Lemma 3.4.2 the solution ω(t, x)
has the same property. According to (3.4.8), u1 is odd with respect to x1, hence

u1(t, 0, x2) = 0 for all t ≥ 0.

Similarly, we have

u2(t, x1, 0) = 0 for all t ≥ 0.

An identical argument shows that

u1(t, π, x2) = u2(t, x1, π) = 0.

This and log-Lirschitz property of u shows that the particle trajectories never cross the
lines x1 = 0, π and x2 = 0, π. Thus, the whole trajectory Φt(x) which starts inside one
of the four quadrants of the torus, will stay inside that quadrant. As

ω(t, x) = ω0(Φ−1
t (x)),

and ω0 is constant in each of the four quadrants, this shows that

ω(t, x) ≡ ω0,

for all t ≥ 0. �

The periodic Biot-Savart law

The following more explicit form of the periodic Biot-Savart law will be useful for us in
showing that the flow generated by the singular cross is only log-Lipschitz, as well as in other
examples in this chapter.
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Proposition 3.4.4 Let ω ∈ L∞(T2) be a mean zero function. Then the vector field

u = ∇⊥(−∆)−1ω (3.4.9)

is given by

u(x) = − 1

2π
lim
γ→0

∫
R2

(x− y)⊥

|x− y|2
ω(y)e−γ|y|

2

dy, (3.4.10)

where ω has been extended periodically to all R2.

As will be clear from the proof, the formula holds for a broader class of ω than L∞. However
we will not pursue full generality here since ω ∈ L∞ is all we need.

Proof. Relation (3.4.9) can be re-written as

u(x) =
∑
k∈Z2

eikx
ik⊥

|k|2
ω̂(k)

with k⊥ = (k2,−k1). To connect this expression to (3.4.10), observe first that for a smooth ω
we have ∑

k∈Z2

eikx
ik⊥

|k|2
ω̂(k) = lim

γ→0

∫
R2

eipx
ip⊥

|p|2

∫
R2

e−ipy−γ|y|
2

ω(y)
dydp

(2π)2
, (3.4.11)

where the function ω(y) is extended periodically to the whole plane.

Exercise 3.4.5 Check the above identity by substituting the Fourier series for ω(y) on the
right hand side and integrating in y to obtain the Gaussian approximation of identity.

On the other hand, recall that the inverse Laplacian in the whole plane is given by

(−∆)−1f(x) =

∫
R2

eikx
1

|k|2

∫
R2

e−ikyf(y)
dydk

(2π)2
= − 1

2π

∫
R2

log |x− y|f(y) dy (3.4.12)

if the function f is sufficiently regular and rapidly decaying (see e.g. [60]). After an integration
by parts, the expression in the right side of (3.4.11), with the help of (3.4.12), can be written
as ∫

R2

eipx
1

|p|2

∫
R2

e−ipy∇⊥
(
ω(y)e−γ|y|

2
) dydp

(2π)2
= − 1

2π

∫
R2

log |x− y|∇⊥
(
ω(y)e−γ|y|

2
)
.

Integrating by parts, we obtain (3.4.10).
To extend (3.4.10) to ω which are just bounded, let us first show that the limit in (3.4.10)

exists in this case. There is not enough decay in the integrand on the right hand side for
absolute convergence when γ = 0, but periodicity and the mean zero property of ω turn out
to be sufficient.

Take φ ∈ C∞0 (R2) such that 0 ≤ φ(x) ≤ 1, φ(x) = 1 if x ∈ B10, and φ(x) = 0 if x ∈ Bc
20.

Write the right hand side of (3.4.10) as

lim
γ→0

(∫
R2

(x− y)⊥

|x− y|2
φ(x− y)ω(y)e−γ|y|

2

dy +

∫
R2

(x− y)⊥

|x− y|2
(1− φ(x− y))ω(y)e−γ|y|

2

dy

)
.

(3.4.13)
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Then in the first summand we can pass to the limit without any problem. In the second
summand, write ω(y) = −∆ψ; the function ψ satisfying this equality exists due to periodicity
and the mean zero property of ω and can be found explicitly on the Fourier side. Note that by
Sobolev imbedding, ‖ψ‖L∞ ≤ C‖ω‖L∞ . In the second summand in (3.4.13), we will integrate
by parts two times, taking ∆ off ψ. If any of the derivatives fall on φ, we get finite integration

region and can pass to the limit as well. If both derivatives fall on (x−y)⊥

|x−y|2 , we get enough decay
for absolute convergence when γ = 0, and so can pass to the limit by dominated convergence
theorem. If both derivatives fall on e−γ|y|

2
, the resulting term is bounded by

Cγ‖ψ‖L∞
∫
R2\B10

1

|y|
(1 + γ|y|2)e−γ|y|

2

dy ≤ Cγ1/2‖ω‖L∞
∫
R2

(
1 +

1

|z|

)
e−|z|

2

dz,

where we applied scaling z = γ1/2y.

Exercise 3.4.6 Consider the remaining case where one derivative falls on (x−y)⊥

|x−y|2 , while the

other on e−γ|y|
2
.

Now that we know that the limit in (3.4.10) exists for ω ∈ L∞, take ωn ∈ C∞ that con-
verges to ω in all Lp, p <∞: a standard approximation of identity mollification suffices here.
Then ψn converge to ψ in W 2,p, and by the Sobolev imbedding ‖ψ − ψn‖L∞ → 0. Following
through the arguments above, we can check that the limit in the right hand of (3.4.10) for ωn
converges to that for ω for every x. On the other hand, we proved that for smooth ωn, (3.4.10)
holds, and it is straightforward to check from (3.4.9) and Sobolev imbedding that un converges
to u uniformly. Together, these three observations complete the proof of (3.4.10) for ω ∈ L∞.

Expression (3.4.10) shows that the 2D Euler evolution on a torus can be equivalently
viewed as the evolution on the plane with periodic initial data if we understand the Biot-
Savart law in the sense of the principal value integral (3.4.10).

Log-Lipschitzianity of the singular cross

Next, we show that the flow of the singular cross is only log-Lipschitz, and not Lipschitz.

Proposition 3.4.7 Consider the singular cross solution described above. Then, for small
positive x1, we have

u1(x1, 0) =
4

π
x1 log x1 +O(x1). (3.4.14)

The estimate (3.4.14) corresponds to u1 being just log-Lipchitz near the origin. Hence the
estimates on the fluid velocity in the Yudovich theory are qualitatively sharp.

Proof. Let us use the Biot-Savart law (3.4.10)

u1(x1, 0) =
1

2π
lim
γ→0

∫
R2

y2

(x1 − y1)2 + y2
2

ω0(y)e−γ|y|
2

dy, (3.4.15)

with ω0(y) given by (3.4.4). Let us denote S = [−1, 1]× [−1, 1], and represent u1(x1, 0) as a
sum of two components:

u1(x1, 0) = uS1 (x1, 0) + uF1 (x1, 0).

Here, uS1 (x1, 0) is the contribution from the integration over S in (3.4.15) (the “near field”),
while uF1 (x1, 0) comes from the integration over the complement of S (the ”far field”). We
first claim the result of the following exercise.
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Exercise 3.4.8 Verify that, for 0 ≤ x1 ≤ 1/2, we have∣∣∣∣limγ→0

∫
R2\S

y2

(x1 − y1)2 + y2
2

ω0(y)e−γ|y|
2

dy

∣∣∣∣ ≤ Cx1,

and thus
|uF1 (x1, 0)| ≤ Cx1,

One way to perform this computation is to use the odd symmetries of ω0, and its mean-zero
property, which leads to an extra cancellation and effectively a faster decay in the kernel.
Alternatively, one can adapt an argument similar to the one in the proof of Proposition 3.4.4.

In the term uS1 (x1, 0), we can freely pass to the limit γ → 0 and use the symmetry to
simplify the expression:

πuS1 (x1, 0) =
1

2

∫
S

y2

(x1 − y1)2 + y2
2

ω0(y) dy =

∫ 1

0

dy2

∫ 1

−1

y2

(x1 − y1)2 + y2
2

ω0(y1, y2)dy1

= −2x1

∫ 1

0

∫ 1

0

y1y2

((x1 − y1)2 + y2
2)((x1 + y1)2 + y2

2)
dy1dy2. (3.4.16)

In the last step, we used that ω0(y1, y2) = −1 on [0, 1]×[0, 1]. Let us consider the contributions
from different regions of integration in (3.4.16). The integral over the region [0, 1] × [0, 2x1]
can be estimated as∫ 1

0

∫ 2x1

0

y1y2

((x1 − y1)2 + y2
2)((x1 + y1)2 + y2

2)
dy1dy2

≤ C

∫ 1

0

dz2

∫ x1

0

dz1
x1z2

(z2
1 + z2

2)(x2
1 + z2

2)
≤ C

∫ x1

0

x1

x2
1 + z2

2

dz2 ≤ C.

The region [0, 2x1]× [2x1, 1] contributes∫ 2x1

0

dy1

∫ 1

2x1

dy2
y1y2

((x1 − y1)2 + y2
2)((x1 + y1)2 + y2

2)
dy1dy2

≤ C

∫ x1

0

dz1

∫ 1

x1

dz2
x1z2

(z2
1 + z2

2)2
≤ C

∫ x1

0

x1dz1

z2
1 + x2

1

≤ C.

We need to be slightly more careful in the region [2x1, 1]× [2x1, 1]. Here, the first observation
is

Exercise 3.4.9 Show that∣∣∣∣∫ 1

2x1

∫ 1

2x1

y1y2

((x1 − y1)2 + y2
2)((x1 + y1)2 + y2

2)
dy1dy2 −

∫ 1

x1

∫ 1

x1

y1y2

(y2
1 + y2

2)2
dy1dy2

∣∣∣∣ ≤ C.

The second step is to note that∫ 1

x1

∫ 1

x1

y1y2

(y2
1 + y2

2)2
dy1dy2 =

∫ 1

x1

y1

(
1

y2
1 + x2

1

− 1

y2
1 + 1

)
dy1

=

∫ 1

x21

dz1

z1 + x2
1

+O(1) = −2 log x1 +O(1).

Collecting all the estimates, we arrive at (3.4.14).

159



The Hölder regularity of the singular cross flow map

A characteristic curve starting at a point (x0
1, 0), with x0

1 ∈ (0, π) is just the interval

Φt((x
0
1, 0)) ≡ (x1(t), 0),

moving towards the origin. If x0
1 is sufficiently small, the component x1(t) will satisfy

ẋ1(t) ≤ x1(t) log x1(t),

and so
d

dt
(log x1(t)) ≤ log x1(t),

so that

log x1(t) ≤ et log x0
1,

and

x1(t) ≤ x1(0)exp(t). (3.4.17)

This estimate has an interesting consequence for the Hölder regularity of the flow map. Since
the origin is a stationary point of the flow, the inverse flow map Φ−1

t (x) can be Hölder
continuous only with a decaying in time exponent (at most e−t). In fact, the exponent is
a little weaker than that since our estimate on the characteristic convergence to zero is not
sharp. Of course, the direct flow map Φt(x) also has a similar property; to establish it one
needs to look at characteristic lines moving along the vertical separatrix.

Exercise 3.4.10 Verify the latter claim by a direct calculation. You do not have to redo
the proof of Proposition 3.4.7, you can use symmetry to conclude the analogous asymptotic
behavior for u2(0, x2), with a different sign.

This observation shows that the Hölder bounds on the flow map in Yudovich theory are also
qualitatively sharp.

3.5 An upper bound on the growth of the gradient of

vorticity

We return now to the time-dependent two-dimensional Euler equations (3.1.21) in a smooth
bounded domain D:

∂tω + (u · ∇)ω = 0,

u = ∇⊥(−∆D)−1ω, (3.5.1)

ω(0, x) = ω0(x),

with ∇⊥ = (∂2,−∂1). Recall that the boundary condition

u · n = 0, on ∂D, (3.5.2)
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holds automatically – see the remark below (3.1.23). We now consider a regular initial vor-
ticity ω0, and ask how fast the higher derivatives of the solution may grow. This issue is
related to the small scale creation in fluids, a phenomenon that is ubiquitous in applications
in physics and engineering. We witness this process in observing thin filaments in turbulent
flows, in the structure of hurricanes and in boiling water in our kitchen. The main result in
this section addresses such upper bound on the growth of the small scales in solutions. A
similar bound is implicit already in the work of Wolibner [137] and Hölder [85], and has been
stated explicitly by Yudovich.

Theorem 3.5.1 Assume that ω0 ∈ C1(D̄). Then the gradient of the solution ω(t, x) satisfies
the following bound

‖∇ω(·, t)‖L∞ ≤ (‖∇ω0‖L∞ + 1)Ct exp ‖ω0‖L∞ (3.5.3)

for all t ≥ 0.

This upper bound grows at a double exponential rate in time which is extremely fast. We
will later see that, actually, this bound is sharp, at least in domains with boundaries.

The gradient growth for passive scalars

The 2D Euler vorticity is an active scalar: it satisfies an advection equation

ωt + (u · ∇)ω = 0, (3.5.4)

with a flow u(t, x) which is related to the vorticity itself via the Biot-Savart law. Before we
look at the vorticity gradient growth, and go to the proof of Theorem 3.5.1, let us see what
happens for passive scalars: these are solutions of the advection equation

ϕt + (u · ∇)ϕ = 0, ϕ(0, x) = ϕ0(x), (3.5.5)

with a prescribed flow u(t, x) which does not depend on the solution ϕ(t, x) of (3.5.5). The
equation has exactly the same form as the 2D Euler vorticity equation, except u and ϕ are not
coupled: u is given and the initial data ϕ0 is arbitrary, and doesn’t have to be the vorticity
of u(0, x). In order to see what can happen, we consider some explicit examples, coming from
the stationary solutions of the 2D Euler equations that we have discussed above.

A shear flow

First, let us look at a passive scalar advected by the shear flow

u(x1, x2) = (− sinx2, 0). (3.5.6)

Recall that the trajectories of this flow are

Φ1
t (x) = x1 − t sinx2, Φ2

t (x) = x2. (3.5.7)

The passive scalar ϕ(t, x) is a solution of

∂tϕ+ (u · ∇)ϕ = 0, ϕ(x, 0) = ϕ0(x). (3.5.8)
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For the shear flow (3.5.6), we can solve for ϕ(x, t) explicitly:

ϕ(t,Φ1
t (x),Φ2

t (x)) = ϕ0(x1, x2).

Taking into account expressions (3.5.7) for Φ1
t (x),Φ2

t (x), we get

ϕ(t, x1, x2) = ϕ0(x1 + t sinx2, x2).

Therefore, ∇ϕ(t, x) grows only linearly in t in a shear flow.

A cellular flow

Next, consider a cellular flow

u(x1, x2) = (− cosx2 sinx1, cosx1 sinx2).

This flow is similar to the singular cross flow: it has four vortices in the four quadrants of the
torus [−π, π]× [−π, π], and, in particular, a hyperbolic point near the origin. However, unlike
the singular cross flow, the cellular flow is smooth. Note that near the origin the flow looks
like u ∼ (x1,−x2), so that e1 is the contracting direction and e2 is the unstadle direction. A
trajectory starting at a point (x1, 0) on the x1-axis is a straight line with Φ1

t (x) a solution of

Φ̇1
t (x) = − sin Φ1

t (x).

Thus, if x1 is small, then
Φ1
t (x) ∼ x1e

−t.

Then for a solution ϕ(x1, x2, t) of the passive scalar equation (3.5.8) with such u, we have

ϕ(t, x1, 0) ∼ ϕ0(x1e
t, 0). (3.5.9)

Therefore, ∇ϕ(t, x) grows exponentially in time for a cellular flow.
The exponential in time growth of ∇ϕ(t, x) is actually the fastest one can have for a

passive scalar advected by a smooth flow.

Exercise 3.5.2 Prove that if the flow u = u(x) in (3.5.8) is smooth and time-independent,
and the initial data ϕ0 ∈ C∞(T2), then

‖ϕ(x, t)‖Hs ≤ CeCt,

for all times t > 0, where C depends only on u, s and ϕ0. To show this, differentiate the
passive scalar equation, and consider the resulting equation for ϕj(t, x) = ∂ϕ/∂xj.

A passive scalar advected by a singular cross

Looking back at a passive scalar advected by a cellular flow, we see that the limitation on the
growth of ∇ϕ(t, x) comes from (3.5.9): a cellular flow trajectory starting at a point (0, x2)
on the vertical line (with a small x2 > 0) will approach the fixed point (0, 0) exponentially
fast in time but not faster. The reason for this is the Lipschitz regularity of the flow. As
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we have previously seen, for a singular cross, these points get close at a rate which is doubly
exponential in time. To articulate this further, consider a passive scalar advected by the
singular cross flow:

∂tϕ+ (u · ∇)ϕ = 0, ϕ(0, x) = ϕ0(x).

Choose ϕ0(x) to be a smooth function such that ϕ0(0) = 0 and ϕ0(δ) = 1 for a small
number δ > 0 such that u1(x1, 0) ≤ x1 log x1 for all 0 ≤ x1 ≤ δ. Then, we have

ϕ(Φt((δ, 0)), t) = ϕ0(δ) = 1,

and ϕ(0, t) = 0 since the origin is a stagnation point. On the other hand, due to our estimates
on the singular cross flow, we know that

Φt(δ, 0) ≤ δexp(t).

By the mean value theorem, we conclude that

‖∇ϕ(·, t)‖L∞ ≥ δ− exp(t),

thus resulting in double exponential growth in the gradient of passively advected scalar. Thus,
the singular cross flow can lead to a double exponential growth in the gradient of the passive
scalar. The question we will soon look into is whether such scenario is also relevant for the 2D
Euler equations with smooth initial data, where the vorticity is advected by the flow but is
not a passive scalar.

The Kato inequality

A key step in the proof of Theorem 3.5.1 is the following inequality due to Kato.

Proposition 3.5.3 (Kato) Let D be a smooth compact domain, ω ∈ Cα(D), α > 0, and u
be given by the usual Biot-Savart law

u = ∇⊥(−∆D)−1ω.

Then

‖∇u‖L∞ ≤ C(α,D)‖ω‖L∞
(

1 + log

(
1 +
‖ω‖Cα
‖ω‖L∞

))
. (3.5.10)

The operators ∂jk(−∆)−1 are called the (iterated) Riesz transforms. The Calderon-Zygmund
theory proves that the Riesz transforms are bounded on all Lp, 1 < p <∞ (see, e.g. [130]). The
derivatives of the fluid velocity u are exactly the Riesz transforms of the vorticity. However,
we need to control the L∞ norm of ∇u since this is what appears in (3.3.6). The L∞ bound
on the Riesz transform of a function ω in terms of just ‖ω‖L∞ is not true, and we need a little
extra – a logarithm – of a higher order norm of ω to control the L∞ norm of ∇u.

The proposition also has applications to the three dimensional case, where it leads to
a well known conditional regularity statement for the solutions of 3D Euler equation, the
Beale-Kato-Majda criterion [12]. In three dimensions, there is no control on ‖ω‖L∞ anymore.
However, using the bound (3.5.10), one can show that the finiteness of the integral∫ T

0

‖ω‖L∞ dt,
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implies the regularity of the solution on [0, T ]. Thus ‖ω‖L∞ “controls” the possible blow up
in 3D case: solutions cannot develop a singularity without∫ T

0

‖ω‖L∞ dt

also becoming infinite.
Before proving Proposition 3.5.3, we need the following lemma.

Lemma 3.5.4 Let D be a smooth compact domain, ω ∈ Cα(D̄) for some α > 0, and u(x) be
given by the Biot-Savart law

u(x) =

∫
D

KD(x, y)ω(y) dy,

then
∂ui(x)

∂xj
= P.V.

∫
D

∂KD,i(x, y)

∂xj
ω(y) dy +

(−1)j

2
ω(x)(1− δij). (3.5.11)

Proof. This is a fairly standard computation so we outline the main steps. Since ω ∈ Cα(D̄)
implies u ∈ C1,α(D̄), it suffices to prove (3.5.11) for every point x ∈ D; the equality will
extend to ∂D by continuity. Proposition 3.2.1 implies that KD(x, y) can be written as

KD(x, y) =
1

2π

(x− y)⊥

|x− y|2
+∇⊥x h(x, y). (3.5.12)

The function h(x, y) is smooth for x ∈ D, so the contribution of the second term on the ride
hand side of (3.5.12) to ∇u(x) is simply∫

D

∇x[∇⊥x h(x, y)]ω(y) dy.

Set ρ := dist(x, ∂D) > 0. Then, the first term in (3.5.12) can be split as

u(1)(x) =
1

2π

∫
D

(x− y)⊥

|x− y|2
ω(y)ηρ(x− y) dy +

1

2π

∫
D

(x− y)⊥

|x− y|2
ω(y)(1− ηρ(x− y)) dy. (3.5.13)

Here, η(y) ≡ η(|y|) is a smooth cut-off function, so that η(y) = 1 if |y| ≤ 1/2 and η(y) = 0
if |y| ≥ 1, and ηρ(y) = ρ−dη(y/ρ). Note that the second term in (3.5.13) can be differentiated
in a straightforward fashion, since the integrand is regular in x because of the cut-off. The
first term is a convolution

u(11)(x) =
1

2π

∫
R2

(x− y)⊥

|x− y|2
ω(y)ηρ(x− y) dy =

1

2π

∫
R2

y⊥ηρ(y)

|y|2
ω(x− y) dy. (3.5.14)

Let us assume for the moment that ω ∈ C1(D̄). As the kernel

K̃(y) =
y⊥

|y|2
χρ(y)
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has an integrable singularity at y = 0, we have

∂u
(11)
i (x)

∂xj
=

1

2π

∫
R2

(y⊥)i
|y|2

∂ω(x− y)

∂xj
ηρ(y) dy = − 1

2π

∫
R2

(y⊥)i
|y|2

∂ω(x− y)

∂yj
ηρ(y) dy. (3.5.15)

One can not immediately integrate by parts in (3.5.15) – that would create a non-integrable
singularity in y. Thus, we write

∂u
(11)
i (x)

∂xj
= − 1

2π
lim
ε→0

∫
|y|≥ε

(y⊥)i
|y|2

∂ω(x− y)

∂yj
ηρ(y) dy (3.5.16)

=
1

2π
lim
ε→0

[ ∫
|y|≥ε

∂

∂yj

((y⊥)i
|y|2

ηρ(y)
)
ω(x− y) dy +

∫
|y|=ε

(y⊥)i
|y|2

yj
|y|
ω(x− y)ηρ(y) dy

]
.

The first term in (3.5.16), combined with the corresponding derivatives of the second terms
on the right hand sides of (3.5.13) and (3.5.12), contributes the term involving derivatives
of KD(x, y) in (3.5.11). The second term in (3.5.16) gives, in the limit ε→ 0:

1

2π
ω(x)

∫
|y|=1

(y⊥)iyjdy =
(−1)j

2
(1− δij)ω(x),

which is the second term in (3.5.11). The result holds for ω ∈ Cα by approximation with C1

functions.

Exercise 3.5.5 Carry out all the details of the computation above.

The proof of Proposition 3.5.3

Let us set

δ = min

(
c,

(
‖ω0‖L∞
‖ω(x, t)‖Cα

)1/α
)
.

Here, c > 0 is some fixed constant that depends on D, chosen so that the set of points x ∈ D
with dist(x, ∂D) ≥ 2δ is not empty. Consider first any interior point x such that

dist(x, ∂D) ≥ 2δ.

Let us look at the representation (3.5.11). The part of the integral over the complement of
the ball centered at x with radius δ can be estimated as∣∣∣∣∣
∫
Bcδ(x)

∇KD(x, y)ω(y) dy

∣∣∣∣∣ ≤ C‖ω0‖L∞
∫
Bcδ(x)

|x− y|−2 dy ≤ C‖ω0‖L∞(1 + log δ−1). (3.5.17)

Here, we used a bound (3.2.9) from the Proposition 3.2.1.
Next, recall, once again, that the Dirichlet Green’s function is given by

GD(z, y) =
1

2π
log |z − y|+ h(z, y), (3.5.18)
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where h is harmonic in D in z for each fixed y ∈ D and has boundary the value

h(z, y) = − 1

2π
log |z − y|, z ∈ ∂D.

Any second order partial derivative at z = x of the first term in the right side of (3.5.18) is
of the form

r−2Ω(φ),

where r, φ are the polar coordinates centered at x, and Ω(φ) is mean zero. For this part, we
can write, using the mean-zero property of Ω(φ):∣∣∣∣P.V.∫

Bδ(x)

[∂2
xixj

log |x− y|]ω(y) dy

∣∣∣∣ =

∣∣∣∣∫
Bδ(x)

[∂2
xixj

log |x− y|](ω(y)− ω(x)) dy

∣∣∣∣
≤ C‖ω(x, t)‖Cα

∫ δ

0

r−1+α dr ≤ C(α)δα‖ω(x, t)‖Cα ≤ C(α)‖ω0‖L∞ (3.5.19)

by our choice of δ.
As for the function h in (3.5.18), note that our assumptions on x, the boundary values

for h, and the maximum principle together guarantee that we have

|h(z, y)| ≤ C log δ−1,

for all y ∈ Bδ(x), z ∈ D. Standard estimates for the harmonic functions (see e.g. [60]) give,
for each fixed y ∈ Bδ(x),

|∂2
xixj

h(x, y)| ≤ Cδ−4‖h(z, y)‖L1(Bδ(x),dz) ≤ Cδ−2 log δ−1.

This gives ∣∣∣∣∫
Bδ(x)

∂2
xixj

h(x, y)ω(y, t) dy

∣∣∣∣ ≤ C‖ω0‖L∞ log δ−1. (3.5.20)

Together, (3.5.20), (3.5.19) and (3.5.17) prove the Proposition at interior points.
Now if x′ is such that

dist(x′, ∂D) < 2δ,

find a point x such that dist(x, ∂D) ≥ 2δ and |x′ − x| ≤ C(D)δ. By the Schauder estimate
(see Theorem 3.3.4) we have

|∇u(x′)−∇u(x)| ≤ C(α,D)δα‖ω‖Cα . (3.5.21)

At x, the interior bounds apply, which together with (3.5.21) gives the desired bound at
any x′ ∈ D. �

The proof of Theorem 3.5.1

Given Proposition 3.5.3, the proof of the estimate (3.5.3) and so of Theorem 3.5.1 is straight-
forward. Let us come back to the two sided bound (3.3.6) and use the Kato estimate (3.5.10).
We obtain

f(t)−1 ≤ |Φt(x)− Φt(y)|
|x− y|

≤ f(t), (3.5.22)
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where

f(t) = exp

(
C‖ω0‖L∞

∫ t

0

(
1 + log

(
1 +
‖∇ω(x, s)‖L∞
‖ω0‖L∞

))
ds

)
.

Of course, since the bound (3.5.22) is two-sided, it also holds for Φ−1
t . On the other hand, we

have

‖∇ω(x, t)‖L∞ = supx,y
|ω0(Φ−1

t (x))− ω0(Φ−1
t (y))|

|x− y|
≤ ‖∇ω0‖L∞supx,y

|Φ−1
t (x)− Φ−1

t (y)|
|x− y|

.

(3.5.23)
Combining (3.5.23) and (3.5.22), we obtain

‖∇ω(x, t)‖L∞ ≤ ‖∇ω0‖L∞ exp

(
C‖ω0‖L∞

∫ t

0

(
1 + log

(
1 +
‖∇ω(x, s)‖L∞
‖ω0‖L∞

))
ds

)
,

or

log ‖∇ω(x, t)‖L∞ ≤ log ‖∇ω0‖L∞ + C‖ω0‖L∞
∫ t

0

(
1 + log

(
1 +
‖∇ω(x, s)‖L∞
‖ω0‖L∞

))
ds.

Let A = ||ω0||L∞ , B = ||∇ω0||L∞ and consider the solution y = y(t) of

ẏ

y
= CA (1 + log(1 + y)) , y(0) =

B

A
= y0 . (3.5.24)

By Gronwall’s lemma it is enough to bound y(t). The solution of (3.5.24) is given by∫ y(t)

y0

dy

y (1 + log(1 + y))
= CAt , (3.5.25)

hence

log (1 + log(1 + y(t)))− log (1 + log(1 + y0))

+

∫ y(t)

y0

dy

[
1

y(1 + log(1 + y))
− 1

(1 + y)(1 + log(1 + y))

]
= CAt .

The integrand in the last expression is positive and hence

1 + log(1 + y(t)) ≤ (1 + log(1 + y0)) exp(CAt) . (3.5.26)

This implies the double exponential upper bound we seek. �
We note that although we gave a proof of Theorem 3.5.1 in the case of the smooth bounded

domain, it can be proved in a similar way for the case of the torus. This is due to the fact
that the Green’s function of the Laplacian on the torus satisfies the same estimates as in
Proposition 3.2.1.

Exercise 3.5.6 Verify this claim.

The question of how sharp the double exponential bound is has been open for a long time.
This is what we will discuss in the rest of this chapter.
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3.6 The Denisov example

Theorem 3.5.1 gives only an upper bound on the growth of the gradient of the vorticity of
the solutions of the 2D Euler equations, but not a way to construct solutions for which the
gradient actually does grow. The first works constructing examples of flows with growth
in the derivatives of vorticity are due to Yudovich [140, 141]. He considered growth on the
boundary of the domain, and his construction required the boundary to have a flat piece. His
bounds on the growth are not explicit, but it is shown that

lim sup
t→∞

‖∇ω(·, t)‖L∞ =∞.

Generally, the small scale generation at the boundary fits well with the physical intuition. It
is known that boundaries generate interesting phenomena in fluid motion, and in particular
influence onset of turbulence (see e.g. [77]). In later works [95, 109], it was shown that the
small scale generation at the boundary is in some sense generic.

The basic idea behind many examples of the vorticity gradient growth is simple: find a
stable stationary flow u0 and perturb it a little. The background vorticity ω0 satisfies

u0 · ∇ω0 = 0.

The full vorticity of the perturbed flow u(t, x) satisfies

ωt + u · ∇ω = 0.

Writing u = u0 + v, and ω = ω0 + η, we obtain

ηt + u0 · ∇η + v · ∇ω0 + v · ∇η = 0.

The point is that the background stable flow u0 should be chosen so that if ϕ is a passive
scalar advected by u0:

ϕt + u0 · ∇ϕ = 0,

then ∇ϕ(t, x) would grow rapidly for large t. Then the hope is that since u0 is stable, the
perturbation v(t, x) would remain small, and the true nonlinear perturbation η would be
similar to ϕ, and also have a large gradient. The plan is not easy to implement, however,
since the problem is strongly nonlinear and nonlocal. No matter how small the perturbation
is, it will interact with the background flow, and this interaction is difficult to control for
large times.

Nadirashvili [113] used this strategy to construct examples of flows with a linear growth
in the vorticity gradient in the bulk, when the domain is an annulus. He called such solutions
”wandering”, since, at least in a relatively strong norm, they travel to infinity as time passes.
The argument is based on constructing a stable background flow that can stretch a small
perturbation, creating small scales.

We will follow a similar philosophy and consider the Denisov example. This example
provides the best known rate of growth for the gradient of vorticity in the bulk of the fluid,
away from the boundary, when starting with smooth initial data. Incredibly, the rate of
growth that we can rigorously get is just superlinear, leaving a huge gap with the double
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exponential upper bound. Further on, we will see an example showing that growth on the
boundary (as opposed to in the bulk) can indeed happen at a double exponential rate, but
such examples are not known for the bulk.

The Denisov example is set on the torus T2, and uses a cellular flow as the stable back-
ground flow. One could try instead to smooth out the singular cross flow, and arrange for a
small perturbation of it to play the role of a passive scalar behind the singular behavior. If
one could somehow arrange for the solution to approach, in some sense, in the long time limit,
the singular cross solution, then one could provide an example of the double exponential in
time growth. This idea was exploited by Denisov in [55] to design a finite time double expo-
nential growth example. However, one would face serious difficulties in trying to extend this
approach to infinite time. First, to keep the background scenario stable, one needs symmetry
– and the odd symmetry bans a nonzero perturbation right where the velocity is most capable
of producing double exponential growth for all times, on the x2 = 0 separatrix. Second, it is
not clear how to make a smooth solution approach the “cross” in some suitable sense. Third,
the perturbation will not be passive, and, for large times, will be difficult to decouple from
the equation. In the Denisov example, the nonlinearity is something we will fight: the growth
of the vorticity gradient is driven by a linear mechanism. To build an example with double
exponential growth, the nonlinearity would have to become our friend. We will consider such
example in the next section. The growth of the vorticity gradient in that example will be
double exponential, and it will happen at the boundary of the domain. We will see that the
latter is crucial for the double exponential growth.

The superlinear growth in the Denisov example

We now start the construction of an example where the gradient of the vorticity of a solution
of the 2D Euler equations grows faster than linearly in time. More precisely, we will prove
the following theorem.

Theorem 3.6.1 There exists ω0 ∈ C∞(T2) such that for the corresponding solution ω(t, x)
of 2D Euler equations, we have

1

T 2

∫ T

0

‖∇ω(t, ·)‖L∞ dt
T→∞−→ +∞. (3.6.1)

This shows a faster than linear growth on average, and, in particular, on a subsequence of
times tending to infinity.

The background flow

Our basic background flow will be really similar to that the cellular flow example above.
In fact, it will be the same flow, but arranged slightly differently. We will start with the
background vorticity

ω∗(x1, x2) = − cosx1 − cosx2 = −2 cos

(
x1 + x2

2

)
cos

(
x1 − x2

2

)
.

The background stream function is

ψ∗(x1, x2) = ω∗(x1, x2),
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and the background flow is
u∗(x1, x2) = (sinx2,− sinx1).

The torus (−π, π]2 contains two stagnation points of the flow, (0, 0) and (π, π). The four
lines x2 = ±x1 ± π are separatrices of the flow, and the points (π, 0) and (0, π) where the
separatrices intersect are hyperbolic points.

Exercise 3.6.2 Draw the streamlines of this flow.

Consider the hyperbolic point D ≡ (π, 0). The change of coordinates

ξ = (x1 + x2 − π)/2, η = (x2 − x1 + π)/2

transforms the stream function into

ψ(x1, x2) = 2 sin ξ sin η,

and the characteristic equations near the point D become

ξ̇ = sin ξ cos η, η̇ = − sin η cos ξ

(in what follows in this section we will replace the Φ notation for the trajectories with more
compact x1(t), x2(t), ξ(t), and η(t) notation).

Adding a perturbation: symmetry and stability

Let us now consider the 2D Euler equations

∂tω + (u · ∇)ω = 0, (3.6.2)

u = (∂2(−∆)−1ω,−∂1(−∆)−1ω),

ω(0, x) = ω0(x), x ∈ T2.

We set
ω(t, x) = ω∗(x) + ϕ(t, x),

and
u(t, x) = u∗(x) + v(t, x).

We will take the initial condition ϕ(0, x) as a small perturbation of ω∗(x). We will need the
stability and symmetry lemmas in the analysis, asserting that the solution will remain close
to ω∗(x) in L2 sense, and, in addition, will keep some symmetries of the initial condition.

Let P1 be the orthogonal projection onto the unit sphere in Z2 on the Fourier side, and P2

be the projection onto the orthogonal complement of functions supported on the unit sphere
on Fourier side. Simply put, if

f(x) =
∑
k∈Z2

f̂(k)eikx,

then
P1f(x) =

∑
|k|=1

f̂(k)eikx,
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and
P2f(x) =

∑
|k|6=1

f̂(k)eikx.

The following lemma limis the interaction of P1ω and P2ω generated by the Euler evolution.

Lemma 3.6.3 [Stability Lemma] Let ω(t, ·) be C1(T2) solution of the 2D Euler equation.
Suppose that the initial data ω0(x) is mean zero and satisfies

‖P2ω0‖L2 ≤ ε,

for some ε > 0. Then, we have

‖P2ω(t, ·)‖L2 ≤
√

2ε for all t > 0.

Proof. Recall that the mean zero property is conserved by the 2D Euler evolution. There
are two additional quantities conserved by Euler evolution:∫

T2

|ω(t, x)|2 dx =

∫
T2

|ω0(x)|2x, (3.6.3)

and ∫
T2

ω(t, x)ψ(t, x) dx =

∫
T2

|u(t, x)|2 dx =

∫
T2

|u0|2 dx. (3.6.4)

Here, ψ = (−∆D)−1ω is the stream-function of u.

Exercise 3.6.4 Verify (3.6.3) and (3.6.4) directly from (3.6.2).

With (3.6.3) and (3.6.4) in hand, observe that then∑
|k|>1

(
1− 1

|k|2

)
|ω̂(k, t)|2 =

∫
T2

|ω0(x)|2x−
∫
T2

|u0|2 dx

also does not depend on time. At t = 0, by assumption, this expression does not exceed ε2.
The same is then true for all times. But since

1− |k|−2 ≥ 1/2 if |k| > 1,

it follows that
‖P2ω(·, t)‖2

L2 ≤ 2ε2,

finishing the proof. �
The Fourier transform of ω∗ is supported on the unit sphere in Z2, with

ω̂∗(1, 0) = ω̂∗(−1, 0) = ω̂∗(0, 1) = ω̂∗(0,−1) = −1/2.

We also work with real valued solutions ω(x, t), so

ω̂(k, t) = ω̂(−k, t).

Yet, the Stability Lemma alone is not enough to conclude L2 stability of ω∗ to small pertur-
bations, as energy might shift between different modes with |k| = 1.

We will also need to ensure that the perturbed flow respects certain symmetries.
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Lemma 3.6.5 [Symmetries Lemma] Consider the 2D Euler vorticity equation on T2 with a
smooth initial condition ω0(x).
(1) If ω0 is even: ω0(x) = ω0(−x), then the solution ω(t, x) remains even for all t > 0.
(2) If ω0 is invariant under the rotation by π/2 : ω0(x1, x2) = ω0(−x2, x1), then the solu-
tion ω(t, x) remains invariant under rotation by π/2.

Proof. The proof uses uniqueness of the smooth solutions to (3.6.2). Similarly to what
we did in Lemma 3.4.2, we show that if ω(t, x1, x2) is a solution, then so are ω(t,−x1,−x2)
and ω(t,−x2, x1). Given either of these two symmetry assumptions on the initial data, this
would imply, by uniqueness, that the solution must possess the same symmetry for all t ≥ 0.
First, assume that ω0(x) is even and set ω(1)(t, x) = ω(t,−x1,−x2). Let ψ and ψ(1) be the
corresponding stream functions

−∆ψ = ω, −∆ψ(1) = ω(1), x ∈ T2.

Then ψ(1)(t, x1, x2) = ψ(t,−x1,−x2), and the corresponding flows are

u(t, x) = (∂2ψ(t, x),−∂1ψ(t, x)),

and

u(1)(t, x) = (∂2ψ
(1)(t, x),−∂1ψ

(1)(t, x)) = −u(t,−x).

Therefore, ω(1) satisfies

ω
(1)
t (t, x) + (u(1) · ∇)ω(1)(t, x) = ωt(t,−x) + u(t,−x) · ∇ω(t,−x) = 0,

and is also a solution of the 2D Euler equations in the vorticity formulation.
Furthermore, if ω0(x1, x2) = ω0(−x2, x1), we consider ω(2)(t, x1, x2) = ω(t,−x2, x1). The

corresponding stream function ψ(2) , the solution of

−∆ψ(2) = ω(1), x ∈ T2,

satisfies ψ(2)(t, x1, x2) = ψ(t,−x2, x1), and the flow u(2)(t, x) is

u(2)(t, x) = (∂2ψ
(2)(t, x),−∂1ψ

(2)(t, x)) = (−∂1ψ(t,−x2, x1),−∂2ψ(t,−x2, x1))

= (u2(t,−x2, x1),−u1(t,−x2, x1)).

Therefore, ω(2) satisfies

ω
(2)
t (t, x) + (u(2) · ∇)ω(2)(t, x) =

[
ωt + u2

∂ω

∂x2

+ u1
∂ω

∂x1

]
(t,−x2, x1) = 0,

and is a solution of the 2D Euler vorticity equation as well. �

Exercise 3.6.6 Does the 2D Euler vorticity equation preserve the ω(x1, x2) = ω(−x1, x2)
symmetry? How about ω(x1, x2) = ω(x2, x1) and ω(x1, x2) = −ω(−x1,−x2)?

The following Corollary follows from Lemma 3.6.5 and Lemma 3.6.3.
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Corollary 3.6.7 [Stability under symmetry] Suppose that ω0(x) is even and symmetric under
rotation by π/2. and, in addition,

‖ω0(x)− ω∗(x)‖L2 ≤ ε.

Then, we have
‖ω(t, x)− ω∗(x)‖L2 ≤ C0ε (3.6.5)

for all times t > 0.

Proof. Lemma 3.6.3 implies that

‖P2ω(t)‖L2 ≤
√

2ε.

Furthermore, it follows from Lemma 3.6.5 that ω(t, x) is even and invariant under the rotation
by π/2. Hence, its Fourier coefficients satisfy

ω̂(t, 1, 0) = ω̂(t, 0, 1) = ω̂(t,−1, 0) = ω̂(t, 0,−1),

and are real valued. Therefore,

ω(t, x) = c(t)ω∗(x) + P2ω(x, t),

and, as ‖ω(t)‖L2 = ‖ω0‖L2 and the solution is continuous in time, it is easy to see that

|c(t)− 1| ≤ C1ε,

from which (3.6.5) follows. �

Constructing the initial perturbation

Let us now specify the initial data that will lead to the growth of the vorticity gradient. While
the construction is carried out on the torus, it is more convenient to think of functions defined
on R2 which are 2π−periodic in both x1 and x2. Let Uδ be a disc of radius

√
δ centered at

the origin (0, 0). We will use the coordinates

ξ =
x1 + x2 − π

2
, η =

x2 − x1 + π

2
,

in which the saddle point D corresponds to ξ = η = 0, and the characteristics have the form

ξ̇ = sin ξ cos η, η̇ = − sin η cos ξ.

The direction ξ is expanding at D and the direction η is contracting. Consider the rectangle

Pδ = {|ξ| < 0.1, |η| < δ},

and denote its image under the rotation by π/2 around the origin in the original (x1, x2)
coordinate system by P ′δ. We will define ω0 on T2 as follows: first,

ω0(x) = ω∗(x) outside Pδ, P
′
δ, and Uδ.

173



Next, we set, in the (ξ, η) coordinate system,

ω0 = f(ξ, η) in Pδ.

The function f ∈ C∞0 (Pδ) is even in (ξ, η), and satisfies −1 ≤ f ≤ 4. The level set f(ξ, η) = 4
is

{f(ξ, η) = 4} = {η = 0, |ξ| ≤ 0.08},
and the level set f(ξ, η) = 3 is the ellipse

{f(ξ, η) = 3} = {(ξ/0.09)2 + (2η/δ)2 = 1}.

Moreover, we assume that

4 ≥ f(ξ, η) > 3 if (ξ/0.09)2 + (2η/δ)2 < 1.

In the rectangle P ′δ, we define ω0(x) so that it is invariant under rotation by π/2 with respect
to the origin.

Next, inside the disk Uδ, we set
ω0 = ω∗ + φδ,

where φδ ∈ C∞0 (Uδ) is designed so that∫
T2

ω0(x) dx = 0,

and ω0 obeys the symmetry conditions: it is even and symmetric with respect to the rotation
by π/2.

A priori bound on the vorticity and the velocity of the flow

Observe that by this construction, ω0 is smooth. Since we chose f to be even in the (ξ, η)
coordinates, and ω∗ is even with respect to the hyperbolic point D as well, we know that ω0

is even with respect to the point D :

ω0(x1 − π, x2) = ω0(−x1 − π,−x2).

By Lemma 3.6.5, the solution ω(t, x) inherits this property. It follows from the proof of the
same lemma (see the expression for u(1) in that proof), that

u(t,D) = ∇⊥(−∆)−1ω(D, t) = 0,

for all times t ≥ 0, so the point D is fixed by the flow. Note thatD is not necessarily hyperbolic
anymore, as our definition of f(ξ, η) may destroy the hyperbolicity near D. However, the flow
still possesses the hyperbolic structure outside a small region near D, and we will use this to
prove the growth of ∇ω.

Let us recall the notation
ω(t, x) = ω∗(x) + ϕ(x, t),

and
u(t, x) = u∗(x) + v(t, x).

174



By Corollary 3.6.7 and the definition of ω0, we know that

‖ϕ(t)‖L2 ≤ Cδ1/2,

for all t ≥ 0. Due to the L∞ maximum principle for ω(t, x), we also have

‖ϕ(t)‖L∞ ≤ C.

Interpolating, we get
‖ϕ(t)‖Lp ≤ C(p)δ1/p,

for every p ≥ 2.

Lemma 3.6.8 We have
‖v(t)‖L∞ ≤ C(p)δ1/p,

for every p > 2.

Proof. Recall that by (3.4.10),

v1,2(t, x) =
1

2π
lim
γ→0

∫
R2

±y2,1

|y|2
ϕ(t, x− y)e−γ|x−y|

2

dy,

where ϕ is extended periodically to all R2. We split the integral into two parts, over the unit
ball B1 and its complement. Then by the Hölder inequality,∣∣∣∣∫

B1

|y|−1|ϕ(t, x− y)| dy
∣∣∣∣ ≤ C‖ϕ(t)‖Lp(2− q)−1/q ≤ C(p)δ1/p,

where p−1 + q−1 = 1, p > 2. For the rest of the estimate, note that ϕ is mean zero since ω0,
and ω∗ are, and set

ϕ = ∆ψ.

Integrating by parts, we obtain∣∣∣∣∣
∫
Bc1

y1,2

|y|2
∆ψ(x− y)e−γ|x−y|

2

dy

∣∣∣∣∣ ≤ C

∫
∂B1

(∣∣∣∣∂ψ∂n
∣∣∣∣+ |ψ|

)
dσ+

∫
Bc1

ψ(x−y)∆

(
y1,2

|y|2
e−γ|x−y|

2

)
dy.

Using the Sobolev embedding theorem, trace theorem, and the bounds we have for ϕ, we can
complete the proof of the lemma similarly to the proof of Proposition 3.4.4. �

Exercise 3.6.9 Carry out the calculations carefully to complete the proof.

Trajectories near the saddle point

We choose δ so that ‖v(t, ·)‖L∞ ≤ 0.001 for all t. Let us zoom into the point D. The charac-
teristic curves near D are

ẋ1(t) = sin x2 − v1(x, t), ẋ2(t) = − sinx1 − v2(x, t).
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In the ξ, η coordinates this becomes

ξ̇ = cos η sin ξ − (v1 + v2)/2, η̇ = − sin η cos ξ + (v1 − v2)/2.

We will write this in a shortcut notation

ξ̇ = sin ξ cos η + µ1, η̇ = − sin η cos ξ + µ2, (3.6.6)

where ‖µ1,2‖L∞ ≤ 0.001. We will need the following lemma on the behavior of the trajectories.

Lemma 3.6.10 Let ξ(t), η(t) be the solution of the Cauchy problem (3.6.6) with the initial
condition ξ(t0) = ξ0, η(t0) = η0. If |ξ0| ≤ 0.03 and |η0| ≤ 0.1, then |η(t0 + 1)| ≤ 0.1.
Furthermore, if 0.03 ≥ |ξ0| ≥ 0.02 and |η0| ≤ 0.1, then |ξ(t0 + 1)| > 0.03. More generally,
if 0.03 ≥ |ξ0| ≥ (3− τ)/100, 0 ≤ τ ≤ 1, and |η0| ≤ 0.1, then |ξ(t0 + τ)| > 0.03.

Proof. Observe that |ξ′| < |ξ|+ 0.001, |ξ0| ≤ 0.03 imply that

|ξ(t)| ≤ |ξ0|e+ 0.001

∫ 1

0

et dt < 0.04e

for t ∈ (t0, t0 + 1). Now, at η = 0.1 we have

η̇ ≤ − sin 0.1 cos 0.2 + 0.001 < 0,

for all times in (t0, t0 + 1) and so the trajectory cannot move past or arrive from the inside at
this value of η. The case of η = −0.1 is similar. Thus, for t ∈ (t0, t0 + 1) we have |η(t)| ≤ 0.1.
For the second statement of the lemma notice that for 0.03 ≥ ξ0 ≥ 0.02, due to bounds we
showed, we have

ξ̇(t) ≥ 0.9ξ − 0.001

in the time interval (t0, t0 + 1), and thus

ξ(t) ≥ 0.02e0.9 − 0.001(e− 1) > 0.03.

For the last statement, following the same estimates, we have to check that

(3− τ)e0.9τ − 0.1(eτ − 1) ≥ (3− τ)(1 + 0.9τ)− 0.3τ ≥ 3 + 0.5τ ≥ 3,

which is correct. �

Proof of Theorem 3.6.1

We denote by Rs the rectangle |η| < 0.1, |ξ| < 0.01s, and by E(t1, t2) the Euler flow map
from time t1 to time t2. The map E(t1, t2) is a smooth area preserving diffeomorphism given
by the solutions to the characteristic equations (3.6.6). It has a fixed point D and is centrally
symmetric with respect to D. Consider the set

S0 = R3 ∩ {x : ω0(x) ≥ 3}.
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This set is bounded by the intervals lying on the lines ξ = ±0.03 and by parts of the ellipse
where ω0(x) = 3. We split this set as

S0 = S1
0 ∪ S2

0 ,

where S1
0 = S0 ∩ R2, and S2

0 is the rest of S0. Consider the image F0 = E(0, 1)S0. By
Lemma 3.6.10, this set is contained in |η| < 0.1. Denote then S1 = F0 ∩ R3, and keep only
the simply connected component of this set containing the point D. The set S1 is bounded
by the intervals lying on the lines ξ = ±0.03 and by parts of the level set ω(t = 1, x) = 3. By
virtue of the same Lemma, the set F 2

0 = E(0, 1)S2
0 gets transported out of R3, and so

|S1| ≤ |S0| − |S2
0 |.

Note that S1 contains a part of the level set ω(t = 1, x) = 4. Moreover, since F0 is contained
in |η| < 0.1 and the ends of ω0 = 4 curve get transported out of R3, the part of the level
set ω = 4 lying in S1 contains a curve passing through the point D and connecting two
points P±1 lying on ξ = ±0.03. Now let us split S1 = S1

1 ∪ S2
1 , where S1

1 = S1 ∩ R2, and S2
1 is

the rest of S1. We now iterate time in unit steps, obtaining a sequence of sets

Sn+1 = E(n, n+ 1)Sn ∩R3.

All properties of the set S1 described above continue to hold for Sn. In particular, we have

|Sn+1| ≤ |Sn| − |S2
n|,

which implies that ∑
n

|S2
n| <∞.

On the other hand, for each fixed ξ, 0.02 < |ξ| < 0.03, a section of the set S2
n at level ξ must

contain an interval [η1, η2] such that ω(η1, ξ) = 3 and ω(η2, ξ) = 4, with

|η1 − η2| ≥
1

‖∇ω(t = n)‖L∞
.

This implies
|S2
n| ≥ 0.01‖∇ω(t = n)‖−1

L∞ .

We need one more elementary lemma.

Lemma 3.6.11 Let aj > 0 be such that
∑∞

j=1 aj <∞. Then

1

N2

N∑
j=1

a−1
j

N→∞−→ ∞.

Proof. Observe that

minxi>0,x1+···+xn=σ

n∑
i=1

x−1
i = n2σ−1,

and the minimum is achieved when xi = σ/n for each i.
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Exercise 3.6.12 Prove this claim.

Now, set

τN =
N∑

j=N/2

aj
N→∞−→ 0.

Finally, note that

1

N2

N∑
j=1

a−1
j ≥

1

N2

N∑
j=N/2

a−1
j ≥ N−2N

2

4

1

τN
→∞

as N →∞. �
An application of Lemma 3.6.11 then gives

lim
N→∞

1

N2

∞∑
n=0

‖∇ω(·, n)‖L∞ = +∞.

This is a discrete version of (3.6.1). One can obtain the continuous version by using the last
statement of Lemma 3.6.10.

Exercise 3.6.13 Prove (3.6.1), and thus finish the proof of the Theorem. You will need to
use the last statement of Lemma 3.6.10, taking τ small (and passing to the limit τ → 0).
Otherwise, the argument above will require only a few adjustments.

3.7 The double exponential growth in a bounded do-

main

In this section, we will describe an example of a solution of the 2D Euler equations in a
bounded domain (a disk) that has the vorticity gradient that grows at a double exponential
rate in time [94]. As we will see, the gradient growth will happen exactly at the boundary.
Essentially, the boundary will play a role of a separatrix in a singular cross type flow. The
main difference here is that while the voriticity has to vanish on a separatrix if we want to keep
the symmetry of the cross (and this depletion makes achieving the double exponential growth
of the vorticity gradient in the bulk difficult), it does not have to be zero on the boundary –
this will allow us to bring the points where the vorticity differs by a O(1) quantity at distance
that goes to zero at a double exponential in time rate.

Theorem 3.7.1 Consider the two-dimensional Euler equations on a unit disk D. There exist
smooth initial data ω0 with ‖∇ω0‖L∞/‖ω0‖L∞ > 1 such that the corresponding solution ω(x, t)
satisfies

‖∇ω(x, t)‖L∞
‖ω0‖L∞

≥
(
‖∇ω0‖L∞
‖ω0‖L∞

)c exp(c‖ω0‖L∞ t)

(3.7.1)

for some c > 0 and for all t ≥ 0.
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The initial data and the basic mechanism

It will be convenient for us to take the system of coordinates centered at the lowest point of
the disk, so that the center of the unit disk D is at the point (0, 1). Here is a rough idea of
the construction. The initial vorticity will be equal to −1 in the right half of the disk, and
to +1 in the left half of the disk, except for a narrow strip around the vertical axis, where
the two values would be smoothly interpolated. Recall that the flow on the boundary is
always tangential to the boundary because of the boundary conditions. Thus, if we can show
that the flow on the boundary would always point toward the bottom point (0, 0), it would
bring closer and closer the boundary points on the left half-circle where initially ω0 = +1
and those on the right half-circle where ω0 = −1. As these regions approach (0, 0) they will
generate log-Lipschitz fluid velocity asymptotic behavior similar to that in Proposition 3.4.7
describing the Bahouri-Chemin example. This nonlinear enhancement is the crucial part of
the mechanism, and will lead to the double exponential growth in the vorticity gradient. The
difficulty is in the details: understanding and controlling all the nonlinear effects, and, in fact,
using them to get the double exponential boost.

Our initial data ω0(x) will be odd with respect to the vertical axis:

ω0(x1, x2) = −ω0(−x1, x2).

We have checked the preservation of this symmetry on the torus. It can be verified similarly
for any domain with the vertical symmetry axis, in particular, for the disk. As we have
described above, we will take smooth initial data ω0(x) so that ω0(x) ≤ 0 for x1 > 0, which,
by symmetry, means that ω0(x) ≥ 0 for x1 < 0. This configuration makes the origin a
hyperbolic fixed point of the flow.

Exercise 3.7.2 Show that under the above assumptions u1 vanishes on the vertical axis,
thus ω(t, x) ≤ 0 for x1 > 0 for all t ≥ 0.

A flow estimate near the bottom

We will now derive an estimate on the flow that will allow us to capture the hyperbolic nature
of the flow near the origin. The Dirichlet Green’s function for the disk is given explicitly by
(see e.g. [60])

GD(x, y) =
1

2π
(log |x− y| − log |x− ȳ| − log |y − e2|),

where, with our choice of the coordinates,

ȳ = e2 + (y − e2)/|y − e2|2, e2 = (0, 1),

is the reflection of the point y with respect to the unit disk D.

Exercise 3.7.3 Show that for any y ∈ D+ we have

|ȳ| = |y|
|y − e2|

, (3.7.2)

and
y1

|ȳ|2
=

y1

|y|2
,

y2

|ȳ|2
= 1− y2

|y|2
. (3.7.3)
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Given the symmetry of ω, we have

u(t, x) = −∇⊥
∫
D

GD(x, y)ω(t, y) dy = − 1

2π
∇⊥

∫
D+

log

(
|x− y||x̃− ȳ|
|x− ȳ||x̃− y|

)
ω(t, y) dy, (3.7.4)

where D+ is the right half disk where x1 ≥ 0, and x̃ = (−x1, x2). The following Lemma will
be crucial for the proof of Theorem 3.7.1. For each point (x1, x2) ∈ D+, let us introduce the
region

Q(x1, x2) = {(y1, y2) ∈ D+ : x1 ≤ y1, x2 ≤ y2},

and set

Ω(t, x1, x2) =
4

π

∫
Q(x1,x2)

y1y2

|y|4
ω(t, y) dy1dy2. (3.7.5)

Lemma 3.7.4 Take any γ, such that 0 < γ < π/2, and let Dγ
1 the intersection of D+ with

a sector 0 ≤ φ ≤ π/2 − γ, where φ is the usual angular variable. Then there exists δ > 0 so
that for all x ∈ Dγ

1 such that |x| ≤ δ we have

u1(t, x1, x2) = x1Ω(t, x1, x2) + x1B1(x1, x2, t), (3.7.6)

where |B1(x1, x2, t)| ≤ C(γ)‖ω0‖L∞ .
Similarly, if we denote by Dγ

2 the intersection of D+ and the sector γ ≤ φ ≤ π/2, then for
all x ∈ Dγ

2 such that |x| ≤ δ we have

u2(t, x1, x2) = −x2Ω(t, x1, x2) + x2B2(t, x1, x2), (3.7.7)

where |B2(t, x1, x2)| ≤ C(γ)‖ω0‖L∞ .

Exercise 3.7.5 This lemma holds more generally than in the disk. Perhaps, the simplest
proof is when D is a square. The computation for that case is quite similar to the Bahouri-
Chemin example. Carry out the proof of the Lemma for this case.

The exclusion of a small sector does not appear to be a technical artifact. The vorticity can
be arranged (momentarily) in a way that the hyperbolic picture provided by the Lemma is
violated outside of Dγ

1 , for example the direction of u1 may be reversed near the vertical axis,
where u1 is small.

The terms involving Ω(t, x1, x2), as will become clear soon, can be thought of as the main
terms in these estimates in a certain regime. Indeed, while the remainder in (3.7.6), (3.7.7)
satisfies the Lipschitz estimates, the nonlocal term Ω(x1, x2, t) can grow as a logarithm if the
support of the vorticity approaches the origin. This growth through the nonlinear feedback
can lead to the double exponential growth in the gradient of solution. Essentially, Lemma 3.7.4
makes it possible to ensure in certain regimes that the flow near the origin is hyperbolic, so
that the fluid trajectories are hyperbolas to the leading order. The speed of motion along
the trajectories is controlled by Ω(t, x1, x2) in (3.7.6), (3.7.7), and this factor is the same for
both u1 and u2.

We also note a monotonicity property imbedded in the form of Ω(t, x1, x2): the size of the
expression in (3.7.5) tends to increase as x approaches the origin since the region of integration
grows. This will be important in the construction of our example.
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Proof. Let us prove (3.7.6), the proof of (3.7.7) is similar. Fix a small γ > 0, and take a
point x = (x1, x2) ∈ Dγ

1 , |x| ≤ δ, where δ is to be determined soon. By the definition of Dγ
1 ,

we have x2 ≤ x1/ tan γ. Hence, if we set

r = 10(1 + cot γ)x1,

then x ∈ Br(0). Let us assume that δ is small enough so that r < 0.1 whenever |x| ≤ δ. The
contribution to u1 from the integration over the disk Br(0) in the Biot-Savart law (3.7.4) does
not exceed

C‖ω0‖L∞
∫
D+∩Br(0)

1

|x− y|
dy ≤ C(γ)‖ω‖L∞x1.

Exercise 3.7.6 Verify this directly from (3.7.4).

For the integration over D+ \Br(0), we note that for y in this region we have |y| ≥ 10|x|. Let
us rewrite the four logarithms in (3.7.4) as

πGD(x, y) =
1

4
log

(
1− 2x · y

|y|2
+
|x|2

|y|2

)
− 1

4
log

(
1− 2x · y

|y|2
+
|x|2

|y|2

)
− 1

4
log

(
1− 2x̃ · y

|y|2
+
|x|2

|y|2

)
+

1

4
log

(
1− 2x̃ · y

|y|2
+
|x|2

|y|2

)
. (3.7.8)

For small s, we have

log(1 + s) = s− s2

2
+O(s3).

With the help of this approximation, a direct computation starting with (3.7.8) leads to

πGD(x, y) = −x1y1

|y|2
+
x1y1

|ȳ|2
− 2x1x2y1y2

|y|4
+

2x1x2y1y2

|ȳ|4
+O

(
|x|3

|y|3

)
. (3.7.9)

We used above that |ȳ| ≥ |y| for y ∈ D+, as follows from (3.7.2). Using (3.7.3), we simplify
(3.7.9) to

−πGD(x, y) =
4x1x2y1y2

|y|4
− 2x1x2y1

|y|2
+O

(
|x|3

|y|3

)
. (3.7.10)

Exercise 3.7.7 Verify that the expression (3.7.10) can be differentiated with respect to x2,
yielding

−π∂GD(x, y)

∂x2

=
4x1y1y2

|y|4
− 2x1y1

|y|2
+O

(
|x|2

|y|3

)
. (3.7.11)

Observe that the contribution of the error term in (3.7.11) to the integral in the Biot-Savart
law over D+ \Br is controlled:∫

D+\Br

|x|2

|y|3
dy ≤ C|x|2

∫ 1

r

1

s2
ds ≤ Cr−1|x|2 ≤ C(γ)x1.

For the corresponding integral of the second term in the right side of (3.7.11) we have a bound∫
D+\Br

y1

|y|2
dy ≤ C

∫ 1

r

ds ≤ C.
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Therefore, the last two terms in (3.7.11) give regular contributions to u1, and are contributing
to the second term in the right side of (3.7.6).

Thus, to prove (3.7.6), it remains only to reconcile the regions of integration in the main
term in (3.7.11), namely to show that∫

D+\Br

y1y2

|y|4
ω(t, y) dy = O(1) +

∫
Q(x1,x2)

y1y2

|y|4
ω(t, y) dy.

To this end, note first that∫
Br∩Q(x1,x2)

y1y2

|y|4
dy ≤

∫ Cx1

x1

dy1

∫ Cx1

0

dy2
y1y2

|y|4

≤ C

∫ Cx1

x1

y1

∫ C2x21

0

1

(y + y2
1)2

dydy1 = C

∫ Cx1

x1

dy1

y1

≤ C.

Finally, the set D+ \ (Q(x1, x2)∪Br) consists of two strips, one along the x1 axis, and another
along the x2 axis. The contribution of the integral over the strip along the x2 axis does not
exceed ∫ x1

0

dy1

∫ 1

x1

dy2
y1y2

|y|4
≤
∫ x1

0

y1

y2
1 + x2

1

dy1 ≤ C.

The integral over the strip along the x1 axis does not exceed∫ x2

0

dy2

∫ 1

x1

dy1
y1y2

|y|4
.

Since x2 ≤ C(γ)x1, the latter integral can be bounded by a constant via a similar computation.
This completes the proof of the lemma. �

An exponential in time growth of the vorticity gradient

Before proving Theorem 3.7.1, we make a simpler observation: with the aid of Lemma 3.7.4 it
is fairly straightforward to find examples with an exponential in time growth of the vorticity
gradient. Indeed, take smooth initial data ω0(x) which is equal to one everywhere in D+

except on a thin strip of width δ near the vertical axis x1 = 0, where 0 < ω0(x) < 1.
Recall that ω0 must vanish on the vertical axis by our symmetry assumptions. Due to the
incompressibility of the flow, the distribution function of ω(t, x) is the same for all times. In
particular, the measure of the complement of the set where ω(t, x) = 1 does not exceed 2δ.
In this case for every |x| < δ, x ∈ D+, we can derive the following estimate for the integral
appearing in the representation (3.7.6):∫

Q(x1,x2)

y1y2

|y|4
ω(t, y) dy1dy2 ≥

∫ 1

2δ

∫ π/3

π/6

ω(t, r, φ)
sin 2φ

2r
dφdr ≥

√
3

4

∫ 1

2δ

∫ π/3

π/6

ω(t, r, φ)

r
dφdr.

The value of the integral on the right hand side is minimized when the area where ω(r, φ)
is less than one is concentrated at small values of the radial variable. As this area does not
exceed 2δ, we obtain

4

π

∫
Q(x1,x2)

y1y2

|y|4
ω(t, y) dy1dy2 ≥ c1

∫ 1

c2
√
δ

∫ π/3

π/6

1

r
dφdr ≥ C1 log δ−1, (3.7.12)
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where c1, c2 and C1 are positive universal constants.
Using the estimate (3.7.12) in (3.7.6), we get that for all for |x| ≤ δ, x ∈ D+ that lie on

the disk boundary, we have

u1(t, x) ≤ −x1(C1 log δ−1 − C2),

where C1,2 are universal constants. We can thus choose δ > 0 sufficiently small so that

u1(t, x) ≤ −x1, for all times if |x| < δ. (3.7.13)

As we have discussed, due to the boundary condition on u, the trajectories which start
at the boundary stay on the boundary for all times. Taking such trajectory starting at a
point x0 ∈ ∂D with the first component satisfying 0 < x0,1 ≤ δ, we get from (3.7.13)

Φ1
t,1(x0) ≤ x0,1e

−t.

Since ω(t, x) = ω(Φ−1
t (x)), we see that ‖∇ω(x, t)‖L∞ grows exponentially in time if we

choose ω0 which does not vanish identically at the boundary near the origin, that is, if

ω0(δ, 1−
√

1− δ2) > 0.

Proof of Theorem 3.7.1

To construct examples with the double exponential growth of∇ω(t, x), we have to work a little
harder. For the sake of simplicity, we will build our example with ω0 such that ‖ω0‖L∞ = 1.

We first fix a small γ > 0. We will take the smooth initial data as in the example of the
exponential growth of the vorticity gradient, with ω0(x) = −1 for x ∈ D+ apart from a narrow
strip of width at most δ > 0 (with δ small enough so that the estimates (3.7.6), (3.7.7) apply)
near the vertical axis where 0 ≥ ω0(x) ≥ −1. This ensures that the lower bound (3.7.12) still
holds.We will require one more feature in ω0 that we will describe later. In addition, choose δ
so that

C1 log δ−1 > 100C(γ).

Here, C(γ) is the constant in the bound for the error terms B1, B2 appearing in (3.7.6), (3.7.7).
Given 0 < x′1 < x′′1 < 1, we set

O(x′1, x
′′
1) =

{
(x1, x2) ∈ D+ , x′1 < x1 < x′′1 , x2 < x1

}
. (3.7.14)

We also define, for 0 < x1 < 1,

u1(t, x1) = min
(x1,x2)∈D+ , x2≤x1

u1(t, x1, x2) (3.7.15)

and
u1(t, x1) = max

(x1,x2)∈D+ , x2≤x1
u1(t, x1, x2) . (3.7.16)

As the initial condition ω0 is smooth, so is ω(t, x), as well as u(t, x), thus these functions are
locally Lipschitz in x1 on [0, 1), with the Lipschitz constants being locally bounded in time.
Hence, we can uniquely define a(t) by

ȧ = u1(a, t) , a(0) = ε10 , (3.7.17)
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and b(t) by
ḃ = u1(b, t) , b(0) = ε , (3.7.18)

where 0 < ε < δ is sufficiently small. Its exact value is to be determined later. We set

Ot = O(a(t), b(t)) . (3.7.19)

At this stage, we have not yet ruled out that Ot perhaps might become empty for some t > 0,
that is, b(t) would catch up with a(t). Note that b(t) starts to the right of a(t) but it moves
to the left faster than a(t) if both u1 and u1 are negative, as expected. However, it is clear
from the definitions that Ot will be non-empty at least on some non-trivial interval of time.
Our estimates below show that in fact Ot will be non-empty for all t > 0.

Now we will make one more assumption on ω0. We ask that ω0 includes a ”bullet”: ω0 = −1
in the small trapezoid O0, with a smooth but narrow cutoff into D+, so that ‖∇ω0‖L∞ . ε−10.
This leaves some ambiguity in the definition of ω0(x) in the strip of width δ next to the x2

axis apart from O0. We will see that it does not really matter how we define ω0 there, as
long as we satisfy all the conditions stated so far. Using the estimates (3.7.6), (3.7.7), the
estimate (3.7.12) and our choice of δ ensuring that C1 log δ−1 � C(γ), we see that both a
and b are decreasing functions of time and that near the diagonal x1 = x2 in {|x| < δ} we
have

x1(log δ−1 − C)

x2(log δ−1 + C)
≤ (−u1)(x1, x2)

u2(x1, x2)
≤ x1(log δ−1 + C)

x2(log δ−1 − C)
. (3.7.20)

This means that all particle trajectories on the diagonal, at all times are directed into the
region φ > π/4. We claim that then ω(t, x) = −1 on Ot. Indeed, it is clear that the
“fluid particles” which at the time t = 0 are outside of O0 cannot enter Ot′ through the
diagonal {x1 = x2} due to (3.7.20) at any time 0 ≤ t′ ≤ t. The definition of the dynamics
of a(t), b(t) means that neither can they enter the set Ot′ through the vertical segments
{(a(t′), x2) ∈ D+ , x2 < a(t′)} or {(b(t′), x2) ∈ D+ , x2 < b(t′)} at any time 0 ≤ t′ ≤ t.
Finally, they obviously cannot enter through the boundary points of D. Hence the “fluid
particles” in Ot must have been in O0 at the initial time and thus ω(t, x) = −1 in Ot.

Let us now estimate how rapidly the set Ot approaches the origin. As ‖ω(t, x)‖L∞ ≤ 1 by
our choice of the initial data ω0, by Lemma 3.7.4, we have

u1(b(t), t) ≥ −b(t) Ω(b(t), x2(t))− C b(t),

for some 0 ≤ x2(t) ≤ b(t). A simple calculation shows that, for any 0 ≤ x2 ≤ b(t) we have

Ω(b(t), x2) ≤ Ω(b(t), b(t)) + C.

Indeed, since x2(t) ≤ b(t) we can write∫ 2

b

∫ b

x2(t)

y1y2

|y|4
dy2dy1 ≤

∫ 2

b

∫ b

0

y1y2

|y|4
dy2dy1 =

1

2

∫ 2

b

y1

(
1

y2
1

− 1

y2
1 + b2

)
dy1

≤ b2

∫ 2

b

y−3
1 dy1 ≤ C. (3.7.21)

Thus, we get
u1(b(t), t) ≥ −b(t) Ω(b(t), b(t))− 2C b(t). (3.7.22)
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In the same vein, for suitable x̃2(t) with 0 ≤ x̃2(t) ≤ a(t), we have

u1(a(t), t) ≤ −a(t) Ω(a(t), x̃2(t)) + C̃a(t) ≤ −a(t) Ω(a(t), 0) + 2Ca(t),

by an estimate similar to (3.7.21) above. Observe also that

Ω(a(t), 0) ≥ 4

π

∫
Ot

y1y2

|y|4
ω(t, y) dy1dy2 + Ω(b(t), b(t)).

Since ω(t, y) = 1 on Ot, we have∫
Ot

y1y2

|y|4
ω(y, t) dy1dy2 ≥

∫ π/4

ε

∫ b(t)/ cosφ

a(t)/ cosφ

sin 2φ

2r
drdφ >

1

8
(− log a(t) + log b(t))− C,

thus

u1(a(t), t) ≤ − a(t)

(
1

2π
(− log a(t) + log b(t)) + Ω(b(t), b(t))

)
+ 2Ca(t). (3.7.23)

It follows from the estimates (3.7.22), (3.7.23) that a(t) and b(t) are monotone decreasing
in time, and by the finiteness of ‖u‖L∞ these functions are Lipschitz in t. Hence we have
sufficient regularity for the following calculations:

d

dt
log b(t) ≥ −Ω(b(t), b(t))− 2C , (3.7.24)

d

dt
log a(t) ≤ 1

2π
(log a(t)− log b(t))− Ω(b(t), b(t)) + 2C. (3.7.25)

Subtracting (3.7.24) from (3.7.25), we obtain

d

dt
(log a(t)− log b(t)) ≤ 1

2π
(log a(t)− log b(t)) + 4C. (3.7.26)

From (3.7.26), the Gronwall lemma leads to

log a(t)− log b(t) ≤ log (a(0)/b(0)) exp(t/2π) + 4C exp(t/2π) ≤ (9 log ε+ 4C) exp(t/2π).
(3.7.27)

We should choose our ε so that − log ε is larger than the constant 4C that appears in (3.7.27).
In this case, we obtain from (3.7.27) that

log a(t) ≤ 8 exp(t/2π) log ε,

and so
a(t) ≤ ε8 exp(t/2π).

Note that by the definition of a(t), the first coordinate of the characteristic that originates at
the point on ∂D near the origin with x1 = ε10 does not exceed a(t). To arrive at (3.7.1), it
remains to note that we chose ω0 so that ‖∇ω0‖L∞ . ε−10. �
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