
Lecture notes for Math 205A

Lenya Ryzhik∗

December 4, 2008

Essentially nothing found here is original except for a few mistakes and misprints here and
there. These lecture notes are based on material from the following books: H. Royden ”Real
Analysis”, L. Evans and R. Gariepy ”Measure Theory and Fine Properties of Functions”,
J. Duoandikoetxea ”Fourier Analysis”, and M. Pinsky ”Introduction to Fourier Analysis and
Wavelets”.

1 Basic measure theory

1.1 Definition of the Lebesgue Measure

The Lebesgue measure is a generalization of the length l(I) of an interval I = (a, b) ⊂ R. We
are looking for a function m : M→ R+ where M is a collection of sets m in R such that:

(i) mE is defined for all subsets of R, that is M = 2R.

(ii) For an interval I we have m(I) = l(I).

(iii) If the sets En are disjoint then m(∪nEn) =
∑

nm(En).

(iv) m is translationally invariant, that is, m(E + x) = mE for all sets E ∈M and x ∈ R.

The trouble is that such function does not exist, or, rather that for any such function m
the measure of any interval is either equal to zero or infinity. Let us explain why this is so. We
will do this for the interval [0, 1) but generalization to an arbitrary interval is straightforward.
Given x, y ∈ [0, 1) define

x⊕ y =

{
x+ y, if x+ y < 1,
x+ y − 1, if x+ y ≥ 1,

and for a set E ⊆ [0, 1) we set E ⊕ y = {x ∈ [0, 1) : x = e⊕ y for some e ∈ E}.

Lemma 1.1 Assume (i)-(iv) above. If E ⊆ [0, 1) is a set and y ∈ [0, 1), then we have
m(E ⊕ y) = m(E).
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Proof. Let E1 = E ∩ [0, 1− y) and E2 = E ∩ [1− y, 1), then E1 and E2 are and disjoint, and
the same is true for E1 ⊕ y = E1 + y, and E2 ⊕ y = E2 + (y − 1), so that

E ⊕ y = (E1 ⊕ y) ∪ (E2 ⊕ y).

In addition, we have

m(E⊕y) = m(E1⊕y)+m(E2⊕y) = m(E1 +y)+m(E2 +(y−1)) = m(E1)+m(E2) = m(E),

and we are done. 2

Let us introduce an equivalence relation on [0, 1): x ∼ y if x−y ∈ Q. Using axiom of choice
we deduce existence of a set P which contains exactly one element from each equivalence class.
Set Pj = P⊕qj, where qj is the j-th rational number in [0, 1) (we write Q∩[0, 1) = {q1, q2, . . .}).
Note that the sets Pj are pairwise disjoint: if x ∈ Pi∩Pj, then x = pi⊕qi = pj⊕qj, so pj ∼ pi
and thus pi = pj, and i = j, since P contains exactly one element from each equivalence class.
On the other hand, we have

[0, 1] =
∞⋃
j=1

Pj,

and each Pi is a translation of P by qi, hence m(Pi) = m(P ) for al i, according to (iv). On
the other hand, (iii) implies that

m([0, 1)) = m

(
∞⋃
n=1

Pn

)
=
∞∑
n=1

m(Pn).

Thus, we have m([0, 1)) = 0 if m(P ) = 0 or m([0, 1)) = +∞ if m(P ) > 0. Therefore, if we
want to keep generalization of the length of an interval not totally trivial we have to drop one
of the requirements (i) - (iv), and the best candidate to do so is (i) since (ii)-(iv) come from
physical considerations.

Let us now define the (outer) Lebesgue measure of a set on the real line.

Definition 1.2 Let A be a subset of R. Its outer Lebesgue measure m∗A = inf
∑
l(In) where

the infimum is taken over all at most countable collections of open intervals {In} such that
A ∈ ∪nIn.

Note that we obviously have (i) m∗(∅) = 0, and (ii) if A ⊆ B then m∗(A) ≤ m∗(B). The
condition that In are open intervals is not so important for the definition of the Lebesgue
measure but will be important for general measures later.

Proposition 1.3 If I is an interval then m∗(I) = l(I).

Proof. (1) If I is either an open, or a closed, or half-interval between points a and b then we
have m∗(I) ≤ l(a− ε, b+ ε) = b− a+ 2ε for all ε > 0. It follows that m∗(I) ≤ b− a.

(2) On the other hand, to show that m∗([a, b]) ≥ b− a, take a cover {In} of [a, b] by open
intervals. We may choose a finite sub-cover {Jj}, j = 1, . . . , N which still covers [a, b]. As

I ⊂ ∪Nj=1Jj we have
∑N

j=1 l(Jj) ≥ b − a. Therefore, m∗[a, b] ≥ b − a and thus, together with
(1) we see that m∗([a, b]) = b− a.

(3) For an open interval (a, b) we simply write m∗(a, b) ≥ m∗[a+ ε, b− ε] ≥ b− a− 2ε for
all ε > 0 and thus m∗(a, b) ≥ b− a. 2
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Proposition 1.4 Let An be any collection of subsets of R, then

m∗(∪An) ≤
∑
n

m∗(An). (1.1)

Proof. If m∗(Aj) = +∞ then we are done. If m∗(Aj) < +∞ for all j ∈ N, then for any ε > 0

we may find a countable collection {I(j)
k } of intervals such that Aj ⊆ ∪kI(j)

k and

∞∑
k=1

l(I
(j)
k )− ε

2j
≤ m∗(Aj) ≤

∞∑
k=1

l(I
(j)
k ).

Then we have
A :=

⋃
j

Aj ⊆
⋃
j,k

I
(j)
k ,

and so
m∗(A) ≤

∑
j,k

l(I
(j)
k ) ≤

∑
j

(
m∗(Aj) +

ε

2j

)
= ε+

∑
j

m∗(Aj).

As this inequality holds for all ε > 0, (1.1) follows. 2

Corollary 1.5 If A is a countable set then m∗(A) = 0.

This follows immediately from Proposition 1.4 but, of course, an independent proof is a much
better way to see this.

Definition 1.6 A set G is said to be Gδ if it is an intersection of a countable collection of
open sets.

Proposition 1.7 (i) Given any open set A and any ε > 0 there exists an open set O such
that A ⊆ O and m∗(O) ≤ m∗(A) + ε.
(ii) There exists a set G ∈ Gδ such that A ⊆ G and m∗(A) = m∗(G).

Proof. Part (i) follows immediately from the defition of m∗(A). To show (ii) take open sets
On which contain A such that

m∗(A) ≥ m∗(On)− 1

n

and set G =
⋂
nOn. Then G ∈ Gδ, A ⊆ G, and

m∗(A) ≤ m∗(G) ≤ m∗(On) ≤ m∗(A) + 1/n for all n ∈ N,

hence m∗(A) = m∗(G). 2
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1.2 A general definition of a measure

Definition 1.8 A mapping µ∗ : 2X → R is an outer measure on a set X if

(i) µ(∅) = 0

(ii) µ∗(A) ≤
∑∞

k=1 µ
∗(Ak) whenever A ⊆

⋃∞
k=1Ak.

The term ”outer” in the above definition is not the best since we do not always assume that
µ∗ comes from some covers by open sets but we will use it anyway.

Definition 1.9 A measure µ defined on a set X is finite if µ(X) < +∞.

Definition 1.10 Let µ∗ be an outer measure on X and let A ⊂ X be a set. Then µ∗|A, a
restriction of µ∗ to A is the outer measure defined by µ∗|A(B) = µ∗(A ∩B) for B ⊆ X.

Examples. (1) The Lebesgue measure on R.
(2) The counting measure: the measure µ#(A) is equal to the number of elements in A.
(3) The delta measure on the real line: given a subset A ⊆ R, we set µ(A) = 1 if 0 ∈ A and
µ(A) = 0 if 0 /∈ A.

Measurable sets

Now, we have to restrict the class of sets for which we will define the notion of a measure (as
opposed to the outer measure which is defined for all sets). The following definition is due to
Caratheodory.

Definition 1.11 A set A ⊂ X is µ-measurable if for each set B ⊂ X we have

µ∗(B) = µ∗(A ∩B) + µ∗(Ac ∩B).

It goes without saying that if A is a measurable set then so is its complement Ac.
Note that we always have

µ∗(B) ≤ µ∗(A ∩B) + µ∗(Ac ∩B)

so to check measurability of A we would need only to verify that

µ∗(B) ≥ µ∗(A ∩B) + µ∗(Ac ∩B)

for all sets B ⊆ X.
Remark. If A is a measurable set we will write µ(A) instead of µ∗(A).

Sets of measure zero

Lemma 1.12 If µ∗(E) = 0 then the set E is measurable.

Proof. Let A ⊂ X be any set, then A ∩ E ⊂ E, so

µ∗(A ∩ E) ≤ µ∗(E) = 0,

while A ∩ Ec ⊂ A and thus

µ∗(A) ≥ µ∗(A ∩ Ec) = µ∗(A ∩ Ec) + 0 = µ∗(A ∩ Ec) + µ∗(A ∩ E),

and thus the set E is measurable. 2
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Measurability of unions and intersections of measurable sets

Lemma 1.13 If the sets E1 and E2 are µ-measurable then the set E1∪E2 is also µ-measurable.

Proof. Let A be any set. First, as E2 is measurable, we have

µ∗(A ∩ Ec
1) = µ∗((A ∩ Ec

1) ∩ E2) + µ∗((A ∩ Ec
1) ∩ Ec

2). (1.2)

On the other hand, we have the set identity

A ∩ (E1 ∪ E2) = (A ∩ E1) ∪ (A ∩ Ec
1 ∩ E2),

so that
µ∗(A ∩ (E1 ∪ E2)) ≤ µ∗(A ∩ E1) + µ∗(A ∩ Ec

1 ∩ E2). (1.3)

Now, we use measurability of E1 together with (1.2):

µ∗(A) = µ∗(A ∩ E1) + µ∗(A ∩ Ec
1) = µ∗(A ∩ E1) + µ∗((A ∩ Ec

1) ∩ E2) + µ∗((A ∩ Ec
1) ∩ Ec

2).

We replace the first two terms on the right by the left side of (1.3):

µ∗(A) ≥ µ∗(A ∩ (E1 ∪ E2)) + µ∗((A ∩ Ec
1) ∩ Ec

2) = µ∗(A ∩ (E1 ∪ E2)) + µ∗((A ∩ (E1 ∪ E2)c),

and thus E1 ∪ E2 is measurable. 2

As a consequence, the intersection of two measurable sets E1 and E2 is measurable because
its complement is:

(E1 ∩ E2)c = Ec
1 ∪ Ec

2,

as well as their difference:
E1 \ E2 = E1 ∩ Ec

2.

The next lemma applies to finite unions but will be useful below even when we consider
countable unions.

Lemma 1.14 Let A be any set, and let E1, . . . , En be a collection of pairwise disjoint µ-
measurable sets, then

µ∗(A ∩ (∪ni=1Ei)) =
n∑
i=1

µ∗(A ∩ Ei). (1.4)

Proof. We prove this by induction. The case n = 1 is trivial. Assume that (1.4) holds for
n− 1, then, as En is measurable, we have

µ∗(A ∩ ∪ni=1Ei) = µ∗(A ∩ (∪ni=1Ei) ∩ En) + µ∗(A ∩ (∪ni=1Ei) ∩ Ec
n)

= µ∗(A ∩ En) + µ∗(A ∩ (∪n−1
i=1 En) =

n∑
i=1

µ∗(A ∩ Ei).

The last equality above follows from the induction assumption while the second one uses
pairwise disjointness of Ei. 2
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The σ-algebra of measurable sets

Definition 1.15 A collection M of sets is a σ-algebra if the following conditions hold:

(0) The empty set ∅ is in M.

(i) If A ∈M and B ∈M then A ∪B ∈M.

(ii) If A ∈M then its complement Ac = R \ A is also in M.

(iii) If A1, A2, . . . , An, . . . ∈M then
⋃∞
n=1An ∈M.

A collection M which satisfies only (0)-(ii) above is called an algebra of sets.

Note that (i) and (ii) imply that if A ∈ M and B ∈ M then A ∩ B ∈ M because of the
identity (A ∩B)c = Ac ∪Bc. The same is true for countable intersections.

Theorem 1.16 Let µ be an outer measure, then the collection M of all µ-measurable sets is
a σ-algebra.

Proof. Let E be the union of countably many measurable sets Ej. Then so are the sets Ẽj
defined inductively by Ẽ1 = E1, and

Ẽj = Ej \
⋃
i<j

Ẽi.

Then the sets Ẽj are disjoint and their union is the same as that of Ej:

E = ∪jEj = ∪jẼj.

Now, take any set A and set

Fn =
n⋃
j=1

Ẽj ⊂ E.

The set Fn is measurable, and so

µ∗(A) = µ∗(A ∩ Fn) + µ∗(A ∩ F c
n) ≥ µ∗(A ∩ Fn) + µ∗(A ∩ Ec).

As the sets Ẽj are disjoint, we may use Lemma 1.14 in the right side above:

µ∗(A) ≥
n∑
j=1

µ∗(A ∩ Ẽj) + µ∗(A ∩ Ec).

As this is true for all n we may pass to the limit n→ +∞ to obtain

µ∗(A) ≥
∞∑
j=1

µ∗(A ∩ Ẽj) + µ∗(A ∩ Ec). (1.5)

6



However, by sub-additivity we have

µ∗(A ∩ E) = µ∗(A ∩ (∪jẼj)) = µ∗(∪j(A ∩ Ej)) ≤
∞∑
j=1

µ∗(A ∩ Ẽj).

Using this in (1.5) we get

µ∗(A) ≥ µ∗(A ∩ E) + µ∗(A ∩ Ec).

Therefore, the set E is measurable. As we already know that if A is a measurable set then so
is Ac, it follows that M is a σ-algebra. 2

Remark. The restriction of µ to the σ-algebra of measurable is called a measure. In the sequel
we will freely use the word ”measure” for an outer measure whether this causes confusion or
not. We will denote by m the Lebesgue measure on the real line.

Examples of measurable sets

Lemma 1.17 Any interval of the form (a,+∞) is Lebesgue measurable.

Proof. Let A be any subset of R and set A1 = A∩ (a,+∞) and A2 = A∩ (−∞, a]. We need
to verify that

m∗(A) ≥ m∗(A1) +m∗(A2). (1.6)

If m∗(A) = +∞ then there is nothing to do. If m∗(A) < +∞ then for any ε > 0 there exists
a countable collection of open intervals {In} so that A ⊆ ∪nIn and

m∗(A) + ε ≥
∑
n

l(In).

Then we simply set I ′n = In ∩ (a,∞) and I ′′n = (−∞, a + ε/2n) – this is to keep I ′′n an open
interval. Then we have

A1 ⊆ ∪nI ′n, A2 ⊆ ∪nI ′′n,

thus
m∗(A1) ≤

∑
n

l(I ′n), m∗(A2) ≤
∑
n

l(I ′′n).

It follows that

m∗(A1) +m∗(A2) ≤
∑
n

[l(I ′n) + l(I ′′n)] ≤
∑
n

(l(In) + ε/2n) ≤ m∗(A) + 2ε.

As ε > 0 is arbitrary, (1.6) follows. 2

Definition 1.18 The Borel σ-algebra in Rn is the smallest σ-algebra of Rn which contains
all open sets.

Corollary 1.19 Every Borel set in R is Lebesgue measurable.
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Countable additivity

Proposition 1.20 Let µ be a measure and let {Ej} be a collection of pairwise disjoint mea-
surable sets, then

µ

(
∞⋃
j=1

Ej

)
=
∞∑
j=1

µ(Ej).

Proof. First, sub-additivity implies that

µ

(
∞⋃
j=1

Ej

)
≤

∞∑
j=1

µ(Ej).

Thus, what we need to establish is

µ

(
∞⋃
j=1

Ej

)
≥

∞∑
j=1

µ(Ej). (1.7)

However, if all Ej are measurable and pairwise disjoint, we have, according to Lemma 1.14,
with A = X, the whole measure space, for any n ∈ N

µ

(
∞⋃
j=1

Ej

)
≥ µ

(
n⋃
j=1

Ej

)
=

n∑
j=1

µ(Ej)

As this is true for all n ∈ N, (1.7) follows. 2

Limit of a nested sequence of sets

Proposition 1.21 Let the sets Ej be measurable, En+1 ⊆ En for all n ≥ 1, and µE1 < +∞,
then

µ

(
∞⋂
j=1

Ej

)
= lim

j→+∞
µ(Ej). (1.8)

Proof. Let E =
⋂∞
j=1Ej and define the annuli Fi = Ei \ Ei+1. Then we have

E1 \ E =
∞⋃
j=1

Fj,

and all sets Fj are disjoint. It follows from Proposition 1.20 that

µ(E1 \ E) =
∞∑
j=1

µ(Fj). (1.9)

On the other hand, as E ⊆ E1 so that E1 = (E1 \ E) ∪ E, the same proposition implies that
µ(E1 \E) = µ(E1)− µ(E) and, similarly, µ(Fj) = µ(Ej)− µ(Ej+1). Using this in (1.9) leads
to

µ(E1)− µ(E) =
∞∑
j=1

(µ(Ej)− µ(Ej+1) = lim
n→+∞

n∑
j=1

(µ(Ej)− µ(Ej+1)

= lim
n→+∞

(µ(E1)− µ(En+1) = µ(E1)− lim
n→+∞

µ(En).

Now, (1.8) follows immedaitely. 2
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Limit of an increasing sequence of sets

Proposition 1.22 Let the sets Ej be measurable, En ⊆ En+1 for all n ≥ 1, then

lim
j→+∞

µ(Ej) = µ

(
∞⋃
j=1

Ej

)
. (1.10)

Proof. Let us write

µ(Ek+1) = µ(E1) +
k∑
j=1

(µ(Ej+1)− µ(Ej)) = µ(E1) +
k∑
j=1

µ(Ej+1 \ Ej). (1.11)

We used in the last step the fact that Ej ⊆ Ej+1. Now, let k → +∞ in (1.11) and use the
fact that the sets Ej+1 \Ej are pairwise disjoint, together with countable additivity of µ from
Proposition 1.20

lim
k→+∞

µ(Ek) = µ(E1) +
k∑
j=1

µ(Ej+1 \ Ej) = µ

(
E1

⋃(
∞⋃
j=1

(Ej+1 \ Ej)

))
= µ

(
∞⋃
j=1

Ej

)
,

which is (1.10). 2

Exercise. The set P defined after Lemma 1.1 is not measurable.

1.3 Regular, Borel and Radon measures on Rn

Definition 1.23 (i) A measure µ on Rn is regular if for each set A ⊆ Rn there exists a
µ-measurable set B such that A ⊆ B and µ∗(A) = µ(B).
(ii) A measure µ is Borel if every Borel set is µ-measurable.
(iii) A measure µ on Rn is Borel regular if µ is Borel and for each set A ⊂ Rn there exists a
Borel set B such that A ⊆ B and µ∗(A) = µ(B).
(iv) A measure µ is a Radon measure if µ is Borel regular and µ(K) < +∞ for each compact
set K ⊂ Rn.

Example. 1. The Lebesgue measure is a Radon measure.
2. δ-function is a Radon measure.

Increasing sequences of sets

Theorem 1.24 Let µ be a regular measure, and let A1 ⊆ A2 ⊆ . . . ⊆ An ⊆ . . . be an
increasing sequence of sets which need not be measurable. Then

lim
k→∞

µ∗(Ak) = µ∗

(
∞⋃
k=1

Ak

)
. (1.12)

Proof. Since the measure µ is regular, there exist measurable sets Ck such that Ak ⊆ Ck and
µ∗(Ak) = µ(Ck). Set

Bk =
⋂
j≥k

Cj,
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then Ak ⊆ Bk ⊆ Bk+1 since for any j ≥ k we have the inclusion Ak ⊆ Aj ⊆ Cj. Moreover,
as µ∗(Ak) = µ(Ck) ≥ µ(Bk), we have µ∗(Ak) = µ(Bk). Let us pass to the limit, using
Proposition 1.22 for the increasing sequence of measurable sets Bk:

lim
k→∞

µ∗(Ak) = lim
k→∞

µ(Bk) = µ

(
∞⋃
j=1

Bj

)
≥ µ∗

(
∞⋃
j=1

Aj

)
.

On the other hand, we have the trivial inequality

µ∗(Ak) ≤ µ∗

(
∞⋃
j=1

Aj

)

for each k ∈ N and thus (1.12) holds. 2

Restriction of a regular Borel measure

Restriction of a regular Borel measure to a set of finite measure is a Radon measure:

Theorem 1.25 Let µ be a regular Borel measure on Rn. Suppose that the set A is µ-
measurable and µ(A) < +∞. Then the restriction µ|A is a Radon measure.

Proof. Let ν = µ|A, then clearly ν(K) ≤ µ(A) < +∞ for any compact set K. If B is a Borel
set and S is any set, then, as µ is a Borel measure, and hence B is µ-measurable, we have

ν∗(S) = µ∗(A ∩ S) = µ∗((A ∩ S) ∩B) + µ∗((A ∩ S) ∩Bc) = ν∗(S ∩B) + ν∗(S ∩Bc).

Thus, any Borel set B is ν-measurable, and measure ν is Borel.
It remains to show that ν is Borel regular. Since µ is Borel regular, there exists a Borel

set B such that A ⊆ B and µ(A) = µ(B) < +∞. As both A and B are measurable, we have

µ(B) = µ(A) + µ(B \ A),

and thus µ(B \ A) = 0. Choose a set C ⊆ Rn, then, since A is measurable,

µ∗|B(C) = µ∗(C ∩B) = µ∗(C ∩B ∩ A) + µ∗(C ∩B ∩ Ac)
= µ∗(C ∩B ∩ A) + µ∗(C ∩ (B \ A)) ≤ µ∗(C ∩ A) + µ∗(B \ A) = µ∗(C ∩ A) = µ∗|A(C),

and thus µ|∗B(C) = µ|∗A(C) for all sets C. Therefore, without loss of generality we may assume
that A is a Borel set. If A is a Borel set, take any set C ⊂ Rn. Then there exists a Borel set
E such that µ(E) = µ∗(A ∩ C) and A ∩ C ⊆ E. Take the set D = E ∪ (Rn \ A), then D is
Borel (this is why we needed to reduce to the situation when A is a Borel set), C ⊆ D and

ν(D) = µ(D ∩ A) = µ(E ∩ A) ≤ µ(E) = µ∗(A ∩ C) = ν∗(C) ≤ ν(D).

As a consequence, ν(D) = ν∗(C) and thus ν is Borel regular. 2
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Approximation by open and closed sets

The following result is a generalization of the results on approximation of sets by open and
closed sets for the Lebesgue measure. In particular, it shows that any Radon measure is
both an ”outer” and an ”inner” measure in an intuitive sense, and can be constructed as an
extension from the open sets.

Theorem 1.26 Let µ be a Radon measure, then
(i) for each set A ⊆ Rn we have

µ∗(A) = inf {µ(U) : A ⊆ U, U open} . (1.13)

(ii) for each µ-measurable set A we have

µ(A) = sup {µ(K) : K ⊆ A, K compact.} (1.14)

We begin with the following lemma which addresses the statement of the theorem for the
Borel sets.

Lemma 1.27 Let µ be a Borel measure and B be a Borel set.
(i) If µ(B) < +∞ then for any ε > 0 there exists a closed set C such that C ⊆ B and
µ(B \ C) < ε.
(ii) If µ is Radon then for any ε > 0 there exists an open set U such that B ⊆ U and
µ(U \B) < ε.

Proof. (i) Take a Borel set B with µ(B) < +∞, and define the restriction ν = µ|B. As at
the beginning of the proof of Theorem 1.25, we deduce that ν is a Borel measure. In addition,
ν is a finite measure as µ(B) < +∞. Let F be the collection of all µ-measurable subsets A
of Rn such that for any ε > 0 we can find a closed set C ⊆ A which is a subset of A and
ν(A \C) < ε. Our goal is to show that B ∈ F . To do this we define G as the collection of all
sets A such that both A ∈ F and Ac ∈ F . It is sufficient to show that

G contains all open sets and is a σ-algebra. (1.15)

Then it would follow that G contains all Borel sets, hence, in particular G contains B and
thus so does F . Hence, we set out to prove (1.15).
Step 1: Closed sets. The first trivial observation is that F contains all closed sets.
Step 2: Infinite intersections. Let us now show that if the sets Aj ∈ F for all j = 1, 2, . . . ,
then so is their intersection: A = ∩∞j=1Aj ∈ F .

To show that, given ε > 0, using the fact that Aj ∈ F , we choose the closed sets Cj ⊆ Aj
so that

ν(Aj \ Cj) <
ε

2j
. (1.16)

Then the closed set C = ∩∞j=1Cj ⊆ A and, moreover,

ν(A \ C) ≤ ν

(
∞⋃
j=1

(Aj \ Cj)

)
≤

∞∑
j=1

ν(Aj \ Cj) < ε.

Therefore, indeed, A ∈ F .
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Step 3: Infinite unions. Next, we establish that if the sets Aj ∈ F for all j = 1, 2, . . . ,
then so is their union: A =

⋃∞
j=1 Aj ∈ F .

Choose the sets Cj as in (1.16), then, as ν(A) < +∞ we have, using Proposition 1.21,

lim
m→+∞

ν(A \ (
m⋃
j=1

Cj)) = ν(A \
∞⋃
j=1

Cj) = ν((
∞⋃
j=

Aj) \ (
∞⋃
j=1

Cj))

≤ ν
∞⋃
j=1

(Aj \ Cj) ≤
∞∑
j=1

ν(Aj \ Cj) < ε.

Therefore, there exists m0 ∈ N so that

ν(A \ (

m0⋃
j=1

Cj)) < ε,

and the set C =
⋃m0

j=1Cj is closed.
Step 4: collection G contains all open sets. If O is an open set then Oc is closed and

thus Oc ∈ F automatically by Step 1. But any open set can be written as a countable union
of closed sets, hence by Step 3 collection F contains all open sets, hence, in particular, our
set O. Thus, both O and Oc are in F , so O ∈ G.

Step 5: G is a σ-algebra. Obviously, if A ∈ G then Ac ∈ G as well. Therefore, we only
need to check that if A1, A2, . . . , An, . . . ∈ G then A = ∪∞j=1Aj ∈ G. But A ∈ F by Step 3,
while Step 2 implies that

Ac =
∞⋂
j=1

(Acj)

is in F as well, and thus A ∈ G.
Steps 1-5 imply that G is σ-algebra containing all open sets, and hence G contains all Borel

sets and, in particular, it contains the set B.
(ii) Now, we prove the second part of Lemma 1.27. Let B be a Borel set and let Um =

U(0,m) be an open ball around x = 0 of radius m. Then µ(Um \ B) < +∞ as µ is Radon.
We may then apply part (i) to the Borel set Um \B and find a closed set Cm ⊆ Um \B with

µ ((Um \B) \ Cm) <
ε

2m
.

Then B ⊆ Cc
m and Um ∩B ⊆ Um \ Cm, so that

B =
∞⋃
m=1

(Um ∩B) ⊆
∞⋃
m=1

(Um \ Cm) := U,

and

µ(U \B) = µ

([
∞⋃
m=1

(Um \ Cm)

]
\B

)
≤

∞∑
m=1

µ((Um \ Cm) \B) < ε,

and we are done 2.
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Proof of Theorem 1.26

(i) We begin with the first part of the theorem. If µ∗(A) = +∞ the statement is obvious,
just take U = Rn, so we assume that µ(A) < +∞. If A is a Borel set then (i) holds because
of part (ii) of Lemma 1.27. If A is not a Borel set then, as µ is a Borel regular measure there
exists a Borel set B such that A ⊆ B and µ∗(A) = µ(B). Then, once again we may apply
part (ii) of Lemma 1.27 to see that

inf {µ(U) : A ⊆ U, U open} ≥ µ∗(A) = µ(B) = inf {µ(U) : B ⊆ U, U open}
≥ inf {µ(U) : A ⊆ U, U open} ,

which implies (1.13).
(ii) Now, we prove (1.14). First, assume that A is a µ-measurable set and µ(A) < +∞.

Then the restriction ν = µ|A is a Radon measure, as follows from Theorem 1.25, hence the
already proved part (i) of the present Theorem applies to ν. Fix ε > 0, then we apply (1.13)
to the set Ac, with ν(Ac) = 0, and find an open set U such that Ac ⊆ U and ν(U) < ε. The
set C = U c is closed, C ⊆ A and

µ(A \ C) = ν(Cc) = ν(U) < ε.

It follows that
µ(A) = sup {µ(C) : C ⊆ A, C closed} if µ(A) < +∞. (1.17)

If A is µ-measurable and µ(A) = +∞ define the annuli Dk = {x : k− 1 ≤ |x| < k} and split

A =
∞⋃
k=1

(A ∩Dk).

Observe that

+∞ = µ(A) =
∞∑
k=1

µ(A ∩Dk),

while µ(A ∩ Dk) < +∞ since µ is a Radon measure. We can use (1.17) to find closed sets
Ck ⊆ A ∩Dk such that

µ((A ∩Dk) \ Ck) <
1

2k
,

and consider the closed sets Gn = ∪nk=1Ck. Note that, as all Ck are pairwise disjoint,

µ(Gn) =
n∑
k=1

µ(Ck) ≥
n∑
k=1

(
µ(A ∩Dk)−

1

2k

)
. (1.18)

As, by Proposition 1.22, we have

+∞ = µ(A) = lim
n→+∞

µ (∪nk=1(A ∩Dk)) = lim
n→+∞

n∑
k=1

(µ(A ∩Dk)) ,

we deduce from (1.18) that limn→+∞ µ(Gn) = +∞ = µ(A). Therefore, (1.17) actually holds
also if µ(A) = +∞. What remains is to replace the word ”closed” in (1.17) by ”compact”.
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This is simple: if µ(A) < +∞ given ε > 0 take a closed set C ⊆ A such that µ(C) > µ(A)− ε
and write C = ∪∞k=1Ck, with Ck = C ∩ Ū(0, k). Then each Ck is a compact set, Ck ⊂ A,
and µ(C) = limk→+∞ µ(Ck) because of Proposition 1.22 again. Hence, there exists a positive
integer k0 so that µ(Ck0) > µ(A)− ε, and (1.14) follows. If µ(A) = +∞ we can do the same
procedure by first choosing closed sets Cn ⊆ A with µ(Cn) > n for n ∈ N, and then writing
Cn = ∪∞k=1Cnk, with compact sets Cnk = Cn ∩ B̄(0, k) ⊂ A. We finish by choosing kn large
enough so that µ(Cn ∩ B̄(0, kn) > n and noticing that µ(A) = +∞ = supn µ(Cnkn). 2

2 Measurable functions

2.1 Definition and basic properties

Recall that a function is continuous if pre-image of every open set is open. Measurable
functions are defined in a similar spirit. We start with the following observation.

Proposition 2.1 Let f : Rn → R be a real-valued function defined on a measurable set. Then
the following are equivalent.
(i) For any α ∈ R the set {x : f(x) > α} is measurable,
(ii) For any α ∈ R the set {x : f(x) ≥ α} is measurable,
(iii) For any α ∈ R the set {x : f(x) ≤ α} is measurable,
(iv) For any α ∈ R the set {x : f(x) < α} is measurable.

Proof. First, it is obvious that (i) and (iv) are equivalent, and so are (ii) and (iii). If we
write

{x : f(x) > α} =
∞⋃
n=1

{x : f(x) ≥ α + 1/n}

we see that (ii) implies (i), and, similarly, we get that (iv) implies (iii). 2

This leads to the following, somewhat more general definition. Let X be a set, Y a
topological space and assume that µ is a measure on X.

Definition 2.2 A function f : X → Y is µ-measurable if for each open set U ⊆ Y , the
pre-image f−1(U) is µ-measurable.

For real-valued functions it suffices to check that pre-images of the half intervals (α,+∞) are
all open in order to establish measurability of a function.

The next proposition gives some basic properties of measurable functions which are neither
surprising nor particularly amusing.

Proposition 2.3 If f, g : X → R are measurable functions and c ∈ R is a real number then
the following functions are also measurable: cf , f + c, f + g, f − g and fg.

Proof. (1) To see that f + c is measurable we simply note that

{x : f(x) + c < α} = {x : f(x) < α− c}.
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(2) For measurability of cf with c > 0 we observe that {x : cf(x) < α} = {x : f(x) < α/c},
and the case c ≤ 0 is not very different.
(3) To show that f + g is measurable we decompose

{x : f(x) + g(x) < α} =
⋃
r∈Q

[{x : f(x) < α− r} ∩ {x : g(x) < r}] .

(4) The function f 2(x) is measurable because for α ≥ 0 we have

{x : f 2(x) > α} = {x : f(x) >
√
α} ∪ {x : f(x) <

√
α},

and the case α < 0 is not that difficult.
(5) Finally, the product fg is measurable because

f(x)g(x) =
(f + g)2 − (f − g)2

4
,

and the right side is measurable by (1)-(4) shown above. 2

The next theorem is certainly not true in the world of continuous functions: point-wise
limits of continuous functions may be quite discontinuous but limits of measurable functions
are measurable:

Theorem 2.4 If the functions f1, f2, . . . , fn, . . . are all measurable then so are

gn(x) = sup
1≤j≤n

fj(x), qn(x) = inf
1≤j≤n

fj(x), g(x) = sup
n
fn(x), q(x) = inf

n
fn(x),

as well as
s(x) = lim sup

n→∞
fn(x) and w(x) = lim inf

n→∞
fn(x).

Proof. For gn(x) and g(x) we can write

{gn(x) > α} =
n⋃
j=1

{fj(x) > α}, {g(x) > α} =
∞⋃
j=1

{fj(x) > α},

which shows that gn(x) and g(x) are both measurable, and qn(x) are q(x) are measurable for
a similar reason. Now, for s(x) we use the representation

s(x) = lim sup
n→∞

fn(x) = inf
n

(
sup
k≥n

fk(x)

)
,

and see that s(x) is measurable by what we have just proved. The function w(x) is measurable
for a similar reason. 2

The next result gives a very convenient representation of a positive function as a sum of
simple functions. We denote by χA the characteristic function of a set A:

χA(x) =

{
0, if x /∈ A,
1, if x ∈ A.
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Definition 2.5 A measurable function f(x) is simple if it takes at most countably many
values.

Theorem 2.6 Let a non-negative function f be µ-measurable. Then there exist µ-measurable
sets Ak such that

f(x) =
∞∑
k=1

1

k
χAk(x). (2.1)

Proof. Set
A1 = {x : f(x) ≥ 1}

and continue inductively by setting

Ak =

{
x : f(x) ≥ 1

k
+

k−1∑
j=1

1

j
χAj(x)

}
.

Clearly, we have, for all k:

f(x) ≥
k∑
j=1

1

j
χAj(x),

and thus

f(x) ≥
∞∑
k=1

1

k
χAk(x). (2.2)

If f(x) = +∞ then x ∈ Ak for all k, hence

f(x) =
∞∑
k=1

1

k
χAk(x) if f(x) = +∞.

On the other hand, (2.2) implies that if f(x) < +∞ then x /∈ Ak for infinitely many k, which
means that

k−1∑
j=1

1

j
χAj(x) ≤ f(x) ≤ 1

k
+

k−1∑
j=1

1

j
χAj(x)

for infinitely many k. This implies that (2.1) holds also for the points where f(x) < +∞. 2

Remark. Note that this proof works with 1/k replaced by any non-negative sequence ak ≥ 0
such that both ak → 0 as k → +∞ and

∑∞
k=1 ak = +∞.

2.2 Lusin’s and Egorov’s theorems

Lusin’s theorem says, roughly speaking, that any measurable function coincides with a con-
tinuous function on a set of large measure. The catch is that you do not have a control of
the structure of the set where the two functions coincide. For instance, the Dirichlet function
which is equal to one at irrational numbers and to zero at rational ones coincides with the
function equal identically to one on the set of irrational numbers which has full measure but
lots of holes.
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Extension of a continuous function

As a preliminary tool, which is useful in itself we prove the following extension theorem.
Generally, extension theorems deal with extending ”good” functions from a set to a larger set
preserving ”goodness” of the function. The following is just one example of such result.

Theorem 2.7 Let K ⊆ Rn be a compact set and f : K → Rm be continuous. Then there
exists a continuous mapping f̄ : Rn → Rm such that f̄(x) = f(x) for all x ∈ K, and
|f̄(x)| ≤ supy∈K |f̄(y)| for all x ∈ Rn.

Proof. The proof is very explicit. We take m = 1 but generalization to m > 1 is immediate.
Let U = Kc be the complement of K. Given x ∈ U and s ∈ K set

us(x) = max

{
2− |x− s|

dist(x,K)
, 0

}
.

For each s ∈ K fixed the function us(x) is continuous in x ∈ U , 0 ≤ u(x) ≤ 1 and us(x) = 0 if
|x− s| ≥ 2dist(x,K) which happens when x is ”close” to K. On the other hand, for a fixed x
close to ∂K the function us(x) vanishes for s which are far from sx which realizes the distance
from x to K. When x is ”far” from K, us(x) is close to 1, that is, us(x)→ 1 as |x| → +∞.

Now, take a dense set {sj} in K and for x ∈ U define an averaged cut-off

σ(x) =
∞∑
j=1

usj(x)

2j
.

Note that for x ∈ U the function σ(x) is continuous because usj(x) are continuous and by the
Weierstrass test. Moreover, for any x ∈ U there exists sj0 such that |x − sj0| ≤ 2dist(x,K)
since {sj} are dense. Therefore, usj0 (x) > 0 and thus σ(x) > 0 for all x ∈ U . Let us also set
normalized weights of each point sj

vj(x) =
2−jusj(x)

σ(x)
.

Note that
∞∑
j=1

vj(x) ≡ 1 (2.3)

for all x ∈ U . Finally, we define the extension of f(x) to all of Rn by

f̄(x) =

{
f(x), x ∈ K,∑∞

j=1 vj(x)f(sj), x ∈ U = Rn \K. (2.4)

The idea is that for x ”far” from the boundary of K the extension is not very difficult, the
problem is with x close to ∂K and for those x the function f̄(x) is defined as a weighted
average of f(sj) with the bigger weight going to sj which are close to x.

Let us check that f̄(x) is continuous. The series in (2.4) for x ∈ U converges uniformly
because 0 ≤ usj(x) ≤ 1, the function σ(x) is continuous and |f(sj)| ≤ M since f is a
continuous function, sj ∈ K, and the set K is compact. As each individual term f(sj)vj(x) is
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a continuous function, the uniform convergence of the series implies that f̄(x) is continuous
at x ∈ U .

Now, let us show that for each x ∈ K we have f(x) = limy→x f̄(y). Given ε > 0 use uniform
continuity of the function f on the compact set K to choose δ > 0 so that |f(x)− f(x′)| < ε
as soon as |x − x′| < δ and x, x′ ∈ K. Consider y ∈ U such that |y − x| < δ/4. Then if
|x− sk| ≥ δ we have

δ ≤ |x− sk| ≤ |x− y|+ |y − sk|,

thus

|y − sk| ≥
3δ

4
≥ 2|x− y|,

and hence usk(y) = vk(y) = 0 for such sk. Therefore, we have |f(x) − f(sk)| < ε for all sk
such that vk(y) 6= 0, and we may simply estimate, using (2.3):

|f̄(y)− f(x)| =

∣∣∣∣∣
∞∑
k=1

vk(y)f(sk)−
∞∑
k=1

vk(y)f(x)

∣∣∣∣∣ ≤
∞∑
k=1

vk(y)|f(x)− f(sk)| < ε.

Therefore, the function f̄(x) is continuous everywhere. The claim that |f̄(x)| ≤ supy∈K |f̄(y)|
for all x ∈ Rn follows immediately from the definition of f̄(x) and (2.3). 2

Lusin’s Theorem

Lusin’s theorem says that every measurable function coincides with a continuous function on
an arbitrarily large set.

Theorem 2.8 Let µ be a Borel regular measure on Rn and let f : Rn → Rm be µ-measurable.
Assume A ⊂ Rn is a µ-measurable set with µ(A) < +∞. For any ε > 0 there exists a compact
set Kε ⊆ A such that µ(A \Kε) < ε and the restriction of the function f to the compact set
Kε is continuous.

Proof. As usual, it is sufficient to prove this for m = 1. We will construct a compact set
Kε on which f(x) is a limit of a uniformly converging sequence of continuous functions and
is therefore itself continuous on Kε. To this end for each p ∈ N take half-open intervals
Bpj = [j/2p, (j + 1)/2p), j ∈ Z and define the pre-images Apj = A∩ (f−1(Bpj)). The sets Apj
are µ-measurable and A = ∪∞j=1Apj for each p fixed. Let ν = µ|A be the restriction of µ to
the set A, then ν is a Radon measure so there exists a compact set Kpj ⊆ Apj such that

ν (Apj \Kpj) <
ε

2p+j
,

and thus

µ

(
A \

∞⋃
j=1

Kpj

)
<

ε

2p
.

Now, we choose N(p) so that

µ

A \ N(p)⋃
j=1

Kpj

 <
ε

2p
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and set Dp = ∪N(p)
j=1 Kpj. Then the set Dp is compact. For each p and j define the function

gp(x) = j/2p for x ∈ Kpj, 1 ≤ j ≤ N(p). As the compact sets Kpj are pairwise disjoint, they
are all a finite distance apart and thus the function gp(x) is continuous on the set Dp and,
moreover, we have

|f(x)− gp(x)| < 1

2p
for all x ∈ Dp. (2.5)

Finally, set Kε = ∩∞p=1Dp. Then the set Kε (which depends on ε through the original choice
of the sets Kpj) is compact, and

µ(A \K) ≤
∞∑
p=1

µ(A \Dp) < ε.

Moreover, (2.5) implies that the sequence gp(x) converges uniformly to the function f(x) on
Kε and thus f is continuous on the set Kε. 2

A direct consequence of Theorems 2.7 and 2.8 is the following.

Corollary 2.9 Let µ and A be as in Lusin’s theorem. Then there exists a continuous function
f̄ : Rn → Rm such that µ{x ∈ A : f(x) 6= f̄(x)} < ε.

We note that if f(x) is a bounded function: |f(x)| ≤ M , then f̄(x) can be chosen so that
|f̄(x)| ≤M as well – this follows from the last statement in Theorem 2.7.

Egorov’s theorem

Egorov’s theorem shows that a point-wise converging sequence converges uniformly except
maybe on a small set.

Theorem 2.10 Let µ be a measure on Rn and let the functions fk : Rn → R be µ-measurable.
Assume that the set A is µ-measurable with µ(A) < +∞ and fk → g almost everywhere on
A. Then for any ε > 0 there exists a µ-measurable set Bε such that (i) µ(A \ Bε) < ε, and
(ii) the sequence fk converges uniformly to g on the set Bε.

Proof. Define a nested sequence of ”bad” sets

Cij =
∞⋃
k=j

{
x : |fk(x)− g(x)| > 1

2i

}
,

then Ci,j+1 ⊂ Cij while ∩∞j=1Cij = ∅ and so, as µ(A) < +∞, we have

lim
j→∞

µ (A ∩ Cij) = µ(A ∩ (∩∞j=1Cij)) = 0

for each i ∈ N. Then there exists Ni such that

µ (A ∩ Ci,Ni) <
ε

2i
.

Set
B = A \ (∪∞i=1Ci,Ni),

then µ(A \B) < ε and for each x ∈ B and for all n ≥ Ni we have

|fn(x)− g(x)| ≤ 1

2i
,

hence fn(x) converges uniformly to g(x) on the set B. 2
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3 Integrals and limit theorems

Definition of the integral

Here we will define the Lebesgue integral as well as integral with respect to other measures.
The main difference with the Riemann integral is that the latter is not very stable under
taking limits of functions simply because point-wise limits of continuous functions can be
extremely bad and not Riemann integrable. The definition of the Lebesgue integral, on the
contrary, makes it very stable under limits.

Definition 3.1 A function f(x) is simple if it takes countably many values.

For a simple, measurable and non-negative function f(x) ≥ 0 which takes values yj ≥ 0:

f(x) =
∑
j

yjχAj(x), (3.1)

with µ-measurable sets Aj, we define

�
f(x)dµ =

∑
j

yjµ(f−1(yj)) =
∑
j

yjµ(Aj). (3.2)

Compared to the Riemann integral we simply turn our head sideways and compute the area
as in (3.2). This makes a world of difference and also allows the sets Aj to be just measurable,
and thus have a rather complicated structure which would rule out Riemann integrability of
f(x) of the form (3.1).

If f(x) is simple and measurable, we write f = f+ − f−, where f+ = max(f, 0) and
f− = max(−f, 0). If either �

f+dµ < +∞,

or �
f−dµ < +∞,

then we set �
fdµ =

�
f+dµ−

�
f−dµ.

The next proposition is the key step in the definition of the Lebesgue integral

Proposition 3.2 Let f be a bounded function defined on a measurable set E with µE < +∞.
In order that � ∗

fdµ := inf
f≤ψ

�
ψdµ = sup

f≥φ

�
φdµ :=

�
∗
fdµ

where the infimum and the supremum are taken over all measurable simple functions φ ≤ f
and ψ ≥ f , respectively, it is necessary and sufficient that f be measurable.
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Proof. (1) Let f be a bounded measurable function, with |f(x)| ≤M for all x ∈ E. Choose
a mesh step M/n and consider the pre-images

Ek =

{
x :

(k − 1)M

n
< f(x) ≤ kM

n

}
,

with −n ≤ k ≤ n, then

E =
n⋃

k=−n

Ek

and each set Ek is measurable. Consider the simple approximants

ψn(x) =
n∑

k=−n

kM

n
χEk(x), φn(x) =

n∑
k=−n

(k − 1)M

n
χEk(x),

so that φn(x) ≤ f(x) ≤ ψn(x) for all x ∈ E. Then we have

0 ≤
�
ψn −

�
φn =

M

n
µE,

and thus �
∗
fdµ =

� ∗
fdµ. (3.3)

(2) On the other hand, if (3.3) holds then for every n there exist measurable simple functions
φn ≤ f and ψn ≥ f such that �

(ψn − φn)dµ ≤ 1

n
. (3.4)

Set
ψ∗ = inf ψn, φ∗ = supφn,

then φ∗ and ψ∗ are both measurable and φ∗ ≤ f ≤ ψ∗. Consider the set

A = {x ∈ E : φ∗(x) < ψ∗(x)} =
∞⋃
k=1

{x ∈ E : φ∗(x) < ψ∗(x)− 1

k
} :=

∞⋃
k=1

Ak.

Given any k ∈ N note that for n large enough we have φn(x) < ψn(x) − 1/k on the set Ak
and thus, as ψn − φn > 0, we have�

E

ψndµ−
�
E

φndµ =

�
E

(ψn − φn)dµ ≥
�
Ak

(ψn − φn)dµ ≥ µ(Ak)

k
.

Combining this with (3.4) and letting n→ +∞ we conclude that µ(Ak) = 0 for all k. Thus,
φ∗ = ψ∗ = f except on a set of measure zero, hence the function f is measurable. 2

Proposition 3.2 motivates the following.

Definition 3.3 Let f be a bounded measurable function defined on a measurable set E with
µE < +∞ then �

E

fdµ = inf

�
E

ψdµ,

with the infimum taken over all simple functions ψ ≥ f .
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The next step in the hierarchy is to define the integral of a non-negative function.

Definition 3.4 If f ≥ 0 is a non-negative measurable function defined on a measurable set
E we define �

E

fdµ = sup
h≤f

�
E

hdµ,

with supremum taken over all bounded simple functions h that vanish outside a set of finite
measure.

This gives way to the general case.

Definition 3.5 A non-negative measurable function f defined on a measurable set E is inte-
grable if

�
E
fdµ < +∞. A measurable function g defined on a measurable set E is integrable

if both g+ = max(g, 0) and g− = max(0,−g) are integrable.

Bounded convergence theorem

We now set to prove several theorems which address the same question: if a sequence fn(x)
converges point-wise to a function f(x), what can we say about the integral of f(x)? Let us
point out immediately two possible sources of trouble. One example is the sequence of step
functions fn(x) = χ[n,n+1](x), and another is the sequence gn(x) = nχ[−1/(2n),1/2n](x). Both
fn(x) and gn(x) converge point-wise almost everywhere to f(x) = 0 but

�
R
fn(x)dx =

�
R
gn(x)dx = 1 6→ 0 =

�
R
f(x)dx.

This shows two possible reasons for the integrals of fn to fail to converge to the integral of
f(x): escape to infinity in case of fn(x) and concentration in the case of gn(x).

Bounded convergence theorem deals with the situation when neither escape to infinity nor
concentration is possible.

Theorem 3.6 Let fn be a sequence of measurable functions defined on a measurable set
E with µE < +∞. Assume that fn are uniformly bounded: there exists M > 0 so that
|fn(x)| ≤ M for all n and all x ∈ E. Then if fn(x)→ f(x) point-wise almost everywhere on
E then �

E

fdµ = lim
n→∞

�
E

fndµ. (3.5)

Proof. This is trivial if fn converges uniformly to f on the set E. In general, given any
ε > 0 we may use Egorov’s theorem to find a set Aε such that µ(Aε) < ε, and fn converges
uniformly to f on the set E \ Aε. Then for large enough n we have∣∣∣∣�

E

(fn − f)dµ

∣∣∣∣ ≤ �
E\Aε
|fn − f |dµ+

�
Aε

|fn − f |dµ ≤ εµ(E) + 2Mµ(Aε) ≤ (µ(E) + 2M)ε,

and (3.5) follows. 2
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Fatou’s Lemma

Fatou’s lemma tells us that in the limit we may only lose mass, which is exactly what happened
in the two examples (concentration and escape to infinity) mentioned at the beginning of this
section.

Theorem 3.7 Let fn be a sequence of non-negative measurable functions which converges
point-wise to a function f on a measurable set E, then

�
E

fdµ ≤ lim inf
n→+∞

�
E

fndµ. (3.6)

Proof. Let h be a bounded non-negative simple function which vanishes outside a set E ′ with
µE ′ < +∞ and such that h ≤ f on E. Set hn(x) = min {h(x), fn(x)}, then hn(x)→ h(x) on
E. Then we have, applying the bounded convergence theorem to the sequence hn on the set
E ′: �

E

hdµ =

�
E′
hdµ = lim

n→∞

�
E′
hndµ ≤ lim inf

�
E′
fndµ ≤ lim inf

�
E

fndµ.

Taking the supremum over all such functions h we arrive to (3.6). 2

It is very important to keep in mind that Fatou’s lemma does not generally hold for
functions which may take negative values.

The Monotone Convergence Theorem

Fatou’s lemma says that you cannot gain mass in the limit. If the sequence fn is increasing
you can hardly lose mass in the limit either.

Theorem 3.8 Let fn be a non-decreasing sequence of non-negative measurable functions de-
fined on a measurable set E. Assume that fn converges point-wise to f almost everywhere on
E, then �

E

fdµ = lim
n→+∞

�
E

fndµ.

Proof. This is an immediate consequence of Fatou’s lemma. 2

The monotone convergence theorem has a very simple but useful corollary concerning
term-wise Lebesgue integration of a series of non-negative functions.

Corollary 3.9 Let un be a sequence of non-negative measurable functions defined on a mea-
surable set E and let f(x) =

∑∞
n=1 un(x). Then

�
E

fdµ =
∞∑
n=1

�
E

un(x)dµ.

Proof. Apply the monotone convergence theorem to the sequence of partial sums fn(x) =∑n
j=1 uj(x). 2
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Lebesgue Dominated Convergence Theorem

All the above convergence theorems are part of the Lebesgue dominated convergence theorem.

Theorem 3.10 Let the functions fn be measurable and defined on a measurable set E. As-
sume that |fn(x)| ≤ g(x),

�
E
g(x)dµ < +∞, and fn(x) → f(x), both almost everywhere on

E. Then we have �
E

fdµ = lim
n→+∞

�
E

fndµ. (3.7)

Proof. As g − fn ≥ 0 a.e. on E, Fatous’ lemma implies that

�
E

(g − f)dµ ≤ lim inf

�
E

(g − fn)dµ. (3.8)

Moreover, the fact that |fn| ≤ g implies that the limit f is integrable, hence it follows from
(3.8) that �

E

gdµ−
�
E

fdµ ≤
�
E

gdµ− lim sup

�
E

fndµ,

and thus

lim sup

�
E

fndµ ≤
�
E

fdµ.

On the other hand, similarly we know that g + fn ≥ 0, which implies

�
E

gdµ+

�
E

fdµ ≤
�
E

gdµ+ lim inf

�
E

fndµ,

and thus �
E

fdµ ≤ lim inf

�
E

fndµ.

Now, (3.7) follows. 2

Absolute continuity of the integral

Proposition 3.11 Let f ≥ 0 and assume that

�
E

fdµ < +∞.

Then for any ε > 0 there exists δ > 0 so that for any measurable set A ⊆ E with µ(A) < δ
we have �

A

fdµ < ε.

Proof. Suppose that this fails. Then there exists ε0 > 0 and a sequence of sets An ⊂ E so
that µ(An) < 1/2n but �

An

fdµ ≥ ε0.
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Consider the functions gn(x) = f(x)χAn(x), then gn(x) → 0 as n → ∞ except for points x
which lie in infinitely many An’s, that is,

x ∈ A =
∞⋂
n=1

(
∞⋃
j=n

Aj

)
.

However, for any n we have

µ(A) ≤ µ

(
∞⋃
j=n

Aj

)
≤

∞∑
j=n

µ(Aj) ≤
1

2n−1
.

It follows that µ(A) = 0 and thus gn(x) → 0 a.e. on E. Now, set fn = f − gn, then fn ≥ 0
and fn → f a.e., so Fatou’s lemma can be applied to fn:

�
E

fdµ ≤ lim inf

�
E

fndµ ≤
�
E

fdµ− lim sup

�
E

gndµ ≤
�
E

fdµ− ε0,

which is a contradiction. 2

Convergence in probability

Definition 3.12 A sequence of measurable functions fn converges in probability to a function
f on a set E if for every ε > 0 there exists Nsuch that for all n ≥ N we have

µ (x ∈ E : |fn(x)− f(x)| ≥ ε) < ε.

It is quite easy to see that convergence in probability need not imply point-wise convergence
anywhere: take a sequence

sn =

(
n∑
k=1

1

k

)
(mod1)

and consider the functions

φn(x) =

{
χ[sn,sn+1](x), if 0 ≤ sn < sn+1 ≤ 1
χ[0,sn+1](x) + χ[sn,1](x), if 0 ≤ sn+1 < sn ≤ 1.

Then φn → 0 in probability but φn(x) does not go to zero point-wise anywhere on [0, 1].
Nevertheless, convergence in probability implies point-wise convergence along a subsequence.

Proposition 3.13 Assume that fn converges to f in probability on a set E. Then there exists
a subsequence fnk which converges to f(x) point-wise a.e. on E.

Proof. For any j we can find a number Nj such that for any n > Nj we have

µ

(
x ∈ E : |f(x)− fn(x)| ≥ 1

2j

)
≤ 1

2j
.

Define the bad sets

Ej =

{
x ∈ E : |f(x)− fNj(x)| ≥ 1

2j

}
,
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then for x /∈ Dk = ∪∞j=kEj we have

|f(x)− fN(j)(x)| < 1

2j

for all j ≥ k and thus fNj(x) → f as j → ∞ for all x /∈ D = ∩∞k=1Dk. However, we have
µ(D) ≤ µ(Dk) ≤ 1/2k−1 for all k and thus µ(D) = 0. 2

4 Differentiation and Integration

We will now address for some time the question of when the Newton-Leibnitz formula
� b

a

f ′(x)dx = f(b)− f(a) (4.1)

holds. Recall that we denote by m(E) the Lebesgue measure of a set E ⊆ R on the line.

4.1 Differentiation of Monotone Functions

The Vitali lemma

Definition 4.1 We say that a collection J of non-trivial closed intervals on the real line
forms a fine cover of a set E if for any ε > 0 and any point x ∈ E there exists an interval I
in the collection J such that x ∈ I and m(I) < ε.

Vitali’s lemma allows us to find a finite sub-covering by pairwise disjoint balls that covers
a very large fraction of a set.

Lemma 4.2 (Vitali’s lemma) Let E ⊂ R with m∗(E) < +∞ and let J be a fine cover of
the set E. The for any ε > 0 there exists a finite subcollection of pairwise disjoint intervals
{I1, . . . , IN} in J such that

m∗

(
E \ (

N⋃
j=1

Ij)

)
< ε.

Proof. Let O be an open set with m(O) < +∞ which contains E: E ⊂ O. Such set exists
since m∗(E) < +∞. As O is an open set and J is a fine cover of E, if we consider the
collection J ′ of intervals in J which are contained in O, the new cover J ′ is still a fine cover
of E. Hence, we may assume from the start that all intervals in J are contained in O. Choose
any interval I1 and assume that the intervals I1, I2, . . . In have been already chosen. Here is
how we choose the interval In+1. Let kn be the supremum of the lengths of intervals in J
that do not intersect any of I1, I2, . . . In. Then kn ≤ m(O) < +∞ and, moreover, if kn = 0
then E ⊂ ∪nj=1Ij. Indeed, if kn = 0 and x ∈ En = E ∩ Dn, Dn = (∪nj=1Ij)

c then as Dn is
open and J is a fine cover, there exists a non-trivial interval I ∈ J such that I ⊂ Dc

n which
contradicts kn = 0. Hence, if kn = 0 for some n then E ⊂ ∪nj=1Ij and we are done. If kn > 0
for all n take the interval In+1 disjoint from all of Ij with 1 ≤ j ≤ n such that l(In+1) ≥ kn/2.
This produces a sequence of disjoint intervals In such that∑

n

l(In) ≤ m(O) < +∞. (4.2)
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Given ε > 0 find N such that
∞∑

j=N+1

l(Ij) <
ε

5

and set

R = E \
N⋃
j=1

Ij.

We need to verify that m∗(R) < ε. For any point x ∈ R there exists an interval I ∈ J such
that x ∈ I and I is disjoint from all intervals {I1, I2, . . . , IN}. Furthermore, if for some n the
interval I is disjoint from intervals {I1, I2, . . . In} then we have

l(I) ≤ kn < 2l(In+1). (4.3)

However, (4.2) implies that l(In) → 0 as n → +∞, thus I must intersect some interval In
with n > N because of (4.3). Let n0 be the smallest such n, then l(I) ≤ kn0−1 ≤ 2l(In0).
Since x ∈ I and I intersects In0 , the distance from x to the midpoint of In0 is at most

l(I) +
l(In0)

2
≤ 5l(In0−1)

2
.

Hence, x lies in the interval În0 which has the same midpoint as In0 and is five times as long
as In0 . Therefore, the set R is covered:

R ⊆
∞⋃

n=N+1

În,

and thus

m∗(R) <
∞∑

n=N+1

l(În) ≤ 5
∞∑

n=N+1

l(In) < ε,

and we are done. 2

As we have not yet defined the Lebesgue measure in Rn we do not state the analog of
Vitali’s lemma for dimensions n > 1. Nevertheless, the proof of Vitali’s lemma shows that
the following statements hold which do not use the notion of the Lebesgue measure.

Corollary 4.3 Let F be any collection of nontrivial closed balls in Rn with

sup{diamB : B ∈ F} < +∞.

Then there exists a countable sub-collection J of disjoint balls in F such that⋃
B∈F

B ⊂
⋃
B∈J

B̂,

where B̂ is a ball concentric with B but five times its radius.
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Corollary 4.4 Assume that F is a fine cover of a set A by closed balls and

sup{diamB : B ∈ F} < +∞.

Then there exists a countable sub-family J of disjoint balls in F such that for each finite
subset {B1, . . . , Bn} ⊂ F we have

A \
m⋃
k=1

Bk ⊆
⋃

B∈J\{B1,...,Bn}

B̂.

The next corollary uses the Vitali lemma repeatedly. Here we have to refer to the n-
dimensional Lebesgue measure. The reader may either set n = 1 or use the geometric
intuition.

Corollary 4.5 Let U ⊆ Rn be an open set and δ > 0. There exists a countable collection of
disjoint closed balls in U such that diamB ≤ δ for al B ∈ J and

m

(
U \

⋃
B∈J

B

)
= 0. (4.4)

Proof. We first find disjoint closed balls B11, . . . B1,N1 ⊂ U so that

m

(
U \

N1⋃
j=1

B1,j

)
<
m(U)

3
,

and set

U1 = U \
N1⋃
j=1

Bj.

The set U1 is still open and we can find disjoint closed balls B2,1, . . . , B2,N2 ⊂ U1 so that

m

(
U1 \

N2⋃
j=1

B2,j

)
<
m(U1)

3
.

Continuing this procedure leads to a sequence of disjoint balls Bn so that (4.4) holds. 2

A key point in the proof of Vitali’s lemma was the fact that the Lebesgue measure is
doubling. This means that there exists a constant c > 0 so that for any ball B(x, r) we
have a bound m(B(x, 2r)) ≤ cm(B(x, r)). Such property is not true in general, for arbitrary
measures. A difficult extension of Vitali’s lemma and in particular of Corollary 4.5 is the
Besikovitch theorem that we will encounter soon which will establish this corollary for non-
doubling measures.
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One-sided derivatives

Let us go back to the question of when (4.1) holds. First, we need the definition of the
derivative and we begin with the definition of left and right derivatives.

Definition 4.6 Let f be a real-valued function defined on the real line, then

D+f(x) = lim sup
h↓0

f(x+ h)− f(x)

h
, D−f(x) = lim sup

h↓0

f(x)− f(x− h)

h

D+f(x) = lim inf
h↓0

f(x+ h)− f(x)

h
, D−f(x) = lim inf

h↓0

f(x)− f(x− h)

h
.

If D+f(x) = D−f(x) = D+f(x) = D−f(x) 6= ∞ then we say that f is differentiable at the
point x ∈ R.

We now show that a monotonic function has a derivative almost everywhere with respect to
the Lebesgue measure.

Theorem 4.7 Let f be an increasing function on an interval [a, b]. Then f ′(x) exists almost
everywhere on [a, b] with respect to the Lebesgue measure and is a measurable function.

Proof. We will show that the sets where any pair of derivatives are not equal has measure
zero. For instance, let

E = {x : D+f(x) > D−f(x)}.
We can write E as a countable union:

E =
⋃
r,s∈Q

Ers, Ers = {x : D+f(x) > r > s > D−f(x)},

and we will show that m∗(Ers) = 0 for all r, s ∈ Q. Let l = m∗(Ers) and given ε > 0 enclose
Ers in an open set O, Ers ⊆ O, with mO < l + ε. For each x ∈ Ers there exists an arbitrary
small interval [x − h, x] ⊂ O such that f(x) − f(x − h) < sh. Using Vitali’s lemma we can
choose a finite subcollection {I1, . . . , IN} of such disjoint intervals whose interiors cover a set
A = (∪Nn=1I

o
n) ∩ Ers with l − ε < m(A) < l + ε. It follows that

N∑
n=1

[f(xn)− f(xn − hn)] < s
N∑
n=1

hn < s(l + ε). (4.5)

Next, take any point y ∈ A, then y ∈ In for some n, and, as A ⊂ Ers, there exists an arbitrary
small interval [y, y + k] ⊂ In such that f(y + k)− f(y) > rk. Using Vitali’s lemma again we
may choose intervals {J1, . . . , JM} such that J1, . . . , JM ⊂ ∪Nn=1In and

m∗(A \
M⋃
l=1

Jl) < ε.

As a consequence,
M∑
n=1

kn > m∗(A)− ε > l − 2ε,
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and thus
M∑
n=1

f(yn + kn)− f(yn) > r
M∑
n=1

kn > r(l − 2ε). (4.6)

On the other hand, each interval Jk is contained in some interval Ip and f is increasing so
that for each p: ∑

Jk⊂Ip

(f(yk + hk)− f(yk)) ≤ f(xp)− f(xp − hp).

Summing over p and taking into account (4.5) and (4.6) we conclude that s(l+ε) ≥ r(l−2ε).
As this is true for all ε > 0, and r > s it follows that l = 0 so that m∗(Ers) = 0 for all
r, s ∈ Q, and thus m∗(E) = 0.

Now that we know that f ′(x) exists a.e. let us show that f ′(x) is a measurable function.
Let us extend f(x) = f(b) for x ≥ b and set

gn(x) = n

[
f(x+

1

n
)− f(x)

]
. (4.7)

Then
f ′(x) = lim

n→∞
gn(x) (4.8)

almost everywhere and thus f ′(x) is measurable as a limit of measurable functions. 2

Integral of a derivative of a monotone function

We are now ready to establish the Newton-Leibnitz inequality for monotone functions.

Theorem 4.8 Let f(x) be an increasing function on an interval [a, b], then f ′(x) is finite
almost everywhere on [a, b], and

� b

a

f ′(x)dx ≤ f(b)− f(a). (4.9)

Proof. The function f ′(x) is measurable according to Theorem 4.7 hence the integral in the
left side of (4.9) is well defined. Let us define the approximations gn(x) by (4.7), once again
with the convention f(x) = f(b) for x > b, then gn(x) ≥ 0, thus f ′(x) ≥ 0 by (4.8), and,
moreover, Fatou’s lemma implies that

� b

a

f ′(x)dx ≤ lim inf

� b

a

gn(x)dx = lim inf

� b

a

n

[
f(x+

1

n
)− f(x)

]
dx

= lim inf
n

n b+1/n�

b

f(b)dx− n
a+1/n�

a

f(x)dx

 ≤ lim inf
n

n b+1/n�

b

f(b)dx− n
a+1/n�

a

f(a)dx


= f(b)− f(a),

and (4.9) follows. As a consequence of (4.9) we also conclude that f ′(x) is finite a.e. 2
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4.2 Functions of bounded variation and absolute continuity

Let a = x0 < x1 < . . . < xm−1 < xm = b be a partition of an interval [a, b]. For a fixed
partition we define

p =
m∑
k=1

[f(xk)− f(xk−1)]+, n =
m∑
k=1

[f(xk)− f(xk−1)]−, t = n+ p =
n∑
k=1

|f(xk)− f(xk−1)|.

The total variation of a function f over an interval [a, b] is T ba [f ] = sup t, where supremum is
taken over all partitions on [a, b]. Similarly, we define N b

a[f ] = supn and P b
a [f ] = sup p.

Definition 4.9 We say that f has a bounded total variation on [a, b] and write f ∈ BV [a, b]
if T ba [f ] < +∞.

The simplest example of function of bounded variation is a monotonic function on [a, b] as
T ba [f ] = |f(b)− f(a)| for monotonic functions. It turns out that all functions in BV [a, b] are
a difference of two monotonic functions.

Theorem 4.10 A function f has a bounded variation on an interval [a, b] if and only if f is
a difference of two monotonic functions.

Proof. (1) Assume that f ∈ BV [a, b]. We claim that

f(x)− f(a) = P x
a [f ]−Nx

a [f ]. (4.10)

Indeed, for any partition a = x0 < x1, . . . < xm = x we have

p = n+ f(x)− f(a) ≤ Nx
a [f ] + f(x)− f(a),

so that P x
a [f ] ≤ Nx

a [f ]+f(x)−f(a). Similarly, one shows that Nx
a [f ] ≤ P x

a [f ]− (f(x)−f(a))
and (4.10) follows. It remains to notice that both functions u(x) = P x

a [f ] and v(x) = Nx
a [f ] are

non-decreasing to conclude that any BV function is a difference of two monotonic functions.
(2) On the other hand, if f(x) is a difference of two monotonic functions: f(x) = u(x)−

v(x), then for any partition of the interval (a, b) we have

n∑
i=1

|f(xi)− f(xi−1)| ≤
n∑
i=1

|u(xi)− u(xi−1)|+
n∑
i=1

|v(xi)− v(xi−1)|

=
n∑
i=1

(u(xi)− u(xi−1)) +
n∑
i=1

(v(xi)− v(xi−1)) = u(b)− u(a) + v(b)− v(a),

so that f ∈ BV [a, b]. 2

An immediate consequence of Theorem 4.10 is the following observation.

Corollary 4.11 If a function f has bounded variation on an interval [a, b] then f ′(x) exists
a.e. on [a, b].
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Differentiation of an integral

Theorem 4.12 Let f ∈ L1[a, b] be an integrable function, and

F (x) =

� x

a

f(t)dt,

then F ′(x) = f(x) a.e.

Proof. First, Proposition 3.11 implies that the function F (x) is continuous. Moreover, F
has bounded variation on [a, b] since for any partition of [a, b] we have

n∑
i=1

|F (xi)− F (xi−1| ≤
n∑
i=1

� xi

xi−1

|f(t)|dt ≤
� b

a

|f(t)|dt.

We need the following basic lemma.

Lemma 4.13 If f ∈ L1[a, b] is integrable and� x

a

f(s)ds = 0 (4.11)

for all x ∈ [a, b] then f(t) = 0 a.e. on [a, b].

Proof of Lemma 4.13. Suppose that f(x) > 0 on a set E with mE > 0. Then there exists
a compact set F ⊂ E such that mF > 0. Let O = [a, b] \ F , then

0 =

� b

a

f(t)dt =

�
F

f(t)dt+

�
O

f(t)dt.

It follows that �
O

f(t)dt < 0,

and thus, as O is a disjoint union of open intervals, there exists an interval (α, β) ⊂ O such
that � β

α

f(t)dt < 0,

which contradicts (4.11). 2

We continue the proof of Theorem 4.12. Let us first assume that the function f is bounded:
|f(x)| ≤ K for all x ∈ [a, b]. As we already know that F has bounded variation, the derivative
F ′(x) exists a.e. on [a, b] and we only need to show that F ′(x) = f(x) a.e. Consider the
approximations of F ′(x):

fn(x) =
F (x+ 1/n)− F (x)

1/n
= n

� x+1/n

x

f(x)dx.

These functions are uniformly bounded: |fn(x)| ≤ K and fn(x) → F (x) a.e. The bounded
convergence theorem implies that for all x ∈ [a, b] we have

� x

a

F ′(t)dt = lim
n→∞

� x

a

fn(t)dt = lim
n→∞

[
n

� x+1/n

x

F (t)dt− n
� a+1/n

a

F (t)dt

]
= F (x)− F (a).
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The last step above follows from the continuity of the function F (t). Now, Lemma 4.13
implies that F ′(x) = f(x) a.e. on [a, b].

Finally, consider the situation when f ∈ L1[a, b] but is maybe unbounded. Without loss
of generality we may assume that f ≥ 0. Consider the cut-offs gn(x) = min{f(x), n}. Then
f − gn ≥ 0, thus the functions

Gn(x) =

� x

a

(f − gn))dt

are increasing, hence G′n(x) ≥ 0 a.e. As the functions gn are bounded for each n fixed, we
know from the first part of the proof that

d

dx

� x

a

gn(t)dt = gn(x)

almost everywhere. It follows that F ′(x) = G′n(x) + gn(x) ≥ gn(x) and, in particular, F ′(x)
exists almost everywhere. Passing to the limit n → ∞ we deduce that F ′(x) ≥ f(x) a.e.
which, in turn, implies that

� b

a

F ′(x)dx ≥
� b

a

f(x)dx = F (b)− F (a).

However, as f ≥ 0, the function F is non-decreasing and thus

� b

a

F ′(x)dx ≤ F (b)− F (a).

Together, the last two inequalities imply that

� b

a

F ′(x)dx = F (b)− F (a) =

� b

a

f(t)dt.

Since F ′(x) ≥ f(x) a.e. we conclude that F ′(x) = f(x) a.e. 2

Absolutely continuous functions

Definition 4.14 A function f : [a, b] → R is absolutely continuous if for any ε > 0 there
exists δ > 0 such that for every finite collection {(xi, x′i)} of non-overlapping intervals with∑n

i=1 |xi − x′i| < δ we have
n∑
i=1

|f(xi)− f(x′i)| < ε.

Note that absolute continuity of a function f on [a, b] implies that f has a bounded variation
on [a, b]. To see this, simply take δ0 in the definition of absolute continuity that corresponds
to ε = 1 and split [a, b] into a finite number of collections of non-overlapping intervals, each
of the total length less than δ0.

Another simple observation is that Proposition 3.11 implies that every indefinite integral

F (x) = F (a) +

� x

a

f(t)dt (4.12)
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with f ∈ L1[a, b] is absolutely continuous. Our goal is to show that every absolutely continuous
function is the indefinite integral of its derivative, that is, the Newton-Leibnitz formula holds
for absolutely continuous functions.

Theorem 4.15 A function F (x) is an indefinite integral, that is, it has the form (4.12) with
f ∈ L1[a, b] if and only if F is absolutely continuous.

Proof. As we have mentioned, absolute continuity of the indefinite integral follows immedi-
ately from Proposition 3.11. Now, let F (x) be absolutely continuous, then, as we have noted
above F has bounded variation on [a, b] and thus can be written as F (x) = F1(x) − F2(x),
where both of the functions F1 and F2 are increasing. Hence, F ′(x) exists a.e. and |F ′(x)| ≤
F ′1(x) + F ′2(x) so that

� b

a

|F ′(x)|dx ≤
� b

a

F ′1(x)dx+

� b

a

F ′2(x)dx ≤ F1(b)− F1(a) + F2(b)− F2(a),

thus F ′(x) is integrable on [a, b]. Consider its anti-derivative

G(x) =

� x

a

|F ′(t)|dt,

then G(x) is absolutely continuous and G′(x) = F ′(x) a.e. as follows from Theorem 4.12. Set
R(x) = F (x)−G(x), then R(x) is absolutely continuous and R′(x) = 0 a.e. Let us show that
R(x) is actually a constant (and thus is equal identically to F (a)). This will finish the proof
of Theorem 4.15. To this end we take a point c ∈ [a, b] and consider the set A of measure
m(A) = c− a such that f ′(x) = 0 on A. Given ε > 0 for any x ∈ A and every n < N(x) we
choose hn(x) < 1/n so that

|f(x+ hn(x))− f(x)| < εhn(x). (4.13)

This produces a fine covering of A by intervals of the form In(x) = [x, x + hn(x)]. Vitali’s
lemma allows us to find a finite collection Ik(xk) = [xk, yk], k = 1, . . . , N which covers a set
of measure (c − a − δ(ε)/2), where δ(ε) is δ in the definition of absolute continuity of the
function R(x) corresponding to ε, that is, if we set y0 = a and xN+1 = c, we have

N∑
k=0

|xk+1 − yk| < δ. (4.14)

Then, we can estimate, using (4.13) and (4.14):

|R(c)−R(a)| ≤
N∑
k=1

|f(yk)− f(xk)|+
N∑
k=1

|f(xk+1)− f(yk)| ≤ ε(b− a) + ε.

As ε > 0 is arbitrary, we deduce that R(x) = R(a) for all c ∈ [a, b]. 2

A common way to re-phrase Theorem 4.15 is to say that every absolutely continuous
function is the integral of its derivative – this identifies functions which satisfy the Newton-
Leibnitz formula.
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5 Product measures and Fubini’s theorem

The following definition is motivated by high school geometry.

Definition 5.1 Let µ be a measure on a set X and ν a measure on Y , then the outer product
measure µ× ν of a set S ⊂ X × Y is

(µ× ν)∗(S) = inf

(
∞∑
j=1

µ(Aj)ν(Bj)

)
,

with the infimum taken over all sets Aj ⊂ X, Bj ⊂ Y such that S ⊂
⋃∞
j=1(Aj ×Bj).

Our goal in this section is to prove basic statements familiar from the calculus course regarding
the connection between the iterated integrals and integrals over the product measure.

Let F be the collection of sets S ⊆ X × Y for which the iterated integral can be defined,
that is, the characteristic function χS(x, y) is µ-measurable for ν-a.e. y ∈ Y and the function

s(y) =

�
X

χS(x, y)dµ(x)

is ν-measurable. For each set S ∈ F we define

ρ(S) =

�
Y

[�
X

χS(x, y)dµ(x)

]
dν(y).

Note that if U ⊆ V and U, V ∈ F then ρ(U) ≤ ρ(V ). Our eventual goal is to show that F
includes all µ× ν-measurable sets and that (µ× ν)(S) = ρ(S) for such sets. The first trivial
observation in this direction is that all sets of the form A×B, with a µ-measurable set A and
a ν-measurable set B, are in F and

ρ(A×B) =

�
B

µ(A)dν(y) = µ(A)ν(B).

From the way area is defined in elementary geometry we know that the next level of complexity
should be countable unions of such sets:

P1 =

{
∞⋃
j=1

(Aj ×Bj) : Aj ⊂ X is µ-measurable, and Bj ⊂ Y is ν-measurable

}
.

Note that every set S =
⋃∞
j=1(Aj × Bj) ∈ P1 is in F . The point is that, using further

subdivision of Aj and Bj such S can be written as a disjoint countable union with

(Aj ×Bj) ∩ (An ×Bn) = ∅ for j 6= n.

Then for each y the cross-section {x : (x, y) ∈ S} is an at most countable union of
µ-measurable disjoint sets, and

�
X

χS(x, y)dµx =

�
X

∞∑
j=1

χAj(x)χBj(y)dµx =
∞∑
j=1

µ(Aj)χBj(y)
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is an ν-integrable function, thus S ∈ F . Moreover, if S =
⋃∞
j=1(Aj × Bj) ∈ P1 is a disjoint

union then

ρ(S) =
∞∑
j=1

µ(Aj)ν(Bj).

Next, we note that for each set U ⊂ X × Y its outer measure can be approximated as in
elementary geometry:

(µ× ν)∗(U) = inf{ρ(S) : U ⊆ S, S ∈ P1}. (5.1)

Indeed, this is somewhat tautological: if U ⊆ S =
⋃∞
j=1(Aj ×Bj) ∈ P1 then

ρ(S) =

�
Y

(�
X

χS(x, y)dµx

)
dνy ≤

�
Y

(�
X

∞∑
j=1

χAj(x)χBj(y)dµx

)
dνy =

∞∑
j=1

µ(Aj)ν(Bj).

As (µ×ν)∗(U) is the infimum of all possible right sides above, by the definition of the product
measure we have

inf ρ(S) ≤ (µ× ν)∗(U).

On the other hand, any such S can be written as a disjoint union and then

ρ(S) =
∞∑
j=1

µ(Aj)ν(Bj) ≥ (µ× ν)∗(U).

again by the definition of the product measure. Hence, (5.1) holds. Now, we can show that
a product of two measurable sets is measurable.

Proposition 5.2 Let a set A ⊆ X be µ-measurable and a set B ⊆ Y be ν-measurable. Then
the set A×B ⊂ X × Y is µ× ν measurable.

Proof. Take a set S = A× B such that A is µ-measurable and B is ν-measurable. Then S
is in P0, thus in P1 so that

(µ× ν)∗(S) ≤ µ(A)ν(B) = ρ(S) ≤ ρ(R)

for all R ∈ P1 containing S. It follows from (5.1) that (µ× ν)∗(A× B) = µ(A)ν(B). Let us
show that A × B is µ × ν-measurable. Take any set T ⊆ X × Y and a P1-set R containing
T . Then the sets R ∩ (A×B)c and R ∩ (A×B) are both disjoint and in P1. Hence,

(µ× ν)∗(T ∩ (A×B)c) + (µ× ν)∗(T ∩ (A×B)) ≤ ρ(R∩ (A×B)c) + ρ(R∩ (A×B)) = ρ(R),

because if R and Q are in P1, R∩Q = ∅ then ρ(R∪Q) = ρ(R) + ρ(Q). Taking infimum over
all such R and using (5.1) we arrive to

(µ× ν)(T ∩ (A×B)c) + (µ× ν)(T ∩ (A×B)) ≤ (µ× ν)(T ),

and thus A×B is a measurable set. 2

Once again, following the motivation from approximating areas in elementary geometry
we define sets that are countable intersections of those in P1:

P2 = {
∞⋂
j=1

Sj, Sj ∈ P1}.
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Proposition 5.3 For each set S ⊆ X × Y there exists a set R ∈ P2 ∩ F such that S ⊆ R
and ρ(R) = (µ× ν)∗(S).

Proof. If (µ × ν)∗(S) = +∞ it suffices to take R = X × Y , so we may assume that
(µ× ν)∗(S) < +∞ without loss of generality. Using (5.1) choose the sets Rj ∈ P1 such that
S ⊆ Rj and

ρ(Rj) < (µ× ν)∗(S) +
1

j
.

Consider the sets R =
⋂∞
j=1Rj ∈ P2 and Qk =

⋂k
j=1Rj and note that

χR(x, y) = lim
k→∞

χQk(x, y).

As each Rj ∈ F , the functions χQk(x, y) = χR1(x, y) . . . χRk(x, y) are µ-measurable functions
of x for ν-a.e. y. Therefore, there exists a set S0 ⊂ Y of full ν-measure such that χR(x, y)
is µ-measurable for each y ∈ S0 fixed. Moreover, as ρ(R1) < +∞ (so that for ν-a.e y the
function χR(x, y) is µ-integrable) and χQk(x, y) ≤ χR1(x, y), we have for ν-a.e. y

ρR(y) =

�
X

χR(x, y)dµ(x) = lim
k→∞

ρk(y), ρk(y) =

�
X

χQk(x, y)dµ(x),

and thus ρR(y) is ν-integrable and R ∈ F . As ρk(y) ≤ ρ1(y), it also follows that

ρ(R) =

�
Y

ρR(y)dν(y) =

�
Y

lim
k→∞

ρk(y)dν(y) = lim
k→∞

�
Y

ρk(y)dν(y) = lim
k→∞

ρ(Qk). (5.2)

However, (5.2) implies that

ρ(R) = lim
k→∞

ρ(Qk) ≤ (µ× ν)∗(S).

On the other hand, since S ⊆ Qk we know that (µ × ν)∗(S) ≤ ρ(Qk) and thus ρ(R) =
(µ× ν)∗(S). 2

Corollary 5.4 The measure µ× ν is regular even if µ and ν are not regular.

Proof. Proposition 5.2 implies that each set in P2 is measurable, while Proposition 5.3
implies that for S ∈ P2 we have (µ× ν)(S) = ρ(S). The same proposition implies then that
the measure µ× ν is regular. 2

Definition 5.5 A set X is σ-finite if X =
⋃∞
j=1 Bk and the sets Bk are µ-measurable with

µ(Bk) < +∞.

Theorem 5.6 (Fubini) Let a set S ⊆ X × Y be σ-finite with respect to the measure µ × ν.
Then the cross-section Sy = {x : (x, y) ∈ S} is µ-measurable for ν-a.e. y, the cross-section
Sx = {x : (x, y) ∈ S} is ν-measurable for µ-a.e. x, µ(Sy) is a ν-measurable function of y,
and ν(Sx) is a µ-measurable function of x. Moreover,

(µ× ν)(S) =

�
Y

µ(Sy)dνy =

�
X

ν(Sx)dµx. (5.3)
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Proof. If (µ × ν)(S) = 0 then there exists a set R ∈ P2 such that S ⊆ R and ρ(R) = 0.
Since χS(x, y) ≤ χR(x, y) it follows that S ∈ F and ρ(S) = 0.

Now, let S ⊂ X × Y be µ × ν-measurable and (µ × ν)(S) < +∞. Then there exists
R ∈ P2, such that S ⊆ R and (µ× ν)(R \S) = 0, thus, by the above argument, ρ(R \S) = 0.
This means that

µ(x : (x, y) ∈ S) = µ(x : (x, y) ∈ R)

for ν-a.e. y and thus, as R ∈ P2 implies (µ× ν)(R) = ρ(R),

(µ× ν)(S) = (µ× ν)(R) = ρ(R) =

�
Y

µ(x : (x, y) ∈ R)dν =

�
Y

µ(x : (x, y) ∈ S)dν,

which is (5.3).
Finally, assume that S is a σ-finite set and (µ× ν)(S) = +∞. Then S can be written as

a countable union S =
⋃∞
j=1 Bj of (µ × ν)-measurable sets Bj with (µ × ν)(Bj) < +∞. We

may assume without loss of generality that all Bj are pairwise disjoint so that by what we
have just proved

(µ× ν)(S) =
∞∑
j=1

(µ× ν)(Bj) =
∞∑
j=1

�
Y

µ(x : (x, y) ∈ Bj)dν =

�
Y

∞∑
j=1

µ(x : (x, y) ∈ Bj)dν

=

�
Y

(µ : (x, y) ∈
∞⋃
j=1

Bj)dν =

�
Y

µ(x : (x, y) ∈ S)dν,

so that the claim holds also for such σ-finite sets S. 2

Fubini’s theorem has a corollary also known as Fubini’s theorem.

Corollary 5.7 Let X × Y be σ-finite. If f(x, y) is (µ× ν)-integrable then the function

p(y) =

�
X

f(x, y)dµ(x)

is ν-integrable, the function

q(x) =

�
Y

f(x, y)dν(y)

is µ-measurable and �
X×Y

fd(µ× ν) =

�
Y

p(y)dν(y) =

�
X

q(x)dµ(x). (5.4)

Proof. This follows immediately from Theorem 5.6 if f(x, y) = χS(x, y) with a (µ × ν)-
measurable set S. If f ≥ 0 use Theorem 2.6 to write

f(x, y) =
∞∑
k=1

1

k
χAk(x, y)

and then use Corollary 3.9 to integrate this relation term-wise leading both to

�
Y

f(x, y)dν(y) =
∞∑
k=1

1

k
ν(y : (x, y) ∈ Ak),
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if we integrate only in y, and also to

�
X×Y

fd(µ× ν) =
∞∑
k=1

1

k
(µ× ν)(Ak) =

∞∑
k=1

1

k

�
X

ν(y : (x, y) ∈ Ak)dµ(x)

=

�
X

(�
Y

f(x, y)dν(y)

)
dµ(x),

which is (5.4). 2

6 The Radon-Nikodym theorem

6.1 The Besicovitch theorem

The Besicovtich theorem is a tool to study measures µ on Rn which do not have the doubling
property. The idea is to bypass having to control the measure µ(B̂) in terms of µ(B) as in
the proof of Vitali’s lemma. Here the doubling property means the following: there exists a
constant C > 0 so that for any x ∈ Rn and r > 0 we have

1

C
µ(B(x, 2r)) ≤ µ(B(x, r)) ≤ Cµ(B(x, 2r)).

In dealing with measures which may not have this property the following theorem is extremely
helpful

Theorem 6.1 (The Besicovitch theorem.) There exists a constant N(n) depending only on
the dimension with the following property: if F is any collection of closed balls in Rn with

D = sup
{

diamB̄| B̄ ∈ F
}
< +∞

and A is the set of centers of balls B̄ ∈ F then there exist J1,J2, . . . ,JN(n) such that each Jk
is a countable collection of disjoint balls in F and

A ⊂
N(n)⋃
j=1

⋃
B̄∈Jj

B̄.

The key point here is that we do not have to stretch the balls as in the corollaries of Vitali’s
lemma – the price to pay is that we have several collections J1,J2, . . . ,JN(n), and a ball
from a collection Ji may intersect a ball from another collection Jj if i 6= j. However, this
is not that important since the number N(n) is a universal constant depending only on the
dimension n.

Corollary 6.2 Let µ be a Borel measure on Rn and F any collection of non-degenerate
closed balls. Let A denote the set of centers of the balls in F . Assume that µ(A) < +∞
and inf{r : B̄(a, r) ∈ F} = 0 for all a ∈ A. Then for each open set U ⊂ Rn there exists a
countable collection J of pairwise disjoint balls in F such that

⋃
B̄∈J B̄ ⊆ U and

µ((A ∩ U) \
⋃
B̄∈J

B̄) = 0. (6.1)
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Proof. Let N(n) be the number of required collections in the Besicovitch theorem and take
θ = 1− 1/(2N(n)). Then, using the Besicovitch theorem we may find a countable collection
J of disjoint balls in F1 = {B̄ : B̄ ∈ F , B̄ ⊂ U, diamB̄ ≤ 1} such that

µ

(A ∩ U) ∩ (
⋃
B̄∈J

B̄)

 ≥ 1

N(n)
µ(A ∩ U).

Therefore, using the increasing sets theorem, we may choose a finite sub-collection B̄1, . . . , B̄M1

of J such that

µ

(
(A ∩ U) ∩ (

M1⋃
j=1

B̄j)

)
≥ 1

2N(n)
µ(A ∩ U).

It follows that

µ

(
(A ∩ U) \ (

M1⋃
j=1

B̄j)

)
≤
(

1− 1

2N(n)

)
µ(A ∩ U).

Applying the same reasoning to the set U2 = U \
(⋃M1

j=1 B̄j

)
and the collection

F2 = {B̄ : B̄ ∈ F , B̄ ⊂ U2, diamB̄ ≤ 1}

we get a finite set of balls B̄M1+1, . . . , B̄M2 such that

µ

(
(A ∩ U2) \ (

M2⋃
j=M1+1

B̄j)

)
≤
(

1− 1

2N(n)

)
µ(A ∩ U2).

It follows that

µ

(
(A ∩ U) \ (

M2⋃
j=1

B̄j)

)
= µ

(
(A ∩ U2) \ (

M2⋃
j=M1+1

B̄j)

)
≤
(

1− 1

2N(n)

)
µ(A ∩ U2)

≤
(

1− 1

2N(n)

)2

µ(A ∩ U).

Continuing this procedure, for each k we obtain a finite collection of balls B̄1, . . . , B̄Mk
so that

µ

(
(A ∩ U) \ (

Mk⋃
j=1

B̄j)

)
≤
(

1− 1

2N(n)

)k
µ(A ∩ U).

Then the collection J = {B̄1, B̄2, . . . , B̄k, . . .} satisfies (6.1). 2

6.2 The proof of the Besicovitch theorem

The proof of this theorem proceeds in several technical steps. Step 1 is to reduce the problem
to the situation when the set A of the centers is bounded. Step 2 is to choose the balls
B̄1, B̄2, . . . , B̄n, . . .– this procedure is quite similar to that in Vitali’s lemma. Step 3 is to
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show that the balls we have chosen cover the set A. The last step is to to show that the
balls B̄j can be split into N(n) separate sub-collections Jk, k = 1, . . . , N(n) such that each
Jk itself is a collection of pair-wise disjoint balls. For that one has to estimate how many of
the balls B̄1, . . . , B̄k−1 the ball B̄k intersects – it turns out that this number depends only on
the dimension (and not on k, the set A or anything else) and that is the number N(n) we are
looking for. The crux of the matter is in this estimate and it is not trivial.

Reduction to counting the number of balls a given ball B̄k may
intersect

Let us first explain why our main interest is in estimating how many of the ”preceding” balls
B̄1, . . . , B̄k−1 the ball B̄k intersects.

Lemma 6.3 Let B̄1, B̄2, . . . , B̄n, . . . be a countable collection F of balls in Rn. Assume that
there exists M > 0 so that each ball B̄n intersects at most M balls out of {B̄1, B̄2, . . . , B̄n−1}.
Then the collection F can be split into (M + 1) sub-collections J1,J2, . . . ,JM+1 so that each
Jm is a collection of pair-wise disjoint balls and

⋃
B̄∈F

B̄ =
M+1⋃
j=1

⋃
B̄∈Jj

B̄.

Proof. Let us prepare M + 1 ”baskets” J1,J2, . . . ,JM+1. We put B̄k into these baskets in
the following way: B̄1 goes into the basket J1, B̄2 into J2, and so on until B̄M+1 which goes
into JM+1. After that we proceed as follows: assume the balls B̄1, . . . , B̄k−1 were already put
into baskets. Take the ball B̄k – by assumption only M out the M + 1 baskets may contain
a ball B̄j, j = 1, . . . , k − 1 which intersects B̄k. Hence at least one basket contains no balls
which intersect B̄k – this is the basket that B̄k is put in (if there are several such baskets we
just put B̄k into one of such baskets, it does not matter which one). Then we go to the next
ball B̄k+1, and so on. 2

Reduction to a bounded set of centers A

Assume that we have proved the Besicovitch theorem for the situation when the set of
centers A of all balls B̄ ∈ F is bounded. Assume now that A is unbounded. Set D =
sup

{
diamB̄| B̄ ∈ F

}
and let

Al = A ∩ {x : 3D(l − 1) ≤ |x| < 3Dl}, l ≥ 1,

be the sets of centers in annuli of width 3D. Then cover each Al by disjoint collections
{J (l)

1 , . . . ,J (l)
N(n)} of balls in F – this is possible since all Al are bounded sets. The point is

that if a ball B̄1 is in one of the collections J (l)
p covering the set Al, and a ball B̄2 is in one of

the collections J (m)
r covering the set Am with |m− l| ≥ 2, then B̄1 and B̄2 do not intersect.

The reason is that if B̄1 = B̄(x1, R1) and B̄2 = B̄(x2, R2) then

x1 ∈ {x : 3D(l − 1)−D/2 ≤ |x| < 3Dl +D/2}
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while
x2 ∈ {x : 3D(m− 1)−D/2 ≤ |x| < 3Dm+D/2},

thus, |x1 − x2| ≥ 2D > diamB̄1 + diamB̄2. Therefore, if we double the number N(n) needed
to cover a bounded set we can set up the baskets as in the proof of Lemma 6.3 and cover an
unbounded set A by 2N(n) countable collections of disjoint balls.

Remark. From now on we assume that the set A is bounded.

Choosing the balls

Recall that D = sup
{

diamB̄| B̄ ∈ F
}
< +∞ – so we may choose a ball B̄1 ∈ F with radius

r1 ≥
3

4
· D

2
.

After that, if the balls B̄k, k = 1, . . . , j − 1 have been chosen, choose B̄j as follows. Let

Aj = A \
j−1⋃
i=1

B̄i

be the subset of A not covered by the first (j − 1) balls. If Aj = ∅, stop and set the counter
J = j (note that even in that case we are not done yet – the balls B̄j may intersect each other
and we still have to distribute them into N(n) baskets so that balls inside each basket do not
intersect). If Aj 6= ∅ choose B̄j = B̄(aj, rj) such that aj ∈ Aj and

rj ≥
3

4
sup

{
r : B̄(a, r) ∈ F , a ∈ Aj

}
.

Note that we do not care whether the ball B̄(aj, rj) is contained in the set Aj, but only if
aj ∈ Aj. If Aj 6= ∅ for any j we set the counter J =∞.

Facts about the balls

We now prove some simple properties of the balls B̄k that we have chosen. First, we show
that a ball B̄j chosen after a ball B̄i can not be ”much larger” than B̄i.

Lemma 6.4 If j > i then rj ≤ 4ri/3.

Proof. Note that if j > i then Aj ⊂ Ai – hence, the ball B̄j was ”a candidate ball” when B̄i

was chosen. Thus,
rj ≤ sup

{
r : B̄(a, r) ∈ F , a ∈ Ai

}
,

and so

ri ≥
3

4
sup

{
r : B̄(a, r) ∈ F , a ∈ Ai

}
≥ 3

4
rj,

as claimed. 2

The next lemma shows that if we shrink the balls B̄j by a factor of three, the resulting
balls are disjoint – without having to put them into any kind of separate sub-collections.
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Lemma 6.5 The balls B̄ (a, rj/3) are all disjoint.

Proof. Let j > i, then the center aj is not inside the ball Bi by construction as Aj ∩Bi = ∅.
Therefore, we have |aj − ai| > ri, and using Lemma 6.4 this leads to

|aj − ai| > ri =
ri
3

+
2ri
3
≥ ri

3
+

2

3
· 3

4
rj ≥

ri
3

+
rj
2
>
ri
3

+
rj
3
.

This implies that the balls B̄(ai, ri/3) and B̄(aj, rj/3) do not intersect. 2

Next, we prove that if we have chosen infinitely many balls in our construction then their
radius tends to zero.

Lemma 6.6 If J =∞ then limj→+∞ rj = 0.

Proof. Since A is a bounded set, all aj ∈ A and D < +∞, the set

Q =
∞⋃
j=1

B̄ (a, rj/3)

is bounded. However, all the balls B̄ (aj, rj/3) are disjoint by Lemma 6.5 and thus

∞∑
j=1

|rj|n < +∞.

Therefore, rj → 0 and we are done. 2

The next lemma shows that the balls B̄j cover the whole set A of centers of all balls in
the collection F .

Lemma 6.7 We have

A ⊂
J⋃
j=1

B̄(aj, rj).

Proof. If J <∞ this is obvious – the only reason we can stop at a finite J is if the whole set A
is covered by

⋃J
j=1 B̄(aj, rj). Suppose J =∞ and let a ∈ A be a center of a ball B̄(a, r) ∈ F .

Assume that a is not in the union
⋃∞
j=1 B̄(aj, rj). Lemma 6.6 implies that there exists j such

that rj < 3r/4. This is a contradiction: the point a is not in the set
⋃j−1
i=1 B̄(ai, ri), hence

the ball B̄(a, r) was ”a candidate ball” at stage j and its radius r satisfies r > 4rj/3 – this is
impossible. Hence, no point in A can fail to be in the set

⋃∞
j=1 B̄(aj, rj), and we are done. 2

Estimating the ball intersections

The rest of the proof is devoted to the following proposition.

Proposition 6.8 There exists a number Mn which depends only on dimension n so that each
ball B̄k intersects at most Mn balls B̄j with indices j less than k.
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This proposition together with Lemma 6.3 completes the proof of the Besicovitch Theorem.
Hence, all we need to is to prove Proposition 6.8. The proof is rather technical. We will do
it in two steps. Given m ∈ N we will split the set of preceding balls B̄j, j = 1, . . . ,m − 1,
into the ”good” ones which do not intersect B̄m and the ”bad” ones that do. Further, we
split the ”bad” ones into ”small” (relative to B̄m) and ”large” balls. Next, we will estimate
the number of small bad balls by 20n. Estimating the number of ”large” balls is the final and
more daunting task.

To begin we fix a positive integer m and define the set of bad preceding indices

Im = {j : 1 ≤ j ≤ m− 1, , B̄j ∩ B̄m 6= ∅}.

Out of these we first consider the ”small bad balls”:

Km = Im ∩ {j : rj ≤ 3rm}.

Intersecting small balls

An estimate for the cardinality of Km is as follows.

Lemma 6.9 The number of elements in Km is bounded above as |Km| ≤ 20n.

The main point of this lemma is of course than the number 20n depends only on the dimension
n and not on m or the collection F .

Proof. Let j ∈ Km – we will show that then the smaller ball B̄(aj, rj/3) is contained in
the stretched ball B̄(am, 5rm). As Lemma 6.5 tells us that all the balls of the form B̄(aj, rj/3)
are disjoint, it will follow that

5nrnm ≥
∑
j∈Km

rnj
3n
. (6.2)

However, as j < k, we know from Lemma 6.4 that rj ≥ 3rm/4, and thus (6.2) implies that

5nrnm ≥
∑
j∈Km

rnj
3n
≥ |Km|

3nrnm
4n3n

=
|Km|rnm

4n
,

and thus |Km| ≤ 20n. Thus, we need to show only that if j ∈ Km then B̄(aj, rj/3) ⊂
B̄(am, 5rm). To see that take a point x ∈ B̄(aj, rj/3), then, as B̄j and B̄m intersect, and
rj ≤ 3rm, we have

|x− am| ≤ |x− aj|+ |aj − am| ≤
rj
3

+ rj + rm =
4

3
rj + rm ≤ 4rm + rm ≤ 5rm.

Therefore, x ∈ B̄(am, 5rm) and we are done. 2

Intersecting large balls

Now we come to the hardest part in the proof – estimating the cardinality of the set Pm =
Im \ Km, that is, the number of balls B̄j with indices j smaller than m which intersect the
ball B̄m = B̄(am, rm) and have a radius rj > 3rm.
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Proposition 6.10 There exists a number Ln which depends only on dimension n such that
the cardinality of the set Pm satisfies |Pm| ≤ Ln.

We will assume without loss of generality that the center am = 0. The key to the proof of
Proposition 6.10 is the following lemma which shows that the balls in the set Pm are sparsely
distributed in space.

Lemma 6.11 Let i, j ∈ Pm with i 6= j, and let θ be the angle between the two lines (ai, 0)
and (aj, 0) that connect the centers ai and aj to am = 0. Then θ ≥ cos−1 61

64
= θ0 > 0.

Before proving this technical lemma let us finish the proof of Proposition 6.10 assuming the
statement of Lemma 6.11 holds. To this end let r0 > 0 be such that if a point x ∈ Rn lies on
the unit sphere in Rn, |x| = 1, and y, z ∈ B̄(x, r0) are two points in a (small) ball of radius
r0 around x then the angle between the lines connecting the points y and z to zero is less
than θ0 from Lemma 6.11. Choose Ln so that the unit sphere {|x| = 1} ∈ Rn can be covered
by Ln balls of radius r0 but not Ln − 1. Then Lemma 6.11 implies that |Pm| ≤ Ln. Indeed,
if i, j ∈ Pm then, according to this lemma, the rays connecting aj and ai to am = 0 have an
angle larger than θ0 between them and thus they may not intersect the same ball of radius r0

with the center on the unit sphere. Therefore, their total number is at most Ln. 2

The proof of Lemma 6.11

By now the whole proof of the Besicovitch theorem was reduced to the proof of Lemma 6.11.
Let i and j be as in that lemma and assume without loss of generality that |ai| ≤ |aj|. Let
us denote by θ the angle between the lines (aj, 0) and (ai, 0). Lemma 6.11 is a consequence
of the following two lemmas. Recall that we need to prove that θ can not be too small –
it is bounded from below by cos−1(61/64). The first lemma says that if θ is smaller than
cos−1(5/6) then the point ai is in the ball B̄j (recall that we are under the assumption that
|ai| ≤ |aj|), and thus j > i.

Lemma 6.12 If cos θ > 5/6 then ai ∈ B̄j.

The second lemma says that if ai ∈ B̄j then the angle θ is at least cos−1(61/64) – this finishes
the proof of Lemma 6.11.

Lemma 6.13 If ai ∈ B̄j then cos θ ≤ 61/64.

Proof of Lemma 6.12. First, we know that i, j < m – hence, am /∈ B̄i ∪ B̄j – this follows
from how we choose the balls B̄m. As am = 0 this means that ri < |ai| and rj < |aj|. In
addition, the balls B̄m and B̄i intersect, and so do the balls B̄m and B̄j, hence |ai| < rm + ri,
and |aj| < rm + rj. Moreover, as i, j ∈ Pm, we have ri > 3rm and rj > 3rm. Let us put these
facts together:

3rm < ri < |ai| ≤ ri + rm,

3rm < rj < |aj| ≤ rj + rm,

|ai| ≤ |aj|.

We claim that
|ai − aj| ≤ |aj| if cos θ > 5/6. (6.3)
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Indeed, assume that |ai − aj| ≥ |aj|. Then we have

cos θ =
|ai|2 + |aj|2 − |ai − aj|2

2|ai||aj|
≤ |ai|2

2|ai||aj|
≤ |ai|

2|aj|
≤ 1

2
<

5

6
,

which contradicts assumptions of Lemma 6.12. Therefore, |ai − aj| ≥ |aj| is impossible and
thus |ai−aj| ≤ |aj|. This already implies that ai ∈ B̄(aj, |aj|) but we need a stronger condition
ai ∈ B̄(aj, rj) (recall that rj < |aj| so the ball B̄(aj, rj) is smaller than B̄(aj, |aj|)).

Assume that ai /∈ Bj – we will show that this would imply that cos θ ≤ 5/6, which would
be a contradiction. As ai /∈ B̄j, we have rj < |ai − aj|, which, together with (6.3) gives

cos θ =
|ai|2 + |aj|2 − |ai − aj|2

2|ai||aj|
=
|ai|

2|aj|
+

(|aj| − |ai − aj|)(|aj|+ |ai − aj|)
2|ai||aj|

≤ 1

2
+

(|aj| − |ai − aj|)2|aj|
2|ai||aj|

≤ 1

2
+
|aj| − |ai − aj|

|ai|
≤ 1

2
+
|aj| − rj

ri
≤ 1

2
+
rj + rm − rj

ri

≤ 1

2
+
rm
ri
≤ 1

2
+

1

3
=

5

6
.

This contradicts the assumption that cos θ > 5/6, hence ai /∈ B̄j is impossible and the proof
of Lemma 6.12 is complete. 2

The last remaining step in the proof of the Besicovitch theorem is the proof of Lemma 6.13.
Proof of Lemma 6.13. First, we claim that

0 ≤ |ai − aj|+ |ai| − |aj| ≤
8|aj|

3
(1− cos θ). (6.4)

As by the assumptions of Lemma 6.13 we have ai ∈ Bj we must have i < j – this follows from
the way we chose the balls B̄j. Since i < j, we also have aj /∈ Bi, and thus |ai − aj| > ri,
which implies (we also use our assumption that |ai| ≤ |aj| in the computation below)

0 ≤ |ai − aj|+ |ai| − |aj|
|aj|

≤ |ai − aj|+ |ai| − |aj|
|aj|

· |ai − aj|+ |aj| − |ai|
|aj − ai|

=
|ai − aj|2 − (|ai| − |aj|)2

|aj||ai − aj|
=

2|ai||aj|(1− cos θ)

|aj||ai − aj|
=

2|ai|(1− cos θ)

|ai − aj|

≤ 2(ri + rm)(1− cos θ)

ri
≤ 2 · 4ri(1− cos θ)

3ri
=

8(1− cos θ)

3
,

so (6.4) holds.
Now, we can show that cos θ ≤ 61/64. Once again, as ai ∈ B̄j we have i < j and aj /∈ B̄i,

so ri < |ai − aj| ≤ rj, and as i < j we have rj ≤ 4ri/3. Therefore, we have

|ai − aj|+ |ai| − |aj| ≥ ri + ri − (rj + rm) = 2ri − rj − rm ≥ 2 · 3

4
rj − rj −

rj
3

=
rj
6

=
1

6
· 3

4

(
rj +

rj
3

)
≥ 1

8
(rj + rm) ≥ 1

8
|aj|.

Returning to (6.4) it follows that

1

8
|aj| ≤

8|aj|
3

(1− cos θ),
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and thus cos θ ≤ 61/64. This finishes the proof of Lemma 6.13 and hence that of the Besi-
covitch theorem! 2

Exercise 6.14 Find the best N(n) in dimensions n = 1 and n = 2. Warning: it is not very
difficult in one dimension but not at all simple in two dimensions.

6.3 Differentiation of measures

Let µ and ν be two Radon measures defined on Rn. The density of one measure with respect
to another is defined as follows.

Definition 6.15 We define

Dµν(x) =

 lim sup
r→0

ν(B̄(x, r))

µ(B̄(x, r))
, if µ(B̄(x, r)) > 0 for all r > 0,

+∞, if µ(B̄(x, r0) = 0 for some r0 > 0,

and

Dµν(x) =

 lim inf
r→0

ν(B̄(x, r))

µ(B̄(x, r))
, if µ(B̄(x, r)) > 0 for all r > 0,

+∞, if µ(B̄(x, r0) = 0 for some r0 > 0,

If Dµν = Dµν < +∞ then we say that ν is differentiable with respect to µ and Dµν is the
density of ν with respect to µ.

Our immediate program is to find out when Dµν exists and when ν can be recovered by
integrating Dµν, as with functions.

Theorem 6.16 Let µ and ν be Radon measures on Rn. Then Dµν exists and is finite a.e.
Moreover, Dµν is a µ-measurable function.

Proof. First, it is clear that Dµν(x) in a ball B(0, R) would not change if we restrict the
measures µ and ν to the ball B(0, 2R). Hence, we may assume without loss of generality that
the measrues µ and ν are both finite: µ(Rn), ν(Rn) < +∞.

Lemma 6.17 Let ν and µ be two finite Radon measures on Rn and let 0 < s < +∞, then (i)
A ⊆ {x ∈ Rn : Dµν ≤ s} implies ν(A) ≤ sµ(A), and (ii) A ⊆ {x ∈ Rn : Dµν ≥ s} implies
ν(A) ≥ sµ(A).

Proof of Lemma 6.17. Let A be as in (i) and let U be an open set containing the set
A. Then for any ε > 0 and any x ∈ A we may find a sequence rn(x) → 0, as n → +∞,
such that ν(B̄(x, rn(x)) ≤ (s + ε)µ(B̄(x, rn(x)) and B̄(x, rn(x)) ⊂ U . The balls B̄(x, rn(x)),
x ∈ A, n ∈ N, form a collection F satisfying the assumptions of Corollary 6.2 since ν is a
finite measure. Hence, we may choose a countable sub-collection J of pairwise disjoint balls
such that

ν

(
A \

⋃
B∈J

B̄

)
= 0.
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It follows that
ν(A) ≤

∑
B∈J

ν(B̄) ≤ (s+ ε)
∑
B∈J

µ(B̄) ≤ (s+ ε)µ(U).

Taking infimum over all open sets U containing the set A we obtain that ν(A) ≤ sµ(A). The
proof of part (ii) is almost identical. 2

Returning to the proof of Theorem 6.16 consider the set Ī = {x : Dµν(x) = +∞}. Then
for all s > 0 we have sµ(I) ≤ ν(I), which means that µ(I) = 0, as ν(I) ≤ ν(Rn) < +∞.
Moreover, for any b > a if we set Rab = {x : Dµν < a < b < Dµν}, we have, using
Lemma 6.17:

bµ(Rab) ≤ ν(Rab) ≤ aµ(Rab),

thus µ(Rab) = 0. It follows that Dµν(x) exists and is finite µ-a.e. It remains to show that the
function Dµν(x) is µ-measurable.

Lemma 6.18 For each x ∈ Rn and r > 0 we have lim sup
y→x

µ(B̄(y, r)) ≤ µ(B̄(x, r)) and

lim sup
y→x

ν(B̄(y, r)) ≤ ν(B̄(x, r)).

Proof of Lemma 6.18. Let yk → x and set fk(z) = χB̄(yk,r)(z). We claim that

lim sup
k→∞

fk(z) ≤ χB̄(x,r)(z). (6.5)

Indeed, all we need to verify is that if z /∈ B̄(x, r) then lim supk→∞ fk(z) = 0. However,
as U = (B̄(x, r))c is an open set, and yk → x it follows that for k large enough we have
z /∈ B̄(yk, r), and thus (6.5) holds. It follows that

lim inf
k→∞

(1− fk(z)) ≥ 1− χB̄(x,r)(z),

and thus, by Fatou’s lemma, we have

�
B̄(x,2r)

(1− χB̄(x,r)(z))dµ ≤ lim inf
k→∞

�
B̄(x,2r)

(1− fk(z))dµ.

This is nothing but

µ(B̄(x, 2r))−µ(B̄(x, r))≤ lim inf
k→∞

[µ(B̄(x, 2r))−µ(B̄(yk, r))]=µ(B̄(x, 2r))−lim sup
k→∞

µ(B̄(yk, r)),

and thus µ(B̄(x, r)) ≥ lim supk→∞ µ(B̄(yk, r)). 2

All that remains to finish the proof of Theorem 6.16 is to notice that Lemma 6.18 implies
that the functions fµ(x) = µ(B̄(x, r)) and fν(x) = ν(B̄(x, r)) are upper semi-continuous and
thus µ-measurable for all r > 0 fixed. Therefore, the derivative

Dµν(x) = lim
r→0

fµ(x; r)

fν(x; r)

is also µ-measurable. 2
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6.4 The Radon-Nikodym theorem

Definition 6.19 We say that a measure ν is absolutely continuous with respect to a measure
µ and write ν � µ if for any set A such that µ(A) = 0 we have ν(A) = 0.

Theorem 6.20 Let µ and ν be Radon measures on Rn and assume that ν is absolutely con-
tinuous with respect to µ. Then for any µ-measurable set A we have

ν(A) =

�
A

Dµν(x)dµ. (6.6)

Proof. Let A be a µ-measurable set. We claim that A is also ν-measurable. Indeed, there
exists a Borel set B such that A ⊂ B and µ(B \A) = 0. As ν � µ it follows that ν(B \A) = 0
so that B \ A is ν-measurable, and, as B is a Borel set, B is also ν-measurable. Writing
A = B ∩ (B \ A)c we see that A is, indeed, ν-measurable.

Set now Z = {x : Dµν(x) = 0} and I = {x : Dµν(x) = +∞}. Then µ(I) = 0 by
Theorem 6.16 and thus ν(I) = 0. Moreover, for any R > 0 we have ν(Z ∩ B(0, R)) ≤
sµ(Z ∩B(0, R)) for all s > 0 by Lemma 6.17. It follows that ν(Z ∩B(0, R)) = 0 for all R > 0
and thus ν(Z) = 0. Summarizing, we have

ν(Z) =

�
Z

(Dµν)dµ = 0, and ν(I) =

�
I

(Dµν)dµ = 0. (6.7)

The rest is done with the help of Lemma 6.17. Consider a µ-measurable set A, fix t > 1
and decompose A as A =

⋃+∞
m=−∞Am

⋃
Z
⋃
I, with

Am =
{
x : tm ≤ Dµν(x) < tm+1

}
.

Then each Am is a µ-measurable set, hence it is also ν-measurable. Moreover, as ν(Z) =
ν(I) = 0, we have

ν(A) =
+∞∑

m=−∞

ν(Am) ≤
+∞∑

m=−∞

tm+1µ(Am) ≤ t
+∞∑

m=−∞

tmµ(Am) ≤ t

�
Ã

(Dµν)dµ,

and

ν(A) =
+∞∑

m=−∞

ν(Am) ≥
+∞∑

m=−∞

tmµ(Am) =
1

t

+∞∑
m=−∞

tm+1µ(Am) ≥ 1

t

�
Ã

(Dµν)dµ,

where Ã =
⋃+∞
m=−∞Am = A \ (Z ∪ I). Passing to the limit t → 1 and using (6.7) to replace

Ã by A as the domain of integration we obtain (6.6). 2

6.5 The Lebesgue decomposition

Definition 6.21 We say that two Radon measures µ and ν are mutually singular and write
µ ⊥ ν if there exists a Borel set B such that µ(Rn \B) = ν(B) = 0.
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Theorem 6.22 (The Lebesgue Decomposition) Let µ and ν be Radon measures on Rn. Then
(i) there exist measures νac � µ and νs ⊥ µ so that ν = νac + νs, and (ii) Dµν(x) = Dµνac(x)
and Dµνs = 0, both for µ-a.e. x so that for each Borel set A we have

ν(A) =

�
A

(Dµν)dµ+ νs(A). (6.8)

Proof. As before, since both µ and ν are Radon measures we may assume that µ(Rn) <∞
and ν(Rn) < +∞. If one or both of these measures is not finite we would simply restrict both
µ and ν to balls B(0, R) and let R→ +∞ at the end of the proof.

We will define νac and νs as νac = ν|B and νs = ν|Bc with an appropriately chosen Borel
set B. Consider the collection

F = {A ⊂ Rn, A Borel, µ(Rn \ A) = 0.}

The set B should be, in measure-theoretical sense, the smallest element of F . To this end
choose Bk ∈ F such that

ν(Bk) ≤ inf
A∈F

ν(A) +
1

k
,

and set B =
⋂∞
k=1 Bk. Then

µ(Rn \B) ≤
∞∑
k=1

µ(Rn \Bk) = 0, (6.9)

and thus B ∈ F and B is the smallest element of F in the sense that ν(B) = infA∈F ν(A).
Note that (6.9) implies that νs = ν|Bc is mutually singular with µ. Let us show that νac =

ν|B is absolutely continuous with respect to µ. Let A ⊂ Rn and assume that µ(A) = 0 but
ν∗ac(A) > 0. Take a Borel set A′ such that A ⊂ A′, and µ(A′) = 0, while νac(A

′) ≥ ν∗ac(A) > 0
and consider Ã = B ∩ A′. For Ã we still have, using (6.9),

µ(Ã) = µ(A′)− µ(A′ ∩Bc) = 0, (6.10)

and
νac(Ã) = νac(A

′) > 0. (6.11)

Now, (6.10) implies that B′ = B \ Ã ∈ F but (6.11) means that

ν(B′) = ν(B)− ν(Ã) < ν(B),

which is a contradiction. Therefore, νac is absolutely continuous with respect to µ.
Finally, let z > 0, consider the set Cz = {x : Dµνs ≥ z}, and write Cz = C ′z ∪ C ′′z with

C ′z = Cz ∩ B, C ′′z = Cz ∩ Bc. Then µ(C ′′z ) = 0 since B ∈ F , while Lemma 6.17 implies that
zµ(C ′z) ≤ νs(C

′
z) ≤ νs(B) = 0. It follows that Dµνs = 0 µ-a.e., which, in turn, means that

Dµν = Dµνac µ-a.e. Now, Theorem 6.20 implies that (6.8) holds. 2
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The Lebesgue-Besicovitch theorem

Given a function f we define its average over a measurable set E with µ(E) > 0 as
 
E

fdµ =
1

µ(E)

�
E

fdµ.

A trivial observation is that for a continuous function f(x) we have
 
B̄(x,r)

fdy = f(x).

The following generalization is much less immediately obvious.

Theorem 6.23 Let µ be a Radon measure and assume that f ∈ L1
loc(Rn, dµ), then

lim
r→0

 
B̄(x,r)

fdµ = f(x) for µ-a.e. x ∈ Rn. (6.12)

Proof. The proof is surprisingly simple based on the Radon-Nikodym theorem. Let us
defined the measures ν± as follows. For a Borel set B we set

ν±(B) =

�
B

f±dµ, (6.13)

with f+ = max(f, 0) and f− = max(−f, 0), and for an arbitrary set A define

ν∗±(A) = inf(ν±(B) : A ⊆ B, B Borel).

Then ν+ and ν− are Radon measures, absolutely continuous with respect to µ, thus

ν+(A) =

�
A

Dµν+dµ, ν−(A) =

�
A

Dµν−dµ (6.14)

for all µ-measurable sets A. Together, (6.13) and (6.14) imply that

Dµν± = f± µ-a.e. (6.15)

Indeed, consider, for instance, the set S = {x : f+(x) > Dµν+(x)} =
⋃
q∈Q Sq, with

Sq = {x : f+(x)−Dµν+(x) > q}.

The set Sq is µ-measurable, and
�
Sq

(f+ −Dµν+)dµ ≥ qµ(Sq),

thus µ(Sq) = 0 so that µ(S) = 0 as well. Using (6.15) we get

lim
r→0

 
B̄(x,r)

fdµ = lim
r→0

1

µ(B̄(x, r)
[ν+(B̄(x, r))− ν−(B̄(x, r))] = Dµν+ −Dµν− = f+ − f− = f,

for µ-a.e. x. 2

The Lebesgue-Besicovitch theorem has several interesting corollaries.
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Definition 6.24 Let f ∈ Lploc(Rn, dµ) with 1 ≤ p < +∞. A point x is a Lebesgue point of f

lim
r→0

 
B̄(x,r)

|f(y)− f(x)|pdµy = 0.

Corollary 6.25 Let µ be a Radon measure on Rn, 1 ≤ p < +∞ and let f ∈ Lploc(Rn, dµ)
with 1 ≤ p < +∞, then

lim
r→0

 
B̄(x,r)

|f(y)− f(x)|pdµy = 0 (6.16)

for µ-a.e. x ∈ Rn.

Proof. Let ξj be a countable dense subset of R then for each j fixed we have

lim
r→0

 
B̄(x,r)

|f(y)− ξj|pdµy = |f(x)− ξj|p (6.17)

for µ-a.e. x ∈ Rn. Hence, there exists a set S of full measure, µ(Rn \ S) = 0 so that (6.17)
holds for all j for x ∈ S. Next, given x ∈ S and ε > 0 choose ξj so that |f(x)− ξj|p < ε/2p,
then we have

lim sup
r→0

 
B̄(x,r)

|f(y)− f(x)|pdµy

≤ 2p−1 lim sup
r→0

 
B̄(x,r)

|f(y)− ξj|pdµy + 2p−1 lim sup
r→0

 
B̄(x,r)

|ξj − f(x)|pdµy ≤ 0 + ε = ε,

and, as ε > 0 is arbitrary, (6.16) holds. 2

The next corollary describes the ”density” of measurable sets.

Corollary 6.26 Let E ⊆ Rn be Lebesgue measurable, then

lim
r→0

|B(x, r) ∩ E|
|B(x, r)|

= 1 for a.e. x ∈ E,

and

lim
r→0

|B(x, r) ∩ E|
|B(x, r)|

= 0 for a.e. x /∈ E.

Proof. This follows immediately from the Lebesgue-Besicovitch theorem applied to the
function f(x) = χE(x). 2

7 Signed measures

7.1 The Hahn decomposition

Definition 7.1 A signed measure ν on a σ-algebra B is a function defined on sets from B
that satisfies

(i) ν assume only one of the values +∞ and −∞.
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(ii) ν(∅) = 0.

(iii) ν
(⋃∞

j=1Ej

)
=
∑∞

j=1 ν(Ej) for any sequence Ej of disjoint sets in B and the series

converges absolutely.

Definition 7.2 A set A is positive with respect to a signed measure ν if A ∈ B and ν(E) ≥ 0
for all E ⊆ A.

Proposition 7.3 Let E be a measurable set, 0 < ν(E) < +∞, then there exists a positive
set A ⊆ E with ν(A) > 0.

Proof. If E is not positive we construct a sequence of sets A1, . . . , Ak, . . . as follows. Let n1 be
the smallest integer so that E contains a subset A1 with ν(A1) < −1/n1. Then, inductively,
having chosen A1, . . . , Ak−1 choose Ak as follows. Set Ek−1 = E \ (

⋃k−1
j=1 Aj) and let nk be

the smallest integer so that Ek−1 contains a subset Q with ν(Q) < −1/nk. Finally, take
Ak ⊆ Ek−1 with ν(Ak) < −1/nk. This procedure can be continued unless at some step k0 the
set Ek0 is positive. In that case we are done, as

ν(Ek0) = ν(E)−
k0−1∑
j=1

ν(Aj) ≥ ν(E) > 0.

On the other hand, if we never stop, we set A = E \
⋃∞
j=1Aj. Note that, since ν(E) > 0, we

have
∞∑
j=1

|ν(Aj)| < +∞,

and thus nj → +∞ as j → +∞. Moreover, A can not contain a subset S of negative measure
because in that case we would have ν(S) < −1/(nk − 1) for a large enough k which would
give a contradiction. 2

Theorem 7.4 Let ν be a signed measure on X. Then there exists a positive set A and a
negative set B so that X = A

⋃
B.

Proof. Assume that ν omits the value +∞ and set λ = sup{ν(A) : A is a positive set}.
Choose positive sets Aj such that ν(Aj) > λ− 1/j and set A =

⋃∞
j=1Aj. Since A is a union

of positive sets, A is positive itself. Therefore, ν(A) = ν(Aj) + ν(A \ Aj) ≥ λ − 1/j for all
j ∈ N, and thus ν(A) = λ. No subset S of the set B = Ac can have positive measure for if
ν(S) > 0, S contains a positive subset S ′ with ν(S ′) > 0 by Proposition 7.3. Then the set
A′ = A ∪ S ′ would be positive with ν(A′) > λ which would contradict the definition of λ.
Hence, the set B is negative. 2

Corollary 7.5 Let ν be a signed measure on X. There exists a pair of mutually singular
measures ν+ and ν− such that ν = ν+ − ν−.

Proof. Simply decompose X = A ∪ B as in Theorem 7.4, set ν+ = ν|A and ν−ν|B and
observe that both ν+ and ν− are measures (and not signed measures). 2

We will denote by |ν| = ν+ + ν− the total variation of the measure ν. The decomposition
ν = ν+− ν− shows that Radon-Nikodym theorem applies to signed measures as well, that is,
we say that ν � µ if µ(A) = 0 implies that ν+(A) = ν−(A) = 0. In that case we may use the
Radon-Nikodym theorem to write ν+(S) =

�
S
f+dµ, ν−(S) =

�
S
f−dµ, and ν(S) =

�
S
fdµ

with f = f+ − f−.
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7.2 The Riesz Representation Theorem in Lp

Recall that a linear functional F : X → R acting on a normed linear space X is bounded if
there exists a constant C > 0 so that |F (x)| ≤ C‖x‖X for all x ∈ X, and

‖F‖ = sup
‖x‖X=1

|F (x)|.

An example of a bounded linear functional on Lp(Rn) is

F (f) =

�
Rn
fgdx,

where g ∈ Lq(Rn) and ‖F‖ ≤ ‖g‖Lq – this follows from the Hölder inequality. It turns out
that for 1 ≤ p < +∞ all bounded linear functionals on Lp have this form.

Theorem 7.6 Let µ be a Radon measure, 1 ≤ p < +∞, and F : Lp(Rn, dµ) → R be
a bounded linear functional. Then there exists a unique function g ∈ Lq(Rn, dµ), where
1/p + 1/q = 1, such that F (f) =

�
Rn f(x)g(x)dµ for any function f ∈ Lp(Rn, dµ), and

‖F‖ = ‖g‖Lq .

Proof. The proof is long but straightforward. First, we construct the only candidate for the
function g rather explicitly in terms of the functional F . Then we check that the candidate
g lies in Lq(Rn, dµ), and, finally, we verify that, indeed, both F (f) =

�
fgdµ and ‖F‖ =

‖g‖Lq(Rn,dµ).
First, we assume that µ is a finite measure: µ(Rn) < +∞ so that f ≡ 1 lies in all

Lp(Rn, dµ). For a µ-measurable set E let us set ν(E) = F (χE). The linearity and boundedness
of F , and finiteness of µ imply that ν is a signed measure with

|ν(E)| ≤ ‖F‖‖χE‖Lp ≤ ‖F‖[µ(E)]1/p ≤ ‖F‖[µ(Rn)]1/p. (7.1)

Let us decompose ν = ν+ − ν− as in Corollary 7.5, and also use the Hahn decomposition of
Rn relative to ν: Rn = A∪B, so that ν+ supported in A, and ν− supported in B. Then (7.1)
implies that

ν+(E) = ν(A ∩ E) = |ν(A ∩ E)| ≤ ‖F‖[µ(A ∩ E)]1/p ≤ ‖F‖[µ(E)]1/p, (7.2)

and thus ν+ (and also ν− by the same argument) is absolutely continuous with respect to µ.
Therefore, ν has the Radon-Nikodym derivative g(x)

ν(E) =

�
E

gdµ,

and using (7.2) we conclude that

‖g‖L1(Rn,dµ) = ν+(Rn) + ν−(Rn) ≤ 2‖F‖(µ(Rn))1/p,

thus g ∈ L1(Rn, dµ).
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Let us now show that g ∈ Lq(Rn, dµ), where 1/p+ 1/q = 1. It follows from the definition
of g that for any simple function φ which takes only finitely many values we have

F (φ) =

�
φgdµ. (7.3)

Since F is a bounded linear functional and as for 1 ≤ p < +∞ any simple function ψ ∈
Lp(Rn, dµ) of the form

ψ(x) =
∞∑
j=1

ajχAj(x)

with disjoint sets Aj can be approximated by

ψN(x) =
N∑
j=1

ajχAj(x),

that is, ‖ψ − ψN‖Lp → 0 as N → +∞, (7.3) holds for all simple functions ψ ∈ Lp(Rn, dµ)
and not only those that take finitely many values. Assume that 1 < p < +∞ and let ψn be a
point-wise non-decreasing sequence of simple functions which take finitely many values such
that ψ

1/q
n → |g|. Set φn = (ψn)1/psgn g, then

‖φn‖Lp =

(�
ψndµ

)1/p

,

thus �
ψndµ =

�
ψ1/p+1/q
n dµ =

�
|ψn|1/q|φn|dµ ≤

�
|g||φn|dµ =

�
gφndµ

= F (φn) ≤ ‖F‖‖φn‖Lp ≤ ‖F‖
(�

ψndµ

)1/p

.

It follows that (�
ψndµ

)1/q

≤ ‖F‖

and thus �
|g|qdµ ≤ ‖F‖q (7.4)

by the Monotone Convergence Theorem, hence g ∈ Lq(Rn, dµ) and ‖g‖Lq(Rn,dµ) ≤ ‖F‖.
In order to finish the proof, note that, as g ∈ Lq(Rn, dµ), the linear functional

G(f) =

�
fgdµ

is bounded: ‖G‖ ≤ ‖g‖Lq . Moreover, G(φ) = F (φ) for any simple function in Lp(Rn, dµ).
As simple functions are dense in this space, and both G and F are bounded functionals, it
follows that G(f) = F (f) for all f ∈ Lp(Rn, dµ), thus

F (f) =

�
fgdµ
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for all f ∈ Lp(Rn, dµ). Hence, ‖F‖ ≤ ‖g‖Lq , which, together with (7.4) implies that ‖F‖ =
‖g‖Lq .

When the measure µ is not finite, consider the balls BR = B(0, R) and the restrictions
µR = µ|BR . Define also the bounded linear functionals FR(f) = F (fχBR). Then

|FR(f)| ≤ ‖F‖‖fχR‖Lp(R,dµ) = ‖F‖‖f‖Lp(R,dµR),

so that FR is a bounded linear functional on Lp(R, dµR). It follows that there exists a unique
function gR ∈ Lq(R, dµR) such that

FR(f) =

�
fgRdµR,

and ‖gR‖Lq(R,dµR) = ‖FR‖ ≤ ‖F‖. We may assume without loss of generality that gR vanishes
outside of B(0, R). Given R′ > R′′ the natural restriction of FR′ to Lp(R, dµR′′) coincides
with FR′′ . Then uniqueness of the kernel gR′′ implies that gR′(x) = gR′′(x) for x ∈ B(0, R′′).
Hence, we may pass to the limit R→∞ and Fatou’s lemma implies that the limit g(x) is in
Lq(Rn, dµ) with ‖g‖Lq(Rn,dµ) ≤ ‖F‖. Taking f = |g|q/psgn g we note that

F (f) =

�
|g|qdµ ≤ ‖F‖‖f‖Lp(Rn,dµ) = ‖F‖‖g‖q/pLq(Rn,dµ),

which means that ‖g‖Lq(Rn,dµ) ≤ ‖F‖ and thus ‖g‖Lq(Rn,dµ) = ‖F‖.
It remains only to show that for p = 1 we have ‖F‖ = ‖g‖L∞(Rn,dµ), and it suffices to show

that ‖g‖L∞(Rn,dµ) ≤ ‖F‖. Take any ε > 0 and consider the set

Aε = {x : |g(x)| > (1− ε)‖g‖L∞(Rn,dµ)}.

Then µ(Aε) > 0 so we can choose a subset Bε ⊆ A with 0 < µ(Bε) < +∞. Consider the
function fε(x) = (sgn g)χBε(x), then

F (fε) =

�
fεgdµ =

�
Bε

|g|dµ ≥ (1− ε)‖g‖L∞(Rn,dµ)µ(Bε) = (1− ε)‖g‖L∞(Rn,dµ)‖fε‖L1(Rn,dµ),

thus ‖F‖ ≥ (1− ε)‖g‖L∞(Rn,dµ). Letting ε→ 0 we obtain the desired inequality. 2

7.3 The Riesz representation theorem for Cc(Rn)

Theorem 7.7 Let L : Cc(Rn; Rm)→ R be a linear functional such that for each compact set
K we have

sup{L(f) : f ∈ Cc(Rn; Rm), |f | ≤ 1, suppf ⊆ K} < +∞. (7.5)

Then there exists a Radon measure µ on Rn and a µ-measurable function σ : Rn → Rm such

that (i) |σ(x)| = 1 for µ-a.e. x ∈ Rn, and (ii) L(f) =

�
Rn

(f · σ)dµ for all f ∈ Cc(Rn; Rm).

Proof. Define the variation measure by

µ∗(V ) = sup{L(f) : f ∈ Cc(Rn; Rm), |f | ≤ 1, suppf ⊆ V }
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for open sets V and for an arbitrary set A ⊂ Rn set

µ∗(A) = inf{µ(V ) : A ⊂ V, V is open}.

Our task is to show that µ and an appropriately defined function σ will satisfy (i) and (ii).
We will proceed gingerly in several steps. First, we need to show that µ is actually a Radon
measure. Next, for f ∈ C+

c = {f ∈ Cc(Rn) : f ≥ 0} we will define a functional

λ(f) = sup{L(g) : g ∈ Cc(Rn; Rm), |g| ≤ f}. (7.6)

It turns out that λ is actually a linear functional on C+
c (Rn). Moreover, we will show that λ

has an explicit form

λ(f) =

�
Rn
fdµ. (7.7)

The function σ will come about as follows: for every unit vector e ∈ Rm, |e| = 1, we define a
linear functional λe on Cc(Rn) by

λe(f) = L(fe). (7.8)

We will extend λe to a bounded linear functional on L1(Rn, dµ) and use the Riesz represen-
tation theorem for L1(Rn, dµ) to find a function σe ∈ L∞(Rn) so that

λe(f) =

�
fσedµ

for all f ∈ L1(Rn, dµ). Finally we will set σ(x) =
∑m

j=1 σej(x)ej, where ej is the standard
basis for Rm. Then for any f ∈ Cc(Rn; Rm we have

L(f) =
m∑
j=1

L((f · ej)ej) =
m∑
j=1

λej(f · ej) =
m∑
j=1

�
(f · ej)σejdµ =

�
(f · σ)dµ,

and we would be done.
Step 1. As promised, we first show that µ is a Radon measure. Let us check that µ is

a measure: we take open sets Vj, j ≥ 1, and an open set V ⊂
⋃∞
j=1 Vj. Choose a function

g ∈ Cc(R) with |g(x)| ≤ 1 and Kg = supp g ⊂ V . Since Kg is a compact set, there exists k

so that Kg ⊂
⋃k
j=1 Vj. Consider smooth functions ζj such that supp ζj ⊂ Vj and

k∑
j=1

ζj(x) ≡ 1 on Kg.

Then g =
∑k

j=1 gζj, so, as |g(ζj)| ≤ 1 on Vj and supp ζj ⊂ Vj:

|L(g)| ≤
k∑
j=1

|L(gζj)| ≤
k∑
j=1

µ(Vj).

Since this is true for all functions g supported in V with |g| ≤ 1, we have µ∗(V ) ≤
∑∞

j=1 µ
∗(Vj).

Next, let A and Aj, j ≥ 1 be arbitrary sets with A ⊆
⋃∞
j=1Aj. Given ε > 0 choose open sets

Vj such that Aj ⊂ Vj and µ∗(Aj) ≥ µ∗(Vj)− ε/2j. Then A ⊂ V :=
⋃∞
j=1 Vj and thus

µ∗(A) ≤ µ∗(V ) ≤
∞∑
j=1

µ∗(Vj) ≤
∞∑
j=1

(
µ∗(Aj) +

ε

2j

)
= ε+

∞∑
j=1

µ∗(Aj).
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As this is true for all ε > 0 we conclude that µ is measure.
To see that µ is a Borel measure we use the following criterion due to Caratheodory.

Lemma 7.8 Let µ be a measure on Rn. If µ∗(A
⋃
B) = µ∗(A)+µ∗(B) for all sets A,B ⊆ Rn

with dist(A,B) > 0 then µ is a Borel measure.

We postpone the proof of the Caratheodory criterion for the moment as it is not directly
related to the crux of the matter in the proof of the Riesz representation theorem.

Now, if U1 and U2 are two open sets such that dist(U1, U2) > 0 then

µ∗(U1 ∪ U2) = µ∗(U1) + µ∗(U2) (7.9)

simply be the definition of µ. Then for any pair of sets A1 and A2 with dist(A1, A2) > 0 and
we can find sets V1 and V2 with dist(V1, V2) > 0 which contain A1 and A2, respectively. Then,
for any open set V containing A1∪A2 we can set U1 = V ∩V1, U2 = V ∩V2, then (7.9) implies
that

µ∗(V ) = µ∗(U1) + µ∗(U2) ≥ µ∗(A1) + µ∗(A2),

thus µ∗(A1 ∪ A2) ≥ µ∗(A1) + µ∗(A2), and the measure µ is Borel. The definition of µ as
an outer measure immediately implies that µ is Borel regular: for any set A we can choose
open sets Vk containing A such that µ(Vk) ≤ µ∗(Ak) + 1/k, then the Borel set V =

⋂∞
k=1 Vk

contains A and µ(V ) = µ∗(A). Finally, (7.5) and the definition of µ imply that µ(K) < +∞
for any compact set K and thus µ is a Radon measure.

Step 2. Next, in order to show that λe introduced in (7.8) is a bounded linear functional,
consider first the functional λ defined by (7.6) on C+

c (Rn). Let us show that λ is linear, that
is,

λ(f1 + f2) = λ(f1) + λ(f2). (7.10)

Let f1, f2 ∈ C+
c (Rn), take arbitrary functions g1, g2 ∈ Cc(Rn; Rm) such that |g1| ≤ f1, |g2| ≤ f2

and consider g′1 = g1sgn(L(g1)), g′2 = g2sgn(L(g2)). Then |g′1 + g′2| ≤ f1 + f2, and thus

|L(g1)|+ |L(g2)| = L(g′1) + L(g′2) = L(g′1 + g′2) ≤ λ(f1 + f2).

It follows that
λ(f1) + λ(f2) ≤ λ(f1 + f2), (7.11)

so that λ is super-linear. On the other hand, given g ∈ Cc(Rn; Rm) such that |g| ≤ f1 + f2

we may set, for j = 1, 2:

gj(x) =

{ fj(x)g(x)

f1(x) + f2(x)
, if f1(x) + f2(x) > 0,

0, if f1(x) + f2(x) = 0.

It is easy to check that g1 and g2 are continuous functions with compact support. Then, as
g = 0 where f1 + f2 = 0, we have g = g1 + g2, and |gj(x)| ≤ fj(x), j = 1, 2, for all x ∈ R. It
follows that

|L(g)| ≤ |L(g1)|+ |L(g2)| ≤ λ(f1) + λ(f2),

thus λ(f1 + f2) ≤ λ(f1) + λ(f2), which, together with (7.11) implies (7.10).
Step 3. The next step is to show that λ has the explicit form (7.7).
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Lemma 7.9 For any function f ∈ C+
c (Rn) we have

λ(f) =

�
Rn
fdµ. (7.12)

Proof. Given f ∈ C+
c (Rn) choose a partition 0 = t0 < t1 < . . . < tN = 2‖f‖L∞ with

0 < ti − ti−1 < ε and so that µ(f−1{tj}) = 0 for j = 1, . . . , N . Set Uj = f−1(tj−1, tj), then
Uj is a bounded open set, hence µ(Uj) < ∞. As µ is a Radon measure, there exist compact
sets Kj ⊆ Uj with µ(Uj \ Kj) < ε/N . There also exist functions gj ∈ Cc(Rn; Rm) with
|gj| ≤ 1, supp gj ⊆ Uj, and |L(gj)| ≥ µ(Uj)− ε/N , as well as funcions hj ∈ C+

c (Rn) such that
supp hj ⊆ Uj, 0 ≤ hj ≤ 1 and hj ≡ 1 on the compact set Kj ∪ supp gj. Then hj ≥ |gj| and
thus λ(hj) ≥ |L(gj)| ≥ µ(Uj)− ε/N , while λ(hj) ≤ µ(Uj) since supp hj ⊆ Uj and 0 ≤ hj ≤ 1.
Summarizing, we have

µ(Uj)−
ε

N
≤ λ(hj) ≤ µ(Uj).

Consider the open set

A = {x : f(x)(1−
N∑
j=1

hj(x)) > 0},

then

µ(A) = µ

(
N⋃
j=1

(Uj \ {hj = 1}

)
≤

N∑
j=1

µ(Uj \Kj) < ε.

This gives an estimate

λ(f − f
N∑
j=1

hj) = sup
{
|L(g)| : g ∈ Cc(Rn; Rm), |g| ≤ f(1−

N∑
j=1

hj)
}

≤ sup
{
|L(g)| : g ∈ Cc(Rn; Rm), |g| ≤ ‖f‖L∞χA

}
= ‖f‖L∞µ(A) ≤ ε‖f‖L∞ .

It follows that

λ(f) ≤
N∑
j=1

λ(fhj) + ε‖f‖|L∞ ≤
N∑
j=1

tjµ(Uj) + ε‖f‖|L∞ ,

and

λ(f) ≥
N∑
j=1

λ(fhj) ≥
N∑
j=1

tj−1(µ(Uj)−
ε

N
) ≥

N∑
j=1

tj−1µ(Uj)− 2ε‖f‖L∞ .

As a consequence,∣∣∣∣λ(f)−
�

Rn
fdµ

∣∣∣∣ ≤ N∑
j=1

(tj − tj−1)µ(Uj) + 3ε‖f‖|L∞ ≤ εµ(suppf) + 3ε‖f‖|L∞ ,

and thus (7.12) holds. 2

Step 4. We now construct the function σ.
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Lemma 7.10 There exists a µ-measurable function σ : Rn → Rm such that

L(f) =

�
Rn

(f · σ)dµ. (7.13)

Proof. For a fixed vector e ∈ Rn with |e| = 1 and f ∈ Cc(Rn) define λe(f) = L(fe), Then
λe is a linear functional on Cc(Rn) and

|λe(f)| ≤ sup{|L(g)| : g ∈ Cc(Rn; Rm), |g| ≤ |f |} ≤ λ(|f |) =

�
Rn
|f |dµ. (7.14)

Thus, λe can be extended to a bounded linear functional on L1(Rn, dµ), hence by the Riesz
representation theorem for Lp-spaces there exists σe ∈ L∞(Rn, dµ) such that

λe(f) =

�
Rn
fσedµ. (7.15)

Moreover, (7.14) implies that, as a bounded linear functional on L1(Rn, dµ), λe has the norm
‖λe‖ ≤ 1. Therefore, ‖σe‖L∞(Rn,dµ) ≤ 1 as well. Setting

σ =
m∑
j=1

σejej,

where ej is the standard basis in Rn we obtain

L(f) =
m∑
j=1

L((f · ej)ej) =
m∑
j=1

�
Rn

(f · ej)σejdµ =

�
Rn

(f · σ)dµ,

which is (7.13). 2

Step 5. The last step is

Lemma 7.11 The function σ defined above satisfies |σ| = 1 µ-a.e.

Proof. Let U be an open set, µ(U) < +∞ and set σ′(x) = σ(x)/|σ(x)| where σ(x) 6= 0, and
σ′(x) = 0 where σ(x) = 0. Using Theorem 2.3 and Corollary 2.9 we may find a compact set
Kj ⊂ U such that µ(U \ Kj) < 1/j and σ′ is continuous on Kj. Then we can extend σ′ to
a continuous function fj on all of Rn so that |fj| ≤ 1. Next, since Kj is a proper compact
subset of an open set U we can find a cut-off function hj ∈ Cc(Rn) such that 0 ≤ hj ≤ 1,
hj ≡ 1 on Kj ⊆ U , and hj = 0 outside of U . This produces a sequence of functions gj = fjhj
such that |gj| ≤ 1, supp gj ∈ U and gj · σ → |σ| in probability on U . Using Proposition 3.13
we may pass to a subsequence jk → +∞ so that gjk · σ → |σ| µ-a.e. in U . Then, as |gj| ≤ 1,
|σ| ≤

√
m and µ(U) < +∞, bounded convergence theorem implies that�

U

|σ|dµ = lim
k→+∞

�
U

(gjk · σ)dµ = lim
k→∞

L(gjk) ≤ µ(U), (7.16)

by the definition of the measure µ. On the other hand, for any function f ∈ Cc(Rn; Rm)
supported inside U with |f | ≤ 1 we have

L(f) =

�
U

(f · σ)dµ ≤
�
U

|σ|dµ,
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thus

µ(U) ≤
�
U

|σ|dµ. (7.17)

Putting (7.16) and (7.17) together we conclude that |σ| = 1 µ-a.e. in U .
Step 6. Finally, we prove the Caratheodory criterion, Lemma 7.8. Let µ satisfy the

assumptions of this lemma and let C be a closed set. We need to show that for any set A

µ∗(A) ≥ µ∗(A ∩ C) + µ∗(A \ C). (7.18)

If µ∗(A) = +∞ this is trivial so we assume that µ∗(A) < +∞. Define the sets

Cn = {x ∈ Rn : dist(x,C) ≤ 1/n}.

Then the distance dist(A \ Cn, A ∩ C) ≥ 1/n, thus, by the assumption of Lemma 7.8,

µ∗(A \ Cn) + µ∗(A ∩ C) = µ∗((A \ Cn) ∪ (A ∩ C)) ≤ µ∗(A). (7.19)

We claim that
lim
n→∞

µ∗(A \ Cn) = µ∗(A \ C). (7.20)

Indeed, consider the annuli

Rk =
{
x ∈ A :

1

k + 1
< dist(x,C) ≤ 1

k

}
As C is closed, we have Rn \ C =

⋃∞
k=1Rk. Moreover, dist(Rk, Rj) > 0 if |k − j| ≥ 2, hence

m∑
k=1

µ∗(R2k) = µ∗
( m⋃
k=1

R2k

)
≤ µ∗(A),

and
m∑
k=1

µ∗(R2k−1) = µ∗
( m⋃
k=1

R2k−1

)
≤ µ∗(A),

both for all m ≥ 1. It follows that
∑∞

k=1 µ
∗(Rk) < +∞. In that case

(A \ C) = (A \ Cn)
⋃( ∞⋃

k=n

Rk

)
,

thus

µ∗(A \ Cn) ≤ µ∗(A \ C) ≤ µ∗(A \ C) +
∞∑
k=n

µ∗(Rk),

and (7.20) follows. Passing to the limit n→ +∞ in (7.19) with the help of (7.20) we obtain
(7.18). Therefore, all closed sets are µ-measurable, thus the measure µ is Borel. 2
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8 The Fourier transform on the circle

8.1 Pointwise convergence on S1

Given a function f ∈ L1(S1) (here S1 is the unit circle), or equivalently, a periodic function
f ∈ L1[0, 1], we define the Fourier coefficients, for k ∈ Z:

f̂(k) =

� 1

0

f(x)e−2πikxdx.

Trivially, we have |f̂(k)| ≤ ‖f‖L1 for all k ∈ Z. The Riemann-Lebesgue lemma shows that an
L1-signal can not have too much high-frequency content and f̂(k) have to decay for large k.

Lemma 8.1 (The Riemann-Lebesgue lemma) If f ∈ L1(S1) then f̂(k)→ 0 as k → +∞.

Proof. Note that

f̂(k) =

� 1

0

f(x)e−2πikxdx = −
� 1

0

f(x)e−2πik(x+1/(2k))dx = −
� 1

0

f(x− 1

2k
)e−2πikxdx,

and thus

f̂(k) =
1

2

� 1

0

[
f(x)− f(x− 1

2k
)

]
e−2πikxdx.

As a consequence, we have

|f̂(k)| ≤ 1

2

� 1

0

∣∣∣∣f(x)− f(x− 1

2k
)

∣∣∣∣ dx,
hence f̂(k)→ 0 as k → +∞. 2

A simple implication of the Riemann-Lebesgue lemma is that
� 1

0

f(x) sin(mx)dx→ 0

as m → ∞ for any f ∈ L1(S1). Indeed, for m = 2k this is an immediate corollary of
Lemma 8.1, while for an odd m = 2k + 1 we would simply write

� 1

0

f(x)eπi(2k+1)xdx =

� 1

0

f(x)eπixe2πikxdx,

and apply this lemma to f̃(x) = f(x)eiπx.
In order to investigate convergence of the Fourier series

∞∑
k=−∞

f̂(k)e2πikx

let us introduce the partial sums

SNf(x) =
N∑

k=−N

f̂(k)e2πikx.
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A convenient way to represent SNf is by writing it as a convolution:

Snf(x) =

� 1

0

f(t)
N∑

k=−N

e2πik(x−t)dt =

� 1

0

f(x− t)DN(t)dt.

Here the Dini kernel is

DN(t) =
N∑

k=−N

e2πikt = e−2πiNt(1 + e2πit + e4πit + . . .+ e4πiNt) = e−2πiNt e
2πi(2N+1)t − 1

e2πit − 1

=
e2πi(N+1/2)t − e−2πi(N+1/2)t

eπit − e−πit
=

sin((2N + 1)πt)

sin(πt)
.

The definition of the Dini kernel as a sum of exponentials implies immediately that

� 1

0

DN(t)dt = 1 (8.1)

for all N , while the expression in terms of sines shows that

|DN(t)| ≤ 1

sin(πδ)
, δ ≤ |t| ≤ 1/2.

The ”problem” with the Dini kernel is that its L1-norm is not uniformly bounded in N .
Indeed, consider

LN =

� 1/2

−1/2

|DN(t)|dt. (8.2)

Let us show that
lim

N→+∞
LN = +∞. (8.3)

We compute:

LN = 2

� 1/2

0

| sin((2N + 1)πt)|
| sin πt|

dt ≥ 2

� 1/2

0

| sin((2N + 1)πt)|
|πt|

dt

− 2

� 1/2

0

| sin((2N + 1)πt)|
∣∣∣∣ 1

sin πt
− 1

πt

∣∣∣∣ dt = 2

� N+1/2

0

| sin(πt)|
πt

dt+O(1)

≥ 2

π

N−1∑
k=0

� 1

0

| sin πt|
t+ k

dt+O(1) ≥ C logN +O(1),

which implies (8.3). This means that, first, the sequence DN does not form an approximation
of the delta function in the usual sense, that is DN does not behave like a kernel of the form
φN(t) = Nφ(Nt), with φ ∈ L1(S1), and, second, that (8.1) holds because of cancellation
of many oscillatory terms, and not because DN is uniformly bounded in L1(S1). These
oscillations may cause difficulties in the convergence of the Fourier series.
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Convergence of the Fourier series for regular functions

Nevertheless, for ”reasonably regular” functions the Fourier series converges and Dini’s crite-
rion for the convergence of the Fourier series is as follows.

Theorem 8.2 (Dini’s criterion) Let f ∈ L1(S1) satisfy the following condition at the point x:
there exists δ > 0 so that �

|t|<δ

∣∣∣∣f(x+ t)− f(x)

t

∣∣∣∣ dt < +∞, (8.4)

then limN→∞ SNf(x) = f(x).

Proof. Let δ > 0 be as in (8.4). It follows from the normalization (8.1) that

SNf(x)− f(x) =

� 1/2

−1/2

[f(x− t)− f(x)]DN(t)dt (8.5)

=

�

|t|≤δ

[f(x− t)− f(x)]
sin((2N + 1)πt)

sin(πt)
dt+

�

δ≤|t|≤1/2

[f(x− t)− f(x)]
sin((2N + 1)πt)

sin(πt)
dt.

Consider the first term above (with the change of variables t→ (−t)):

I1 =

�
|t|≤δ

[f(x− t)− f(x)]
sin((2N + 1)πt)

sin(πt)
dt =

� 1/2

−1/2

gx(t) sin((2N + 1)πt)dt,

with

gx(t) =
f(x+ t)− f(x)

sin(πt)
χ[−δ,δ](t).

Assumption (8.4) means that, as a function of the variable t, and for x fixed, gx ∈ L1(S1).
The Riemann-Lebesgue lemma implies then that I1 → 0 as N → +∞. The second term in
(8.5) is treated similarly: the function

rx(t) =
f(x+ t)− f(x)

sin(πt)
χ[δ≤|t|≤1/2](t)

is uniformly bounded by a constant C(δ) which depends on δ, thus the Riemann-Lebesgue
lemma, once again, implies that

I2 =

�
|t|≥δ

gx(t) sin((2N + 1)πt)dt,

vanishes as N → 0 with δ > 0 fixed. 2

Another criterion for the convergence of the Fourier series was given by Jordan:

Theorem 8.3 (Jordan’s criterion) If f has bounded variation on some interval (x− δ, x+ δ)
around the point x then

lim
N→+∞

SNf(x) =
1

2
[f(x+) + f(x−)]. (8.6)
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Proof. Let us set x = 0 for convenience. As f has a bounded variation on the interval
(−δ, δ), it is equal to the difference of two monotonic functions, and we can assume without
loss of generality that f is monotonic on (−δ, δ), and also that f(0+) = 0. Let us write

SNf(0) =

� 1/2

−1/2

f(−t)DN(t)dt =

� 1/2

0

[f(t) + f(−t)]DN(t)dt.

Given ε > 0 choose δ > 0 so that 0 ≤ f(t) < ε for all t ∈ (0, δ), then the first term above may
be split as

� 1/2

0

f(t)DN(t)dt =

� δ

0

f(t)DN(t)dt+

� 1/2

δ

f(t)DN(t)dt = II1 + II2.

Then

II2 =

� 1/2

δ

f(t)DN(t)dt→ 0,

exactly for the same reason as in the corresponding term I2 in the proof of Theorem 8.2, since
the function g(t) = f(t)/ sin(πt) is uniformly bounded on the interval [δ, 1/2].

In order to treat I1 we recall the following basic fact: if h is an increasing function on [a, b]
and φ is continuous on [a, b] then there exists a point c ∈ (a, b) such that

� b

a

h(x)φ(x)dx = h(b−)

� b

c

φ(x)dx+ h(a+)

� c

a

φ(x)dx. (8.7)

To see that such c ∈ (a, b) exists define a function

η(y) = h(b−)

� b

y

φ(x)dx+ h(a+)

� y

a

φ(x)dx,

then η is continuous and

η(a) = h(b−)

� b

a

φ(x)dx ≥
� b

a

h(x)φ(x)dx,

while

η(b) = h(a+)

� b

a

φ(x)dx ≤
� b

a

h(x)φ(x)dx,

thus there exists c ∈ [a, b] as in (8.7). Therefore, as f(0+) = 0, we have, with some c ∈ (0, δ):

II1 =

� δ

0

f(t)DN(t)dt = f(δ−)

� δ

c

DN(t)dt,

and ∣∣∣∣� δ

c

DN(t)dt

∣∣∣∣ ≤ ∣∣∣∣� δ

c

sin(π(2N + 1)t)

[
1

sin πt
− 1

πt

]
dt

∣∣∣∣+

∣∣∣∣� δ

c

sin(π(2N + 1)t)

πt
dt

∣∣∣∣
≤
� 1

0

∣∣∣∣ 1

sin πt
− 1

πt

∣∣∣∣ dt+ sup
M>0

∣∣∣∣� M

0

sin(πt)

πt
dt

∣∣∣∣ = C < +∞,
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with the constant C > 0 independent of δ. It follows that |II1| ≤ Cε for all N ∈ N. This
shows that for a monotonic function f :

� 1/2

0

f(t)DN(t)dt→ f(0+), as N → +∞.

A change of variables t→ (−t) shows that then for a monotonic function f we also have:

� 1/2

0

f(−t)DN(t)dt→ f(0−),

and (8.6) follows. 2

The localization principle

The Fourier coefficients are defined non-locally, nevertheless it turns out that if two functions
coincide in an interval (x−δ, x+δ) then the sums of the corresponding Fourier series coincide
at the point x. More precisely, we have the following.

Theorem 8.4 (Localization theorem) Let f ∈ L1(S1) and assume that f ≡ 0 on an interval
(x− δ, x+ δ). Then

lim
N→∞

SN(x) = 0.

Proof. Under the assumptions of Theorem 8.4 we have

SNf(x) =

�
δ≤|t|≤1

f(x− t)DN(t)dt =

�
gx(t) sin((2N + 1)πt)dt,

where the function

gx(t) =
f(x− t)
sin(πt)

χδ≤|t|≤1(t)

is in L1(S1) as a function of t for each x fixed, because of the cut-off around t = 0. It follows
from the Riemann-Lebesgue lemma that SNf(x)→ 0 as N → +∞. 2

The du Bois-Raymond example

In 1873, surprisingly, du Bois-Raymond proved that the Fourier series of a continuous function
may diverge at a point. In order to prove his theorem we need first a result from functional
analysis.

Theorem 8.5 (Banach-Steinhaus theorem) Let X be a Banach space, Y a normed vector
space and let {Tα} be a family of bounded linear operators X → Y . Then either supα ‖Tα‖ <
+∞, or there exists x ∈ X so that supα ‖Tαx‖Y = +∞.

Proof. Let φ(x) = supα ‖Tαx‖Y and let Vn = {x ∈ X : φ(x) > n}. Each function
φα(x) = ‖Tα(x)‖Y is continuous on X, thus the set Vn is a union of open sets, hence Vn itself
is open. Let us assume that VN is not dense in X for some N . Then there exists x0 ∈ X and
r > 0 such that ‖x‖ < r implies that x0+x /∈ VN . Therefore, φ(x0+x) ≤ N for all such x, thus
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‖Tα(x0 +x)‖Y ≤ N for all x ∈ B(0, r) and all α. As a consequence, ‖Tα‖ ≤ (‖Tαx0‖Y +N)/r
for all α.

On the other hand, if all sets VN are dense, then Baire Category Theorem implies that the
intersection V̄ =

⋂∞
n=1 Vn is not empty. In that case taking x0 ∈ V̄ we observe that for any

n there exists αn with ‖Tαnx0‖Y ≥ n = (n/‖x0‖X)‖x0‖X , thus ‖Tαn‖ ≥ n/‖x0‖X and thus
supα ‖Tα‖ = +∞. 2

Theorem 8.6 There exists a continuous function f ∈ C(S1) so that its Fourier series di-
verges at x = 0.

Proof. Let X = C(S1) and Y = C, and define TN : X → Y by

TNf = SNf(0) =

� 1/2

−1/2

f(t)DN(t)dt.

Then

‖TN‖ ≤ LN =

� 1/2

−1/2

|DN(t)|dt,

and, moreover, as DN changes sign only finitely many times, we may construct a sequence
of continuous functions fNj such that fNj → |DN | pointwise as j → +∞, |fNj | ≤ 1 and
|TNfNj | ≥ LN − 1/j. It follows that ‖TN‖ = LN . Recall (see (8.3)) that

lim
N→+∞

LN = +∞. (8.8)

With (8.8) in hand we may use the Banach-Steinhaus theorem to conclude that there exists
f ∈ C(S1) such that |SNf(0)| → +∞ as N → +∞. 2

Kolmogorov showed in 1926 that an L1-function may have a Fourier series that diverges at
every point. Then Carelson in 1965 proved that the Fourier series of an L2-function converges
almost everywhere and then Hunt improved this result to an arbitrary Lp for p > 1.

8.2 Approximation by trigonometric polynomials

The Cesaro sums

In order to ”improve’ the convergence of the Fourier series consider the corresponding Cesaro
sums

σNf(x) =
1

N + 1

N∑
k=0

Skf(x) =

� 1

0

f(t)FN(x− t)dt,

where FN is the Fejér kernel

FN(t) =
1

N + 1

N∑
k=0

Dk(t) =
1

(N + 1) sin2(πt)

N∑
k=0

sin(π(2k + 1)t) sin(πt)

=
1

2(N + 1) sin2(πt)

N∑
k=0

[cos(2πkt)− cos(2π(k + 1)t]

=
1

2(N + 1) sin2(πt)
[1− cos(2π(N + 1)t] =

1

N + 1

sin2(π(N + 1)t)

sin2(πt)
.
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The definition and explicit form of FN show that, unlike the Dini kernel, FN is non-negative
and has L1-norm � 1

0

|FN(t)|dt = 1. (8.9)

Moreover, its mass outside of any finite interval around zero vanishes as N → +∞:

lim
N→∞

�
δ<|t|<1/2

FN(t)dt = 0 for any δ > 0. (8.10)

This improvement is reflected in the following approxtmation theorem.

Theorem 8.7 Let f ∈ Lp(S1), 1 ≤ p <∞, then

lim
N→∞

‖σNf − f‖p = 0. (8.11)

Moreover, if f ∈ C(S1), then
lim
N→∞

‖σNf − f‖C(S1) = 0. (8.12)

Proof. We use the Minkowski inequality, with the notation ft(x) = f(x− t):

σNf(x)− f(x) =

� 1/2

−1/2

[f(x− t)− f(x)]FN(t)dt,

thus

‖σNf − f‖p ≤
� 1/2

−1/2

‖ft − f‖pFN(t)dt =

�

|t|<δ

‖ft − f‖pFN(t)dt+

�

δ≤|t|≤1/2

‖ft − f‖pFN(t)dt

= IδN + IIδN . (8.13)

Recall that, for f ∈ Lp(S1), with 1 ≤ p < +∞ we have

‖ft − f |p → 0 as t→ 0.

Hence, in order to estimate the first term above, given ε > 0, we may choose δ so small that

‖ft − f‖p < ε for all t ∈ (−δ, δ), (8.14)

then

|IδN | < ε

� 1/2

−1/2

FN(t)dt = ε.

Given such δ we choose Nε so large that for all N > Nε we have�
δ≤|t|≤1/2

FN(t)dt < ε.

This is possible because of (8.10). The second term in (8.13) may then be estimated as

|IIδN | ≤ 2‖f‖p
�
δ≤|t|≤1/2

FN(t)dt < 2ε‖f‖p.

Now, (8.11) follows. in order to prove (8.12) all we need to do is replace (8.14) with the
corresponding estimate in C(S1) and repeat the above argument. 2

Theorem 8.7 has a couple of useful corollaries. First, it shows that the trigonometric
polynomials are dense in Lp(S1):
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Corollary 8.8 Trigonometric polynomials are dense in Lp(S1) for any p ∈ [1,+∞).

Proof. This follows immediately from (8.11) since each σNf is a trigonometric polynomial,
for all N and f . 2

Corollary 8.9 (The Parceval identity) The map f → f̂ is an isometry between L2(S1) and
l2.

Proof. The trigonometric exponentials {e2πikx}, k ∈ Z, form an orthonormal set in L2(S1),
which is complete by Corollary 8.8, hence they form a basis of L2(S1) and the Fourier coeffi-
cients of f ∈ L2(S1) are the coefficients in the expansion

f(x) =
∑
k∈Z

f̂(k)e2πikx,

so that ∑
k∈Z

|f̂(k)|2 =

� 1

0

|f(x)|2dx, (8.15)

by the standard Hilbrt space theory used here for L2(S1). 2

Corollary 8.10 Let f ∈ L2(S1), then ‖SNf − f‖2 → 0 as N → +∞.

Proof. This is a consequence of Corollary 8.9:

‖SNf − f‖2
2 = ‖SNf‖2

2 + ‖f‖2 − 2〈SNf, f〉 = ‖SNf‖2
2 + ‖f‖2 − 2〈SNf, SNf〉

= ‖f‖2 − ‖SNf‖2
2 → 0,

as N → +∞ by (8.15). 2

Another useful immediate consequence if Theorem 8.7 is

Corollary 8.11 Let f ∈ L1(S1) be such that f̂(k) = 0 for all k ∈ Z. Then f = 0.

Ergodicity of irrational rotations

Corollary 8.11 itself has an interesting implication. Let Tα : S1 → S1 be a shift by a number
α: Tα(x) = (x + α)mod 1. The map Tα is invertible and preserves the Lebesgue measure:
m(R) = m(Tα(R)) for any Lebesgue measurable set R ⊆ S1. It turns out that for α /∈ Q
this map is ergodic, that is, if R ⊆ S1 is an invariant set of Tα, that is, if Tα(R) = R, and
R is measurable, then either m(R) = 1 or m(R) = 0. Indeed, let α be irrational and R be a
Tα-invariant set. Then the characteristic function χR of the set E is also invariant, that is,

χαR(x) := χR(x+ α) = χR(x). (8.16)

On the other hand, the Fourier transform of χαR is

χ̂αR(k) =

� 1

0

χR(x+ α)e−2πik·xdx =

� 1

0

χR(x)e−2πik·(x−α)dx = χ̂R(k)e2πikα.

Comparing this to (8.16) we see that

χ̂R(k)e2πikα = χ̂R(k)

for all k ∈ Z, which, as α is irrational, implies that χ̂R(k) = 0 for all k 6= 0, hence χR is
equal almost everywhere to a constant. This constant can be equal only to zero or one. In
the former case R has measure zero, in the latter its measure is equal to one.
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9 The Fourier transform in Rn

Given an L1(Rn)-function f its Fourier transform is

f̂(ξ) =

�
f(x)e−2πix·ξdx.

Then, obviously, f̂ ∈ L∞(Rn), with ‖f̂‖L∞ ≤ ‖f‖L1 . Moreover, the function f̂(ξ) is continu-
ous:

f̂(ξ)− f̂(ξ′) =

�
f(x)

(
e−2πix·ξ − e−2πix·ξ′

)
dx→ 0

as ξ′ → ξ, by the Lebesgue dominated convergence theorem since f ∈ L1(Rn). The Riemann-
Lebesegue lemma is easily generalized to the Fourier transform on Rn, and

lim
ξ→∞

f̂(ξ) = 0.

9.1 The Schwartz class S(Rn)

For a smooth compactly supported function f ∈ C∞c (Rn) we have the following remarkable
algebraic relations between taking derivatives and multiplying by polynomials:

∂̂f

∂xi
(ξ) = 2πiξf̂(ξ), (9.1)

and

(−2πi)(x̂jf)(ξ) =
∂f̂

∂ξj
(ξ). (9.2)

This motivates the following definition.

Definition 9.1 The Schwartz class S(Rn) consists of functions f such that for any pair of
multi-indices α and β

pαβ(f) := sup
x
|xαDβf(x)| < +∞.

As C∞c (Rn) lies inside the Schwartz class, the Schwartz functions are dense in L1(Rn).
Convergence in S(Rn) is defined as follows: a sequence φk → 0 in S(Rn) if

lim
k→∞

pαβ(φk) = 0 (9.3)

for all multi-indices α, β. Note that if φk → 0 in S(Rn), then all functions

ψαβk (x) = xαDβφk(x)

converge to zero as k → +∞ not only in L∞(Rn) (which is directly implied by (9.3)) but also
in any Lp(Rn), 1 ≤ p ≤ +∞ because

�
|ψαβk |

pdx ≤
�
|x|≤1

|ψαβn |pdx+ 2

�
|x|≥1

|x|n+1|ψαβn |p

1 + |x|n+1
dx ≤ Cn|pαβ|p + 2C ′n|pα′β|p,

with α′ = α+ (n+ 1)/p and the constants Cn and C ′n that depend only on the dimension n.
The main reason to introduce the Schwartz class is the following theorem.

70



Theorem 9.2 The Fourier transform is a continuous map S(Rn)→ S(Rn) such that
�

Rn
f(x)ĝ(x)dx =

�
Rn
f̂(x)g(x)dx, (9.4)

and

f(x) =

�
f̂(ξ)e2πix·ξdξ (9.5)

for all f, g ∈ S(Rn).

Proof. We begin with a lemma that is one of the cornerstones of the probability theory.

Lemma 9.3 Let f(x) = e−π|x|
2
, then f̂(x) = f(x).

Proof. First, as
f(x) = e−π|x1|2e−π|x2|2 . . . e−π|xn|

2

,

so that both f and f̂ factor into a product of functions of one variable, it suffices to consider
the case n = 1. The proof is a glimpse of how useful the Fourier transform is for differential
equations and vice versa: the function f(x) satisfies an ordinary differential equation

u′ + 2xu = 0, (9.6)

with the boundary condition u(0) = 1. However, relations (9.1) and (9.2) together with (9.6)
imply that f̂ satisfies the same differential equation (9.6), with the same boundary condition
f̂(0) = 0. It follows that f(x) = f̂(x) for all x ∈ R. 2

We continue with the proof of Theorem 9.2. Relations (9.1) and (9.2) imply that if fk → 0
in S(Rn) then for any pair of multi-indices α, β:

sup
x∈Rn
|ξαDβ f̂k(ξ)| ≤ C‖Dα(xβfk)‖L1 → 0,

thus f̂k → 0 in S(Rn) as well, hence the Fourier transform is a continuous map S → S.
The Parceval identity can be verified directly using Fubini’s theorem:�

Rn
f(x)ĝ(x)dx =

�
R2n

f(x)g(ξ)e−2πiξ·xdxdξ =

�
Rn
f̂(ξ)g(ξ)dξ.

Finally, we prove the inversion formula using a rescaling argument. Let f, g ∈ S(Rn) then
for any λ > 0 we have
�

Rn
f(x)ĝ(λx)dx =

�
R2n

f(x)g(ξ)e−2πiλξ·xdx =

�
f̂(λξ)g(ξ)dξ =

1

λn

�
Rn
f̂(ξ)g

(
ξ

λ

)
dξ.

Multiplying by λn and changing variables on the left side we obtain
�

Rn
f
(x
λ

)
ĝ(x)dx =

�
Rn
f̂(ξ)g

(
ξ

λ

)
dξ.

Letting now λ→∞ using the Lebesgue dominated convergence theorem gives

f(0)

�
Rn
ĝ(x)dx = g(0)

�
Rn
f̂(ξ)dξ, (9.7)
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for all functions f and g in S(Rn). Taking g(x) = e−π|x|
2

in (9.7) and using Lemma 9.3 leads
to

f(0) =

�
Rn
f(ξ)dξ. (9.8)

The inversion formula (9.5) now follows if we apply (9.8) to a shifted function fy(x) = f(x+y),
because

f̂y(ξ) =

�
Rn
f(x+ y)e−2πiξ·xdx = e2πiξ·yf̂(ξ),

so that

f(y) = fy(0) =

�
Rn
f̂y(ξ)dξ =

�
Rn
e2πiξ·yf̂(ξ)dξ,

which is (9.5). 2

The Schwartz distributions

Definition 9.4 The space S ′(Rn) of Schwartz distirbutions is the space of linear functionals
T on S(Rn) such that T (φk)→ 0 for all sequences φk → 0 in S(Rn).

Theorem 9.2 allows us to extend the Fourier transform to distributions in S ′(Rn) by setting
T̂ (f) = T (f̂) for T ∈ S ′(Rn) and f ∈ S(Rn). The fact that T̂ (fk)→ 0 for all sequences fk → 0
in S(Rn) follows from the continuity of the Fourier transform as a map S(Rn)→ S(Rn), hence
T̂ is a Schwartz distribution for all T ∈ S ′(Rn). For example, if δ0 is the Schwartz distribution
such that δ0(f) = f(0), f ∈ S(Rn), then

δ̂0(f) = f̂(0) =

�
Rn
f(x)dx,

so that δ̂(ξ) ≡ 1 for all ξ ∈ Rn.
Similarly, since differentiation is a continuous map S(Rn) → S(Rn), we may define the

distributional derivative as
∂T

∂xj
(f) = −T

(
∂f

∂xj

)
,

for all T ∈ S ′(Rn) and f ∈ S(Rn) – the minus sign here comes from the integration by parts
formula, for if T happens to have the form

Tg(f) =

�
Rn
f(x)g(x)dx,

with a given g ∈ S(Rn), then

T

(
∂f

∂xj

)
=

�
Rn

∂f

∂xj
(x)g(x)dx = −

�
Rn
f(x)

∂g

∂xj
(x)dx.

For instance, in one dimension δ0(x) = 1/2(sgn(x))′ in the distributional sense because for
any function f ∈ S(R) we have

〈(sgn)′, f〉 = −〈sgn, f ′〉 = −
∞�

−∞

sgn(x)f ′(x)dx =

0�

−∞

f ′(x)dx−
∞�

0

f ′(x)dx = 2f(0) = 2〈δ0, f〉.
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9.2 The law of large numbers and the central limit theorem

The law of large numbers and the central limit theorem deal with the question of how a
sum of the large number of identically distributed random variables behaves. We will not
discuss them here in great detail but simply explain how the Fourier transform is useful in
this problem. Let Xj be a sequence of real-valued independent, identically distributed random
variables with mean zero and finite variance:

E(Xn) = 0, E(X2
n) = D < +∞. (9.9)

Let us define

Zn =
X1 +X2 + . . .+Xn

n
. (9.10)

Recall that if X and Y are two random variables with probability densities pX and pY , that
is,

E(f(X)) =

�
f(x)pX(x)dx, E(f(X)) =

�
f(x)pY (x)dx,

then the sum Z = X + Y has the probability density

pZ(x) = (pX ? pY )(x) =

�
R
pX(x− y)pY (y)dy.

On the other hand, if X has a probability density pX , the variable Xλ = X/λ satisfies

P (Xλ ∈ A) = P (X ∈ λA),

so that �
A

pXλ(x)dx =

�
λA

p(x)dx,

which means that pXλ(x) = λp(λx).
Going back to the averaged sum Zn in (9.10) it follows that its probability density is

pn(x) = n [pX ? pX ? . . . pX ] (nx),

with the convolution above taken n times. The Fourier transform of a convolution has a
simple form

(f̂ ? g)(ξ) =

�
f(y)g(x− y)e−2πiξ·xdxdy =

�
f(y)g(z)e−2πiξ·(z+y)dzdy = f̂(ξ)ĝ(ξ). (9.11)

Hence, the Fourier transform of pn is

p̂n(ξ) =

[
p̂X

(
ξ

n

)]n
.

As �
R
pX(x)dx = 1,
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we have p̂X(0) = 1. Since X has mean zero,

p̂′X(0) = −2πi

�
R
xpX(x)dx = 0, (9.12)

and the second derivative at zero is

p̂′′X(0) = (−2πi)2

�
R
x2pX(x)dx = −4π2D. (9.13)

We can now compute, with the help of (9.12) and (9.13), for any ξ ∈ R:

lim
n→∞

p̂n(ξ) = lim
n→∞

(
1− 2π2D|ξ|2

n2

)n
= 1.

As a consequence, for any test function f ∈ S(R) we have

E(f(Zn)) =

�
f(x)pn(x)dx =

�
R
f̂(ξ)p̂n(ξ)dξ →

�
R
f̂(ξ)dξ = f(0).

Thus, the random variable Zn converges in law to a non-random value Z = 0. This is the
weak law of large numbers.

In order to get a non-trivial limit for a sum of random variables we consider ”the central
limit scaling”:

Rn =
X1 +X2 + . . .+Xn√

n
.

As we did for Zn, we may compute the probability density qn for Rn:

qn(x) =
√
n [pX ? pX ? . . . pX ] (

√
nx),

and its Fourier transform is

q̂n(ξ) =

[
p̂X

(
ξ√
n

)]n
.

We may also compute, point-wise in ξ ∈ Rn the limit

lim
n→∞

q̂n(ξ) = lim
n→∞

(
1− 2π2D|ξ|2

n

)n
= e−2π2D|ξ|2 ,

which is now non-trivial. This means that, say, for any function f(x) ∈ Cc(R) we have

E(f(Rn))→
�
f̂(ξ)e−2π2D|ξ|2dξ,

thus Rn converges in law to a random variable with the Gaussian probability density

q(x) =

�
e2πiξ·xe−2π2D|ξ|2dξ =

�
e2πiξ·x/

√
2πDe−π|ξ|

2 dξ√
2πD

=
e−|ξ|

2/(2D)

√
2πD

.

This is the central limit theorem.
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9.3 Interpolation in Lp-spaces

A simple example of an interpolation inequality is a bound that tells us that a function f
which lies in two spaces Lp0(Rn, dµ) and Lp1(Rn, dµ) has to lie also in all intermediate spaces
Lp(Rn, dµ) with p0 ≤ p ≤ p1. Indeed, if p = αp0 + (1 − α)p1, 0 < α < 1, then, by Hölder’s
inequality, �

|f |αp0+(1−α)p1dµ ≤
(�
|f |p1dµ

)α(�
|f |p0dµ

)1−α

.

The Riesz-Thorin interpolation theorem

The Riesz-Thorin interpolation theorem deals with the following question, somewhat moti-
vated by above. Let (M,µ) and (N, ν) be two measure spaces and consider an operator A
which maps Lp0(M) to a space Lq0(N), and also Lp1(M) to a space Lq1(N). More precisely,
there exist operators A0 : Lp0(M)→ Lq0(N) and A1 : Lp1(M)→ Lq1(N) so that A = A0 = A1

on Lp0(M) ∩ Lp1(N). The question is whether A can be defined on Lp(M) with p0 < p < p1,
and what is its target space. Let us define pt ∈ (p0, p1) and qt ∈ (q0, q1) by

1

pt
=

t

p1

+
1− t
p0

,
1

qt
=

t

q1

+
1− t
q0

, 0 ≤ t ≤ 1, (9.14)

as well as
k0 = ‖A‖Lp0 (M)→Lq0 (N), k1 = ‖A‖Lp1 (M)→Lq1 (N).

Theorem 9.5 (The Riesz-Thorin interpolation theorem) For any t ∈ [0, 1] there exists a
bounded linear operator At : Lpt(M) → Lqt(N) that coincides with A on Lp0(M) ∩ Lp1(M)
and whose operator norm satisfies

‖At‖Lpt (M)→Lqt (N) ≤ k1−t
0 kt1. (9.15)

Before proving the Riesz-Thorin interpolation theorem we mention some of its implications.
We already know that the Fourier transform maps L1(Rn) to L∞(Rn) and L2(Rn) to itself.
This allows us to extend the Fourier transform to all intermediate spaces Lp(Rn) with 1 ≤
p ≤ 2.

Corollary 9.6 (The Hausdorff-Young inequality) If f ∈ Lp(Rn) then its Fourier transform

f̂ ∈ Lp′(Rn) with
1

p
+

1

p′
= 1 and ‖f̂‖Lp′ ≤ ‖f‖Lp.

Proof. We take p0 = 1, p1 = 2, q0 =∞, q1 = 2. Then for any t ∈ [0, 1] the corresponding pt
and qt are given by

1

pt
=

1− t
1

+
t

2
= 1− t

2
,

1

qt
=
t

2
,

which means that 1/pt+1/qt = 1, as claimed. Furthermore, as ‖f̂‖L2 = ‖f‖L2 by the Parceval
identity and ‖f̂‖L∞ ≤ ‖f‖L1 , it follows that ‖f̂‖Lpt→Lqt ≤ 1. 2

The next corollary allows to estimate convolutions.
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Corollary 9.7 Let f ∈ Lp(Rn) and g ∈ Lq(Rn), then f ? g ∈ Lr(Rn), and

‖f ? g‖Lr ≤ ‖f‖Lp‖g‖Lq , (9.16)

with
1

r
+ 1 =

1

p
+

1

q
. (9.17)

Proof. We do this in two steps. First, fix g ∈ L1(Rn). Obviously, we have

‖f ? g‖L1 ≤
�
|f(x− y)||g(y)|dydx = ‖f‖L1‖g‖L1 , (9.18)

and
‖f ? g‖L∞ ≤ ‖f‖L∞‖g‖L1 . (9.19)

The Riesz-Thorin theorem applied to the map f → f ? g implies then that

‖f ? g‖Lp ≤ ‖g‖L1‖f‖Lp , (9.20)

which is a special case of (9.16) with q = 1 and r = p. On the other hand, Hölder’s inequality
implies that

‖f ? g‖L∞ ≤ ‖f‖Lp‖g‖Lp′ ,
1

p
+

1

p′
= 1. (9.21)

Let us take p0 = 1, q0 = p, p1 = p′ and q1 = ∞ in the Riesz-Thorin interpolation theorem
applied to the mapping g → f ? g, with f fixed. Then (9.20) and (9.21) imply that, for all
t ∈ [0, 1],

‖f ? g‖Lr ≤ ‖f‖Lp‖g‖Lq ,

with
1

q
=

1

pt
=

1− t
1

+
t

p′
,

and
1

r
=

1

qt
=

1− t
p

+
t

∞
.

It follows that t = 1− p/r, thus

1

q
= 1− (1− p

r
) +

1

p′
(1− p

r
) =

p

r
+ (1− 1

p
)(1− p

r
) = 1− 1

p
+

1

r
,

which is (9.17). 2

The next example arises in microlocal analysis. Given a function a(x, ξ) ∈ S(R2n) we
define a semiclassical operator

A(x, εD)f =

�
e2πiξ·xa(x, εξ)f̂(ξ)dξ.

Corollary 9.8 The family of operators A(x, εD), 0 < ε ≤ 1, is uniformly bounded from any
Lp(Rn), 1 ≤ p ≤ +∞, to itself.
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Proof. Let us write

A(x, εD)f =

�
e2πiξ·xa(x, εξ)f̂(ξ)dξ =

�
e2πiξ·x+2πiεξ·yã(x, y)f̂(ξ)dξdy =

�
ã(x, y)f(x+εy)dy,

where ã(x, y) is the Fourier transform of the function a(x, ξ) in the variable ξ. It follows that

‖A(x, εD)f‖L∞ ≤ ‖f‖L∞ sup
x∈Rn

�
|ã(x, y)|dy = C1(a)‖f‖L∞ ,

and

‖A(x, εD)‖L1 ≤
�
|ã(x, y)||f(x+ εy)|dydx ≤

�
( sup
z∈Rn
|ã(z, y)|)|f(x+ εy)|dydx

= ‖f‖L1

�
( sup
z∈Rn
|ã(z, y)|)dy = C2(a)‖f‖L1 .

The Riesz-Thorin interpolation theorem implies that for any p ∈ [1,+∞] there exists Cp(a)
which does not depend on ε ∈ (0, 1] so that ‖A(x, εD)‖Lp→Lp ≤ Cp. 2

The three lines theorem

A key ingredient in the proof of the Riesz representation theorem is the following basic result
from complex analysis.

Theorem 9.9 Let F (z) be a bounded analytic function in the strip S = {z : 0 ≤ Rez ≤ 1},
such that |F (iy)| ≤ m0, |F (1 + iy)| ≤ m1, with m0,m1 > 0 for all y ∈ R. Then

|F (x+ iy)| ≤ m1−x
0 mx

1 for all 0 ≤ x ≤ 1, y ∈ R. (9.22)

Proof. It is convenient to set

F1(z) =
F (z)

m1−z
0 mz

1

,

so that |F1(iy)| ≤ 1, |F1(1 + iy)| ≤ 1 and F1 is uniformly bounded in S. It suffices to show
that |F (x+ iy)| ≤ 1 for all (x, y) ∈ S under these assumptions. If the strip S were a bounded
domain, this would follow immediately from the maximum modulus principle.

Assume first that F1(x+iy)→ 0 as |y| → +∞, uniformly in x ∈ [0, 1]. Then |F1(x±iM)| ≤
1/2 for all y with |y| ≥M , and M > 0 large enough. The maximum modulus principle implies
that |F1(x + iy)| ≤ 1 for |y| ≤ M , and, since, |F1(x + iy)| ≤ 1/2 for all y with |y| ≥ M , it
follows that |F1(x+ iy)| ≤ 1 for all (x, y) ∈ S.

In general, set
Gn(z) = F1(z)e(z2−1)/n,

then
|Gn(iy)| ≤ |F1(iy)|e(−y2−1)/n ≤ 1,

and
|Gn(1 + iy)| ≤ F1(1 + iy)|e−y2 ≤ 1,
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but in addition, Gn goes to zero as |y| → +∞, uniformly in x ∈ [0, 1]:

|Gn(x+ iy)| ≤ |F1(z)|e(x2−y2−1)/n ≤ C0e
−y2/n,

with a constant C0 such that |F1(z)| ≤ C0 for all z ∈ S. It follows from the previous part of
the proof that |Gn(z)| ≤ 1, hence

|F1(z)| ≤ e(1+y2)/n,

for all z ∈ S and all n ∈ N. Letting n→ +∞ we deduce that |F1(z)| ≤ 1 for all z ∈ S. 2

The proof of the Riesz-Thorin interpolation theorem

First, let us define the operator A on Lpt(M) with pt as in (9.14). Given f ∈ Lpt(M) we
decompose it as

f(x) = f1(x) + f2(x), f1(x) = f(x)χ|f |≤1(x), f2(x) = f(x)χ|f |≥1(x).

Then, as pt ≤ p1:

�
M

|f1|p1dµ =

�
M

|f |p1χ|f |≤1dµ ≤
�
M

|f |ptχ|f |≤1dµ ≤
�
M

|f |ptdµ = ‖f‖ptLpt ,

and, as p0 ≤ pt:

�
M

|f2|p0dµ =

�
M

|f |ptχ|f |≥1dµ ≤
�
M

|f |ptχ|f |≥1dµ ≤
�
M

|f |ptdµ = ‖f‖ptLpt ,

so that f1 ∈ Lp1(M) and f2 ∈ Lp0(M). As A is defined both on Lp0(M) and Lp1(M), we can
set

Af = Af1 + Af2.

We need to verify that A maps Lpt(M) to Lqt(N) continuously. Note that the norm of a
bounded linear functional Lf : Lp

′
(M)→ R,

Lf (g) =

�
M

fgdµ, f ∈ Lp(M),

is ‖Lf‖ = ‖f‖Lp , for all p ∈ [1,+∞], with

1

p
+

1

p′
= 1.

To see that, for f(x) = |f(x)|eiα(x) simply take g(x) = |f(x)|p/p′ exp{−iα(x)} for 1 < p < +∞,
g(x) = exp{−iα(x)} for p = 1, and g(x) = χAε(x) exp{−iα(x)}, where Aε is a set of a finite
measure such that |f(x)| > (1− ε)‖f |L∞ on Aε for p = +∞. We conclude that

‖f‖Lp = sup
‖g‖

Lp
′=1

�
M

fgdµ,
1

p
+

1

p′
= 1.
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For an operator mapping Lp to Lq we have the corresponding representation for its norm:

‖A‖Lp(M)→Lq(N) = sup
‖f‖Lp(M)=1

‖Af‖Lq(N) = sup
‖f‖Lp(M)=1

‖g‖
Lq
′
(N)

=1

�
N

(Af)gdν. (9.23)

We will base our estimate of the norm of A : Lpt(M) → Lqt(N) on (9.23) . Moreover,
as simple functions are dense in Lpt(M) and Lq

′
t(N), it suffices to use in (9.23) only simple

functions f and g with ‖f‖Lpt (M) = ‖g‖
Lq
′
t (N)

= 1, of the form

f(x) =
n∑
j=1

aje
iαj(x)χAj(x), g(y) =

m∑
j=1

bje
iβj(y)χBj(y), x ∈M, y ∈ N, (9.24)

with aj, bj > 0, µ-measurable sets Aj and ν-measurable sets Bj. Since 0 < t < 1, neither pt
nor q′t can be equal to +∞, hence µ(Aj), ν(Bj) < +∞.

Let us now extend the definition of pt and qt to all complex numbers ζ with 0 ≤ Re ζ ≤ 1:

1

p(ζ)
=

1− ζ
p0

+
ζ

p1

,
1

q(ζ)
=

1− ζ
q0

+
ζ

q1

,
1

q′(ζ)
=

1− ζ
q′0

+
ζ

q′1
.

Fix t ∈ (0, 1) and a pair of (complex-valued) functions f ∈ Lpt(M) and g ∈ Lq′t(M) of the
form (9.24). Consider a family of functions

u(x, ζ) =
n∑
j=1

a
pt/p(ζ)
j eiαj(x)χAj(x), v(y, ζ) =

m∑
j=1

b
q′t/q

′(ζ)
j eiβj(y)χBj(y),

with x ∈M , y ∈ N and 0 ≤ Re ζ ≤ 1. Note that, when ζ = t,

u(x, t) = f(x) and v(y, t) = g(y). (9.25)

As both 1/p(ζ) and 1/q′(ζ) are linear in ζ, the functions u(x, ζ) and v(x, ζ) are analytic in ζ
in the strip S = {ζ : 0 ≤ Re ζ ≤ 1}. Since u(x, ζ) and v(y, ζ) are simple functions of x and
y, respectively, vanishing outside of a set of finite measure for each ζ ∈ S fixed, they lie in
Lp0(M) ∩ Lp1(M), and Lq

′
0(M) ∩ Lq′1(M), respectively. Therefore, we can define

F (ζ) =

�
N

(Au)(y, ζ)v(y, ζ)dν =
n∑
j=1

m∑
k=1

a
pt/p(ζ)
j b

q′t/q
′(ζ)

k

�
N

(AΨj)(y)eiβk(y)χBk(y)dν,

with Ψj(x) = eiαj(x)χAj(x). According to (9.23) and (9.25) , in order to prove that

‖At‖Lpt (M)→Lqt (N) ≤ k1−t
0 kt1, (9.26)

it suffices to show that
|F (t)| ≤ k1−t

0 kt1. (9.27)

The function F (ζ) is analytic and bounded in the strip S, as, for instance, for ζ = η + iξ,
0 ≤ η ≤ 1: ∣∣∣apt/p(ζ)j

∣∣∣ =
∣∣∣aptζ/p1+pt(1−ζ)/p0
j

∣∣∣ =
∣∣∣aptη/p1+pt(1−η)/p0
j

∣∣∣ ≤ Cj < +∞.
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On the boundary of the strip S we have the following bounds: along the line η = 0, for z = iξ,

‖u(x, iξ)‖Lp0 (M) =

(�
M

n∑
j=1

∣∣∣a[pt(iξ)/p1+pt(1−iξ)/p0]p0
j

∣∣∣χAj(x)dµ

)1/p0

=

(�
M

n∑
j=1

|aj|pt χAj(x)dµ

)1/p0

= ‖f‖pt/p0Lpt (M) = 1,

and

‖v(y, iξ)‖
Lq
′
0 (N)

=

(�
N

m∑
j=1

∣∣∣b[q′t(iξ)/q
′
1+q′t(1−iξ)/q′0]q′0

j

∣∣∣χBj(y)dν

)1/q′0

=

(�
N

m∑
j=1

|bj|q
′
t χBj(y)dν

)1/p0

= ‖g‖q
′
t/q
′
0

Lq
′
t (N)

= 1.

It follows that

|F (iξ)| ≤ ‖(Au)(iξ)‖Lq0 (N)‖v(iξ)‖
Lq
′
0 (N)
≤ ‖A‖Lp0 (M)→Lq0 (N)‖u(iξ)‖Lp0 (N)‖v(iξ)‖

Lq
′
0 (N)
≤ k0.

Similarly, along the line ζ = 1+iξ we have ‖u(x, 1+iξ)‖Lp1 (M) ≤ 1 and ‖v(x, 1+iξ)‖
Lq
′
1 (N)
≤ 1,

which implies that |F (1 + iξ)| ≤ k1. The three lines theorem implies now that |F (η + iξ)| ≤
k1−η

0 kη1 , hence (9.27) holds. 2

9.4 The Hilbert transform

The Poisson kernel

Given a Schwartz class function f(x) ∈ S(Rn) define a function

u(x, t) =

�
Rn
e−2πt|ξ|f̂(ξ)e2πixξdξ, t ≥ 0, x ∈ Rn.

The function u(x, t) is harmonic:

∆x,tu = 0 in Rn+1
+ = Rn × (0,+∞),

and satisfies the boundary condition on the hyper-plane t = 0:

u(x, 0) = f(x), x ∈ Rn.

We can write u(x, t) as a convolution

u(x, t) = Pt ? f =

�
Pt(x− y)f(y),

with
P̂t(ξ) = e−2πt|ξ|,

and

Pt(x) = Cn
t

(t2 + |x|2)(n+1)/2
.

Here the constant n depends only on the spatial dimension.
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The conjugate Poisson kernel

In the same spirit, for f ∈ S(R) define u(x, t) = Pt ? f , set z = x+ it and write

u(z) =

�
R
e−2πt|ξ|f̂(ξ)e2πixξdξ =

� ∞
0

f̂(ξ)e2πizξdξ +

� 0

−∞
f̂(ξ)e2πiz̄ξdξ.

Consider the function v(z) given by

iv(z) =

� ∞
0

f̂(ξ)e2πizξdξ −
� 0

−∞
f̂(ξ)e2πiz̄ξdξ.

As the function

u(z) + iv(z) =

� ∞
0

f̂(ξ)e2πizξdξ

is analytic in the upper half-plane {Imz > 0}, the function v is the harmonic conjugate of u.
It can be written as

v(z) =

�
R
(−isgn(ξ))e−2πt|ξ|f̂(ξ)e2πixξdξ = Qt ? f,

with
Q̂t(ξ) = −isgn(ξ)e−2πt|ξ|, (9.28)

and

Qt(x) =
1

π

x

t2 + x2
.

The Poisson kernel and its conjugate are related by

Pt(x) + iQt(x) =
i

π(x+ iy)
,

which is analytic in {Imz ≥ 0}. The main problem with the conjugate Poisson kernel is that
it does not decay fast enough at infinity to be in L1(R) nor is regular at x = 0 as t→ 0.

The principle value of 1/x

In order to consider the limit of Qt as t→ 0 let us define the principal value of 1/x which is
an element of S ′(R) defined by

P.V.
1

x
(φ) = lim

ε→0

�
|x|>ε

φ(x)

x
dx, φ ∈ S(R).

This is well-defined because

P.V.
1

x
(φ) =

�
|x|<1

φ(x)− φ(0)

x
dx+

�
|x|>1

φ(x)

x
dx,

thus ∣∣∣∣P.V.
1

x
(φ)

∣∣∣∣ ≤ C(‖φ′‖L∞ + ‖xφ‖L∞),

and therefore P.V.(1/x) is, indeed, a distribution in S ′(R). The conjugate Poisson kernel Qt

and the principal value of 1/x are related as follows.
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Proposition 9.10 Let Qt =
1

π

x

t2 + x2
, then for any function φ ∈ S(R)

1

π
P.V.

1

x
(φ) = lim

t→0

�
R
Qt(x)φ(x)dx.

Proof. Let

ψt(x) =
1

x
χt<|x|(x)

so that

P.V.
1

x
(φ) = lim

t→0

�
R
ψt(x)φ(x)dx.

Note, however, that�
(πQt(x)− ψt(x))φ(x)dx =

�
R

xφ(x)

x2 + t2
dx−

�
|x|>t

φ(x)

x
dx

=

�
|x|<t

xφ(x)

x2 + t2
dx+

�
|x|>t

[
x

x2 + t2
− 1

x

]
φ(x)dx (9.29)

=

�
|x|<1

xφ(tx)

x2 + 1
dx−

�
|x|>t

t2φ(x)

x(x2 + t2)
dx =

�
|x|<1

xφ(tx)

x2 + 1
dx−

�
|x|>1

φ(tx)

x(x2 + 1)
dx.

The dominated convergence theorem implies that both integrals on the utmost right side
above tend to zero as t→ 0. 2

It is important to note that the computation in (9.29) worked only because the kernel
1/x is odd – this produces the cancellation that saves the day. This would not happen, for
instance, for a kernel behaving as 1/|x| near x = 0.

The Hilbert transform

Motivated by the previous discussion, for a function f ∈ S(R), we define the Hilbert transform
as

Hf(x) = lim
t→0

Qt ? f(x) =
1

π
lim
ε→0

�
|y|>ε

f(x− y)

y
dy.

It follows from (9.28) that

Ĥf(ξ) = lim
ε→0

Q̂t(ξ)f̂(ξ) = −isgn(ξ)f̂(ξ). (9.30)

Therefore, the Hilbert transform may be extended to an isometry L2(R) → L2(R), with
‖Hf‖L2 = ‖f‖L2 , H(Hf) = −f and�

(Hf)(x)g(x)dx = −
�
f(x)(Hg)(x)dx. (9.31)

The following extension of the Hilbert transform to Lp-spaces for 1 < p < ∞ is due to
M. Riesz.

Theorem 9.11 Given 1 < p <∞ there exists Cp > 0 so that

‖Hf‖Lp ≤ Cp‖f‖Lp for all f ∈ Lp(Rn). (9.32)
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Proof. We first consider p ≥ 2. It suffices to establish (9.32) for f ∈ S(R). Consider a
smaller set

S0 = {f ∈ S : ∃ε > 0 such that f̂(ξ) = 0 for |ξ| < ε}.
Let us show that S0 is dense in Lp(R). Given any f ∈ S we’ll find a sequence gn ∈ S0 such
that ‖f − gn‖Lp → 0 as n→ +∞. For p = 2 this is trivial: take a smooth function χ(ξ) such
that 0 ≤ χ(ξ) ≤ 1, χ(ξ) = 0 for |ξ| ≤ 1, χ(ξ) = 1 for |ξ| > 2, and set

gn(x) =

�
e2πiξxf̂(ξ)χ (nξ) dξ,

so that

‖f − gn‖2
L2 ≤

� 2/n

−2/n

|f̂(ξ)|2dξ → 0 as n→ +∞. (9.33)

On the other hand, for p = +∞ we have

‖f − gn‖L∞ ≤
� 2/n

−2/n

|f̂(ξ)|dξ → 0 as n→ +∞. (9.34)

Interpolating between p = 2 and p = +∞ we conclude that

‖f − gn‖Lp → 0 as n→ +∞ (9.35)

for all p ≥ 2, hence S0 is dense in Lp(R) for 2 ≤ p < +∞
Given f ∈ S0, Ĥf(ξ) = −i(sgnξ)f̂(ξ) is a Schwartz class function (there is no discontinuity

at ξ = 0), thus Hf is also in S(R). We may then write

p(x) = (f + iHf)(x) =

�
R
(1 + sgn(ξ))f̂(ξ)e2πiξxdξ = 2

� ∞
0

f̂(ξ)e2πiξxdξ,

and consider its extension to the complex plane:

p(z) = 2

� ∞
0

f̂(ξ)e2πiξzdξ.

The function p(z) is holomorphic in the upper half-plane {Imz > 0} and is continuous up to
the boundary y = 0. Since f ∈ S0 there exists ε > 0 so that f̂(ξ) = 0 for |ξ| ≤ ε. Thus, p(z)
satisfies an exponential decay bound

|p(z)| ≤ 2e−2πεy‖f̂‖L1 , z = x+ iy. (9.36)

Integrating p4(z) along the contour CR which consists of the interval [−R,R] along the real
axis and the semicircle {x2 + y2 = R2, y > 0}, and passing to the limit R→ 0 with the help
of (9.36) leads to

lim
R→+∞

� R

−R
(f(x) + iHf(x))4dx = 0.

As both f and Hf are in S0, the integral above converges absolutely, hence�
R
(f(x) + iHf(x))4dx = 0.
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The real part above gives

�
R
(Hf(x))4dx =

�
R
[−f 4(x) + 2f 2(x)(Hf)2(x)]dx ≤ 2

�
f 2(x)(Hf)2(x)dx

≤
�

(2f 4(x) +
1

2
(Hf)4(x))dx,

hence �
R
(Hf(x))4dx ≤ 4

�
f 4(x)dx, (9.37)

for any function f ∈ S0. As we have shown that S0 is dense in any Lp(R), 2 ≤ p < ∞,
(9.37) holds for all f ∈ L4(R). Therefore, the Hilbert transform is a bounded operator
L4(R)→ L4(R). As we know that it is also bounded from L2(R) to L2(R), the Riesz-Thorin
interpolation theorem implies that ‖Hf‖Lp ≤ Cp‖f‖Lp for all 2 ≤ p ≤ 4.

An argument identical to the above, integrating the function p2k(z) over the same contour,
shows that H is bounded from L2k(R) to L2k(R) for all integers k. It follows then from Riesz-
Thorin interpolation theorem that ‖Hf‖Lp ≤ Cp‖f‖Lp for all 2 ≤ p < +∞.

It remains to consider 1 < p < 2 – this is done using the duality argument. Let q > 2 be the
dual exponent, 1/p+1/q = 1. As the operator H : Lq(R)→ Lq(R) is bounded, so is its adjoint
H∗ : Lp(R) → Lp(R) defined by 〈H∗f, g〉 = 〈f,Hg〉, with f ∈ Lp(R), g ∈ Lq(R). However,
(9.31) says that H∗ = −H, hence the boundedness of H∗ implies that H : Lp(R)→ Lp(R) is
also bounded. 2

The Hilbert transform does not map L1(R)→ L1(R) but we have the following result due
to Kolmogorov.

Theorem 9.12 Let f ∈ L1(R), then there exists C > 0 so that for any λ > 0 the following
estimate holds:

m{x : |Hf(x)| ≥ λ} ≤ C

λ

�
R
|f(x)dx.

We will not prove this theorem here.

10 The Haar functions and the Brownian motion

10.1 The Haar functions and their completeness

The Haar functions

The basic Haar function is

ψ(x) =

 1 if 0 ≤ x < 1/2,
−1 if 1/2 ≤ x < 1,
0 otherwise.

(10.1)

It has mean zero � 1

0

ψ(x)dx = 0,
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and is normalized so that � 1

0

ψ2(x)dx = 1.

The rescaled and shifted Haar functions are

ψjk(x) = 2j/2ψ(2jx− k), j, k ∈ Z.

These functions form an orthonormal set in L2(R) because if j = j′ and k 6= k′ then�
R
ψjk(x)ψjk′(x)dx = 2j

�
R
ψ(2jx− k)ψ(2jx− k′)dx = 0

because ψ(y − k)ψ(y − k′) = 0 for any y ∈ R and k 6= k′. On the other hand, if j 6= j′, say,
j < j′, then�

R
ψjk(x)ψj′k′(x)dx = 2j/2+j′/2

�
R
ψ(2jx− k)ψ(2j

′
x− k′)dx

= 2j
′/2−j/2

�
R
ψ(y)ψ(2j

′−jy + 2j
′−jk − k′)dy

= 2j
′/2−j/2

� 1/2

0

ψ(2j
′−jy + 2j

′−jk − k′)dy − 2j
′/2−j/2

� 1

1/2

ψ(2j
′−jy + 2j

′−jk − k′)dy.

Both of the integrals above equal to zero. Indeed, 2j
′−j ≥ 2, hence, for instance,

� 1/2

0

ψ(2j
′−jy + 2j

′−jk − k′)dy = 2j−j
′
� 2j

′−j−1

0

ψ(y + 2j
′−jk − k′)dy = 0,

because � n

m

ψ(y)dy = 0,

for all m,n ∈ Z, and j′ > j. Finally, when j = j′, k = k′ we have�
R
|ψjk(x)|2 = 2j

�
R
|ψ(2jx− k)|2dx =

�
R
|ψ(x− k)|2dx = 1.

The Haar coefficients of a function f ∈ L2(R) are defined as the inner products

cjk =

�
f(x)ψjk(x)dx, (10.2)

and the Haar series of f is ∑
j,k∈Z

cjkψjk(x). (10.3)

Orthonormality of the family {ψjk} ensures that∑
j,k

|cjk|2 ≤ ‖f‖2
L2 < +∞,

and the series (10.3) converges in L2(R). In order to show that it actually converges to the
function f itself we need to prove that the Haar functions form a basis for L2(R).
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Completeness of the Haar functions

To show that Haar functions form a basis in L2(R) we consider the dyadic projections Pn
defined as follows. Given f ∈ L2(R), and n, k ∈ Z, consider the intervals

Ink = ((k − 1)/2n, k/2n],

then

Pnf(x) =

 
Ink

fdx = 2n
�
Ink

fdx, for x ∈ Ink.

The function Pnf is constant on each of the dyadic intervals Ink. In particular, each Haar
function ψjk satisfies Pnψjk(x) = 0 for j ≥ n, while Pnψjk(x) = ψjk(x) for j < n. We claim
that, actually, for any f ∈ L2(R) we have

Pn+1f − Pnf =
∑
k∈Z

cnkψnk(x), (10.4)

with the Haar coefficients cnk given by (10.2). Indeed, let x ∈ Ink and write

Ink =
((k − 1)

2n
,
k

2n

]
=
(2(k − 1)

2n+1
,
(2k − 1)

2n+1

]⋃((2k − 1)

2n+1
,

2k

2n+1

]
= In+1,2k−1

⋃
In+1,2k.

The function Pnf is constant on the whole interval Ink while Pn+1f is constant on each of the
sub-intervals In+1,2k−1 and In+1,2k. In addition,

�
Ink

(Pnf)dx =

�
Ink

(Pn+1f)dx.

This means exactly that

Pn+1(x) = Pnf(x) + cnkψnk(x) for x ∈ Ink,

which is (10.4).
As a consequence of (10.4) we deduce that

Pn+1f(x)− P−mf(x) =
n∑

j=−m

∑
k∈Z

cjkψjk(x), (10.5)

for all m,n ∈ Z with n > m. It remains to show that for any f ∈ L2(R) we have

lim
m→+∞

P−mf(x) = 0, lim
n→+∞

Pnf(x) = f(x), (10.6)

both in the L2-sense. The operators Pnf are uniformly bounded because for all n, k ∈ Z we
have �

Ink

|(Pnf)(x)|2dx = 2−n22n

∣∣∣∣�
Ink

f(y)dy

∣∣∣∣2 ≤ �
Ink

|f(y)|2dy.

Summing over k ∈ Z for a fixed n we get
�

R
|Pnf(x)|2 ≤

�
R
|f(x)|2,

86



thus ‖Pnf‖L2 ≤ ‖f‖L2 . Uniform boundedness of Pn implies that it is sufficient to establish
both limits in (10.6) for functions f ∈ Cc(R). However, for such f we have, on one hand,

|P−mf(x)| ≤ 1

2m

�
R
|f(x)|dx→ 0 as m→ +∞,

and, on the other, f is uniformly continuous on R, so that ‖Pnf(x) − f(x)‖L∞ → 0 as
n → +∞, which, as both Pnf and f are compactly supported, implies the second limit
in (10.6). Therefore, ψjk form an orthonormal basis in L2(R) and every function f ∈ L2(R)
has the reperesentation

f(x) =
∞∑

j,k=−∞

cjkψjk(x), cjk =

�
R
f(y)ψjk(y)dy. (10.7)

10.2 The Brownian motion

Brownian motion is a random process Xt(ω), t ≥ 0 defined on a probability space (Ω,F ,P)
which has the following properties:

(i) The function Xt(ω) is continuous in t for a.e. realization ω.

(ii) For all 0 ≤ s < t < +∞ the random variable Xt(ω) − Xs(ω) is Gaussian with mean
zero and variance t− s:

E(X(t)−X(s)) = 0, E(X(t)−X(s))2 = t− s.

(iii) For any subdivision 0 = t0 < t1 < . . . < tN = t of the interval [0, t], the random variables
Xt1 −Xt0 , . . . , XtN −XtN−1

are independent.

Construction of the Brownian motion

We will construct the Brownian motion on the interval 0 ≤ t ≤ 1 – the restriction to a finite
interval is a simple convenience but by no means a necessity. The Haar functions ψjk(x),
with j ≥ 0, 0 ≤ k ≤ 2j − 1, form a basis for the space L2[0, 1]. Let us denote accordingly
φn(x) = ψjk(x) for n = 2j+k, 0 ≤ k ≤ 2j−1, and φ0(x) = 1 so that {φn} form an orthonormal
basis for L2[0, 1]. Let Zn(ω), n ≥ 0, be a collection of independent Gaussian random variables
of mean zero and variance one, that is,

P (Zn < y) =

� y

−∞
e−y

2 dy√
2π
.

We will show that the process

Xt(ω) =
∞∑
n=0

Zn(ω)

� t

0

φn(s)ds (10.8)

is a Brownian motion.
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First, we need to verify that the series (10.8) converges in L2(Ω) for a fixed t ∈ [0, 1]. Note
that

E

(
m∑
k=n

Zk(ω)

� t

0

φk(s)ds

)2

=
m∑
k=n

(� t

0

φk(s)ds

)2

=
m∑
k=n

〈χ[0,t], φk〉2.

As φk form a basis for L2[0, 1], the series (10.8) satisfies the Cauchy criterion and thus con-
verges in L2(Ω). Moreover, for any 0 ≤ s < t ≤ 1 we have

E (Xt −Xs)
2 = E

(
∞∑
k=0

Zk(ω)

� t

s

φk(u)du

)2

=
∞∑
k=0

(� t

s

φk(u)du

)2

=
∞∑
k=0

〈χ[s,t], φk〉2

= ‖χ[s,t]‖2
L2 = t− s,

hence the incrementsXt−Xs have the correct variance. Let us show that they are independent:
for 0 ≤ t0 < t1 ≤ t2 < t3 ≤ 1:

E ((Xt3 −Xt2)(Xt1 −Xt0)) = E

(
∞∑
k=0

� t3

t2

φk(u)du

� t1

t0

φk(u
′)du′

)

=
∞∑
k=0

〈χ[t2t3], φk〉〈χ[t0t1], φk〉 = 〈χ[t2t3], χ[t0t1]〉 = 0.

As the variables Xt −Xs are jointly Gaussian, independence of the increments follows.

Continuity of the Brownian motion

In order to prove continuity of the process Xt(ω) defined by the series (10.8) we show that
the series converges uniformly in t almost surely in ω. To this end let us show that

M(ω) = sup
n

|Zn(ω)|√
log n

< +∞ almost surely in ω. (10.9)

Note that, for each n ≥ 0:

P
(
|Zn(ω)| ≥ 2

√
log n

)
≤ e−(2

√
logn)2/2 =

1

n2
,

thus
∞∑
n=0

P
(
|Zn(ω)| ≥ 2

√
log n

)
< +∞.

The Borel-Cantelli lemma implies that almost surely the event
{
|Zn(ω)| ≥ 2

√
log n

}
happens

only finitely many times, so that |Zn(ω)| < 2
√

log n for al n ≥ n0(ω) almost surely, and (10.9)
follows.

Another useful observation is that for each fixed t ≥ 0 and j ∈ N there exists only one k
so that � t

0

φ2j+k(s)ds 6= 0,
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and for that k we have ∣∣∣∣� t

0

φ2j+k(s)ds

∣∣∣∣ ≤ 2j/22−j =
1

2j/2
.

Hence, we may estimate the dyadic blocs, using (10.9):∣∣∣∣∣∣
2j−1∑
k=0

Z2j+k(ω)

� t

0

φ2j+k(s)ds

∣∣∣∣∣∣ ≤M(ω)
√

(j + 1) log 2
2j−1∑
k=0

∣∣∣∣� t

0

ψjk(s)ds

∣∣∣∣ ≤ √jM1(ω)

2j/2
.

Therefore, the dyadic blocs are bounded by a convergent series which does not depend on
t ∈ [0, 1], hence the sum Xt(ω) of the series is a continuous function for a.e. ω.

Nowhere differentiability of the Brownian motion

Theorem 10.1 The Brownian path Xt(ω) is nowhere differentiable for almost every ω.

Proof. Let us fix β > 0. Then if Ẋs exists at some s ∈ [0, 1] and |Ẋs| < β then there exists
n0 so that

|Xt −Xs| ≤ 2β|t− s| if |t− s| ≤ 2

n
(10.10)

for all n > n0. Let An be the set of functions x(t) ∈ C[0, 1] for which (10.10) holds for some
s ∈ [0, 1]. Then An ⊂ An+1 and the set A =

⋃∞
n=1 An includes all functions x(t) ∈ C[0, 1]

such that |ẋ(s)| ≤ β at some point s ∈ [0, 1].
The next step is to replace (10.10) by a discrete set of conditions – this is a standard

trick in such situations. Assume that (10.10) holds for a function x(t) ∈ C[0, 1] and let
k = sup{j : j/n ≤ s}, then

yk = max

(∣∣∣∣x(k + 2

n

)
− x

(
k + 1

n

)∣∣∣∣ ,∣∣∣∣x(k + 1

n

)
− x

(
k

n

)∣∣∣∣ , ∣∣∣∣x(kn
)
− x

(
k − 1

n

)∣∣∣∣)≤ 8β

n
.

Therefore, if we denote by Bn the set of all functions x(t) ∈ C[0, 1] for which yk ≤ 8β/n for
some k, then An ⊆ Bn. Therefore, in order to show that P(A) = 0 it suffices to check that

lim
n→∞

P(Bn) = 0. (10.11)

This, however, can be estimated directly, using translation invariance of the Brownian motion:

P(Bn)≤
n−2∑
k=1

P
[
max

[∣∣∣∣X(
k + 2

n
)−X(

k + 1

n
)

∣∣∣∣ ,∣∣∣∣X(
k + 1

n
)−X(

k

n
)

∣∣∣∣ , ∣∣∣∣X(
k

n
)−X(

k − 1

n
)

∣∣∣∣]≤ 8β

n

]
≤ nP

[
max

[∣∣∣∣X ( 3

n

)
−X

(
2

n

)∣∣∣∣ ,∣∣∣∣X ( 2

n

)
−X

(
1

n

)∣∣∣∣ , ∣∣∣∣X ( 1

n

)∣∣∣∣]≤ 8β

n

]
= nP

[∣∣∣∣X ( 1

n

)∣∣∣∣ ≤ 8β

n

]3

= n

(√
n

2π

� 8β/n

−8β/n

e−nx
2/2dx

)3

≤ n

(√
n

2π

16β

n

)3

≤ C√
n
,

which implies (10.11). It follows that P(A) = 0 as well, hence Brownian motion is nowhere
differentiable with probability one. 2

Corollary 10.2 Brownian motion does not have bounded variation with probability one.
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