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Abstract

We consider a reaction-diffusion-advection system of the KPP type in a periodic flow with
heat-loss through the boundary. We show, that, as in the case of a shear flow, the propagation
speed is determined by the linearization ahead of the front and is thus independent of the Lewis
number. Moreover, we show that a flame may be blown-off or be extinguished by the presence
of a periodic flow. We present an explicit procedure of constructing a flow which leads to the
blow-off or extinction of the flame. The period cell size has to be sufficiently small in order for
the flow to extinguish a flame if the channel is wider than critical.

1 Introduction

The presence of a fluid flow may have a profound influence on the combustion processes [18]. This
problem had been extensively studied in the engineering and physical literature for quite a long
time. The mathematical studies of the flow effect have been intensified during the last decade: see
[2, 22] for excellent recent reviews and references. A number of rigorous results have revealed the
mathematical aspects of the mechanism behind the speed-up of the combustion fronts by flows,
quenching of the flame, existence and stability of travelling waves.

A large majority of the mathematical results, however, have been obtained for the single reaction-
diffusion-advection equation. The purpose of this paper is to analyze the qualitative behavior of
solutions of the following reaction-diffusion-advection system:

T; +u- VT = AT + Yg(T), (1.1)
1
Yitu- VY = =AY —Yg(T),

where T'(t,x) is a temperature and Y (¢,x) is a concentration of deficient reactant. The Lewis
number Le, the ratio of the thermal diffusivity and the diffusivity of the deficient reactant, may
be an arbitrary positive number. We recall that if Le = 1 then the system (1.1) reduces to a
single reaction-diffusion equation for T', as the constraint T4+ Y = 1 holds provided that initially
To+ Yy =1.

The reaction-diffusion-advection system (1.1) is considered in a cylinder D = R x Q, where
Q C R4 is a bounded domain, with the heat-loss boundary conditions at 9Q:

8_T_|_qT:0, B—Y:O on 0. (1.2)
on on
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Here g > 0 is the heat loss parameter. The flow u(x) is assumed to be L-periodic in the z-variable:
u(z + L,y) = u(z,y), time-independent and incompressible, that is,

V-u=0. (1.3)

We also assume that the flow has mean zero over the period:

/Q/OL u(z,y)dzdy = 0. (1.4)

The non-linearity ¢g(7") is assumed to be of the KPP-type:
9(0) =0, g(T) >0, g(T) < g'(0O)T, g'(T) > 0 for T > 0. (1.5)

It is well known that even in the absence of the flow the reaction-diffusion system (1.1) may
exhibit a very rich behavior: oscillating modes may develop, travelling waves are not unique [8] and
hence unstable, etc. However, when the non-linearity g(7') is of the KPP type, the behavior is known
to be more regular: for instance, the travelling front speed with u = 0 is independent of the Lewis
number [7], and the burning rate in a periodic flow is uniformly bounded above by the pulsating
travelling front speed at Le = 1 [15]. Recently a number of results on the behavior of solutions of
(1.1) in a shear flow have been obtained in [4]. The same problem with an Arrhenius nonlinearity
has been also studied numerically in [10, 11]. The purpose of the present paper is to extend the
results of [4] to general periodic flows. In particular we show that, as in the case of a single KPP-type
equation, the exponential decay of the initial temperature T determines the asymptotic speed of
propagation. The speed itself turns out to be independent of the Lewis number. These results are
described in Section 2. We also show the possibility of flame extinction or blow-off by a periodic
flow: a sufficiently strong heat-loss parameter may lead to flame quenching. Furthermore, we show
that while the heat-loss parameter may be too small to prevent flame propagation in the absence of a
flow, a sufficiently strong periodic flow might improve mixing toward the boundary to an extent that
leads to flame quenching or blow-off. These results are described in Section 3. Section 4 contains
the results of some numerical simulations that illustrate the results of this paper. In particular, it
has been previously shown numerically that for a cellular flow to quench an initial data of large
compact support for one equation with the ignition nonlinearity the cell has to be sufficiently small
[20]. We find that a similar result holds for the KPP system with a heat-loss: a sufficiently fast
periodic cellular flow will extinguish a flame in an arbitrary wide channel provided that the cell size
is sufficiently small. We conjecture that the critical amplitude necessary to extinguish the flame
scales as A, ~ W*, where W is the channel width. Finally, Section 5 contains some conclusions.
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2 Front Propagation in the KPP system

We consider in this section the spreading rate of the solution with the initial data that is decaying
at one end of the domain with a prescribed decay rate O (e*)‘w).

2.1 Pulsating KPP travelling fronts

We first recall the classical results for a single KPP reaction-diffusion equation in a uniform medium.
Travelling front solutions of the Fisher-KPP equation

O Tt g1 - 1) (21)



of the form U,.(z — ct) with
Ues(z) > 1as z — —o0, Us(z) = 0 as z — 400
exist for all ¢ > ¢, = 2@ . They are distinguished by their decay rate as x — +o0:
Ue(z) ~ O (e_)‘cx) , as T — +o0.
The front speed and the corresponding decay rate are related by the quadratic equation
A =X\ +4'(0). (2.2)

This relation may be formally obtained by looking for an exponential solution T' = exp{—A(z — ct)}
of the linearized equation

oT - .
E =gz + g’(O)T' (23)
More generally, solutions of (2.1) with the initial data with a prescribed exponential decay
To(z) ~ O (e_’\m) , a8 T — 400 (2.4)
propagate to the right with the speed ¢(\) determined by (2.2) provided that A < A, = 1/¢'(0).

More precisely, solution that satisfies (2.4) converges as t — +o0o to a travelling front solution
Uc(z — z¢ — ct) that propagates with the speed ¢(A).

The simple idea of the linearization of the KPP equation at infinity in order to obtain the relation
between the decay rate and the front speed has been generalized by Berestycki, Nadirashvili and
Hamel to the pulsating travelling fronts in a periodic medium in [3, 5]. In particular, they considered
a reaction-diffusion-advection equation

oT
rn +u(x)- VT =AT +g(T)(1 —-1T) (2.5)
in a cylinder D =R x Q, Q C R¢~! with the Neumann boundary conditions
T
?)_n =0 on 0N (2.6)

on the boundary of €2, and the front-like boundary conditions as z; — Foc:
T(z1,y) = 0 as £1 = —oo, T'(z1,y) — 0 as 1 — +oo, uniformly in y € Q.

The domain 2 is bounded. The full system (1.1),(1.2) reduces to (2.5),(2.6) when the Lewis number
Le = 1 and the heat-loss parameter ¢ = 0. A pulsating travelling front is a solution of (2.5) of the
form U.(z1 — ct,x) that is periodic in the second variable and satisfies

Ue(s,x) > 1as s — —o0, Us,x) > 0 as s - +o0

It has been shown in [3] that there exists ¢, > 0 so that such fronts exist for ¢ > c¢,. Their decay
rate A is related to the front speed c as follows. Let n(A) and ¥, > 0 be the principal eigenvalue
and the positive eigenfunction of

U

—ATy +u(x) VU, — A Ty + 2/\% =n(A)T, in [0,L] x Q (2.7)
I1

A2 =0 on 09

on

U, is L-periodic in z.



Then X and c are related by
A =2+ ¢'(0) —n(N). (2.8)

It has been also shown in [3] that the function hqg()\) = n(\) — A? is concave and satisfies
ho(0) =0, R'(0) = 0. (2.9)
This implies the following result [3].

Theorem 2.1 There ezists c. so that equation (2.8) has no positive solution \ for ¢ < c., one
solution Ay > 0 for ¢ = ¢, and two solutions 0 < A\ < X for ¢ > c,. The pulsating travelling fronts
Uc(s,z,y) exist for all ¢ > ¢, and has the decay rate A, where X is the smaller solution of (2.8).

Hence (2.8) serves as a generalization of the quadratic equation (2.2) to the periodic case. The
eigenvalue problem (2.7) may be formally obtained in a way similar to the uniform case: one looks
for solutions of the linearized problem

oT

57 Fu)- VT = AT + ¢'(0)T

of the form

T(t,.ﬁ(), y) = eXp{_A(‘T - Ct)}\If)\(CE,y) (210)
with a positive, L-periodic in z function ¥y(z,y). A direct calculation shows that ¥ has to satisfy
the eigenvalue problem (2.7)-(2.8).

2.2 Fronts in a KPP system

We show in this section that, as in the case of a single equation (2.1) in a uniform medium, the
linearized version of the reaction-diffusion-advection system (1.1) predicts the correct speed of prop-
agation in terms of the rate of the exponential decay of the initial data. Linearizing (1.1) at infinity
where Y = 1 and looking for solutions of the form (2.10) we obtain the following eigenvalue problem

\\J
—AT, —|—’U,(X) VU, — Au Uy + ZAQ = /J,()\)‘I')\ in [O, L] x (211)

8.771
PASY

—— 4+ q¥, =0 on 01,
on

Uy is periodic in z, ¥y > 0 in Q.

The function T(t,z,y) = exp{—A(z — ct)} ¥, (z,y) then satisfies the linearized problem

T . . 5
%—t +u(x) - VT = AT + ¢'(0)T
or | ¢T =0 on 99,
on

provided that ¢ and A are related by
A =X+ g'(0) — (). (2.12)

However, a direct analog of Theorem 2.1 no longer holds in the heat-loss case in general, that
is, when ¢ > 0. The reason lies in the simple fact that when the domain 2 is of a sufficiently small
volume, p(0) > ¢’'(0). This brings about the main difference between the two eigenvalue problems
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(2.7) and (2.11) that arise in the adiabatic and the heat-loss cases, respectively. In particular, the
minimal speed ¢, may not be defined as in Theorem 2.1. Tt is also possible that, while x(0) < 1,
the minimal speed ¢, < 0. These two possibilities, that we refer to as flame extinction and blow-off,
respectively, are considered in Section 3.

Nevertheless, in the presence of the heat-loss parameter we still have the following result.

Proposition 2.2 Assume that u(0) < ¢'(0). There exists c. so that equation (2.12) has no positive
solution \ for ¢ < ¢y, one solution A\, > 0 for ¢ = ¢, and two solutions 0 < X < X for ¢ > c,.

The proof of Proposition 2.2 is very close to that of Theorem 2.1 of [3]. We present it for the
convenience of the reader but postpone until the end of this section.

One may expect that, as in the uniform and scalar case (as well as in the presence of a shear
(unidirectional) flow) solutions of the KPP system (1.1)-(1.2) with a heat-loss that have initial data

To(z,y) ~ O (e_’\m)

that decay at an exponential rate A\, propagate with the asymptotic speed c(\) determined by
(2.12). The main result of this section is that this is indeed the case. This is a generalization of the
corresponding result in [4] for a shear flow.

Consider the reaction-diffusion-advection system (1.1) with the boundary conditions (1.2). The
periodic flow u is assumed to satisfy (1.3), (1.4). The initial conditions Ty(z,y) for temperature and
Yo(z,y) for concentration satisfy

0< TO("an)’M = SllpT()(.’L',y) >0, 0<Yy <1, V(.T,y) €D (213)
CleM™<Ty<Ce™, >0, y€Q (2.14)
1-Yo(z,y) <Ce™*, >0, yeQ, N >0 (2.15)

with a positive constant C > 0.

Theorem 2.3 Assume that g(T) =T, ;1(0) < 1 and let A\, be as in Proposition 2.2. Any solution
of the problem (1.1),(1.2), with the initial data satisfying (2.13)-(2.15) with A\ < A« propagates with
the speed c(\) determined by (2.12), in the following sense: for any é > ¢ and any z € R, y € Q we
have T(t,x + ét,y) — 0 as t — oo, while for each x € R, y € Q there exists a constant a > 0 so that
T(t,z+ ct,y) > a for all t > 0.

In particular, Theorem 2.3 generalizes the result of [21] where it has been shown that solutions of a
scalar KPP equation equation in a periodic medium with compactly supported initial data propagate
with the minimal speed of a pulsating travelling front. However, our main result here concerns only
the propagation speed and does not provide any information about convergence of the solution of
the Cauchy problem to a travelling wave. The problem of existence of pulsating travelling fronts for
the KPP system remains open. We note that the assumption that g(7) = T' is made only to simplify
the proof and present the basic idea of the alternating construction of sub- and super-solutions in a
clear fashion.

The fact that the speed of propagation in a periodic flow does not depend on the Lewis number
generalizes this observation for the adiabatic case in a uniform medium made in [7]. We also note that
an upper bound for the spreading rate of a solution of the adiabatic KPP system with a compactly
supported initial data by the minimal pulsating travelling front speed for a single equation has been
obtained in [15].

Proof of Theorem 2.3. The main tool in obtaining asymptotic speed of propagation and
convergence to a travelling front solution in the case of a single reaction-diffusion equation is the



maximum principle and comparison to appropriate perturbations of travelling wave solutions [19].
Unfortunately, neither the maximum principle holds nor pulsating travelling fronts are known to
exist in the case of systems which creates the main technical difficulties. Nevertheless the proof of
Theorem 2.3 is based on the technique of constructing sub- and super-solutions that propagate with
the same speed. These sub- and super-solutions are constructed by iteration. Using the fact that
Y =1 is a super-solution for concentration Y (¢, ,1y) we construct a super-solution for temperature
T'(t,z,y) which is unbounded but still propagates with the speed determined by (2.12). Using this
super-solution for temperature we construct a sub-solution for the concentration which in turn allows
to construct a sub-solution for the temperature. The main point is that the sub- and super-solutions
for temperature and concentration propagate with the same speed ¢(\) given by (2.12). Therefore
the propagation speed of the solution with an initial data as in (2.13)-(2.15) is also given by (2.12).
Step 1. A super-solution for temperature. The maximum principle implies that that the
concentration Y (¢,z,y) < 1. Hence a function T that satisfies (here and below z € R, y € Q)

Ti+u-VT > AT+ T, (2.16)
T _

a——I—qT:O, on 012,

on

T(O,.’L’,'y) Z T()(.’I;',’y),

is a super-solution: )

We are looking for such a super-solution in the form
T(t,2,y) = Me D, (x,y), (2.18)

where W) (z,y) is the principal eigenfunction of the eigenvalue problem (2.11) that we re-write as

LTy = p(A)¥x (2.19)
U

9% +q¥) =0, on 09,
on

U, is periodic in z and ¥y > 0,

with
Ly=—-A+u-V —Xdui +2)\0; (2.20)

The function ¥ is normalized so that

/ /L U3 (z,y)dzdy = 1. (2.21)
aJo

A direct calculation shows that the function T defined by (2.18) is a super-solution provided that
c() is given by (2.12). Therefore, (2.17) holds provided that the constant M is chosen large enough
to ensure that Ty(z,y) < T(0,z,v).

Step 2. A sub-solution for concentration. Since the function T given by (2.18) is a super-
solution for T, the function Y that satisfies

oY 1 -

— -VY < — - .
oy Tu VY < =AY -TY (2.22)
?9—1; =0, on 09,

X(Oaxay) < YO(w’y)a



is a sub-solution for concentration Y (¢, z,y):
Y(tz,y) <Y(tzy) (2.23)
We are looking for a solution of (2.22) in the following form
Y(t,z,y) =1 - Be "N, (z,y). (2.24)

Here 3 and «y are some constants to be determined later. The function ®, > 0 is the principal
normalized eigenfunction of the following eigenvalue problem:

1 L
(—L—eA + 270, +u-V — 'yu1> D, = (7)., / / <I>3(x, y)dzdy =1 (2.25)
aJo

0
—72 — 0 on 09, ®, is periodic in z.
on
Substituting expression (2.24) for Y into (2.22), we see that for the function Y defined by (2.24)

to be a sub-solution for the concentration Y we need
1 1
(—C’Y - L—’Y2 - ,u,/(’y)> o, < —EMef()‘J’)f(l —e %), €=z —ct
e

This condition is satisfied provided that

1 1 1
—cy — L—e’YQ —p(7) < —BMG_(A_”g (— - 6_%) (2.26)

My
with
my = inf @, (z,y) >0

We now choose the constants v and 8 as follows. We let v < A be sufficiently small. Tt suffices
to ensure that ) . )
ey — = = < M[— et 2.27
A i Q)RS M\ e (2.27)
in order for (2.26) to hold for £ > 0 . Let us first show that the function

L o
s() = —ey = 7" = ()
is negative for small v. First, we observe that 1, (0) = 0 since ®y = [Q2~'/?| is the corresponding
eigenfunction. Thus we have s(0) = 0. Next, differentiating (2.25) with respect to v at v = 0 we

obtain ) 50
— AT u V) + 26—; —u1®q = 11, (0) B + 41!, (0)Do. (2.28)

Here prime denotes derivative with respect to 7. Multiplying (2.28) by ®, = || /2, integrating
over the period cell, and using the fact that the flow v has mean zero we obtain

11,(0) =0

Thus ds(0)/dy = —c¢ < 0 and therefore s(y) < 0 for small 4. The formal differentiation may be
justified as in [6]. Therefore, in order for (2.27) (and hence (2.26)) to hold for £ > 0 we may choose
B to be

M

my(cy +7%/Le + pu(7))

B = (2.29)
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with a sufficiently small v > 0.
Furthermore, in order for (2.26) to hold for ¢ < 0 we need

1

1, M
ey — —~2 < — Ol [ —— _ ¢l .
=17 o (7y) < 5° ~ e (2.30)

However, with 3 as in (2.29) condition (2.30) becomes
1>(1- m767|5|)e(7_)‘)|5|

which is true since 0 < v < A. Therefore, the function Y given by (2.24) is a sub-solution for Y,
that is, (2.23) holds, provided that v € (0, A) and f is given by (2.29). We then set

V(t, z,y) = max(0,1 — e 7(==) (2.31)
with
a = max{l, S max ®,}.

We have then V <Y after possibly increasing « so as to guarantee that V(0,z) < Yy(z,y).

Step 3. A sub-solution for temperature. We now construct a sub-solution T'(¢, z,y) for the
temperature T'(¢, z,y) that also propagates with the speed ¢()) given by (2.12). We are looking for
such a sub-solution in the following form

I(ta Z, y) = \I/)\(J,', y)e_A(z_Ct) - K\Il)\+(5(x7 y)e_(A—l—J)(z_Ct)’ (232)

where U and U4 are the principal eigenfunctions of the eigenvalue problem (2.19) corresponding
to A and A + 4, respectively. The positive constants K and § are to be determined later. Since V.
defined by (2.31) is smaller than the concentration Y, any solution of

Ty, +u-VI<AT+V T (2.33)
T

6—_+qI:O, on 01,

on

I(Oaxay) < T0($ay)a

is a sub-solution for T"
T(t,z,y) > T(t z,y) (2.34)

Substituting (2.32) into (2.33), we observe that for T given by (2.32) to be a sub-solution we need
(A= N4+ L\0y)e ¢ — K(c(A+0) — (A40)% 4 Lars)Urrs)e” ATV < V(W™ — KTy se-AFE)

that is,

1 1\
(A =22 +u\) - K \;” (A +8) —(A+8)? +u(A+d)e ™ <V - K\Q—Me—éﬁ). (2.35)
A A
Here, as before, we denote & = = — ct.
Consider first the case when ae™¢ < 1. Substituting expression (2.31) for V into (2.35) and
taking into account expression (2.12) for the speed ¢, we obtain that (2.35) is equivalent in this
region to

—K [cA+08) — (A +0)2 + p(A+0) —1] %6_‘% < —ae %+ aK%e_(VM)g . (2.36)
A A
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We define the function
r(6) =cA+8) —(A+6)2+puA+6) -1 (2.37)

with ¢ = ¢()) given, as usual, by (2.12). Let us show that 7(J) > 0 for small §. Indeed, as (2.12)
implies that 7(0) = 0, it suffices to show that dr(0)/dd > 0. We have, using (2.12),

d’l"(O) ] dC(A)
=c—2 = — .
7 c—2x+pu'(N) A o
However, Proposition 2.2 implies that
dc(X) <0
dX

d
for all A < A*. Therefore, :ZESO) > 0 and hence, indeed, 7(§) > 0 for § > 0 sufficiently small.

Hence, in order for (2.36) to hold in the region, where V > 0, it suffices to choose § € (0,7) so

small that r(d) > 0 and then set
o \I‘/\

Consider next the region where V = 0, that is, ¢ < & = v !Ina, as follows from (2.31). In this
case (2.35) becomes

T
1-K2H(r6) +1)e % <0
L%

It is sufficient to verify that this inequality holds for ¢ = &g, that is, whether

K Uy
a‘s/’)’ \I/,\

(9(6) +1) <0.

However, the latter is true since 6 < v, « is chosen so that a > 1 and because of the choice (2.38)
of the constant K.
Finally, we observe that we have shown that the temperature T'(¢, z,y) satisfies

Uy (z,y)e XN — KTy 5(z,y)e M@ < 1(t 2, y) < Me XD, (2, ).

Observe that the function on the left side is positive on an open set. Hence the conclusion of Theorem
2.3 holds. O

Proof of Proposition 2.2. We now prove Proposition 2.2. Let us recall the eigenvalue problem
(2.11)

ov

LV, :=—-AVU, + ’U,(X) VU, — Au Uy + 2/\3—.7,‘)\ = IU,(A)‘I')\ in [O,L] x Q (239)
ov

972 4 g0, = 0 on 89,

on
U, is periodic in z, ¥y > 0 in

and relation (2.12) between the speed ¢ and decay rate A:
cA =22 +g'(0) — pu(X). (2.40)

We will show that there exists ¢, such that (2.40) has no solutions for ¢ < ¢, one solution if ¢ = ¢,
and two solutions \; < A, < Ag for ¢ > ¢, by showing that the right side of (2.40) is a convex function,
that is positive at A = 0. Hence c, is the slope of the line tangent to the graph of A? + ¢'(0) — ()



that passes through the point (0,0). To this end we define h()\) = u(A) — A? and show that h()) is
concave.

In order to show that the function h(\) is concave we first establish a min-max principle for A()):
let

E, = {qs € C*(Q): ¢(z,y) >0, 1 =e ¢ is L-periodic in z, ? +q¢=0on BQ} , (2.41)
n
we claim that A v
h(A\) = max ipf—¢ = max inf M
¢€E) D, ¢ $€EN Dy, ¢
Here Dy, = [0, L] x Q is a flow period cell — the ratio in (2.42) does not depend on the choice of the
period cell. Indeed, using 0 = Uye ** we obtain immediately that M@y = h(\)8) so that

(2.42)

h(X) = MO» = inf MO» < max ipfm.
O D, 0 $€E) Dy,

since the function @) € E). Assume now that there exists a function ¢ € F so that

u(Y) < inf 42,
o ¢
that is

Mo > (h(A) +n)é

with n > 0. As both functions ¢ and 6, are positive and continuous over the flow period cell, we
may choose 7 > 0 so that ¢ > 76 for all (z,y) € D and there exists (zg,yo) so that ¢(zo,yo) =
TU (%0, y0). Let w = ¢ — 70,, then the function w satisfies w > 0 and w(xg,yo) = 0, while

—Aw+u-Vw > hw + ne.

A

Then the function @ = e**w is periodic, has a minimum equal to zero at (¢, o) and satisfies

—Aw+u-vm—x2w+2Az—Z—,\ulw>hw+n<{s

with a positive periodic function ¢ = e**¢. Hence if the point (zg,%) is an internal minimum of 1,
then —Aw(xg,yo) > 77q~5 > 0 which is impossible. However, w may not attain a minimum equal to
zero on the boundary 02 because of the Hopf lemma and the boundary condition in the definition
of E). Hence w = 0 which implies that ¢ = 18, and hence 1 = 0, which contradicts the assumption
that 7 > 0. Hence (2.42) holds.

We now use (2.42) to show that the function h()) is concave. We will show that

R(tA1 + (1 —t)Xa) > th(A1) + (1 —t)h(Xo) forall 0 < ¢ < 1.

The min-max principle (2.42) implies that it suffices to show that given any pair of functions f; € Ej,
and fy € E), there exists a function ¢ € Ey, A = tA; + (1 — t) A2, so that

Mg >t./\/lf1 M f2
¢ — N f2

+(1—1) (2.43)

We claim that (2.43) holds with
¢=fify " (2.44)
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Indeed, if f1 € E),, fo € E), it is straightforward to check both that the function ¢ satisfies the
correct boundary conditions in (2.41) and that e*®¢ is L-periodic in z, so that ¢ € Ey. We first
verify that

A(fify ™) =tf T A+ (L= O fLf5 A fe — t(1 = ) f1f, ('V;—fl' - 'Vf—f')2
e ek
Furthermore, using the above inequality and the function ¢ as in (2.44), we obtain
2 o AU e A
> —t% —Qa —t)Aff2 +t"'Zf1 +(1 —t)“'}Zf2 = t/\}llfl +(1 —t)%.

Thus (2.43) holds and thus the function h(\) is concave. This finishes the proof of Proposition 2.2.
O

3 Flame extinction and blow off

We consider in this section the possibility of blow-off and extinction of solutions of the system (1.1)
with the boundary conditions (1.2). We are interested in the effect of a strong flow — hence we
replace the flow u in (1.1) by Au with the flow amplitude A > 1. Accordingly, we denote by u(s, A)
and ¥4 (z,y) the principal eigenvalue and eigenfunction of (2.11) with u replaced by Au and A by
s/A:

A A 4, 25097 A
—AY? — sup” + Au - Vop©' + A os = (s, A)yY*, in [0,L] x (3.1)
ﬂ-i- YA =0, on 00 (3.2)
on VT ' )

The function 94 is L-periodic in z. B
Similarly, we denote by fi(s) and ¢ the principal eigenvalue and eigenfunction of the problem

A —sud=ji(s)p (z,y) €Q (3-3)
0 -
99 +qgp=0, ye€
on
with ¢ being L-periodic in z. ~
The eigenfunctions 1 and ¢ are positive and normalized so that

/ |4 2dQ = 1, / Hdo =1 (3.4)
Q Q
Moreover, with this normalization we have

p(s, A) = / Vo2 + g / [ 7dSy — s / i |2 dQy (35)

Q 0 Q
and
fi(s) = / |V3|2dQ + ¢ / $%dS, — s / w1 p2dS (3.6)
Q le} Q
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The eigenvalue [i(s) satisfies a variational principle

o 209 _ 2
ia(s) = wqu,WHz . (/ |V dQ-I—q/ P=dS,y s/uldz dQ) (3.7

={p € H*(Q): 0 +qp =0, y €09, and L-periodic in z}.

with

Expression (3.5) together with the variational principle (3.7) imply that
u(s, A) > ji(s) forall s, A (3.8)

Theorem 3.1 Let the initial data Ty,Yy satisfy (2.13)-(2.15). (a) Blow-off: assume that there
exists so so that fi(sg) > ¢'(0). Then there exist Ay € [0, max(so/A, s0/+/[i(s0) — ¢'(0)] so that for
all A > Ay we have T(z,y,t) < Ce "=+ for gll t > 0. The positive constants n and v depend
on A, and there ezists a constant C > 0 so that the blow-off speed y(A) > CA. (b) Eztinction:
moreover, if 1(0,0) = i(0) > ¢'(0), then T(z,y,t) < Ce " with 9 > 0 independent of A.

Proof. We observe that 0 < Y(z,y,t) < 1 for all ¢ > 0, as follows from the maximum principle.
Therefore, 0 < T'(z,y,t) < ¥(z,y,t), where ¥(z,y,t) is any solution of

U+ Au- VU > ATV + ¢ (0)¥  (z,y) €D (3.9)
provided that Ty(z,y) < ¥(z,y,0). We seek the super-solution in the form
U(z,y,t) = Ce "y (z, ).
Inserting this expression into (3.9) we obtain
— AP — nAup? + Au - VYA + 2092 > (g'(0) + 02 + )yt in [0,L] x Q. (3.10)
This is true provided that

my < p(nA, A) - ¢'(0) —*. (3.11)
The last inequality holds provided that

ny < fi(nA) — ¢'(0) — n*. (3.12)

since pu(s, A) > fi(s). Therefore, such a super-solution exists if we may find a constant 7 such that
fi(nA) — ¢'(0) —n? > 0 with 0 < < X. This indeed holds for n = sq/A as long as A > Ay. The
blow-off speed v then may be chosen as
A ' 242
= %(M(So) —9(0) — sp/A%). (3-13)

This completes the proof of part (a).

The second part is proved similarly: the function ¥(z,y,t) = Ce~(EO0)=9'(0)tyhA (g 1) is a super
solution of (3.9) (since f1(0) < u(0,A)) and (0) > ¢'(0). O

An interesting consequence of Theorem 3.1 is that a sufficiently strong periodic flow may blow
off the initial data that propagate to the right in the absence of the flow. This happens for a flow
u and a heat-loss parameter ¢ > 0 such that 1(0,0) < ¢'(0) while there exist Ay > 0 such that
w(s0,Ag) > ¢'(0). An example of such a flow can be constructed as follows. First, we observe that
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(0,0) = f1(0). Therefore, it is sufficient to construct a flow u;(z,y) such that z(0) < ¢'(0) while
(s0) > ¢'(0) and then use the inequality (3.8).

Let us show that such a flow can be constructed. Fix s = 0, then ji9(q) — fip, the first eigenvalue
of problem (3.3) with Dirichlet boundary conditions in the domain €, as ¢ — co. Let us choose the
domain 2 such that ip > ¢'(0), so that there exist a heat loss parameter gy > 0 sufficiently large so
that fio(go) = ¢'(0), because fig(g) is a continuous increasing function of ¢ with po(0) = 0. We also
choose the first component of the flow u; so that

dﬁs (O, QO)
ds

I
I

= —/Qul(m,y)([;g(y;qo)dxdy > 0. (3.14)

This is possible since ¢ is not a constant and is independent of the flow u. There exist then s > 0
so that fis, > ¢'(0). Continuity and monotonicity of fis(¢) as a function of ¢ imply that there exists
@1 < go so that fig(q1) < ¢'(0) while fis,(g1) > ¢'(0). Thus po(q1) < ¢'(0) and pso,a(g1) > ¢'(0).

The homogenization regime. Let us comment briefly on the homogenization regime when
the flow has the form

A /x
u(x) = —u (—) .

9 9

We assume that A > 1 and ¢ < 1 with € € 1/A < 1. Then we may first pass to the limit ¢ — 0 in
the KPP system

T, + ?u (g) VT = AT +TY (3.15)
Tt+§u<§) VT = AT - TY

with the heat-loss boundary conditions (1.2). This leads to a homogenized eigenvalue problem

—KAAY = AP in Q (3.16)
ov
% + q\IJ =0 on Q. (317)

Here k4 is the effective diffusivity [1, 12] corresponding to the flow w.

Tt is well known [9, 12, 16, 17] that the effective diffusivity in a cellular flow behaves as k4 ~ VA
for A > 1. That means that the eigenvalue u 4 grows with A. Hence, when A is sufficiently large, we
have p4 > 1 and the flow becomes extinct. For this to happen, however, cells have to be sufficiently
small so that we are in a homogenization regime. This is similar to the quenching problem in a
cellular flow with an ignition type non-linearity: for the flow to quench a flame one needs both a
large flow amplitude and a sufficiently small cell size [20].

Let us consider for simplicity the case when the cross-section Q is an interval [0, Ly]. Then, if L, is
sufficiently large, the flame will not become extinct in the absence of the flow. The homogenization
result shows that in the limit ¢ — 0, the leading eigenvalue is paq ~ C\/Z/LZ. Hence the flow
amplitude required to extinct a flame in a channel of width L, in the homogenization regime is
of the order A, ~ L;. Some of the scaling predictions of the homogenization theory, such as the
adiabatic flame speed and quenching amplitude, have been previously shown to hold outside of their
theoretical regime of validity [20]. One would expect that the scaling A, ~ Lg may also hold for
cells that are not infinitesimally small but rather just smaller than a critical size [, beyond which
flame does not become extinct no matter how large the flow amplitude is.
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4 The numerical simulations

The goal of the numerical simulations is to verify the main theoretical conclusions of this paper: (i)
that the travelling front speed is independent of the Lewis number, (ii) that the flame is extinguished
in a narrow strip (L sufficiently small), and (iii) that a flame may be extinguished by a periodic
flow in a strip that is sufficiently wide to support flame propagation without a flow if the cells are
sufficiently small.

We present here the numerical simulations of the KPP system with a heat loss of the form

T, + Au - VT = AT + iYT, (4.1)
Y; + Au - VY = iAY—EYT
Le 4

in a two-dimensional strip, of width L in the y-variable, and the length 2m L with an integer m > 1
in the z-direction. The Dirichlet boundary conditions for temperature and the Neumann condition
for the concentration

)4

T =0, 8—:0 on y=0,L or z==xmL. (4.2)
Y

are imposed on the boundaries of the strip for simplicity. The periodic cellular flow u has the form

(. Y z .y
u = (smm co8 7, — €08 - sin m) ,
while the parameter A measures the flow amplitude. The size of the cell, [ = L/n, was an integer
fraction of L, so that the strip always contains integer number of cells.

The initial concentration was set to Y = 1 everywhere in the domain; while the initial tempera-
ture was set to T' = 0 everywhere except for a hot spot in the middle of the domain. The interfaces
between hot and cold fluid were smoothed at £ = 0 to match the laminar flame thickness. More
precisely, we approximated the initial temperature by T'(z,y,0) = % (tanh Z£% — tanh %) where
A = 16 is of the order of laminar flame thickness. The initial length of the hot spot was typically the
doubled strip width, a = L, but we have performed simulations with larger a and found no difference
in the asymptotic behavior.

Equations (4.1) have been solved using an explicit finite difference scheme of fourth order in space
and a third-order Adams-Bashforth integration in time. The grid size, Az = Ay = 0.25, was chosen
to resolve both temperature distribution across the interface, and the flow. The computational
domain extended a considerable distance upstream and downstream from the burning front, mL =
max(64L,256)), so that boundary effects were negligible.

As a measure of the reaction enhancement we use the bulk burning rate

1 L [e’s)
V(t)z—f/o/ Yi(x,y,t) dydz.

A typical temperature distribution in the flame front is shown in Fig. 4.1 for different cell sizes
and the flow amplitude well below critical. The maximal temperature is attained in the middle
of the strip while the temperature is lower near the boundary, as one would expect. One notices
that the spatial variations of the temperature distribution are more pronounced when the cell size
is comparable to the front thickness — the pattern with the small cells (in the bottom of Figure 4.1)
is very similar (almost indistinguishable) to that in the absence of the flow (A = 0). The spatial
pattern is less pronounced in the concentration that seems to have no interesting spatial features.
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Figure 4.1: Temperature distribution in the domain of width L = 16 for different roll sizes, [ = 16,
8,4, 2, 1 (from top to bottom) and velocity amplitude A = 1 and Le = 1. Snapshots are taken at
time ¢ = 100.

The concentration changes in the horizontal direction on the scale of the distributed flame front with
minor variations in the vertical direction.

Figure 4.2 presents the dependence of the bulk burning rate on the flow amplitude (rescaled
according to the homogenization scaling). We observe two phenomena: first, the front speed is
indeed independent of the Lewis number. Second, as the flow cells are taken to be small, the
increase in the flow amplitude leads to a decrease in the bulk burning rate. In particular, we observe
the flame extinction at a sufficiently high flow amplitude.

One may also observe a certain dichotomy between the numerical simulations and the predictions
of the homogenization theory — if the cells were sufficiently small for the homogenization prediction
for the critical amplitude necessary to extinct the flame to be valid, all the graphs in Figure 4.2
would reach extinction at the same value of the flow amplitude (rescaled as on the graph axis).
However, the plot of the maximal temperature as a function of the flow amplitude in Figure 4.3
shows a remarkable agreement with the homogenization scaling even though the previous discussion
shows that the homogenization regime has not yet set in for those cell sizes.

The dependence of the qualitative properties of flame propagation on the cell size may be seen
in Figure 4.4 that presents the front speed as the function of the normalized flow amplitude for a
strip of width L = 12. Note that while the flow amplitude increase speeds up propagation when
the period cell is [ = 12, that is, there is one cell per strip width, the front speed is diminished by
an increase in the flow amplitude for cells of a smaller size. This reflects the qualitative idea that
the small cells more effectively improve mixing in the system, increasing the effect of the boundary
heat-loss.

The dependence of the critical flow amplitude A., necessary to extinct a flame in a strip of width
L is presented in Figure 4.5. The homogenization regime prediction is A ~ L* for small cells. We
see that the numerical results show an exponent slightly higher than 4 for [ = 2 and [ = 4. Still, we
observe a reasonable agreement with this particular scaling prediction even for cell sizes that, as we
discussed above, do not provide a complete agreement with the homogenization theory.
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Figure 4.2: The bulk burning rate dependence on the flow amplitude for Le = 1 (the sold line) and

Le = 1/2 and Le = 2 (the dashed lines) and various strip widths L.
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Figure 4.3: The maximal temperature dependence on the flow amplitude for Le
strip widths L.

5 Conclusions

= 1 and various

We have considered the qualitative behavior of a reaction-diffusion system of the KPP type in a
periodic flow and with a heat-loss boundary condition for temperature. In the absence of the flow a
reaction front is formed and propagates if the strip is wide enough, while the flame becomes extinct
in a sufficiently narrow channel. We show that in the presence of a periodic flow the qualitative
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Figure 4.4: The bulk burning rate dependence on the flow amplitude for Le = 1, L = 12 and various
cell sizes [.
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Figure 4.5: The critical flow amplitude necessary to extinguish a flame in a strip of width L with
the cell sizes [ =2 and [ = 4.

behavior is governed by the eigenvalue problem that arises after linearization of the problem ahead
of the front. Depending on the behavior of the leading eigenvalue the flame either propagates with
a speed that is independent of the Lewis number, or is either blown-off by a sufficiently strong flow
or is extinct. We show numerically in the general case and analytically in the homogenization limit
that when the period cells are sufficiently small, a sufficiently strong vortical flow may extinguish
the flame in a channel that is sufficiently wide to support flame propagation in the absence of the
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flow. We observe a reasonable agreement with the homogenization scaling A, ~ L* for the critical
flow amplitude necessary to extinguish a flame in strip of width L. On the other hand, a strong
vortical flow with large cells would speed up flame propagation.
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