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Introduction

The aim of this course is to study additive problems in number theory. Broadly, given
a sufficiently large set of integers A (or more generally a subset of some abelian group)
we are interested in understanding additive patterns that appear in A. An important
example is whether A contains non-trivial arithmetic progressions of some given length
k. One reason for considering arithmetic progressions is that they are quite indestructible
structures: they are preserved under translations and dilations of A, and they cannot be
excluded for trivial congruence reasons. For example the pattern a, b and a + b all being
in the set seems quite close the arithmetic progression case a, b, (a+ b)/2, but the former
case can never occur in any subset of the odd integers (and such subsets can be very large).
Another class of questions we can ask is whether all numbers can be written as a sum of
s elements from a given set A. For example, all numbers are sums of four squares, nine
cubes etc. Waring’s problem and the Goldbach conjectures are two classical examples. In
the same spirit, given a set A of N integers we may ask for information about the sumset
A + A := {a + b : a, b ∈ A}. If there are not too many coincidences, then we may expect
|A+A| � N2. But when A is an AP note that |A+A| ≤ 2|A|−1. One of our goals for the
class will be Freiman’s theorem that if the sumset is small then A looks like a ”generalized
arithmetic progression.”

The subject may be said to begin with a beautiful result of van der Waerden (1927).

van der Waerden’s Theorem. Let k and r be given. There exists a number N = N(k, r)
such that if the integers in [1, N ] are colored using r colors, then there is a non-trivial
monochromatic k term arithmetic progression.

van der Waerden’s proof was by an ingenious elementary induction argument on k and
r. The proof does not give any good bound on how large N(k, r) needs to be. A more
general result was subsequently found by Hales and Jewett (1963), with a nice refinement
of Shelah (1988), but again the bounds for the van der Waerden numbers are quite poor.

The Hales-Jewett Theorem. Let k and r be given. There exists a number N = N(k, r)
such that if the points in [1, k]N are colored using r colors then there is a monochromatic
“combinatorial line”. Here a combinatorial line is a collection of k points of the following
type: certain of the coordinates are fixed, and a certain non-empty set of coordinates are
designated as “wildcards” taking all the values from 1 to k.

A picturesque way of describing the Hales-Jewett theorem is that a “tic-tac-toe” game
of getting k in a row, played by r players, always has a result in sufficiently high dimen-
sions. Since there is obviously no disadvantage to going first, the first player wins; but
no constructive strategy solving the game is known. One can recover van der Waerden’s
theorem by thinking of [1, k]N as giving the base k digits (shifted by 1) of numbers in
[0, kN − 1].

Erdős and Turan proposed a stronger form of the van der Waerden, partly in the hope
that the solution to the stronger problem would lead to a better version of van der Waer-
den’s theorem.

The Erdős-Turán conjecture. Let δ and k be given. There is a number N = N(k, δ)
such that any set A ⊂ [1, N ] with |A| ≥ δN contains a non-trivial arithmetic progression
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of length k.

In 1953, Roth proved the Erdős-Turán conjecture in the case k = 3.

Roth’s Theorem. There exists a positive constant C such that if A ⊂ [1, N ] with |A| ≥
CN/ log logN then A has a non-trivial three term AP.

In other words, N(δ, 3) ≤ exp(exp(C/δ)) for some positive constant C. This stronger
result does in fact give a good bound on the van der Waerden numbers for k = 3. We
know now thanks to Bourgain that |A| � N(log logN/ logN)1/2 suffices. Thus the double
exponential bound can be replaced by a single exponential.

Let r3(N) denote the size of the largest subset of [1, N ] having no non-trivial three term
APs. Then as mentioned above, r3(N) � N

√
log logN/ logN . What is the true nature of

r3(N)? If we pick a random set A in [1, N ] we may expect that it has about |A|3/N three
term APs. This suggests that r3(N) is perhaps of size N1/3. However, in 1946 Behrend
found an ingenious construction that does much much better.

Behrend’s Theorem. There exists a set A ⊂ [1, N ] with |A| � B exp(−c
√

logN)
containing no non-trivial three term arithmetic progressions. In other words r3(N) �
N exp(−c

√
logN).

Roth’s proof is based on Fourier analysis. It falls naturally into two parts: either the set
A looks random in which case we may easily count the number of three term progressions,
or the set has some structure which can be exploited to find a subset with increased density.
The crucial point is that the idea of randomness here can be made precise in terms of the
size of the Fourier coefficients of the set. This argument is quite hard to generalize to four
term progressions (or longer), and was only extended recently with the spectacular work
of Gowers.

Returning to the Erdős-Turán conjecture, the next big breakthrough was made by
Szemerédi who in 1969 established the case k = 4, and in 1975 dealt with the general case
k ≥ 5. His proof was a tour-de-force of extremely ingenious and difficult combinatorics.
One of his ingredients was van der Waerden’s theorem, and so this did not lead to a good
bound there.

Szemerédi’s Theorem. Given k and δ > 0, there exists N = N(k, δ) such that any set
A ⊂ [1, N ] with |A| ≥ δN contains a non-trivial k term arithmetic progression.

An entirely different approach was opened by the work of Furstenberg (1977) who used
ergodic theoretic methods to obtain a new proof of Szemerédi’s theorem. The ergodic
theoretic approach also did not lead to any good bounds, but was useful in proving other
results previously inaccessible. For example, it led to a multi-dimensional version of Sze-
merédi’s theorem, also a density version of the Hales-Jewett theorem (due to Katznelson
and Ornstein), and also allowed for the common difference of the APs to have special
shapes (e.g. squares).

In 1998-2001 Gowers made a major breakthrough by extending Roth’s harmonic analysis
techniques to prove Szemerédi’s theorem. This approach finally gave good bounds for the
van der Waerden numbers.
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Gowers’s Theorem. There exists a positive constant ck such that any subset A in [1, N ]
with |A| � N/(log logN)ck contains a non-trivial k term arithmetic progression.

In this course, we hope to give an account of Gowers’s proof in the case k = 4. One of
the major insights of Gowers is the development of a “quadratic theory of Fourier analysis”
which substitutes for the “linear Fourier analysis” used in Roth’s theorem. Gowers’s ideas
have transformed the field, opening the door to many spectacular results, most notably
the work of Green and Tao.

The Green-Tao Theorem (2003). The primes contain arbitrarily long non-trivial arith-
metic progressions.

Note that up to N there are about N/ logN primes. This density is much smaller than
what would be covered by Gowers’s theorem; even in the case k = 3 it is not covered by
the best known results on r3(N). We will not be able to cover the Green-Tao theorem,
but will give some of the ideas in the simple case k = 3. Another result along those lines
is the celebrated three primes theorem.

Vinogradov’s theorem (1937). Every large odd number is the sum of three primes.

Another brilliant result of Green and Tao, developing Gowers’s ideas, is that r4(N) �
N(logN)−c where r4(N) denotes the largest cardinality of a set in [1, N ] containing no
four term progressions.

Another theme that we shall explore, and which also plays an important role in Gowers’s
proof, is Freiman’s theorem on sumsets. If A is a set of N integers then A+A is bounded
above by N(N + 1)/2, and below by 2N − 1. The lower bound is attained only when A is
highly structured, and is an arithmetic progression of length N . Clearly if A is a subset
of an arithmetic progression of length CN then |A+A| ≤ 2C|A|. More generally suppose
d1, . . . , dk are given numbers, and consider the set

{a0 + a1d1 + . . .+ akdk : 1 ≤ ai ≤ Ni for 1 ≤ i ≤ k}.

We may think of this as a generalized arithmetic progression of dimension d. Note that
this generalized AP has cardinality at most N1 · · ·Nk. If these sums are all distinct (so
that the cardinality equals N1 · · ·Nk) we call the GAP proper. Note that if A is contained
in a gAP of dimension k and size ≤ CN then |A+A| ≤ 2kCN . Freiman’s theorem provides
a converse to this showing that all sets with small sumsets must arise in this fashion.

Freiman’s theorem. If A is a set with |A + A| ≤ C|A| then there exists a proper GAP
of dimension k (bounded in terms of C) and size ≤ C1|A| for some constant C1 depending
only on C.

Qualitatively Freiman’s theorem says that any set with a small sumset looks like an
arithmetic progression. Similarly we may expect that a set with a small product set
should look like a geometric progression. But of course no set looks simultaneously like an
arithmetic and a geometric progression! Thus we may surmise, as did Erdős and Szemerédi
that either the sumset or the product set must be large.
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Erdős-Szemerédi Conjecture. If A is a set of N integers then

|A+A|+ |A ·A| � N2−ε,

for any ε > 0.

This is currently known for ε > 3/4 (indeed a little better) thanks to results of Erdős-
Szemerédi, Solymosi, Elekes ... . The sum-product theory (and its generalizations) is
another very active problem in additive combinatorics, and has led to many important
applications (bounding exponential sums etc).

We end this introduction by giving a brief description of how ergodic theory connects up
with these combinatorial problems. The subject begins with a simple recurrence theorem
of Poincaré.

Poincaré recurrence. Let X be a probability space with measure µ, and let T be a
measure preserving transformation (so µ(T−1A) = µ(A)). For any set V with positive
measure there exists a point x ∈ V such that for some natural number n, Tnx also is in
V .

Proof. This is very simple: note that the sets V , T−1V , T−2V , . . . cannot all be disjoint.
Therefore T−mV ∩T−m−nV 6= ∅ for some natural numbers m and n. But this gives readily
that V ∩ TnV 6= ∅ as needed.

It is clear from the proof that the number n in Poincaré’s result may be found below
1/µ(V ). As an example, we may take X to be the circle R/Z, and take V to be the interval
[−1/2Q, 1/2Q], and T to be the map x→ x+ θ for some fixed number θ. We thus obtain:

Dirichlet’s Theorem. For any real number θ, and any Q ≥ 1 there exists 1 ≤ q ≤ Q
such that ‖qθ‖ ≤ 1/Q. Here ‖x‖ denotes the distance between x and its nearest integer.

If X happens also to be a separable (covered by countably many open sets) metric space,
then we can divide X into countably many balls of radius ε/2. Then it follows that almost
every points of X returns to within ε of itself. That is, almost every point is recurrent.

We don’t really need a probability space to find recurrence. Birkhoff realized that this
can be achieved purely topologically and holds for compact metric spaces.

Birkhoff’s Recurrence Theorem. Let X be a compact metric space, and T be a con-
tinuous map. Then there exists a recurrent point in X; namely, a point x such that there
is a sequence nk →∞ with Tnkx→ x.

Proof. Since X is compact, any nested sequence of non-empty closed sets Y1 ⊃ Y2 ⊃ Y3 . . .
has a non-empty intersection. Consider T -invariant closed subsets of X; that is, Y with
TY ⊂ Y . By Zorn’s lemma and our observation above, there exists a non-empty minimal
closed invariant set Y . Let y be any point in Y and consider the closure of y, Ty, T 2y, . . . .
This set is plainly a closed invariant subset of Y , and by minimality equals Y . Therefore
y is recurrent.

These are some basic simple results, of the same depth as Dirichlet’s pigeonhole prin-
ciple and its application to Diophantine approximation. In the example of Diophantine
approximation, we see that if ‖nθ‖ is small then so are ‖2nθ‖, ‖3nθ‖ etc. This suggests
the possibility of multiple recurrence.
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Topological Multiple Recurrence. Let X be a compact metric space, and T be a con-
tinuous map. For any integer k ≥ 1 there exists a point x ∈ X and a sequence n` → ∞
with T jn`x→ x for each 1 ≤ j ≤ k.

This theorem is analogous to van der Waerden’s theorem, and indeed implies it. To see
this, let Λ = {1, . . . , r} represent r colors, and consider Ω = ΛZ. Thus Ω is the space of
all r colorings of the integers, and by x ∈ Ω we understand a particular r coloring of the
integers. We make Ω into a compact metric space (check using sequential compactness),
by taking as the metric d(x, y) = 0 if x = y and d(x, y) = 2−` where ` is the least
magnitude for which either x(`) 6= y(`) or x(−`) 6= y(−`). We define the shift map T by
Tx(n) = x(n + 1). Now suppose we are given a coloring ξ of the integers. Take X to be
the closure of Tnξ where n ranges over all integers. By definition this is a closed invariant
compact metric space, and so by the Topological Multiple Recurrence Theorem there is a
x ∈ X and some n ∈ Z with x(0) = x(n) = x(2n) = . . . = x(kn). But from the definition
of the space X we may find an m ∈ Z such that Tmξ and x agree on the interval [−kn, kn].
Then it follows that ξ(m) = ξ(m+ n) = . . . = ξ(m+ kn) producing a k + 1 term AP.

The above argument gives an infinitary version of the van der Waerden theorem where
we color all the integers. But from it we may deduce the finite version. Suppose not, and
there are r colorings of [−N,N ] with no monochromatic k-APs for each natural number N .
Extend each of these colorings arbitrarily to Z, obtaining an element in Ω. By compactness
we may find a limit point in Ω of these elements. That limit point defines a coloring of Z
containing no monochromatic k-APs, and this is a contradiction.

The ergodic theoretic analog of Szemerédi’s theorem is Furstenberg’s multiple recur-
rence theorem for measure preserving transformations, and this implies Szemerédi by an
argument similar to the one above.

Furstenberg’s Theorem. Let X be a probability measure space and let T be a measure
preserving transformation. If V is a set of positive measure, then there exists a natural
number n such that V ∩ T−nV ∩ T−2nV ∩ . . . ∩ T−knV has positive measure.
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The Hales-Jewett Theorem

We begin with a warm-up result, which although unrelated may help set the mood.

Schur’s Theorem. Given any positive number r, if N ≥ N(r) and the integers in [1, N ]
are colored using r colors then there is a monochromatic solution to x+ y = z.

First we need a special case of Ramsey’s theorem.

Lemma. Suppose that the edges of the complete graph KN are colored using r colors. If
N ≥ N(r) then there is a monochromatic triangle.

Proof. We will use induction on r. It is very well known that if r = 2 and N ≥ 6 then
there is a monochromatic triangle. Suppose we know the result for r− 1 colorings, and we
need N ≥ N(r− 1) for that result. Pick a vertex. There are N − 1 edges coming out of it.
So for some color there are ≥ d(N − 1)/re edges starting from this vertex having the same
color. Now the complete graph on the other vertices of these edges must be colored using
only r − 1 colors. Thus if N ≥ rN(r − 1)− r + 2 we are done.

Proof of Schur’s Theorem. Consider the complete graph on N vertices labeled 1 through
N . Color the edge joining a to b using the color of |a − b|. By our lemma, if N is
large then there is a monochromatic triangle. Suppose its vertices are a < b < c then
(c− a) = (c− b) + (b− a) is a solution proving Schur’s theorem.

Let k and r be given natural numbers. Consider the cube [1, k]N , and color each point
in it using r colors. The Hales-Jewett theorem says that if N is sufficiently large then
there will be a monochromatic line having k points. Here a (combinatorial) line means
the following: Let x = (x1, . . . , xN ) be a point, and let A be a non-empty subset of [1, N ].
By x ⊕ jA (where 1 ≤ j ≤ k) we denote the point y(j) whose coordinates are given by
yi(j) = xi if i /∈ A and yi(j) = j if i ∈ A. The line x⊕A consists of the points x⊕ jA for
1 ≤ j ≤ k. In other words, A describes a set of coordinates whose entries are wildcards
taking all the values from 1 to k.

As a special case consider k = 3 and r = 2 which corresponds (essentially) to a game
of tic-tac-toe. The Hales-Jewett theorem guarantees that in high dimension a game of
tic-tac-toe never ends in a draw. Since the first person has a free move, and can steal any
winning strategy that the second person devises, it follows that the first player should win
such games.

We will now give two proofs of the Hales-Jewett theorem; the second, due to Shelah,
being a small but very important modification of the first. The proofs both proceed by
induction on k and r. Let HJ(k, r) denote the least N for which the theorem holds; we
wish to show that this is finite, and also derive some bounds for it. Note that if k = 1 there
is nothing to prove and we may take HJ(1, r) = 1. Consider next the case that k = 2.
Take N = r and note that two of the r+1 points (1, 1, . . . , 1), (1, 1, . . . , 1, 2), (1, . . . , 2, 2),
. . . , (1, 2, 2, . . . , 2), (2, 2, . . . , 2) must have the same color. Thus HJ(2, r) ≤ r. Exercise:
show that HJ(2, r) = r.

First proof. We assume that HJ(1, r), . . . , HJ(k − 1, r) all exist, for all values of r. We
now want to show that HJ(k, r) exists. Let N1, . . . , Nr denote a very rapidly increasing
sequence which we will specify below, and set N = N1 + . . .+Nr.
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Consider [1, k]N as [1, k]N1 × . . .× [1, k]Nr . Given a point xr in [1, k]Nr we may define
an r-coloring of [1, k]N1 × . . . × [1, k]Nr−1 by setting the color of (x1, . . . ,xr−1) to be our
original color for (x1, . . . ,xr). Call this r-coloring of [1, k]N1 × . . . × [1, k]Nr−1 as φxr

say. The number of possibilities for φxr
is naturally rkN1+...+Nr−1 . We now view these

possibilities as a palette for coloring xr using rkN1+...+Nr−1 colors. If Nr is sufficiently
large — precisely, Nr ≥ HJ(k − 1, rkN1+...+Nr−1 ) — then by induction hypothesis we may
find a point yr and a non-empty Ar ⊂ [1, Nr] such that φyr⊕jAr

is the same coloring for
each 1 ≤ j ≤ k − 1. In other words, for any given choice of x1, . . . , xr−1, the color of
(x1, . . . ,xr−1,yr ⊕ jAr) does not change as j varies from 1 to k − 1.

We now want to repeat the same argument for xr−1. Given xr−1 we have an r-coloring
of [1, k]N1 × . . . [1, k]Nr−2 × [1, k] by setting the color of (x1, . . . ,xr−2,yr ⊕ jAr) to be
the original color of (x1, . . . ,xr−2,xr−1,yr ⊕ jAr). There are r2kN1+...+Nr−2 such possible
colorings — since the colorings for yr ⊕ jAr are the same for 1 ≤ j ≤ k − 1 we have a
2 in place of the more obvious k. Again we view each of these coloring possibilities as a
palette of colors for xr−1. Thus if Nr−1 is sufficiently large — precisely, Nr−1 ≥ HJ(k −
1, r2kN1+...+Nr−2 ) — then we may find yr−1 and a non-empty subset Ar−1 ⊂ [1, Nr−1] such
that, given x1, . . . , xr−2, and 1 ≤ jr ≤ k, the color of (x1, . . . ,xr−2,yr−1⊕jr−1Ar−1,yr⊕
jrAr) does not change as jr−1 varies from 1 to k − 1.

We continue in this manner. In stage ` we require thatNr−`+1 ≥ HJ(k−1, r2
`−1kN1+...+Nr−` ),

and produce yr−`+1 and a non-empty subset Ar−`+1 ⊂ [1, Nr−`+1]. After r stages we will
have produced points y1, . . . , yr and non-empty sets A1, . . . , Ar such that the points
(y1 ⊕ j1A1,y2 + j2A2, . . . ,yr ⊕ jrAr) and (y1 ⊕ j′1A1,y2 + j′2A2, . . . ,yr ⊕ j′rAr) have the
same color if for each 1 ≤ i ≤ r either ji = j′i = k or ji, j′i < k. But this is tantamount
to having an alphabet with just two elements: either ji < k or ji = k, and having an r
coloring on an r-dimensional cube on this 2 element alphabet. Thus we have reduced to
HJ(2, r)! The proof follows.

The bounds produced by this proof are obviously not even astronomical.

Shelah’s proof. The proof given above reduces HJ(k, r) to HJ(2, ) using HJ(k − 1, ).
Shelah instead uses HJ(2, ) to reduce to HJ(k− 1, ) and the effect of this simple change
on bounds is dramatic!

Let R be a large parameter to be chosen, and let N1, . . . , NR be a rapidly growing
sequence, and set N = N1 + . . .+NR. Consider [1, k]N as [1, k]N1× . . .× [1, k]NR . Consider
xR in [1, k]NR and associate to it an r-coloring φxR

of [1, k]N1 × . . .× [1, k]NR−1 by giving
(x1, . . . ,xR−1) the original color of (x1, . . . ,xR). Note that there are rkN1+...+NR−1 such
colorings. As before, we think of these as a palette of colors for the xR. Thus if NR

is sufficiently large — precisely NR ≥ HJ(2, rkN1+...+NR−1 ) = rkN1+...+NR−1 — then we
may find yR and a non-empty set AR ⊂ [1, NR] such that φyR⊕jAR

determine the same
coloring for j = 1 and j = 2. In other words, given any x1, . . . , xR−1, the colors of
(x1, . . . , xR−1,yR ⊕ jAR) are the same for j = 1 and j = 2.

Now we repeat the same for xR−1. Consider the coloring on [1, k]N1×· · · [1, k]NR−2×[1, k]
by setting the color of (x1, . . . ,xR−2,yr⊕jAR) to be the original color of (x1, . . . ,xR−2,xR−1,yr⊕
jAR). There are r(k−1)kN1+...+NR−2 such colorings — the (k−1) arises because the colors for
j = 1 and j = 2 are the same. Therefore, viewing these as a palette of colors for xR−1 we see
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that ifNR−1 is large — precisely, NR−1 ≥ HJ(2, r(k−1)kN1+...+NR−2 ) = r(k−1)kN1+...+NR−2 —
then there exists yR−1 and a non-empty AR−1 ⊂ [1, NR−1] such that given x1, . . . , xR−2,
and 1 ≤ jR ≤ k, the color of (x1, . . . ,xR−2,yR−1 ⊕ jR−1AR−1,yR ⊕ jRAR) is the same
for jR−1 = 1 or 2.

We continue in this manner. In stage ` we require thatNR−`+1 ≥ HJ(2, r(k−1)`−1kN1+...+NR−` ) =
r(k−1)`−1kN1+...+NR−` and produce yR−`+1 and a non-empty AR−`+1 ⊂ [1, NR−`+1]. After
R stages we find that (y1 ⊕ j1A1, . . . ,yR ⊕ jRAR) and (y1 ⊕ j′1A1, . . . ,yR ⊕ j′RAR) have
the same color if for each i either 1 ≤ ji, j

′
i ≤ 2 or ji = j′i. This is tantamount to having

a k − 1 alphabet (1 and 2 are identified) and r-coloring an R dimensional cube on this
alphabet. So if R ≥ HJ(k − 1, r) then we are done.

Deduction of Van der Waerden’s theorem. Van der Waerden’s theorem states that if the
numbers [1, N ] are r-colored then there is a mono-chromatic k-AP provided N is large
in terms of k and r. One way to deduce this from Hales-Jewett is to identify [1, k]N

with the numbers from [1, kN ] by means of the base k expansion: thus W (k, r) ≤ kHJ(k,r).
Alternatively, consider an r-coloring of [0, (k−1)N ] and use this to get a coloring of [1, k]N

by setting the color of (x1, . . . , xN ) to be the color of
∑

(xi − 1). A Hales-Jewett line on
[1, k]N then gives a k-AP. Thus W (k, r) ≤ (k − 1)HJ(k, r) + 1.
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Roth’s Theorem

1. Basic Fourier Analysis.
Throughout we will write ZN to denote Z/NZ. Often it may be convenient to assume

that N is prime; since most of our results are insensitive to the exact value of N , this
assumption is largely harmless. Given f : ZN → C, we define the Fourier transform
f̂ : ZN → C by setting

f̂(r) =
∑

n

f(n)e
(
− rn

N

)
.

Here and throughout, e(θ) denotes e2πiθ. We may easily check the Fourier inversion for-
mula,

f(n) =
1
N

∑
r

f̂(r)e
(rn
N

)
.

Similarly we may easily check Parseval’s formula

N
∑

n

f(n)g(n) =
∑

k

f̂(k)ĝ(k),

and in the special case f = g

N
∑

n

|f(n)|2 =
∑

k

|f̂(k)|2.

Notation. Given a set A ∈ ZN we will use A(n) to denote the characteristic function
of A; that is, A(n) = 1 if n ∈ A and 0 otherwise. Also, we will let fA denote the balanced

function fA(n) = A(n)− |A|/N . Note that Â(0) = |A| and that f̂A(0) = 0.

2. The Proof of Roth’s Theorem.
Roth’s Theorem says that if a positive density subset of the integers contains a 3-AP.

We now give a streamlined proof of this due to Gowers.
Let A ⊂ [1, N ] with |A| = δN . We assume that N is odd, and let B be the set of even

or odd numbers in A whichever is larger. Consider

1
N

∑
r (mod N)

B̂(r)2Â(−2r) = #{x+ y ≡ 2z (mod N) : x, y ∈ B, z ∈ A}.

Here B̂(r) =
∑

b∈B e(br/N), and similarly for Â(r). By size and parity considerations, we
find that x+ y ≡ 2z (mod N) in fact implies that x+ y = 2z so that we have a three term
AP. There are |B| such trivial 3-APs. So the number of non-trivial 3-APs is

(1)
1
N

∑
r (mod N)

B̂(r)2Â(−2r)− |B| = |B|2|A|
N

− |B|+ 1
N

∑
r 6=0

B̂(r)2Â(−2r).

The proof now splits into two parts: when A has no large Fourier coefficients (A is
random), and when A has a large Fourier coefficient (A has a structure – linear bias). The
first case is easy, while in the second case we have to work a little to uncover the structure.
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First suppose that for all r 6= 0 we have |Â(r)| ≤ δ2N/4. In this case

1
N

∣∣∣ ∑
r 6=0

B̂(r)2Â(−2r)
∣∣∣ ≤ δ2

4

∑
r

|B̂(r)|2 =
δ2

4
N |B| ≤ |A||B|2

2N
.

From (1) we deduce that there are many 3-APs in this case.
So we may suppose that there exists r 6= 0 such that |Â(r)| ≥ δ2N/4. Equivalently we

have

(2)
∣∣∣ N∑

a=1

(A(a)− δ)e(ar/N)
∣∣∣ ≥ δ2

4
N,

where A(a) denotes the characteristic function of A.
Let 1 ≤ Q ≤ N be a parameter to be chosen shortly. We use Dirichlet’s theorem to

find b/q where q ≤ Q and (b, q) = 1 such that |r/N − b/q| ≤ 1
qQ . We then divide [1, N ]

into progressions (mod q). There are q such progressions each with N/q+O(1) elements.
We now subdivide these progressions into M intervals each. Thus there are qM such
intervals in all, and each interval contains about N/(qM) + O(1) elements. Let I denote
a typical such interval. We claim that on I, e(ar/N) is more or less constant. Indeed it is
e(ab/q + aθ) for some |θ| ≤ 1/qQ. Now e(ab/q) is constant as all elements of I are in the
same progression (mod q). The variation in e(aθ) is at most O(N |θ|/M) = O(N/(qQM)).
Thus from (2) we find that

δ2N

4
≤

∑
I

∣∣∣ ∑
a∈I

(A(a)− δ)e(ar/N)
∣∣∣ =

∑
I

(∣∣∣ ∑
a∈I

(A(a)− δ)
∣∣∣ +O

( N |I|
qQM

)∣∣∣
=

∑
I

∣∣∣ ∑
a∈I

(A(a)− δ)
∣∣∣ +O

( N2

qQM

)
.

We will choose Q =
√
N and M = C

√
N/(qδ2) for a suitably large constant C. Then we

obtain

(3)
δ2N

8
≤

∑
I

∣∣∣ ∑
a∈I

(A(a)− δ)
∣∣∣.

Plainly
0 =

∑
I

∑
a∈I

(A(a)− δ),

so that from (3) we may deduce the existence of an I with∑
I

(A(a)− δ) ≥ δ2N

16qM
.

Recall that I contains about N/(qM) elements, and so the relative density of A within
I is at least δ + δ2/16 — this is referred to as a density increment argument. Now we
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take I and translate and dilate it so that it corresponds to the set [1, N/qM ]. Note that
APs are preserved under translation and dilation. We have thus extracted a set of density
δ + δ2/16 lying in [1, N/(qM)] = [1, δ2

√
N/C], and it suffices to exhibit 3-APs in this set.

Now we may repeat the entire argument for this set.
If we iterate the argument D/δ times for an appropriate constant D then we can get a

density > 0.9 when it is easy to exhibit 3APs. After these iterations, the initial value of N
would have been reduced to δ4N1/2L

/C2. We wish this last quantity to be relatively large;
say ≥ 103. Thus we would like N ≥ (103C2/δ4)2

D/δ

. Equivalently if δ > c/ log logN , the
argument works.

3. Behrend’s Example.
Behrend constructed a surprisingly large set in [1, N ] with no 3-APs.

Behrend’s Theorem A. There is a set A in [1, N ] which is free of 3 APs and satisfies
|A| � N exp(−c

√
logN). Here c is an absolute positive constant.

Behrend’s Theorem B. There exists a set A in [1, N ] with |A| ≥ δN which has �
δc log(1/δ)N2 three term progressions. Here c is an absolute positive constant, and δ > 0.

Proof of Theorem A. Consider points (x1, . . . , xK) with xi ∈ [0, d]. Thus there are (d+1)K

such points. Consider
∑K

i=1 x
2
i . This is an integer in [0,Kd2] and so there exists n ≤ Kd2

such that n =
∑
x2

i for more than (d+ 1)K/(Kd2) tuples. That is, there is a sphere with
many points. The argument rests on the fact that any line can intersect the sphere in at
most two points.

Consider the set A = {
∑K

i=1 xi(2d+1)i−1} where (x1, . . . , xK) is a point on our sphere.
Note that all elements of A are below (2d+1)K and that |A| ≥ (d+1)K/(Kd2). We claim
that A has no 3-APs. For, if∑

xi(2d+ 1)i−1 +
∑

zi(2d+ 1)i−1 =
∑

2yi(2d+ 1)i−1,

then xi + zi = 2yi, as xi, yi, and zi are all ≤ d. In other words the points (x1, . . . , xK),
(y1, . . . , yK), and (z1, . . . , zK) all lie on a line, which is impossible.

Now take K about size
√

logN , and d about size e
√

log N . Then A is a set in [1, N ] with
|A| ≥ N exp(−c

√
logN) with no 3-APs.

Proof of Theorem B. Let A0 be a set of 2Mδ elements in [1,M ] such that A0 is free of
three term progressions. Consider A ∈ [1, 2MK] which consists of all elements a ≡ a0

(mod 2M) for some a0 ∈ A0. Thus |A| = 2KMδ. If three elements in A lie in an AP,
then, since A0 has no 3-APs, they must all be congruent (mod 2M). The number of three
term progressions in A is therefore � (2Mδ)K2 � (δ/M)(2MK)2. Theorem A furnishes
an example where M = exp(c(log 1/δ)2), and so the result follows.

4. Fourier coefficients alone do not control four APs: A quadratic example.
Let A ⊂ ZN be defined as follows: a ∈ A if and only if there exists |b| ≤ Nδ/2 with

a2 ≡ b (mod N). We claim that Â(k) is small for every k 6= 0, but there are substantially
more four term arithmetic progressions in A than for a random set. It’s clear from the
definition that |A| = δN +O(1).
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For k 6= 0 we have that

Â(k) =
∑
n∈A

e(−nk/N) =
∑

n (mod N)

( 1
N

∑
|b|≤δN/2

∑
r (mod N)

e
(r(n2 − b)

N

))
e
(
− kn

N

)
.

Regrouping, this is

1
N

∑
r (mod N)

( ∑
n (mod N)

e
(rn2 − kn

N

))( ∑
|b|≤δN/2

e
(
− br

N

))
.

When k 6= 0 (and suppose N is odd) the inner sum over n above is a Gauss sum which is
≤
√
N in magnitude. The sum over b is bounded by � min(δN, 1/‖r/N‖). It follows that

Â(k) � 1
N

√
N

∑
r (mod N)

min
(
δN,

1
‖r/N‖

)
�
√
N logN.

This proves our first claim that Â(k) is small for non-zero k.
To prove our second claim consider B ⊂ A defined by b ∈ B if and only if b2 ≡ c

(mod N) for some |c| ≤ δN/14. Plainly |B| = δN/7 + O(1). The above argument shows
readily that B has no non-trivial large Fourier coefficients, and therefore we may find
� δ3N2 three term progressions in B. Consider one of those progressions a, a+ d, a+ 2d
all in B (and hence in A). We claim that a+3d belongs to A. To see this, note the identity

a2 − 3(a+ d)2 + 3(a+ 2d)2 − (a+ 3d)2 = 0.

It follows that (a+3d)2 has a representative (mod N) of size less than 7(δN/14) = δN/2,
proving our claim. Thus A has many more four APs than we would expect for a random
set (viz. δ4N2).

5. Varnavides’s Theorem.
Varnavides’s Theorem is a stronger form of Roth’s theorem which counts the number

of three term progressions.

Varnavides’s Theorem. For every ε > 0 there exists C(δ) > 0 such that if A ⊂ [1, N ]
with |A| ≥ δN then A contains at least C(δ)N2 three term progressions.

Proof. By Roth’s theorem we know that there exists M = M(δ) such that any set of δM/2
elements in [1,M ] has a non-trivial three term progression. Now consider progressions
P (a, d) = a+ [1,M ]d in [1, N ] where we allow d ≤ δN/M2 and a ≤ N(1− δ/M).

We claim that for many choices of a and d one has |A ∩ P (a, d)| ≥ δM/2. Indeed we
have that for any given d∑

a≤N(1−δ/M)

|A ∩ P (a, d)| ≥M
∑
a∈A

Md≤a≤N(1−δ/M)

1 ≥M
(
δN − 2Nδ/M

)
.
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It follows that for each d there are � δN values of a with |A ∩ P (a, d)| ≥ δM/2, so that
in total there are � δ2N2/M2 good progressions P (a, d).

By Roth’s theorem each good progression contributes at least one three term progression
in A. But of course some of these progressions could get over counted. Suppose we are
given a progression x, x+y, x+2y in A. To how many P (a, d)’s could this belong? Clearly
d must be a divisor of y, and moreover y/d ≤ M . Therefore there are at most M choices
for d. Each choice of d fixes a in at most M ways. Therefore each progression is over
counted at most M2 times.

Thus we have exhibited � δ2N2/M4 distinct three term progressions, and this proves
Varnavides’s Theorem.

6. The large spectrum of a set.
Suppose A ⊂ ZN with |A| = δN . In our proof of Roth’s theorem a crucial role was

played by the large Fourier coefficients of A. Namely the set R = R(ρ) of values r with
|Â(r)| ≥ ρ|A|. From Parseval we see easily that |R| ≤ ρ−2δ−1. A result of M. C. Chang
(which we may explore later) says that the set of large Fourier coefficients has a very rigid
structure.

Chang’s Theorem. The set R(ρ) is contained in a cube of dimension at most 2ρ−2 log(1/δ).
That is, there exist numbers r1, . . . , rk with k ≤ 2ρ−2 log(1/δ) such that each r ∈ R may
be written as

∑
εjrj where the εj take values −1, 0, or 1.
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Weyl’s equidistribution theorem and differencing method

The idea of using Fourier analysis to study equidistribution goes back to Weyl. Here is his
celebrated equidistribution criterion:

Weyl’s criterion. Let u1, u2, . . . , be a sequence of real numbers. We say that this
sequence is uniformly distributed (mod 1) if either of the following three equivalent state-
ments holds:

(1) For every interval (α, β) ∈ T we have

lim
N→∞

1
N

#{n ≤ N : un (mod 1) ∈ (α, β)} = β − α.

(2) For every non zero integer k we have∑
n≤N

e(kun) = o(N),

as N →∞.
(3) For every Riemann integrable function f on T we have

1
N

∑
n≤N

f(un) →
∫

T
f(u)du

as N →∞.

Sketch of proof. We check easily that (3) =⇒ (2) and that (1) =⇒ (3). To complete the
proof one shows (2) =⇒ (1). This follows by using Weierstrass’s approximation theorem
to approximate the characteristic function of [α, β] by trigonometric polynomials.

As an immediate application of Weyl’s criterion we obtain that {nθ} is uniformly dis-
tributed (mod 1) when θ is irrational. Weyl generalized this substantially by showing that
the fractional parts of a polynomial p(n) which has an irrational coefficient (and which
is not the constant term) become equidistributed (mod 1). To achieve this he added a
crucial new idea which has come to be known as Weyl differencing.

To illustrate this, we first show that for odd N the Gauss sum
∑

n e(n
2/N) has size

√
N ;

we used this previously in our quadratic example on four term progressions. We square
the Gauss sum ∣∣∣ ∑

n

e(n2/N)
∣∣∣2 =

∑
n1,n2 (mod N)

e
(n2

1 − n2
2

N

)
.

Now if we write n1 = n2 + h then n2
1 − n2

2 = 2hn2 + h2 is a linear polynomial in n2. Thus
the above equals ∑

h (mod N)

∑
n2 (mod N)

e
(2hn2 + h2

N

)
= N,

since only the term h = 0 survives. This proves our claim. The heart of the proof is that
a degree two polynomial is reduced by differencing to a degree one polynomial, and this
last sum is easy to evaluate.
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Lemma 1. Suppose |α − a/q| ≤ 1/q2 where (a, q) = 1, and q ≥ 2. Then for N ≥ 1 we
have ∑

n≤N

e(n2α) � N
√
q

+
√

(q +N) log q.

Proof. Call the sum in question S. Then

|S|2 =
∑

n1,n2≤N

e(α(n2
1 − n2

2)) =
∑
|h|≤N

∑
n2≥max(−h,0)

n2≤min(N,N−h)

e(α(2hn2 + h2)).

Recalling that
∑

a≤n≤b e(nθ) � min(b− a, 1/‖θ‖), the above is

�
∑
|h|≤N

min(N, 1/‖2hα‖).

Divide the terms |h| ≤ N into intervals of length q/2. We may check easily that for each
interval, the sum over h is � N + q log q. Since there are � N/q + 1 such intervals, our
claimed estimate follows.

From Lemma 1 and Weyl’s criterion it follows that if α is irrational then the fractional
parts of αn2 are equidistributed (mod 1). In particular it follows that ‖n2α‖ can be
made less than ε for any given ε; we observed this as a consequence of van der Waerden’s
theorem. The argument extends inductively to cover all polynomials having at least one
irrational coefficient (which is not simply the constant term). As an exercise, the reader
may try to bound

∑
n≤N e(nkα) for k ≥ 3.

For our later applications we will need a more quantitative version of finding small frac-
tional parts of n2α (just as we needed Dirichlet’s theorem in the proof of Roth’s theorem).

Lemma 2. Given a rational number a/q with (a, q) = 1, there exists m ≤ M with
‖am2/q‖ � √

q(log q)
3
2 /M .

Proof. We may assume that M ≤ q. We want to find solutions to am2 ≡ b (mod q) with
|b| being small, say ≤ L. That is we want to estimate

1
q

∑
|b|≤L

∑
r (mod q)

∑
m≤M

e
( (am2 − b)r

q

)
.

The term r = 0 gives a main term of (2L+ 1)M/q. The terms r 6= 0 give, using Lemma 1
to estimate the sum over m,

� 1
q

∑
r 6=0

√
q log qmin

(
L,

1
‖r/q‖

)
� √

q(log q)
3
2 .

It follows that if L� q
√
q(log q)

3
2 /M we will have such solutions, proving the Lemma.
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Corollary 3. Let α be any real number. For every M ≥ 1 there exists a natural number
m ≤M with ‖m2α‖ � (logM)/M

1
3 .

Proof. First we find a rational number a/q with q ≤ Q, (a, q) = 1 and |α− a/q| ≤ 1/(qQ).
If q ≤ M then by choosing m = q we find that ‖αm2‖ ≤ q/Q ≤ M/Q. Suppose now
that q > M . Using Lemma 2 we may find m ≤ M with ‖am2/q‖ ≤ √

q(log q)
3
2 /M , and

therefore

‖αm2‖ ≤
√
q(log q)

3
2

M
+
M2

qQ
≤
√
Q(logQ)

3
2

M
+
M

Q
.

Choosing now Q = M
4
3 / logM we obtain the desired conclusion.

It is expected that one can find m ≤M with ‖m2α‖ �M−1+ε for any ε > 0. Heilbronn
showed that one can achieve � M− 1

2+ε, and Zaharescu (about ten years ago) obtained
�M− 4

7+ε.
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Vinogradov’s Three Primes Theorem

The still unresolved Goldbach conjecture states that every even number is the sum of two
primes. In the 1930s Vinogradov proved the striking result that every large odd number
is the sum of three primes. His method applies also to 3-APs in the primes, and this was
done by van der Corput. We will now discuss these results; to illustrate the ideas, we will
assume the truth of the Generalized Riemann Hypothesis and argue in the spirit of Hardy
and Littlewood, but the assumption of GRH can be removed with more effort. Below,
Λ(n) denotes the von Mangoldt function Λ(n) = log p if n is a power of the prime p, and
Λ(n) = 0 otherwise.

Vinogradov’s Theorem. Let N be a large natural number. Then

∑
n1+n2+n3=N

Λ(n1)Λ(n2)Λ(n3) ∼
N2

2
S(N),

where

S(N) =
∏
p|N

(
1− 1

(p− 1)2
) ∏

p-N

(
1 +

1
(p− 1)3

)
.

When N is odd we have S(N) � 1, and since the number of prime squares, cubes, etc.
is small, we conclude that there are many ways of writing a large odd number as a sum of
three primes.

Let
f(α) =

∑
n≤N

Λ(n)e(nα).

Note that ∫ 1

0

f(α)3e(−Nα)dα =
∑

n1+n2+n3=N

Λ(n1)Λ(n2)Λ(n3),

and our aim is to obtain an asymptotic formula for this quantity. The insight of Hardy and
Littlewood was that the exponential sum f(α) is large only when α is close to a rational
number with small denominator, and such values of α give the dominant contribution to
our integral. We already saw this feature for

∑
n≤N e(n2α) from Weyl’s method.

To gain an understanding of f(α) we will invoke the Generalized Riemann Hypothesis.
What we need is the consequence of GRH for the distribution of primes in progressions.
Recall that there are φ(q) Dirichlet characters χ (mod q).1 If χ (mod q) is a non-trivial
Dirichlet character, then on GRH for x ≥ q we have

(1) ψ(x, χ) =
∑
n≤x

Λ(n)χ(n) � x
1
2 log2 x.

1These are homomorphisms from (Z/qZ)∗ → T. The functions are extended to all of Z by setting

χ(n) = 0 if (n, q) > 1.
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If χ0 (mod q) is the trivial character then we have (on RH)

(2) ψ(x, χ0) =
∑
n≤x

Λ(n) +O(log2 qx) = x+O(x
1
2 log2(qx)).

Given (a, q) = 1, the orthogonality relation

1
φ(q)

∑
χ (mod q)

χ(n)χ(a) =
{

1 if n ≡ a (mod q)
0 otherwise

shows that, for x ≥ q,

(3) ψ(x; q, a) =
∑
n≤x

n≡a (mod q)

Λ(n) =
x

φ(q)
+O(x

1
2 log2 x).

Lemma 1. Let a/q be a rational number with (a, q) = 1. Then we have, assuming GRH,∑
n≤x

Λ(n)e(na/q) =
µ(q)
φ(q)

x+O(
√
qx log2 x).

Proof. We have

(4)
∑
n≤x

Λ(n)e(an/q) = O(log2 x) +
∑
n≤x

(n,q)=1

Λ(n)e(an/q).

We could now split n into progressions (mod q), and invoke (3). But there is some loss
in doing this, and we would obtain an error term of � q

√
x log2 x which is not sufficient

for our purposes. A better way to proceed is to express e(an/q) (for (an, q) = 1) in terms
of the multiplicative Dirichlet characters (mod q):

e(an/q) =
1

φ(q)

∑
b (mod q)

∑
χ (mod q)

χ(b)χ(an)e(b/q) =
1

φ(q)

∑
χ (mod q)

χ(an)τ(χ).

Here τ(χ) denotes the Gauss sum

τ(χ) =
∑

a (mod q)

χ(a)e(a/q).

It is well known that |τ(χ)| ≤ √
q, and equality holds there when χ is a primitive character

(see for example, Davenport’s Multiplicative number theory).
Using this in (4) we obtain that∑

n≤x

Λ(n)e(an/q) =
1

φ(q)

∑
χ (mod q)

χ(a)τ(χ)ψ(x, χ) +O(log2 x).



20 K. SOUNDARARAJAN

Using the GRH bound (1) for all non-trivial χ we see that such terms contribute �√
qx log2 x. It remains to handle the principal character χ0. By (2) this term contributes

1
φ(q)

τ(χ0)(x+O(
√
x log2 x) =

µ(q)
φ(q)

(x+O(
√
x log2 x)),

since τ(χ0) is a Ramanujan sum which is easily evaluated as µ(q). This completes our
proof.

Lemma 1 allows us to handle f(a/q), and to pass to f(α) for nearby α we use a standard
technique known as partial summation.

Lemma 2. Assume GRH. Let α = a/q + β where (a, q) = 1. Then

f(α) =
µ(q)
φ(q)

∫ N

0

e(βx)dx+O
(
(1 + |β|N)

√
qN log2N

)
.

Proof. Note that,

f(α) =
∫ N

0

e(xβ)d
( ∑

n≤x

Λ(n)e(an/q)
)

=
∫ N

0

e(xβ)d
(µ(q)
φ(q)

x+ E(x, a/q)
)
,

say, for some error term E(x, a/q). The first term gives the main term of the Lemma. As
for the second term, integration by parts gives that it is

E(N, a/q)e(Nβ)−
∫ N

0

2πiβe(xβ)E(x, a/q)dx.

Using the bound of Lemma 1, we conclude the desired estimate.

Corollary 3. Select Q = N
2
3 , and let |α − a/q| ≤ 1/(qQ) with (a, q) = 1 and q ≤ Q.

Then, assuming GRH,

f(α) � N

φ(q)
+N

5
6+ε.

Proof. Lemma 2 reveals (with any Q and |α− a/q| ≤ 1/(qQ) and q ≤ Q) that

f(α) � N

φ(q)
+

(
1 +

N

qQ

)√
qN log2N � N

φ(q)
+

(√
QN +

N
3
2

Q

)
log2N.

The optimal choice is Q = N
2
3 , as in the Corollary, and the result follows.

Following Hardy and Littlewood, we say that points close to rational numbers with
small denominators lie on major arcs while the minor arcs form the complementary set.
Concretely, let us say that α lies on a major arc if |α − a/q| ≤ 1/(qQ) with Q = N

2
3 ,

(a, q) = 1 and q ≤ (logN)10.
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Corollary 4. If m denotes the set of minor arcs, we have (on GRH)∫
m

|f(α)|3dα� N2

(logN)9
.

Proof. From Corollary 3, it follows that if α lies on a minor arc then

f(α) � N

(logN)8
,

since φ(q) � q/ log log q and so if q > (logN)10 we have φ(q) ≥ (logN)9. Therefore∫
m

|f(α)|3dα� N

(logN)9

∫ 1

0

|f(α)|2dα =
N

(logN)9
∑
n≤N

Λ(n)2 � N

(logN)8
.

It remains now to evaluate the major arc contribution. Precisely, we are interested in α
with |α− a/q| ≤ 1/(qQ) and q ≤ (logN)10. Notice that the intervals for different rational
numbers are disjoint. This major arc contribution equals

(5)
∫

M

f(α)3e(−Nα)dα =
∑

q≤(log N)10

∑
1≤a≤q
(a,q)=1

∫ 1/(qQ)

−1/(qQ)

f(a/q + β)3e(−N(a/q + β))dβ.

From Lemma 2 we see that

f(a/q + β)3 =
µ(q)3

φ(q)3
( ∫ N

0

e(βx)dx
)3

+O
( 1
φ(q)2

min
(
N2,

1
|β|2

)
(1 + |β|N)

√
qN log2(qN)

)
+O

(
(1 + |β|N)3(qN)

3
2 log2(qN)

)
.

With a little calculation we see that the contribution of the error terms above to (5) is
� N

11
6 +ε. Therefore, the major arc contribution is

(6) ∑
q≤(log N)10

µ(q)3

φ(q)3
( ∑

1≤a≤q
(a,q)=1

e(−Na/q)
)( ∫ 1/(qQ)

−1/(qQ)

( ∫ N

0

e(βx)dx
)3

e(−Nβ)dβ
)

+O(N
11
6 +ε).

The above factorizes nicely as a series and an integral. Let us tackle the integral first.
By making a substitution x = Ny and Nβ = ξ this is

N2

∫ N/(qQ)

−N/(qQ)

( ∫ 1

0

e(yξ)dy
)3

e(−ξ)dξ = N2
( ∫ ∞

−∞

( ∫ 1

0

e(yξ)dy
)3

e(−ξ)dξ +O
( (qQ)2

N2

))
=
N2

2
+O((qQ)2).
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Using this in (6), our major arc contribution becomes

N2

2

∑
q≤(log N)10

µ(q)3

φ(q)3
( ∑

1≤a≤q
(a,q)=1

e(−Na/q)
)

+O(N
11
6 +ε).

The sum over a is a Ramanujan sum. We are only interested in it for square-free q. It is
multiplicative, and equals −1 on primes not dividing N , and p− 1 on the primes dividing
N . At any rate, for a given q the sum over a is no more than φ(q). Thus the sum over q
may be extended to infinity, with an error at most

∑
q>(log N)10 µ(q)2/φ(q)2 � (logN)−10.

Therefore, our major arc contribution is

∼ N2

2

∞∑
q=1

µ(q)3

φ(q)3
( ∑

1≤a≤q
(a,q)=1

e(−aN/q)
)
,

which by multiplicativity equals

∼ N2

2

∏
p

(
1− 1

(p− 1)3
∑

1≤a≤p−1

e(−Na/p)
)

=
N2

2
S(N).

This completes our conditional proof of Vinogradov’s Theorem.
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Sum-product estimates: A proof due to Solymosi

Let A denote a set of N real numbers. Erdős and Szemerédi had the insight that if A+B
is small for some set B (say of cardinality N) then A must have some additive structure,
while if A·C (the set of products ac) is small for some set C then A has some multiplicative
structure. Since we expect that multiplicative structures and additive structures should be
independent of each other, they conjectured that one of the two sets must always be large.
This circle of ideas has proved very fruitful in recent years. We illustrate this sum-product
theory by giving a beautiful proof of Solymosi.

Theorem. Let A, B and C be finite sets of real numbers, each having at least two ele-
ments. Then

|A+B| × |A · C| � (|A|3|B||C|) 1
2 .

In particular, if A, B and C all have cardinality N then either A+B or A·C has cardinality
� N

5
4 .

Proof. We remove 0 (if present) from the sets A and C; since our sets have at least two
elements, the modified sets are non-empty. Suppose now that 0 is not in A or C.

For each element a ∈ A we let a′ ∈ A denote the nearest neighbor of a. If there are
two choices for a′ pick the right hand neighbor. We wish to consider quadruples (a, a′, b, c)
where a ∈ A, b ∈ B, and c ∈ C. We call such a quadruple good if the following two
conditions hold:

(i). The number of u ∈ A+B with |a+ b− u| ≤ |a− a′| is at most 10|A+B|/|A|.
(ii). The number of v ∈ A · C with |ac− v| ≤ |ac− a′c| is at most 10|A · C|/|A|.
We will obtain upper and lower bounds for the number of good quadruples, and this

will yield the Theorem.
First we consider the upper bound. Each quadruple (a, a′, b, c) may be recovered

uniquely from knowing s1 = a + b, s2 = a′ + b, p1 = ac and p2 = a′c. How many
choices for these four numbers can lead to good quadruples? The first number s1 can be
chosen in |A+B| ways. But the second number s2 must then be one of the 10|A+B|/|A|
elements of A+B nearest to s1; else there would be > 10|A+B|/|A| elements u of A+B
with |s1−u| ≤ |s1− s2| = |a−a′| which would contradict (a, a′, b, c) being good. Similarly
the third number can be chosen in |A · C| ways, but the fourth is then fixed in at most
10|A · C|/|A| ways. Therefore the number of good quadruples is

≤ 100
|A+B|2|A · C|2

|A|2
.

Now we consider the lower bound. Let b and c be given. We claim that there are at
least |A|/2 values of a leading to a good quadruple. The claim shows that the number
of good quadruples is at least |A||B||C|/2, which when combined with our upper bound
above establishes the Theorem. To prove the claim consider∑
a∈A

#{u ∈ A+B : |a+ b− u| ≤ |a− a′|} =
∑

u∈A+B

#{a ∈ A : |(u− b)− a| ≤ |a− a′|}.
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The RHS counts for a given (b − u) the number of a such that (u − b) is as close as the
nearest neighbor of a; clearly there are at most two such a, the ones enclosing b − u.
Therefore the above is ≤ 2|A+B|. It follows that at most |A|/5 values of a ∈ A can satisfy
#{u ∈ A+B : |a+ b−u| ≤ |a− a′|} ≥ 10|A+B|; or equivalently 80% of the elements in
A satisfy criterion (i). Similarly 80% satisfy criterion (ii). Thus at least 60% satisfy both
criteria, proving our claim.

A small modification to this proof (exercise) shows that the Theorem holds for sets of
complex numbers as well. Solymosi has also shown that

|A+A|8 × |A ·A|3 � |A|14−ε.

This inequality establishes firstly that either A+A or A ·A has cardinality |A| 1411−ε which is
the best currently known bound of this type. More remarkably it shows that if |A+A| ≤
C|A| (so that A looks like a generalized arithmetic progression) then |A · A| � |A|2−ε

which is essentially best possible.
The sum-product phenomenon is quite general. A particularly useful version is due to

the work of Bourgain, Katz, Tao, and Konyagin. Let p be a prime and A ⊂ F∗p be a set
with |A| ≤ p1−δ. Then there is a constant c = c(δ) > 0 such that |A+A|+|A·A| ≥ c|A|1+c.
In other words, there are no approximate subrings of Fp.

There are other interesting proofs of the sum-product theorem. An elegant proof of
Elekes uses as its main ingredient a beautiful result of Szemerédi and Trotter in incidence
geometry.

Szemerédi-Trotter Theorem. Suppose we are given m distinct lines in the plane, and
n distinct points. Then the number of pairs (P, `) where P is a point lying on a line ` is
� m+ n+ (mn)

2
3 .

Deduction of sum-product estimates. For points take the set (A+B)× (A ·C) and for lines
take y = c(x − b) for each b ∈ B and c ∈ C. Thus n = |A + B||A · C| and m = |B||C|.
Each line contains |A| points and so we obtain that

|A||B||C| � |B||C|+ |A+B||A · C|+ (|B||C||A+B||A · C|) 2
3 ,

and the result follows.

There are also interesting non-abelian analogs of these results. For example, Helfgott
has shown that if A is not contained in any proper subgroup of SL2(Z/pZ) and |A| < p3−δ

for some δ > 0 then |A ·A ·A| > c|A|1+c for some c > 0 depending only on δ.
We end by highlighting two striking propositions on sumsets (due to Solymosi) which

follow easily from his method of proof above.

Proposition 1. Let A be a set of N real numbers a1 < a2 < . . . < aN such that the
successive differences ai+1 − ai are all distinct. If B is any non-empty set of real numbers
then |A+B| � |A||B| 12 .

First Proof. Given a ∈ A let a′ denote its nearest neighbor as before. Consider triples
(a, a′, b), and call such a triple good if the number of u ∈ A+B with |a+ b− u| ≤ |a− a′|
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is at most 10|A + B|/|A|. Arguing as in the Theorem we obtain � |A||B| good triples.
To obtain an upper bound note that knowing s1 = a + b and s2 = a′ + b we may recover
(a, a′, b); here we use that the consecutive differences are distinct! The number of choices
of s1, s2 that lead to good triples is � |A+B|2/|A|, and our result follows.

Second Proof. Consider the numbers in A + B. Divide them into about N/2 disjoint
intervals with each interval containing about |A+B|/(N/2) elements. We now count the
number of pairs (i, b) where 1 ≤ i ≤ N and b ∈ B such that ai + b and ai+1 + b both lie in
the same interval.

First we get a lower bound on the number of such pairs. Consider b as fixed. If (i, b)
does not form a pair then there must be an interval jump between ai + b and ai+1 + b.
Since there are only N/2 intervals, the number of such jumps is ≤ N/2. Therefore for
≥ N/2 elements i we will get a pair (i, b). Thus the total number of pairs is � N |B|.

Now let us find an upper bound for this number. Choose two elements lying in the same
interval. We claim that these can arise as ai + b and ai+1 + b for at most one pair (i, b).
Indeed the difference of the two elements must be ai+1 − ai. This fixes i because of the
assumption that the successive differences in A are distinct. Once i is fixed, naturally there
is at most one choice for b. Thus the number of pairs is � N

(|A+B|/(N/2)
2

)
� |A+B|2/N .

Combining the upper and lower bounds we see the Proposition.

There is a generalization of Proposition 1 to two dimensions, which the reader may like
to think about.

Proposition 2. Let A = {a1 < . . . < aN} and C = {c1 < . . . < cN} be two N -element
sets of real numbers such that the pairs of successive differences (ai+1 − ai, ci+1 − ci) are
all distinct. Then for any non-empty sets B and D we have

|A+B||C +D| � (N3|B||D|) 1
2 .

Deduction of the Sum-Product estimate. Without loss of generality suppose that A =
{a1 < . . . < aN} is a set of positive real numbers. Set C = {log a}. Note that A and C
satisfy the hypothesis of Proposition 2. Apply that Proposition with B = A and D = C.

Erdős and Szemerédi have conjectured that |A + A| + |A · A| � |A|2−ε. Solymosi has
conjectured even more: if |A| = |B| = |C| then |A+B|+ |A · C| � |A|2−ε. These remain
open. We record that the ε in these conjectures is necessary. For example, if we take A
to be the numbers from 1 to N , then |A ·A| = o(N2): this is the delightful multiplication
table problem of Erdős and the order of magnitude of |A ·A| has been recently determined
by Kevin Ford. One can do better by choosing A to be the set of integers below M having
exactly K distinct prime factors, and then choosing M and K appropriately. In this
manner one obtains that the ε in Solymosi’s conjecture must be � 1/ log log |A|. Perhaps
this is the right answer?
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VII. Freiman’s Theorem

1. Statement of the result, and the ingredients of the proof.
Let A be a subset of the integers with |A| = N . There are at most N(N + 1)/2

possible distinct sums a+ b with a and b in A. Thus |A+ A| ≤ N(N + 1)/2. This upper
bound can be attained when the numbers in A are spread apart: e.g. when they are
powers of 2. At the other extreme we must always have 2N − 1 elements in the sumset
A + A. For, if we arrange the elements in A as a1 < a2 < . . . < aN then we have
a1 + a1 < a1 + a2 < . . . < a1 + aN < a2 + aN < a3 + aN < . . . < aN + aN . It is easily
checked that |A + A| = 2N − 1 if and only if A consists of an arithmetic progression of
length N .

Recall that a generalized arithmetic progression of dimension d is a set of numbers of the
form x0 +

∑d
j=1 ajxj where the xj are given integers, and 0 ≤ aj < rj for some numbers

rj . The size of a GAP is defined to be the number of (distinct) elements in this set. We
say that a GAP is proper if all the sums above are distinct; thus its size is

∏
j rj . If Q

is a proper GAP of dimension d, then clearly |2Q| ≤ 2d|Q|. Therefore a big subset of a
proper GAP has small doubling. Freiman’s remarkable theorem offers a converse to this
statement.

Freiman’s Theorem. Let A be a set of integers for which there exists a set B with
|B| = |A| and |A + B| ≤ C|A|; in particular, A could be a set with |A + A| ≤ C|A|, or
|A − A| ≤ C|A|. Then there exist constants d and S depending only on C such that A
is contained in a GAP of dimension at most d, and size at most S|A|. In fact, we may
choose d� C34, and S � eC34

.

Above we have given A as a subset of a GAP. With more effort, one can ensure that
this GAP is proper. We will describe below a beautiful proof of Freiman’s theorem due to
Ruzsa. There are three main ingredients in this proof:
• Plünnecke’s inequalities. If A is a proper GAP then we see that not only does A have

small doubling, but also the sets kA − `A are small. Plünnecke showed that if A is a set
with small doubling then kA− `A is automatically also small. In fact, as in our statement
of Freiman’s theorem it is enough for A to have a set B with |A| = |B| and |A+B| ≤ C|A|,
and then it follows that kA − `A is small. This is quite powerful, and by itself yields an
elegant analog of Freiman’s theorem for groups with bounded torsion (see §3 below).
• Freiman homomorhpisms and Ruzsa’s embedding lemma. A Freiman k-homomorphism

between sets is a map that preserves relations of the form x1 + . . . + xk = y1 + . . . + yk.
A 2-homomorphism preserves arithmetic progressions. Ruzsa’s embedding lemma allows
one to pass from a set A (with small sumset 2A) of integers to a large subset A′ which is
k-isomorphic to a subset of Z/N . Here N is of size comparable to |A|. In other words, the
problem for Z may be replaced with a problem for Z/N with N not too large.
• Bogolyubov’s lemma and the structure of 2A − 2A. Although a set A might lack

additive structure and appear rough, the sumsets kA for large k start looking smoother.
Bogolyubov found a simple Fourier argument that takes a large set A in Z/N and finds
a highly structured set in 2A − 2A. This highly structured set is a Bohr set, described
by means of certain Diophantine inequalities. The second part of this argument uses the
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geometry of numbers (in particular, Minkowski’s second theorem) to extract from the Bohr
set a large GAP.

Putting all these ingredients together one obtains Freiman’s theorem.

2. Plünnecke’s inequalities.
One of the key steps in the proof of Freiman’s theorem is the following:

Plünnecke’s Theorem A. If A is a set of integers for which there exists a set B with
|A+B| ≤ C|B|, then

|kA− `A| ≤ Ck+`|B|,

for all integers k and `. In particular, if |B| = |A| then |kA − `A| ≤ Ck+`|A|, and this
conclusion holds for sets A satisfying |A+A| ≤ C|A| or |A−A| ≤ C|A|.

The proof of this Theorem relies on some results of Plünnecke in graph theory. A layered
graph of level n is a directed graph whose vertex set may be written as the disjoint union
of n + 1 sets V0, V1, . . . , Vn, and whose edge set consists solely of edges from Vi to Vi+1

for some 0 ≤ i ≤ n− 1. Given a layered graph G we define the i-th magnification ratio by

Di(G) = inf
X⊂V0
X 6=∅

|Imi(X)|
|X|

,

where Imi(X) denotes the set of vertices in Vi that may be reached by a path starting
from some vertex in X.

Example 1. Consider a layered graph of level 3 with V0 having three vertices, V1 having
one vertex, and V2 having five vertices. Suppose all three points in V0 are connected to
the point in V1 and that the point in V1 is connected to four of the vertices in V2. Then
D1 equals 1/3 and D2 equals 4/3.

A Plünnecke graph is a special type of layered graph satisfying the following two prop-
erties:

Forward Splitting: Suppose that 0 ≤ i ≤ n− 2 and that u, v, w1, . . . , wk are such that
u ∈ Vi, v ∈ Vi+1, wj ∈ Vi+2 and (u, v), (v, wj) are all edges in our graph. Then there exist
distinct v1, . . . , vk in Vi+1 such that (u, vj), (vj , wj) are all edges in the graph.

Backward Splitting: Suppose that 0 ≤ i ≤ n− 2 and that there are distinct u1, . . . , uk

(in Vi), v in Vi+1 and w in Vi+2 so that (uj , v), (v, w) are all edges in our graph. Then
there exist distinct v1, . . . , vk in Vi+1 such that (uj , vj) and (vj , w) are all edges in our
graph.

It is clear that Example 1 is not a Plünnecke graph.
Example 2. This is the key example. Suppose A and B are any two sets of integers and

take Vi = A+ iB. Connect a vertex v in Vi to a vertex w in Vi+1 exactly when w− v ∈ B.
We can check that this graph is Plünnecke thanks to the commutativity of addition.

Example 3. This is a special case of Example 2 called the independence graph. We
take A to be {0} and B to be a set of h numbers such that all the possible n-fold sums
of elements in B are distinct (for example, take B to be {1, (2n), (2n)2, . . . , (2n)h−1}.
Note that the i-th vertex set contains

(
h+i−1

i

)
elements (exercise). Therefore Di(G) equals(

h+i−1
i

)
in this example. We will denote this graph by In(h).
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Example 4. Suppose that G and H are two layered graphs of level n with vertex sets
V0, . . . Vn and W0, . . . , Wn. The product graph G×H has a vertex set given by Vj ×Wj

for j = 0, . . . , n. There is an edge from (vj , wj) to (vj+1, wj+1) precisely if there (vj , vj+1)
is an edge in G and (wj , wj+1) is an edge in H. With this definition the product of two
layered graphs is a layered graph. Moreover, check that the product of two Plünnecke
graphs is a Plünnecke graph.

Example 5. This is more of an observation on Plünnecke graphs which will be useful
later on. Given a vertex vi ∈ Vi let d+(vi) denote the number of edges coming out of vi,
and let d−(vi) denote the number of edges coming into vi. Suppose vi+1 ∈ Vi+1 is joined
to vi by an edge. Then the first Plünnecke condition shows that d+(vi) ≥ d+(vi+1). The
second Plünnecke condition shows that d−(vi) ≤ d−(vi+1).

With these preliminaries in place, we can now state Plünnecke’s result in graph theory.

Plünnecke’s Theorem B. Let G be a Plünnecke graph of level n. Then the magnification
ratios satisfy the inequalities

D1 ≥ D
1
2
2 ≥ D

1
3
3 ≥ . . . ≥ D

1
n
n .

Before discussing the proof of Theorem B let us first deduce Theorem A.

Deduction of Theorem A. Consider the natural additive Plünnecke graph with Vi = B+iA.
By assumption we know that D1 ≤ |A + B|/|B| ≤ C. By Theorem B, it follows that for
each k ≥ 1 we have Dk ≤ Ck. In other words, there exists a non-empty subset B′ of B
with |B′ + kA| ≤ Ck|B′|. It follows immediately that |kA| ≤ Ck|B| proving Theorem A
in the case ` = 0.

To deduce the full strength of the Theorem we need the following simple, but very useful
Lemma of Ruzsa.

Ruzsa’s Lemma. For any three sets U , V , W we have

|U ||V −W | ≤ |U + V ||U +W |.

Proof. To each difference d ∈ V −W associate a pair (v(d), w(d)) ∈ V ×W with v(d) −
w(d) = d. (Of course there may be many solutions to v − w = d; we just pick one.) Then
given (u, d) ∈ U × (V −W ) we may map it to (u+ v(d), u+ w(d)) ∈ (U + V )× (u+W ).
This map is injective, and therefore the inequality follows.

Returning now to the deduction of Theorem A, we see easily from Rusza’s lemma that

|A||kA− `A| ≤ |(k + 1)A||(`+ 1)A| ≤ Ck+`+2|B|2,

which is certainly good enough for any applications, but with a little more effort we
can recover the stated version. If ` ≥ k then applying Theorem B twice we may find
B′′ ⊂ B′ ⊂ B with |B′ + kA| ≤ Ck|B′| and |B′′ + `A| ≤ C`|B′′| (why?). Now use Ruzsa’s
Lemma with U = B′′, V = kA, and W = `A.

We now turn to the proof of Theorem B. There are two main steps in the argument.
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Lemma 1. Let G and H be layered graphs of level n. Then for each i = 1, . . . , n we have
Di(G×H) = Di(G)Di(H).

Lemma 2. Let G be a Plünnecke graph of level n with Dn ≥ 1. Then there exist at least
|V0| paths from V0 to Vn such that the vertices of these paths are all disjoint. Consequently,
Di ≥ 1 for all i = 1, . . . , n.

Assuming these lemmas let us now deduce Theorem B.

Deduction of Theorem B. When Dn = 1 the result follows by Lemma 2. Therefore we
may assume that 0 < Dn < 1 or that Dn > 1. Let’s start with the former case. Let r and
h be some natural numbers to be chosen, and consider the graph Gr × In(h). By Lemma
1 we know that

Dn(Gr × In(n)) = Dn(G)rDn(In(h)) = Dn(G)r

(
h+ n− 1

n

)
≥ Dn(G)r h

n

n!
.

Given r we will choose h to be the least number so that the above is at least 1; therefore
h ≤ n!

1
nDn(G)−

r
n + 1. Then it follows from Lemma 2 that Di(GrIn(h)) ≥ 1 so that

Di(G)r ≥ 1
Di(In(h))

≥ h−i ≥ (n!
1
nDn(G)−

r
n + 1)−i.

Extract r-th roots above, and let r tend to infinity; it follows that Di(G) ≥ Dn(G)i/n ,
proving Plünnecke’s bound.

The case when Dn > 1 is similar, except that we reverse the independence graph In(h)
so that the magnification numbers are now small in size. We leave the details to the reader.

Lastly, we turn to the proof of the Lemmas. The first lemma is straightforward, but the
second requires more careful thought, and relies on Menger’s theorem from graph theory.

Proof of Lemma 1. Let Vi denote the vertex sets of G and Wi the vertex sets of H. Let
A be a subset of V0 with |Imi(A)| = Di(G)|A| and B a subset of W0 with |Imi(B)| =
Di(H)|B|. Then Imi(A×B) = Imi(A)× Imi(B) from which it follows that |Imi(A×B)| =
Di(G)Di(H)|A×B|. This shows that Di(G×H) ≤ Di(G)Di(H).

We must now show that Di(G × H) ≥ Di(G)Di(H). Let X be a non-empty subset
of V0 ×W0. We write X as the disjoint union of {v} × Hv where Hv denotes the set of
all w ∈ W0 with (v, w) ∈ X. Of course we need consider only those v for which Hv is
non-empty. Let Y ⊂ V0 ×Wi denote the union of {v} × Imi(Hv). Then note that

|Y | =
∑
v∈V0

|Imi(Hv)| ≥ Di(H)
∑
v∈V0

|Hv| = Di(H)|X|.

Now write Y as the union of setsGw×{w} where w runs over elements inWi. If Z ⊂ Vi×Wi

denotes the union of Imi(Gw)× {w} then it is plain that Z = Imi(X). Moreover

|Z| =
∑

w∈Wi

|Imi(Gw)| ≥ Di(G)
∑

w∈Wi

|Gw| = Di(G)|Y | ≥ Di(G)Gi(H)|X|,

which completes our proof.

For the proof of Lemma 2 we require Menger’s theorem from graph theory (see for
example, Bollabas’s Modern Graph Theory).
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Menger’s Theorem. Let G be any graph, and let a and b be two distinct vertices with
(a.b) not an edge. Then the maximum number of vertex disjoint paths from a to b equals
the minimum number of vertices separating a from b. Here two paths from a to b are called
vertex disjoint if they share no vertices in common apart from a and b. A set of vertices
is said to separate a and b if every path from a to b must contain one of these vertices.

Proof of Lemma 2. Introduce two vertices a and b at the ends of our Plünnecke graph,
connecting a to all vertices in V0 and connecting all vertices in Vn to b. We wish to show
that there are |V0| vertex disjoint paths from a to b. Suppose the maximum number of
such paths is m, and our goal is to show that m ≥ |V0|. Let π1, . . . , πm be m such
vertex disjoint paths. By Menger’s theorem there exists a set S of m vertices s1, . . . , sm

separating a and b. Suppose that we have labeled these vertices so that si lies on path πi.
In addition we choose our separating set S so that

n∑
i=0

i|S ∩ Vi|

is minimal.
Claim: Such a minimal set S is contained in V0 ∪ Vn.

Assuming the claim, we can finish the proof of Lemma 2. Consider the vertices in V0

that are not in S. Since Dn ≥ 1 these vertices must have an image in Vn of at least
the same size. All those image vertices must necessarily be in S, completing our proof.
Actually, this argument shows that (by the minimality property of S) our separating set
is in fact V0.

It remains lastly to prove the Claim. Suppose not. By rearranging if needed, we may
assume that s1, . . . , sq are the elements of S lying in some Vi with i 6= 0, n. Let s−j
denote the predecessor of sj on path πj , and s+j denote its successor on that path. By
the minimality condition imposed on S, we know that the set {s−1 , . . . , s−q , sq+1, . . . , sm}
is not a separating set. This means that there exists some path π which does not contain
any element of that set. Therefore there must exist some s (which is in {s1, . . . , sq} and
thus in Vi) which lies on the path π. Let r ∈ Vi−1 denote the predecessor of s on π. Note
that r is not equal to s−j for j = 1, . . . , q.

Consider three sets of vertices A = {s−1 , . . . , s−q , r} ⊂ Vi−1, B = {s1, . . . , sq} and
C = {s+1 , . . . , s+q }. Consider the graph induced by our original Plünnecke graph on these
sets A, B and C: that is, consider the graph H on three layers A, B, and C with an edge
connecting vertices in A and B (or B and C) precisely if that edge belonged to the graph
G. Observe that every path (in G) from A to C must pass through B (that is, it remains
a path in H); else, one cound extend that path into a path from a to b avoiding the set S.
It follows that our subgraph H is Plünnecke.

Consider now our Plünnecke subgraph H. We use the notation of Example 5 above.
The number of edges emanating from A is equal to the number of edges entering B

d+(r) +
q∑

j=1

d+(s−j ) =
q∑

j=1

d−(sj).
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Since H is Plünnecke we know that d−(sj) ≤ d−(s+j ) and that d+(sj) ≤ d+(s−j ). Thus the
above is

≤
q∑

j=1

d−(s+j ) =
q∑

j=1

d+(sj) ≤
q∑

j=1

d+(s−j ),

which is a contradiction. This settles our Claim, and the Lemma.

3. Freiman’s theorem in a bounded torsion group.
Plünnecke’s results apply not just to addition in Z, but within any abelian group (check).

If we consider a torsion group where each element has order at most r, then we can deduce
the following elegant quantitative analog of Freiman’s theorem (due to Ruzsa).

Ruzsa’s version of Freiman’s theorem in a bounded torsion group. Let G be an
abelian group, such that every element of G has order at most r. Let A be a finite subset of
G such that |A+A| ≤ C|A|. Then A is contained in a subgroup H with |H| ≤ C2rC4 |A|.

Proof. It is helpful first to consider the case when A is symmetric: that is a ∈ A implies
−a ∈ A. We will find a set X ⊂ 3A of size ≤ C4 such that the subgroup generated by
A is contained in 2A + 〈X〉 where 〈X〉 denotes the subgroup generated by X. Clearly
|〈X〉| ≤ r|X| ≤ rC4

and |2A| ≤ C|A| by assumption, and a stronger inequality than
claimed in the Theorem follows. We choose X to be a maximal subset of 3A such that the
translates A+ x for x ∈ X are all disjoint. Since the elements of A+ x all lie in 4A which
has size ≤ C4|A|, it follows that |X| ≤ C4 as desired. By maximality, we see that if t ∈ 3A
then A+ t intersects A+ x for some x ∈ X. This implies that t ∈ A− A+X = 2A+X.
Therefore 3A ⊂ 2A+X, and hence 4A ⊂ 3A+X ⊂ 2A+ 2X, and so on. Therefore

〈A〉 = ∪j≥1jA ⊂ 2A+ 〈X〉,

as we wanted.
When A is not symmetric, the same argument works with a tiny modification. We

consider maximal X ⊂ 2A−A with A+x disjoint. Then it follows that 2A−A ⊂ A−A+X,
and iterating this we get jA − A ⊂ A − A + 〈X〉. Hence 〈A〉 ⊂ A − A + 〈X〉, and since
|A−A| ≤ C2 we recover precisely the estimate of the Theorem.

4. Freiman Homomorphisms and Ruzsa’s embedding lemma.

Definition. Let A and B be subsets of some additive groups G and H. A Freiman k-
homomorphism from A to B is a map φ such that if x1 + . . . + xk = y1 + . . . + yk is a
relation among elements in A then φ(x1) + . . . + φ(xk) = φ(y1) + . . . + φ(yk) holds as a
relation in B. If φ is invertible, and gives a k-homomorphism from B to A, then we say
that φ is a k-isomorphism.

Remark 1. Note that if φ is a k-homomorphism then it induces a map from kA to kB
by sending x1 + . . . + xk to φ(x1) + . . . + φ(xk). If φ is a k-isomorphism, this map is a
bijection and so |kA| = |kB|.

Remark 2. A 2-isomorphism preserves arithmetic progressions. For, if a + c = b + b
are three consecutive terms of an AP, then φ(a) + φ(c) = φ(b) + φ(b) as well. Moreover,
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a 2-isomorphism preserves GAPs. Precisely, suppose we have a GAP (in A) given by
a0 + a1x1 + . . .+ akxk with 0 ≤ xj ≤ nj , then its image is the GAP φ(a0) + (φ(a0 + a1)−
φ(a0))x1 + (φ(a0 + a2)− φ(a0))x2 + . . .+ (φ(a0 + ak)− φ(a0))xk.

Remark 3. If φ1 : A → B and φ2 : B → C are k-homomorphisms then φ2 ◦ φ1 gives a
k-homomorphism from A to C. If φ1 and φ2 are isomorphisms then so is the composition
φ2 ◦ φ1.

Example 1. Let A ⊂ Z and let N be any natural number, and consider the reduction
map (mod N). This obviously is a k-homomorphism for any k. But usually it is not an
isomorphism. If N is very large then this map can be inverted. Precisely, if A lies in an
interval of length I then for N > I we can invert the map, and for N > kI the inverse
map is a k-homomorphism.

Example 2. Let q be a number coprime to N and consider the map φ : Z/N → Z/N
given by x→ qx. This is a k-isomorphism for any k.

Example 3. This is closely connected to example 1. Consider φ : Z/N → Z by choosing
a representative for a congruence class lying in [1, N ] and identifying that class with this
integer. This is not a k-homomorphism as it stands, but if we restrict φ to a subset of
Z/N such as {jN/k < x ≤ (j + 1)N/k} then it is a k-homomorphism.

Example 4. Let A be a finite set in Zd. By translating (which is an isomorphism of all
orders) we may assume that the elements of A all have positive coordinates. Pick a base
b which is very large and exceeds k times the maximum coordinate of any element of A.
Map (a1, . . . , ad) ∈ A to a1b + a2b

2 + . . . + adb
d ∈ Z. This map gives a k-isomorphism,

because the base has been chosen so large that there are no carries. This example can be
used to extend Freiman’s theorem from Z to Zd for any d.

Example 5. Let A be a sparse set; for example, A = {1, 2, 4, . . . , 2n−1}. We claim that
A is not 2-isomorphic to a subset B of Z/N for N < n(n + 1)/2. This follows since
|2A| = n(n+ 1)/2 = |2B| ≤ N .

Example 5 shows that not all sets can be embedded into Z/N for a small value of N .
Our aim in this section is to show that if A is a set of integers with |kA−kA| ≤ C|A| then
we may extract a large subset A′ of A such that A′ is k-isomorphic to a subset of Z/N
where N is a relatively small prime.

Ruzsa’s Embedding Lemma. Let A be a set of integers with |kA− kA| ≤ C|A|. Then
for any prime N > 2C|A| we may find a subset A′ of A with |A′| ≥ |A|/k such that A′ is
k-isomorphic to a subset of Z/N .

Before we do this, we present a warm-up problem of Erdős which may illuminate the
construction.

Proposition 1. If A is any set of N integers, then we may extract a sum-free subset of
A with cardinality ≥ N/3.

Proof. Pick a very large prime p. For each 1 ≤ q ≤ p− 1 define Aq to be the elements in
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A such that qa is congruent to a number in (p/3, 2p/3). The probability that this happens
is 1/3, and so for some q we must have |Aq| ≥ |A|/3. This is the desired subset of A: for,
if a+ b = c in Aq then qa+ qb = qc, but this is impossible as a congruence (mod p).

Note that the proof implicitly uses the constructions of Examples 2 and 3, together with
a simple probabilistic argument.

Proof of Ruzsa’s Embedding Lemma. Let p be a very large prime. For each 1 ≤ q ≤ p− 1
we find a subset Aq of A such that |Aq| ≥ |A|/k and that the dilates qa for each a ∈ Aq

all lie in an interval (jp/k, (j + 1)p/k) (mod p) for some 0 ≤ j ≤ k − 1. Clearly such Aq

exists by the pigeon-hole principle.
Now consider the map from Aq to [1, p] by sending a to qa and then reducing that

(mod p) to get a representative in [1, p]. By construction the image of this map is in
[jp/k, (j + 1)p/k] for some j, and this map is a k-isomorphism.

Take the image of the previous map, and view it (mod N). Thus we have a map from
Aq to Z/N and this is plainly a k-homomorphism. The question is if it can be inverted
and is a k-isomorphism. We will show that if N is suitably large, then for some q it is
indeed a k-isomoprhism.

If the map (call it φq) is not a k-isomorphism, then there must be a coincidence φq(a1)+
. . .+ φq(ak) = φq(b1) + . . .+ φq(bk) where the ai and bi are in Aq with

∑
ai 6=

∑
bi. This

means that (qa1)p + . . . (qak)p 6= (qb1)p + . . . + (qbk)p (where (n)p denotes the reduction
of n (mod p) taken in [1, p]), but that the two sides are congruent (mod N). That is for
some non-zero number ` with |`| ≤ p/N we have

`N = (qa1)p + . . .+ (qak)p − (qb1)p − . . .− (qbk)p.

Note that we can get away with |`| ≤ p/N because by construction all (qa)p lie in an
interval of size p/k. Viewing this relation (mod p) we obtain that

`N ≡ q(a1 + . . .+ ak − b1 − . . .− bk) (mod p).

Given a1 + . . .+ ak − b1 − . . .− bk there are at most 2p/N bad values of q for which this
can happen. Further, the number of choices for a1 + . . . + ak − b1 − . . . − bk is at most
|kA− kA| ≤ C|A|. Therefore the total number of bad values of q for which a coincidence
can occur is ≤ C|A|(2p/N), so that if N > 2C|A| then there will be some value of q with
no coincidences, giving us the desired isomorphism.

5. Bogolyubov’s Lemma and Bohr sets.
Bogolyubov’s Lemma says that if A is a subset of Z/NZ with |A| = δN then 2A− 2A

contains a highly structured set known as a Bohr set.

Definition. Let N be a large prime and r1, . . . , rk be k distinct reduced residue classes
(mod N). We define the Bohr set B(r1, . . . , rk; δ1, . . . , δk) to be the set of all residue
classes s such that ‖srj/N‖ ≤ δj for each j = 1, . . . , k. If δ1 = δ2 = . . . = δk and
K = {r1, . . . , rk} then we will abbreviate the Bohr set B(r1, . . . , rk; δ1, . . . , δk) as B(K; δ).
We will refer to k as the dimension of our Bohr set.

We postpone to the next section a discussion of the structure of Bohr sets: the main
input there will come from Minkowski’s geometry of numbers.
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Bogolyubov’s Lemma. Let A be a subset of Z/N with |A| = δN . Then 2A−2A contains
a Bohr set B(K; 1/4) of dimension k ≤ 1/δ2.

Proof. Let as before Â(r) denote the Fourier transform of our set A. Note that∑
r

|Â(r)|2 = N |A| = δN2,

by Parseval, and so there are at most 1/(δλ2) large Fourier coefficients |Â(r)| ≥ λ|A|. Of
course r = 0 is one of these large Fourier coefficients, and let r1, . . . , rk be the non-zero
large Fourier coefficients. We claim that if λ2 = δ is small enough, then the Bohr set
B(r1, . . . , rk; 1/4) is contained in 2A− 2A, which establishes Bogolyubov’s Lemma.

Let b be an element of this Bohr set. Consider∑
r (mod N)

|Â(r)|4e(br/N) =
∑

r (mod N)

|Â(r)|r cos(2πbr/N)

= N#{b ≡ a1 + a2 − a3 − a4 (mod N)},

and we must show that this is positive. The contribution of r = 0 is |A|4. The contribution
of rj for all the large Fourier coefficients is positive, because cos(2πbrj/N) ≥ cos(π/2) = 0
for elements in our Bohr set. Finally the contribution of the small Fourier coefficients
(those less than λ|A| in size) is in magnitude

< λ2|A|2
∑

r (mod N)

|Â(r)|2 = λ2|A|3N = |A|4,

by our choice of λ. It follows that our sum above is indeed positive, and therefore b ∈
2A− 2A as desired.

6. The structure of Bohr sets: Input from the geometry of numbers.
We will show here that the Bohr sets have a lot of structure, and contain big generalized
arithmetic progressions.
Remark 1. First we note that B(K; δ) is pretty big. This is Dirichlet’s theorem on
Diophantine approximation. Divide [0, 1)k into cubes of size δk. There are about (1/δ)k

such cubes. Now consider the N points (nr1/N, nr2/N, . . . , nrk/N) viewed (mod 1). By
the pigeonhole principle one cube contains about δkN such points. The difference set of
those points is contained in the desired Bohr set. Thus |B| � δkN .
Remark 2. Take an element in B(K; 2N− 1

k ). By our previous remark there is a non-zero
n ∈ Z/N in this Bohr set. Clearly n` will belong to B(K; δ) for each 1 ≤ ` ≤ δN

1
k /2.

Thus B(K; δ) contains a 1-dimensional arithmetic progression of size ≥ δN
1
k /2.

Our goal in this section is to show the following Proposition.

Proposition. The Bohr set B(K; δ) contains a proper GAP of dimension k and size at
least (δ/k)kN .

To achieve this we require some input from the geometry of numbers. We review briefly
the facts that we will need; for further information the reader may consult Siegel’s beautiful
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Lectures on the geometry of numbers, or Cassels’s An Introduction to the Geometry of
Numbers.

A lattice of Rk is a discrete subgroup of Rk. Equivalently, a lattice may be described
as the subgroup generated by linearly independent vectors v1, . . . , v`. The lattice is said
to be of full rank if ` = k.
Example 1. Zk is a full rank lattice.
Example 2. Obviously NZk is a sublattice of the lattice Zk. Of particular interest to us
is the lattice generated by NZk and the vector (r1, . . . , rk). For example, if k = 2, N = 5
and (r1, r2) = (1, 1) then this lattice is generated by (1, 1) and (5, 0).

From now on, assume that our lattices have full rank. Given a lattice Λ with basis v1,
. . . , vk, a fundamental domain for Rk/Λ is the parallelopiped {

∑k
j=1 xjvj : 0 ≤ xj < 1}.

Note that every element of Rk can be written uniquely as a lattice vector plus an element
from this fundamental parallelopiped. The volume of a fundamental parallelopiped is an
invariant of the lattice, independent of the choice of the basis. We denote this volume by
Vol(Λ).
Example 3. The lattice Zk has volume 1. The lattice NZk has volume Nk. The lattice
generated by NZk and (r1, . . . , rk) has volume Nk−1 (assuming one of the rj ’s is coprime
to N).

An open convex set C in Rk will be called a convex body. The body is centrally
symmetric (about the origin) if x ∈ C implies −x ∈ C.

Blichtfeld’s Lemma. Let C be an open set and Λ a lattice. If the volume of C exceeds
the volume of Λ then there are two points x 6= y in C with x− y ∈ Λ.

Proof. For each point λ ∈ Λ consider the translate λ+C. If these translates intersect, then
we are done. Suppose they are all disjoint. Consider a big box B. The box contains about
Vol(B)/Vol(Λ) lattice points. Thus the set of translates λ + C for λ ∈ B has volume at
least about Vol(C)Vol(B)/Vol(Λ), but this should still be contained in a box just slightly
larger than B. This gives a contradiction.

Minkowski’s First Theorem. Let C be a convex, centrally symmetric body such that
Vol(C) > 2kVol(Λ). Then C contains a non-zero lattice point.

Proof. Use Blichtfeld’s lemma for 1
2C, and note that C = 1

2C − 1
2C.

Given a convex body C we let λC denote the dilated body {λx : x ∈ C}. Let λ1 be
the infimum of values λ such that λC contains a non-zero lattice point. We may express
Minkowski’s first theorem as saying that λk

1 ≤ 2kVol(Λ)/Vol(C). In general this is best
possible; consider Λ = Zk and C = (−1, 1)k. But in the above example we see that the
closure of C contains not just one, but k linearly independent lattice points. This suggests
a refinement of the bound in Minkowski’s first theorem. Define the successive minima
λ1 ≤ λ2 ≤ λ3 ≤ . . . ≤ λk by letting λj denote the infimum of λ such that λC contains j
linearly independent lattice vectors.

Minkowski’s Second Theorem. With the above notation we have

λ1 · · ·λk ≤ 2kVol(Λ)/Vol(C).
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This remains a beautiful and deep result, for whose proof we refer to the books of
Cassels or Siegel mentioned earlier. We are now in a position to establish the structure of
Bohr sets.

Proof of the Proposition. We consider the full rank lattice Λ generated by NZk and
(r1, . . . , rk) (see examples 2 and 3). Its volume is Nk−1. Let C be the convex body
(x1, . . . , xk) with |xj | ≤ 1. The volume of C is plainly 2k. By Minkowski’s second the-
orem there exist k linearly independent lattice points b1, . . . , bk with bj ∈ λjC, and
λ1 · · ·λk ≤ Nk−1. Consider linear combinations

∑k
j=1 bjnj where |nj | ≤ δN/(kλi). It

is clear that the coordinates of these vectors are bounded by
∑k

j=1 λj(δN/(kλj)) = δN .
Furthermore, if we write each bi as (bir1, . . . , birk) (mod N) then we have just shown
that

∑r
j=1 bjnj (with |nj | ≤ δN/λj) lies in our Bohr set B({r1, . . . , rk}; δ). This is the

sought-for GAP of dimension k.
It remains to show that our GAP is proper, and then evaluate its size. If

∑k
j=1 bjnj =∑k

j=1 bjn
′
j then it follows that

∑k
j=1 bjnj ≡

∑k
j=1 bjn

′
j (mod N). However the coordi-

nates of both these vectors are all ≤ δN in size; thus congruence (mod N) implies equality.
Linear independence of the bi’s now shows that nj = n′j . Thus our GAP is proper. Its
size is plainly

k∏
j=1

(
1 + 2

[ δN
kλj

])
≥

k∏
j=1

δN

kλj
≥

( δ
k

)k

N,

using the Minkowski bound.

7. The proof of Freiman’s Theorem.
Let A be a subset of the integers with |2A| ≤ C|A|.
Step 1. By Plünnecke’s inequality we then know that

|8A− 8A| ≤ C16|A|.

Step 2. Applying now Ruzsa’s embedding lemma, we may find A1 ⊂ A with |A1| ≥ |A|/8
such that A1 is 8-isomorphic to a subset A2 of Z/N with N being a prime between 2C16|A|
and 4C16|A|.
Step 3. By Bogolyubov’s Lemma 2A2 − 2A2 contains a Bohr set B(K; 1/4) of dimension
≤ 1024C32.
Step 4. From the geometry of numbers we conclude that 2A2 − 2A2 contains a proper
generalized arithmetic progression of dimension 1024C32 and size � e−C33 |A2|. Now
2A − 2A is 2-isomorphic to 2A2 − 2A2 and since arithmetic progressions are preserved
under 2-isomorphisms, 2A − 2A contains a proper generalized arithmetic progression of
dimension 1024C32 and size � e−C33 |A|. Call this progression Q, and throw away excess
elements if necessary so that Q is of size about e−C33 |A| .

Take X to be a maximal set in A such that the translates Q+x for x ∈ X are all disjoint.
Plainly |X| = |Q + X|/|Q| ≤ C5|A|/|Q| since Q + X ⊂ 3A − 2A and using Plünnecke’s
inequality. Furthermore, by the maximality of x we see that for any a ∈ A we must have
Q + a ∩ Q + X 6= ∅ which implies that A ⊂ X + Q − Q. Now Q − Q is a generalized
arithmetic progression of the same dimension as Q, and size ≤ 21024C32 |Q| � |A|. Viewing
every element of X as contributing an extra dimension, we obtain Freiman’s theorem.
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8. Chang’s refinement: getting a polynomial bound for the dimension.
We now give Chang’s refinement which allows for a polynomial bound for the dimension.

Recall that after step 4 (of §7) we produced a proper GAP Q in 2A− 2A with dimension
1024C32 and size about exp(−C33)|A|. Set Q0 = Q and let Y0 denote a maximal set in A
such that Q0 + y are disjoint for y ∈ Y0. If |Y0| < 2C then we declare ourselves done, else
we pick X0 to be a subset of Y0 with cardinality 2C, and then set Q1 = Q0 + X0. Now
we repeat the same process, selecting a maximal Y1 in A such that Q1 + y are disjoint for
y ∈ Y1, and picking a subset X1 of Y1 with cardinality 2C. Proceed in this manner until
we terminate in a set Yt of cardinality < 2C. By the maximality of Yt we get that

A ⊂ Yt +Qt −Qt = Yt +
t−1∑
j=0

(Xj −Xj) + (Q−Q).

The set on the RHS above is a GAP of dimension ≤ 2C(t + 1) + 1024C32 and size ≤
32C(t+1)21024C32 |Q| � 32C(t+1)|A|. It remains now to estimate t.

Note that
|Qt| = |Qt−1||Xt−1| = 2C|Qt−1| = . . . = (2C)t|Q|.

On the other hand,

Qt ⊂ A+Qt−1 ⊂ . . . ⊂ tA+Q ⊂ (t+ 2)A− 2A,

so that |Qt| ≤ Ct+4|A| by Plünnecke. Since |Q| is about e−C33 |A|, estimates it follows that
t � C33. Thus the dimension of the GAP in Freiman’s theorem is � C34 and the size is
� exp(C34)|A|.

By adding some extra ingredients, including Chang’s structure theorem on large Fourier
coefficients, one can further reduce the bound on the dimension of the GAP is Freiman’s
theorem to � C2(logC)2, and size factor S may be made ≤ exp(220C2(logC)2). The
dimension of the GAP in Freiman’s theorem cannot be made smaller than C: to see this,
take A to be the sumset of the interval [1, N/C] and a set S of cardinality C which is very
sparse. Then the sumset A+A is about size C|A|, but one cannot hope to realize A as a
large subset of a GAP with dimension significantly smaller than C.

We end by giving a small variant of Freiman’s result which will be useful in Gowers’s
proof.

Freiman Variant. Let A be a subset of Z with |A + A or |A − A| ≤ C|A|. There exists
a proper progression Q0 of dimension ≤ 2048C32 and size � e−C33 |A| such that

|A ∩Q0| � C−16|Q0| � e−C34
|A|.

Proof. We follow the argument of §7, making a few small changes. Most notably, in
Bogolyubov’s Lemma if we allow the dimension to go up to 2/δ2 then we can ensure
that every element in that Bohr set B(K; 1/4) has at least |A|4/(2N) representations
as a1 + a2 − a3 − a4. Following now the argument earlier up to step 4, we find that
2A − 2A contains a proper GAP Q of dimension 2048C32 and size about exp(−C33)|A|,
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and moreover each element in Q has � C−16|A|3 representations as a1 + a2 − a3 − a4.
Thus ∑

a1,a2,a3,a4∈A

Q(a1 + a2 − a3 − a4) =
∑
q∈Q

#{q = a1 + a2 − a3 − a4} � |Q|C−16|A|3,

and so there exists some choice of a2, a3, a4 such that∑
a1

Q(a1 + a2 − a3 − a4) = A ∩ (Q− a2 + a3 + a4) � C−16|Q|.

Taking Q0 = Q− a2 + a3 + a4 we have proved our result.
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VIII. Gowers’s proof of Szemerédi’s theorem for four term progressions

1. Roth’s theorem revisited: The Gowers U2 norm.
Let f : Z/N → C be given. We define its Gowers U2 norm by

‖f‖4U2 =
1
N3

∑
a,b,c

f(a)f(a+ b)f(a+ c)f(a+ b+ c).

Thus, this is an average of f over parallelograms a, a + b, a + c, a + b + c. Note that a
three term progression a, a+ b, a+ 2b arises as a special parallelogram: namely a square
with b = c. We will now see that the U2 norm controls the distribution of functions in
three term progressions.

Lemma 1. Let f1, f2 and f3 be three functions from Z/N to C. Then∣∣∣ ∑
a,d

f1(a)f2(a+ d)f3(a+ 2d)
∣∣∣ ≤ N2 min

i=1,2,3
‖fi‖U2 .

Proof. Call the LHS as S. Cauchy’s inequality gives that

S2 ≤ N
∑

a

∣∣∣ ∑
d

f2(a+ d)f3(a+ 2d)
∣∣∣2 = N

∑
a

∑
d,e

f2(a+ d)f2(a+ e)f3(a+ 2d)f3(a+ 2e).

We reparametrize this, setting A = a+ d and A+ k = a+ e, so that a+ 2d = A+ d and
a+ 2e = A+ d+ 2k. So, we get

S2 ≤ N
∑
A,k

∣∣∣ ∑
d

f3(A+ d)f3(A+ d+ 2k)
∣∣∣.

Replace above 2k by k (assuming that N is odd), and use Cauchy’s inequality again. Thus

S4 ≤ N4
∑
A,k

∑
d,e

f3(A+ d)f3(A+ e)f3(A+ d+ k)f3(A+ e+ k).

Writing a = A + d, a + b = A + e (so that b = e − d), c = k, we obtain that the above
equals

N5
∑
a,b,c

f3(a)f3(a+ b)f3(a+ c)f3(a+ b+ c) = N8‖f3‖4U2 .

We have shown that S ≤ N2‖f3‖U2 . By symmetry, the Lemma follows.

Lemma 2. Let A be a subset of [1, N ] with |A| = δN . View A in Z/N , and let f
denote the balanced function of A: f(n) = 1 − δ if n ∈ A, and f(n) = −δ otherwise. If
‖f‖U2 ≤ δ3/32, then either there exist N2δ3/32 three term progressions in A, or there
exists a sub-progression of length N/3 on which A has density ≥ 9δ/8.



40 K. SOUNDARARAJAN

Proof. Let A1 and A2 denote A∩ [N/3, 2N/3]. If this set has cardinality ≤ δN/4 then one
of the two sets A∩ [1, N/3] or A∩ [2N/3, N ] must have cardinality ≥ 3δN/8 and we would
be done. If |A∩ [N/3, 2N/3]| ≥ δN/4 then we see that the number of (genuine) three term
progressions in A is at least∑

a,d

A1(a)A2(a+ d)A(a+ 2d) = δ
∑
a,d

A1(a)A2(a+ d) +
∑
a,d

A1(a)A2(a+ d)f(a+ 2d)

≥ δ3

16
N2 − ‖f‖U2N2,

using Lemma 1. This proves the Lemma.

What does it mean for the U2 norm to be large? Here we must fall back on Fourier
coefficients. Notice that

‖f‖4U2 =
1
N4

∑
k

|f̂(k)|4.

Therefore, using Parseval we see that if ‖f‖U2 ≥ δ3/32 (as in Lemma 2) then δ12N2 �
maxk |f̂(k)|2 so that maxk |f̂(k)| � δ6N . This is similar to, but weaker than, the criterion
we obtained directly in Roth’s proof. What has been gained is that the definition of the
U2 norm lends itself readily to generalization, unlike Roth’s proof.

2. The Gowers U3 norm and four term progressions.
Analogously to the U2 norm, we define the U3 norm of f : Z/N → C by

‖f‖8U3 =
1
N4

∑
a,b,c,d

f(a)f(a+ b)f(a+ c)f(a+ d)f(a+b+c)f(a+b+d)f(a+c+d)f(a+ b+ c+ d).

This is an average of f over parallelopipeds. Now define

∆(f, k)(n) = f(n)f(n+ k).

Then we see that
‖f‖8U3 =

1
N

∑
b

‖∆(f, b)‖4U2 .

Just as the U2 norm controls three term progressions, the U3 norm controls four term
progressions.

Lemma 1. Let f1, f2, f3, f4 be functions from Z/N to C. Then∣∣∣ ∑
a,d

f1(a)f2(a+ d)f3(a+ 2d)f4(a+ 3d)
∣∣∣ ≤ N2 min

i=1,2,3,4
‖fi‖U3 .

Proof. Call the sum in question S. Cauchy’s inequality gives that

S2 ≤ N
∑

a

∣∣∣ ∑
d

f2(a+ d)f3(a+ 2d)f4(a+ 3d)
∣∣∣2

= N
∑

a

∑
d,e

f2(a+ d)f2(a+ e)f3(a+ 2d)f3(a+ 2e)f4(a+ 3d)f4(a+ 3e).
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Rewrite a+ d as a, and write e = d+ k. Then the above is

N
∑

k

∑
a,d

∆(f2, k)(a)∆(f3, 2k)(a+ d)∆(f4, 3k)(a+ 2d).

The inner sums over a and d are now over various functions evaluated on three term
progressions. Therefore, by Lemma 1, the above is

≤ N3
∑

k

‖∆(f4, 3k)‖U2 .

Replacing 3k by k (assuming N is not divisible by 3), Hölder’s inequality now gives that
this is

≤ N4‖f4‖2U3 .

The Lemma follows.

Lemma 2. Let A be a subset of [1, N ] with |A| = δN . We view A in Z/N and let f
denote the balanced function of A. If ‖f‖U3 ≤ δ4/144 then either there exist N2δ4/72 four
term progressions in A, or there exists a sub-progression of length 2N/5 on which A has
density ≥ 25δ/24.

Proof. Let A1 = A2 = A ∩ [2N/5, 3N/5]. If |A1| ≤ δN/6 then either A ∩ [1, 2N/5] or
A∩ [3N/5, N ] has size at least 5δN/12, so that there would be a sub-progression of length
2N/5 where A has density 25δ/24. Suppose now that |A1| = |A2| ≥ δN/6. The number
of genuine four term progressions in A exceeds∑

a,d

A1(a)A2(a+ d)A(a+ 2d)A(a+ 3d) = δ
∑
a,d

A1(a)A2(a+ d)A(a+ 2d)

+
∑
a,d

A1(a)A2(a+ d)A(a+ 2d)f(a+ 3d).

The second term above is bounded in size by N2‖f‖U3 , by Lemma 1. The first term above
equals

δ2
∑
a,d

A1(a)A2(a+ d) + δ
∑
a,d

A1(a)A2(a+ d)f(a+ 2d) ≥ δ2|A1|2 − δN2‖f‖U2 ,

by Lemma 1 of the previous section. Therefore the number of genuine four term progres-
sions in A is at least

δ4N2/36− δN2‖f‖U2 −N2‖f‖U3 .

A homework problem shows that ‖f‖U2 ≤ ‖f‖U3 ≤ ‖f‖U4 . . . , and therefore the Lemma
follows.

The argument generalizes in an obvious manner, using (k − 1)-dimensional parellelop-
ipeds to define a Gowers Uk−1 norm which controls the distribution of k term arithmetic
progressions. Precisely, we define inductively

‖f‖2
k

Uk =
1
N

∑
b

‖∆(f, b)‖2
k−1

Uk−1 ,

and then ∣∣∣ ∑
a,d

f1(a)f2(a+ d) · · · fk(a+ (k − 1)d)
∣∣∣ ≤ N2 min

i=1,... ,k
‖fi‖Uk .
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3. Extracting structure out of a large U3 norm.
Suppose now that we have a function f : Z/N → [−1, 1] with ‖f‖U3 ≥ α. We wish to
extract some additive structure that f must possess. Recall that

‖f‖8U3 =
1
N

∑
k (mod N)

‖∆(f, k)‖4U2 ≥ α8.

Since each ‖∆(f, k)‖U2 is ≤ 1, we see that there are at least α8N/2 values of k for which
‖∆(f, k)‖4U2 ≥ α8/2. Let B denote the set of such values k.

For k ∈ B we know that

α8

2
≤ ‖∆(f, k)‖4U2

=
1
N4

∑
`

|∆̂(f, k)(`)|4

≤
(

max
`
|∆̂(f, k)(`)|2

) 1
N4

∑
`

|∆̂(f, k)(`)|2 ≤ 1
N2

max
`
|∆̂(f, k)(`)|2,

where we used Parseval at the last step. Therefore there exists some large Fourier coefficient
of ∆(f, k). That is for each k ∈ B we may find a φ(k) (making some choice among the
large coefficients) such that

(1) |∆̂(f, k)(φ(k))| ≥ Nα4/2.

Summarizing the argument so far, we have produced a large set B (with at least α8N/2
elements) such that for k ∈ B there exists φ(k) satisfying (1).

The crucial observation in Gowers’s proof is that the map φ(k) is far from arbitrary,
and behaves “linearly” for many values of k.

Proposition. Let f : Z/N → [−1, 1], and suppose that B and φ are as above. Then
there are at least α642−12N3 quadruples (b1, b2, b3, b4) ∈ B4 with b1 + b2 = b3 + b4, and
φ(b1) + φ(b2) = φ(b3) + φ(b4).

Proof. From (1) and our definition of B we know that

(2)
∑
k∈B

|∆̂(f, k)(φ(k))|2 ≥ α16

8
N3.

Expanding out ∆̂(f, k)(φ(k)) we see that the LHS above equals∑
k∈B

∑
x,y

f(x)f(x+ k)f(y)f(y + k)e
(
− (x− y)φ(k)

N

)
=

∑
x,u

f(x)f(x+ u)
∑
k∈B

f(x+ k)f(x+ u+ k)e
(
− uφ(k)

N

)
≤

∑
x,u

∣∣∣ ∑
k

∆(f, u)(x+ k)hu(k)
∣∣∣,(3)
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where we have written hu(k) = B(k)e(−uφ(k)/N) with B(k) denoting the characteristic
function of B. Using Cauchy’s inequality above we conclude that

(4)
α32

64
N4 ≤

∑
u

∑
x

∣∣∣ ∑
k

∆(f, u)(x+ k)hu(k)
∣∣∣2.

Let us consider the sums over x and k, treating u as fixed. Let Fu(x) =
∑

k ∆(f, u)(x+
k)hu(k). Then

F̂u(r) =
∑

x

Fu(x)e(−xr/N) =
∑

x

∑
k

∆(f, u)(x+ k)e(−(x+ k)r/N)hu(k)e(kr/N)

= ∆̂(f, u)(r)ĥu(−r).

Thus Parseval gives

∑
x

|Fu(x)|2 =
1
N

∑
r

|∆̂(f, u)(r)|2|ĥu(−r)|2 ≤ 1
N

( ∑
r

|∆̂(f, u)(r)|4
) 1

2
( ∑

r

|ĥu(−r)|4
) 1

2
.

Trivially we see that |∆̂(f, u)(r)| ≤ N , and by Parseval
∑

r |∆̂(f, u)(r)|2 ≤ N2, and so the
above is

≤ N
( ∑

r

|ĥu(−r)|4
) 1

2
.

Inputing this into (4) we conclude that

α32

64
N3 ≤

∑
u

( ∑
r

|ĥu(−r)|4
) 1

2
,

which by Cauchy’s inequality gives

α64

212
N5 ≤

∑
u

∑
r

|ĥu(−r)|4.

Upon recalling the definition of hu(k) we see that the RHS above precisely equals N2 times
the number of desired additive quadruples. Therefore, the Proposition holds.

4. Additive Quadruples and The Balog-Szemerédi-GowersTheorem.
Freiman’s theorem finds structure in A provided A+B is small for some set B of the same
size as A. Suppose instead that we have a set B (with |B| = |A|) and we know that for
many choices of (a, b) ∈ A×B we get a+ b lying in a small set, then can we still form any
conclusions about A? More precisely, we assume that we are given a subset G of A × B
with |G| ≥ α|A|2 and such that S = {a + b : (a, b) ∈ G} is small. Then what can we
conclude about A? The answer is that A contains a big subset A′, and B contains a big
subset B′ such that A′ +B′ is small; and now we can find structure in A′ as in Freiman’s
theorem. This is the Balog-Szemerédi theorem.
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We will need a variant of the Balog-Szemerédi theorem due to Gowers. Let A and B
be sets with |A| = |B|, and |A + A| ≤ C|A|, and let rA+B(n) denote the number of the
number of ways of writing n as a+ b with a ∈ A and b ∈ B. Note that∑

n

rA+B(n) = |A||B|,

and that |A+B| equals the number of n with rA+B(n) 6= 0. Using Cauchy’s inequality it
follows that ∑

n

rA+B(n)2 ≥ |A|4/|A+B| ≥ |A|3/C.

The LHS counts the number of additive quadruples (a1, b1, a2, b2) with a1 + b1 = a2 + b2.
Thus having small A + B implies the existence of many additive quadruples. Gowers’s
variant assumes the existence of many additive quadruples, and finds large subsets of A
and B whose sumset is small.

The Balog-Szemerédi-Gowers Theorem A. Let A and B be subsets of an abelian
group, with |A| = |B|. Suppose there are at least α|A|3 additive quadruples (a1, b1, a2, b2) ∈
A×B ×A×B with a1 + b1 = a2 + b2. Then there are subsets A′ of A and B′ of B with

|A′| ≥ α2|A|/(16
√

2), |B′| ≥ α2|B|/16, and |A′ +B′| ≤ 228α−13|A|.

The Balog-Szemerédi-Gowers Theorem B. Let A and B be two subsets of an abelian
group with |A| = |B|. Let G be a subgraph of the complete bipartite graph between A and
B, with G having at least |A||B|/K edges. Suppose that A +G B = {a + b : (a, b) ∈ G}
has cardinality |A+G B| ≤ K1|A|. Then there exist subsets A′ of A and B′ of B with

|A′| ≥ |A|/(4
√

2K), |B′| ≥ |B|/(4K), and |A′ +B′| ≤ 215K5K3
1 |A|.

Equivalence of the two versions. Suppose we are given A andB with many additive quadru-
ples. That is

∑
n rA+B(n)2 ≥ α|A|3. Then there are at least α|A|/2 popular sums n with

rA+B(n) ≥ α|A|/2 (why?). Define the graph G by letting (a, b) be an edge in G precisely
when a + b is a popular sum. The number of edges in G is at least α2|A|2/4, and since
there can be at most 2|A|/α popular sums, we also have |A +G B| ≤ 2|A|/α. Therefore
version A follows from version B.

Conversely, suppose we are given a subgraph G as in version B. Then
∑

n rA+GB(n) =
|G|, and so

∑
n rA+GB(n)2 ≥ |G|2/|A +G B| by Cauchy’s inequality. Therefore there are

at least |G|2/|A+G B| additive quadruples, and we can deduce version B from version A
(at least, up to constants).

It is version B that we will focus on proving. The idea is that since G contains a
proportion of all edges from A to B, there will likely be many paths of length 2 from A to
A, and many paths of length 3 from A to B. Once we quantify these paths of lengths two
and three, the result follows easily. The situation is analogous to the sumsets 2A, 3A etc
becoming more and more smooth.
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Lemma 1. Let G be an undirected bipartite graph having two vertex sets A and B (that
is, the edges connect points in A to points in B). Suppose that the edge set has cardinality
|A||B|/K for some K ≥ 1. Given ε ∈ (0, 1), there exists a subset A′ of A with |A′| ≥
|A|/(

√
2K) such that for at least a proportion (1 − ε) of the pairs (a1, a2) ∈ A′ × A′ we

have at least ε|B|/(2K2) paths of length 2 in G connecting a1 and a2.

Proof. For a ∈ A let B(a) denote the points in B connected to a, and similarly for b ∈ B
let A(b) denote the points in A connected to b. Let Ω denote the subset of A×A consisting
of pairs (a1, a2) for which there exits fewer than ε|B|/(2K2) elements in B(a1) ∩B(a2).

Clearly
∑

b∈B |A(b)| equals the total number of edges |A||B|/K. By Cauchy’s inequality
it then follows that ∑

b∈B

∑
a1,a2∈A(b)

1 =
∑
b∈B

|A(b)|2 ≥ |A|2|B|/K2.

Further∑
b∈B

∑
a1,a2∈A(b)
(a1,a2)∈Ω

1 =
∑

(a1,a2)∈Ω

∑
b∈B(a1)∩B(a2)

1 ≤ |Ω|ε|B|/(2K2) ≤ ε|A|2|B|/(2K2).

Combining the above two relations we find that∑
b∈B

(
|A(b)|2 − 1

ε
(|A(b)2 ∩ Ω|)

)
≥ |A|2|B|

2K2
,

so that for some b ∈ B one has

|A(b)|2 − 1
ε
(|A(b)2 ∩ Ω|) ≥ |A|2/(2K2).

The Lemma follows upon taking A′ to be this set A(b).

Lemma 2. Let G be a bipartite graph as above, having an edge set of size |A||B|/K. We
may extract a set A′′ of A such that |A′′| ≥ |A|/(4

√
2K), each vertex in A′′ has degree

at least |B|/(2K), and for each a1 ∈ A′′ there exist at least (1 − 1/(16K))|A′′| vertices
a2 ∈ A′′ such that a1 and a2 are joined by at least |B|/(256K3) paths of length 2.

Proof. We remove from A all vertices with degree ≤ |B|/(2K). Let Ã denote the set of
remaining vertices, and consider the induced subgraph on vertex sets Ã and B. Since at
most |A||B|/(2K) edges are removed from our original graph, our new graph has at least
|A||B|/(2K) edges. Furthermore, |Ã| ≥ |A|/(2K).

We take ε = 1/(32K) in Lemma 1, and thus find a subset A′ of Ã with |A′| ≥
|A|/(2

√
2K) (why?) such that for a proportion 1− 1/(32K) of the pairs (a1, a2) ∈ A′×A′

we have at least |B|/(256K3) paths of length 2 connecting a1 and a2. It follows that for
at most half of values a1 ∈ A′ can there exist more than 1/(16K) of values a2 ∈ A′ with
(a1, a2) not connected by many paths of length 2. Take A′′ to be the good half of A′. This
proves our Lemma.
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Lemma 3. Let G be a bipartite graph as above having an edge set of size |A||B|/K. We
may find subsets A′ and B′ of A and B with |A′| ≥ |A|/(4

√
2K) and |B′| ≥ |B|/(4K) such

that for any a ∈ A′ and b ∈ B′ there exist ≥ |A||B|/(215K5) paths of length three joining
a and b.

Proof. Take A′ to be the set A′′ extracted in Lemma 2. We must now find the set B′. We
will take B′ to be the set of vertices adjacent to at least |A′|/(8K) elements from A′. Note
that the number of edges connecting A′ to B is at least |A′||B|/(2K). Therefore at least
|B|/4K of the vertices in B must be connected to |A′|/(8K) vertices in A′; in other words,
|B′| ≥ |B|/(4K). If a ∈ A′ and b ∈ B′ then we have at least |A′|/(8K) vertices in A′ that
are adjacent to b, and at most |A′|/(16K) of these can have the property that there are few
paths of length two connecting them to a. Thus there are at least |A′|/(16K) vertices a2

that are both adjacent to b, and have at least |B|/(256K3) paths of length two connecting
a and a2. Thus there are at least |A||B|/(215K5) paths of length three connecting a and
b.

Proof of Balog-Szemerédi-Gowers B. By Lemma 3 we may extract large sets A′ and B′

with at least |A||B|/(215K5) paths of length 3 connecting any two elements in these sets.
Thus given a and b in A′ and B′, we can find more than |A||B|/(215K5) pairs b1 and a2 in
B and A with (a, b1), (a2, b1), (a2, b) all being edges in our graph G. That is a + b1 = x,
a2 + b1 = y and a2 + b = z are all elements of A+G B. Now note the identity

a+ b = a+ b1 − (b1 + a2) + a2 + b = x− y + z.

We know lots of solutions to this equation with x, y and z in A +G B. But the total
number of choices for x, y and z is at most |A+G B|3 ≤ K3

1 |A|3. Therefore the number of
distinct possibilities for a+ b is at most

K3
1 |A|3

|A|2/(215K5)
= 215K5K3

1 |A|,

which completes our proof.

5. Linearity of the map φ on a big set.
We now resume the argument from §3. Let Γ = {(b, φ(b)) : b ∈ B}. So Γ is a subset of
(Z/N)2 possessing many additive quadruples. By version A of the Balog-Szemerédi-Gowers
Theorem we know that there exist subsets Γ1 and Γ2 of Γ with

|Γ1| = |Γ2| = 2−30α128|Γ|, and |Γ1 + Γ2| ≤ 2200α−840|Γ|.

Now we would like to use Freiman’s Theorem. However, our version of Freiman’s the-
orem was for subsets of Z, and to apply it here we need to make a couple of two isomor-
phisms. Identify (Z/N)2 with [1, N ]2 and divide it into four squares. Then we may pick
subsets Γ3 ⊂ Γ1 and Γ4 ⊂ Γ2 with each being a quarter of the size of these sets, each
contained in a square. The sets Γ3 and Γ4 are naturally two isomorphic to subsets of Z2.
By picking a large base, these sets Γ3 and Γ4 are seen to be two isomorphic to two subsets
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of the integers Γ5 and Γ6. Now apply Freiman’s Theorem. More precisely, we will use the
Freiman variant given in VII.8.

In this way, we conclude that there exists a proper progression Q in (Z/N)2 whose
dimension is � α−216

and size � exp(−α−217
)N such that

|Γ ∩Q| � α216
|Q|.

Since Q is proper it contains a one dimensional progression of length� exp(−α−216
)Nα216

.
Cover Q by translates of this progression. It follows that there exists a one dimensional
progression P0 (in (Z/N)2) having size � exp(−α−216

)Nα216

and satisfying |Γ ∩ P0| �
α216 |P0|.

Summarizing, we have shown the following Proposition.

Proposition. Keep the notations of §3. There is a progression P in Z/N of size �
exp(−α−216

)Nα216

, and a linear function n → 2λn + µ such that |B ∩ P | ≥ η|P | (with
η � α216

), and for k ∈ B ∩ P we have φ(k) = 2λk + µ.

6. Extracting quadratic bias.
Our aim is now to show that f correlates locally with a quadratic phase function. We start
with the following simple version.

Proposition 1. Let f : Z/N → [−1, 1], and suppose that for some λ ∈ Z/N we have∑
k∈Z/N

|∆̂(f, k)(2λk)|2 ≥ ζN3.

Then for some r ∈ Z/N we have∣∣∣ ∑
n

f(n)e
(λn2 + rn

N

)∣∣∣ ≥ √
ζN.

Proof. Expanding out the hypothesis we obtain that

ζN3 ≤
∑

k

∑
x,y

f(x)f(x+ k)f(y)f(y + k)e(2λk(y − x))

=
∑

k

∑
x,u

f(x)f(x+ k)f(x+ u)f(x+ u+ k)e(2λku).

Now observe that x2 − (x+ k)2 − (x+ u)2 + (x+ k + u)2 = 2ku, and so the above equals∑
x,k,u

f(x)e(λx2)f(x+ k)e(−λ(x+ k)2)f(x+ u)e(−λ(x+ u)2)f(x+ k+ u)e(λ(x+ k+ u)2).

If we set g(x) = f(x)e(λx2), then the above equals N3‖g‖4U2 . Therefore

ζN3 ≤ N3‖g‖4U2 =
1
N

∑
r

|ĝ(r)|4 ≤ N max
r
|ĝ(r)|2

using Parseval. This yields the Proposition.

With a little more effort, the same argument extends to cover the information given in
the Proposition of §5.
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Proposition 2. Keep the notations of §5. For every x ∈ Z/N there exists rx ∈ Z/N such
that ∑

x

∣∣∣ ∑
k∈P+x

f(k)e
(
− λk2 + rxk

N

)∣∣∣ ≥ ηα8

4
√

2
N |P |.

Proof. In the notation of §5 we have that∑
k∈P

|∆̂(f, k)(2λk + µ)|2 ≥ ηα8

4
|P |N2.

Expanding out the LHS we obtain∑
k∈P

∑
x,u

f(x)f(x+ k)f(x+ u)f(x+ u+ k)e
( (2λk + µ)u

N

)
.

Now each u may be written as ` + y where ` ∈ P and y ∈ Z/N in exactly |P | ways.
Therefore the above is

1
|P |

∑
x,y

∑
k,`∈P

f(x)f(x+ k)f(x+ y + `)f(x+ y + k + `)e
( (2λk + µ)(`+ y)

N

)
.

For some y ∈ Z/N it follows that

(1)
∑

x

∣∣∣ ∑
k,`∈P

f(x+ k)f(x+ y + `)f(x+ y + k + `)e
(2λk`+ 2λky + µ`

N

)∣∣∣ ≥ ηα8

4
|P |2N.

Now we separate the variables k and ` by writing 2λk` = λ((k + `)2 − k2 − `2). We
think of x as being fixed, and focus on the sums over k and `. We write g1(k) = g1,x(k) =
f(x + k)e((−λk2 + 2λky)/N), g2(`) = f(x + y + `)e((−λ`2 + µ`)/N), and g3(k + `) =
f(x+ y+ k+ `)e(λ(k+ `)2/N) provided k and ` are in P and k+ ` is in P +P . For other
values of k, ` or k + ` we set these functions equal to zero. Thus the inner sums in (1)
give, by Parseval ∑

k,`

g1(k)g2(`)g3(k + `) =
1
N

∑
r

ĝ1(r)ĝ2(r)ĝ3(−r).

By Cauchy-Schwarz and Parseval, this is

≤ (max
r
|ĝ1(r)|)

( 1
N

∑
r

|ĝ2(r)|2
) 1

2
( 1
N

∑
r

|ĝ3(r)|2
) 1

2 ≤ (max
r
|ĝ1(r)|)|P |

1
2 (2|P |) 1

2 .

Using this in (1) we have shown that∑
x

max
r

∣∣∣ ∑
k∈P

f(x+ k)e
(−λk2 + 2λky − rk

N

)∣∣∣ ≥ ηα8

4
√

2
|P |N.

That is, for every x there exists rx such that∑
x

∣∣∣ ∑
k∈P+x

f(k)e
(
− λk2 + rxk

N

)∣∣∣ ≥ ηα8

4
√

2
|P |N,

which proves our Proposition.
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7. Application of Weyl’s inequality leading to density increment.
Let us recall the proof of Roth’s theorem in the case when there is a large Fourier coefficient
of f . Say f̂(r) is large. In this case, the idea was to dissect the interval [1, N ] into sub-
progressions on which e(rn/N) is roughly constant. This is achieved by using Dirichlet’s
theorem to approximate r/N by a/q for some small q, then splitting n into progressions
(mod q), and subdividing those progressions into small intervals.

Lemma 1. Let P be a progression (mod N) of length R, and let ψ1(x) = αx be a linear
function. There exists a partition of P into (mod N) progressions P1, . . . , PM each of
length about R

1
4 (so M is about R

3
4 ), such that for x, y ∈ Pj we have

|e(ψ1(x)/N)− e(ψ1(y)/N)| � R−
1
4 .

Proof. Without loss of generality we may suppose that P = [1, R]. By Dirichlet’s Theorem
we may find q ≤

√
R such that ‖qα/N‖ ≤ 1/

√
R. Divide [1, R] into the progressions

(mod q). If one of those progressions is a + jq with 1 ≤ j ≤ R/q, then divide that
progression into sub-intervals for j each of length about R

1
4 . In this way we arrive at the

R
3
4 desired sub-progressions, and for any x, y in one of these sub-progressions we plainly

have ‖(ψ1(x)− ψ1(y))/N‖ ≤ R
1
4 ‖qα/N‖ ≤ R−

1
4 . This proves the Lemma.

We now extend the argument above to the case when f correlates locally with some
quadratic polynomial, as in §6 above. The aim is to dissect that progression P + x into
sub-progressions on which the quadratic phase is roughly constant.

Lemma 2. Let P be a progression (mod N) of size R, and let ψ2(x) = αx2 + βx be
some quadratic function. We may split P into (mod N) progressions P1, . . . , PM each
of length about R

1
128 (so that M is about R

127
128 ), such that for x, y ∈ Pj we have

|e(ψ2(x)/N)− e(ψ2(y)/N)| � R−
1

128 .

Proof. Without loss of generality we may suppose that P = [1, R]. By Weyl’s Theorem
(see Corollary 3 of Chapter IV) we may find q ≤ R

1
2 such that ‖q2α/N‖ ≤ R−

1
8 . Divide

P into the progressions (mod q), and divide each of those progressions into intervals of
length R

1
32 . In this manner we obtain about R

31
32 sub-progressions each of length about

R
1
32 .
Consider one of the above sub-progressions. It looks like a+ jq for some a, and 1 ≤ j ≤

R
1
32 . Now

ψ2(a+ jq)
N

=
α

N
(a+ jq)2 +

β

N
(a+ jq) =

αa2 + βa

N
+ j2

q2α

N
+ j

2αaq + βq

N
.

Here the first term is constant and doesn’t vary on this sub-progression. The second term
viewed (mod 1) changes by at most R

1
16 ‖q2α/N‖ ≤ R−

1
16 . The last term gives a linear

polynomial in j, and we may employ Lemma 1 to make that term locally constant. That
is, using Lemma 1 we may divide our values for j into sub-progressions of length R

1
128 on

which the last term varies (mod 1) by at most R−
1

128 . This establishes our Lemma.

The progressions above are in Z/N . We now show that progressions in Z/N can be
broken up into not too many genuine (over Z) progressions.
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Lemma 3. Let P be a Z/N progression of length R. Then we may partition P into 4
√
R

genuine arithmetic progressions.

Proof. Let the progression P be a+ jq with 1 ≤ j ≤ R. We find, by Dirichlet’s Theorem
` ≤

√
R with ‖`q/N‖ ≤ R−

1
2 . Use this to divide our progression P into sub-progressions of

j (mod `) . Sub-divide those progressions into intervals, as needed. The whole argument
is quite similar to Lemma 1.

Proposition 4. Let P be a progression as in §6, and denote its size by R. For each
x ∈ Z/N we may partition P + x into about 4R

255
256 genuine arithmetic progressions Px,1,

. . . , Px,M (with M about 4R
255
256 ) such that

∑
x∈Z/N

M∑
j=1

∣∣∣ ∑
k∈Px,M

f(k)
∣∣∣ ≥ ηα8

8
NR.

Proof. We start with the estimate of Proposition 2 of §6. Then use Lemma 2 to split P +x
into about R

127
128 progressions (mod N) on which the exponential factor there is essentially

constant. Then subdivide these progressions using Lemma 3 to obtain genuine arithmetic
progressions. Thus we obtain the Proposition.

Corollary 5 (Density Increment). Keep the notations of Proposition 4. There is a
genuine arithmetic progression Q of size at least (ηα8/128)R

1
256 such that

|A ∩Q| ≥ |Q|(δ + ηα8/128).

Proof. Note that ∑
x∈Z/N

M∑
j=1

∑
k∈Px,M

f(k) = 0.

Therefore, adding this to the estimate of Proposition 4 we obtain that

∑
x

M∑
j=1

max
(
0,

∑
k∈Px,M

f(k)
)
≥ ηα8

16
NR.

The contribution of terms with |Px,M | ≤ (ηα8/128)R
1

256 to the above is ≤ (ηα8/32)NR.
Hence the contribution of long intervals to the above sum is big, and the Corollary follows.

8. Gowers’s Theorem for four term progressions.
We recapitulate the argument. We have a set A ∈ ZN with |A| = δN , and f is the
balanced function of A. We may suppose that ‖f‖U3 ≥ δ4/144, else we have density
increment on a subprogression of length 2N/5 (see §2). This implies the existence of large
Fourier coefficients ∆̂(f, k)(φ(k)) for k lying in a big set B. The map φ was seen to be
weakly linear (possessing many additive quadruples) in §3. This weak linearity led, via
Balog-Szemerédi-Gowers to linearity on a largish progression P (see §4 and 5). From the
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linearity of the function φ we then obtained long progressions on which f had quadratic
bias (Proposition 2 of §6). Finally in §7 we dissected those long progressions into sub-
progressions where the quadratic phase function was roughly constant. This led finally to
the increase in density of A on a sub-progression.

Precisely, the above argument leads to a (genuine) sub-progression of [1, N ] of size at

least exp(−δ−220
)N δ217

on which the relative density of A is at least δ + 2−220
δ2

20
. Now

we iterate this argument. The argument can be iterated at most 2220
δ−220

times. After

so many iterations, we obtain a very large set of numbers below exp(−2δ−220
)N δ240δ−220

.
If this is large, then we obtain the desired four term progressions. This is satisfied if
δ ≥ (log logN)−2−40

. Equivalently, if

N ≥ exp(exp((1/δ)2
40

)),

then a set of density δ in [1, N ] contains a four term progression.


