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1 The Dialectica paper.

In 1958, Gödel published in the journal Dialectica an interpretation of in-
tuitionistic number theory in a quantifier-free theory of functionals of finite
type; this subsequently came to be known as Gödel’s functional or Dialectica
interpretation. The article itself was written in German for an issue of that
journal in honor of Paul Bernays’ 70th birthday. In 1965, Bernays told Gödel
of a plan to publish an English translation by Leo F. Boron of his 1958 paper,
again in Dialectica. However, Gödel was dissatisfied with certain aspects of
the original, and set out to revise the translation. A year after doing so to his
apparent satisfaction, Gödel changed his mind and decided instead to add a
new series of extensive footnotes by way of improvement and amplification.
The result was sent to the printer in 1970 after much help and encourage-
ment by Bernays and Dana Scott, but when the proof sheets were returned,

∗The published version of this article has appeared in Computational Logic and Proof
Theory (Proc. 3d Kurt Gödel Colloquium, Brno Aug. 1993), G. Gottlob et at. eds., LNCS
713 (1993), 23–40.
(Use for reference data only, since the published version was mercilessly mangled by edito-
rial misapplication of their LATEXprogram despite its having been submitted in accordance
with all instructions.)
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Gödel was again dissatisfied, especially with two of the added notes. Though
he apparently worked on rewriting these until 1972, the paper was never re-
turned in final form for publication. The corrected proof sheets found in his
Nachlass were reproduced for the first time in Volume II of Gödel’s Collected
Works [1990], where they appear as 1972. The full story of the vicissitudes
of this paper is told by A.S. Troelstra in his introductory note to 1958 and
1972 in that volume.

There is also a long and interesting prior history to the development of
Gödel’s functional interpretation, much of which has only emerged in recent
years through the study of previously unpublished lecture texts going back to
1933 and found in Gödel’s Nachlass; these texts are to appear in Volume III
of his Collected Works, which is nearing completion as this is being written.
It seemed to me fitting to use the present occasion to trace the development
of these ideas to which Gödel devoted repeated attention over such a long
stretch of time.

2 Toward the functional interpretation: 1933–

1938.

The previously unpublished lecture texts referred to above are three in num-
ber; they are:

A. “The present situation in the foundations of mathematics” – an invited
lecture delivered in December 1933 to a meeting of the Mathematical
Association of America held jointly with the American Mathematical
Society in Cambridge, Massachusetts.

B. “Vortrag bei Zilsel” – a lecture in January 1938 for an informal seminar
organized by Edgar Zilsel in Vienna.

C. “In what sense is intuitionistic logic constructive?” – a lecture at Yale
University in April 1941.

The texts for the Cambridge and Yale lectures were found fully written
out in Gödel’s Nachlass and required very little editorial work to be estab-
lished for Volume III of the Gödel Works. That for the Zilsel seminar was
a different matter altogether and required a great deal of arduous effort; the
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notes in this case were found in the Gabelsberger shorthand employed by
Gödel. They were initially transcribed by Cheryl Dawson and worked up in
collaboration with her to a relatively coherent text by Charles Parsons and
Wilfried Sieg, who then translated it into English. Introductory notes to all
of these items are also to appear with their forthcoming publication in the
Gödel Works, Vol. III: the first of these is mine, the second is by Parsons
and Sieg, and the third is by Troelstra. I have drawn on all three of these
notes in the following, and am indebted to Parsons, Sieg, and Troelstra for
what I have learned from their exegetical work. I will give a synopsis of the
relevant portions of the Cambridge and Vienna lectures in this section; the
Yale lecture will be taken up in the next section.

In the 1933 Cambridge lecture (A), Gödel says that the problem of provid-
ing a foundation for mathematics falls into two parts: the first is to represent
the methods of proof actually used by mathematicians in a deductive system
reduced to a minimum number of axioms and rules of inference, and the sec-
ond is to give a justification in some sense or other for these axioms. After
arguing that the first part has been successfully accomplished via systems of
axiomatic set theory (such as that of Zermelo-Fraenkel), Gödel turns to the
second part of the foundational project with the surprising statement:

The result... is that our axioms, if interpreted as meaningful
statements, necessarily presuppose a kind of Platonism, which
cannot satisfy any critical mind and which does not even produce
the conviction that they are consistent (A, p. 19).1

While Gödel says that it is very likely these axioms are consistent, he
says a proof of freedom from contradiction must use utterly unobjectionable
methods– and thus must exclude such problematic features of set theory as
the use of non-constructive reasoning in existence proofs and of impredicative
definitions. Thus one must seek a consistency proof by constructive methods;
however, here there is a choice, as there are different layers of constructivity.
The lowest of these is that of finitism, which is distinguished by three features:

1This doesn’t seem to square with Gödel’s unequivocal assertions in various sources
from the 1960’s and 1970’s that he had held a Platonistic philosophy of mathematics since
his student days in Vienna. Cf. [Feferman 1984] pp. 549–552 for information about
Gödel’s retrospective claims; the discrepancy is discussed further in my forthcoming note
to A.
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1. The application of the notion of ‘all’ or ‘any’ is to be re-
stricted to those infinite totalities for which we can give a
finite procedure for generating all their elements [such as the
integers]...

2. Negation must not be applied to propositions stating that
something holds for all elements, because this would give
existence propositions...[these] are to have a meaning in our
system only in the sense that we have found an example but,
for the sake of brevity, do not state it explicitly...

3. And finally we require that we should introduce only such
notions as are decidable for any particular element and only
such functions as can be calculated for any particular ele-
ment. (A, p. 23)

But, contrary to Hilbert’s expectation, it appears to Gödel hopeless to
demonstrate even the consistency of classical arithmetic [Peano Arithmetic,
PA] by finitist methods, in view of his second incompleteness theorem and
the fact that all known or prospective such methods can easily be carried out
in that system. This leads one to consider the possible use of intuitionistic
methods in the wider sense of Brouwer and Heyting. And, although one has
a reduction of classical to intuitionistic arithmetic [Heyting Arithmetic, HA]
by [Gödel 1933], this does not meet the desired goals, since intuitionistic
principles violate the above criteria in two essential respects. Namely, in
intuitionism one allows the formation of negation of arbitrary propositions
by giving to ¬p the meaning that one has a (constructive) demonstration
that any proof of p leads to an absurd conclusion. This violates the criterion
1, since “any” here ranges over the inherently vague totality of arbitrary
constructive proofs (which cannot be limited to formal proofs in any one
formal system); and it violates criterion 2 by allowing the formation of (and
reasoning with) negations of universal propositions; ¬∀xφ(x). At the end
of his 1933 Cambridge lecture, Gödel concludes that “[the] foundation of
classical arithmetic by means of the notion of absurdity is of doubtful value”,
but he is hopeful that “one may find other and more satisfactory methods
of construction beyond the limits of [finitism]” to found at least classical
arithmetic and then analysis.

Gödel returned to modified forms of Hilbert’s program in his lecture
for the Zilsel seminar (B), to meet certain criteria such as 1–3 above, but
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now with more definite candidates for constructive consistency proofs. The
possible routes considered are: 1◦ The use of higher-type functionals, 2◦ a
“modal-logical” approach, and 3◦ use of transfinite induction and transfinite
recursion. In the first of these, Gödel follows [Hilbert 1926] by giving exam-
ples of schemata for primitive recursive functionals of finite type; however,
he gives no indication that he is in possession of an interpretation of HA in
such a system. Nevertheless, this should be considered a first step toward
the Dialectica interpretation. Under 2◦, Gödel sketched an abstract theory
of constructive proofs as a foundation of intuitionistic reasoning. In this he
anticipates [Kreisel 1962] (which however met various difficulties, cf. [Good-
man 1970]). Finally, under 3◦, Gödel considers Gentzen’s consistency proof
for classical arithmetic ([Gentzen 1936]). Here he explains the essentials of
Gentzen’s reduction procedures in terms of a functional interpretation using
functionals just of type level ≤ 2. The idea is illustrated by means of an
example; consider

∀x∃y∀z∃uR(x, y, z, u)(1)

where R is decidable. Constructively one would have a counterexample to
(1) if for some a, f we have

∀y, u¬R(a, y, f(y), u).(2)

Then an interpretation of (1) is that any proposed counterexample can be
blocked by computable functionals Y (f, a), U(f, a), such that

∀f, aR(a, Y (f, a), f(Y (f, a)), U(f, a)).(3)

Moreover, Gödel suggests how Gentzen’s assignments of ordinals in his proof
can be used to define such realizing functionals for provable statements of
classical arithmetic by transfinite recursion on ordinals up to ε0. Here Gödel
anticipated the “no-counterexample interpretation ” (n.c.i.) introduced by
Kreisel [1951, 1952] for arithmetic (itself obtained by an analysis of Ack-
ermann’s version of Gentzen’s consistency proof). It should also be noted
that the n.c.i. was later shown (by Kreisel) to be a consequence of Gödel’s
translation of PA into HA followed by his functional interpretation of HA.
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3 The Yale Lecture: Gödel’s heuristics for

the functional interpretation.

Gödel lectured at Yale University on April 15, 1941 to a joint meeting of
the Mathematics and Philosophy Clubs,2 under the title “In what sense is
intuitionistic logic constructive?” (C, in the preceding section). The text of
this lecture is more informal and leisurely than the later Dialectica publica-
tion, and it explains (as the latter does not) the heuristic reasoning that led
him to the functional interpretation. Again, he sets down three criteria for
constructivity which are close to those of the 1933 lecture in Cambridge but
differ in one essential respect:

1. All primitive (undefined) functions...must be calculable for
any given arguments and all primitive relations must be de-
cidable for any given arguments.

2. Existential assertions must have a meaning only as abbrevi-
ations for actual constructions...

3. Universal propositions can be negated in the sense that a
counterexample exists in the sense just described... There-
fore, leaving out abbreviations, universal propositions can’t
be negated at all... (C, pp. 5–6)

The essential difference from the former criteria is that Gödel no longer re-
quires universally quantified variables to range over totalities whose elements
are generated by some finite procedure. Gödel calls a system “strictly con-
structive” or “finitistic” if it satisfies these three conditions, though he is trou-
bled by the latter appellation. In fact, Gödel described later (in 1958) his use
of functionals of finite type as a (novel) extension of finitistic methods. In any
case, he says that intuitionism does not (on the face of it) meet these three
conditions. Nevertheless, he is able to show that “in its application to definite
mathematical systems intuitionistic logic can be reduced to finitistic systems”
(in the above sense). This is illustrated by his interpretation of HeytingArith-
metic, HA, in a system Σ of functionals of finite type, which has variables

2I learned of these auspices from John Dawson. Kreisel [1987] p. 104 erroneously
states that this lecture was on the occasion of an honorary doctorate; Gödel was awarded
an Honorary D. Litt. by Yale ten years later in June 1951.
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ranging over natural numbers, functions of numbers, functions of functions
(functionals), etc. Σ provides for two basic means of introducing specific func-
tions and functionals: Explicit Definition, and [Primitive] Recursive Defini-
tion, where in F (0) = G,F (x+1) = H(x, F (x)), the values of F (x) may lie in
any given type. The axioms and rules of Σ allow for ordinary propositional
calculus applied to decidable (quantifier-free) formulas, the rule of induc-
tion, and rules for equality and substitution. The “meaningful propositions”
of Σ have the form (∃x1, ..., xn)(∀y1, ..., ym)R(x1, . . . , xn, y1, . . . , ym) where
R is quantifier-free and x1, . . . , xn, y1, . . . , ym may be of arbitrary type. This
comes with the understanding that one can assert such a statement in Σ only
if specific instances t1, ..., tn have been found such that R(t1, ..., tn, y1, ...ym)
is established to hold for arbitrary y1, ..., ym. Gödel argues that the require-
ments 2 and 3 above force one to limit the statements in this way, since propo-
sitional operations (in particular negation) may not be applied to universal
statements, and existential quantification is only regarded as an abbreviation
for successful instantiation.

Statements of Σ are indicated in the form ∃x∀yR(x, y), where x, y are
understood to be sequences of variables of arbitrary type. The interpretation
of intuitionistic logic and arithmetic in Σ is obtained by associating with
each formula A(z) of arithmetic, a formula ∃x∀yR(x, y, z) of Σ. This is done
by induction on A; for simplicity, the parameters ‘z’ are suppressed in the
following. The most complicated association (and, in Gödel’s words, “the
most important”) is with A→ B, where ∃x∀yR(x, y) is the interpretation of
A and ∃u∀vS(u, v) is that of B. Gödel says that constructively

∃x∀yR(x, y)→ ∃u∀vS(u, v)(1)

can only mean

∀x∃u[∀yR(x, y)→ ∀vS(u, v)].3(2)

This then is converted to the form

∃f∀x[∀yR(x, y)→ ∀vS(f(x), v)].(3)

3However, the equivalence of (1) and (2) is not accepted in intuitionistic logic, since
the choice of u could conceivably depend on a proof of ∀yR(x, y).
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The problem then is how to interpret the implication in brackets; the simplest
way, Gödel says, is to consider its contrapositive,

¬∀vS(f(x), v)→ ¬∀yR(x, y),(4)

and here one would show how to convert any counterexample to the hypoth-
esis into one for the conclusion, i.e.

∃g1∀v[¬S(f(x), v)→ ¬R(x, g1(v))](5)

Since the formulas R, S are decidable, classical propositional calculus then
leads us from (3) via (4) and (5) to:

∃f∀x∃g1∀v[R(x, g1(v)) → S(f(x), v)](6)

and finally to

∃f, g∀x, v[R(x, g(x, v))→ S(f(x), v)](7)

as the interpretation of A→ B. Gödel then goes on to show how to interpret
¬A,A ∨ B,A ∧ B, ∃zA(z) and ∀zA(z), given those for A and B. Treating
¬A as A→ (0 = 1) yields ∃g∀x¬R(x, g(x)) as its interpretation; the rest are
treated in the obvious way and will be shown explicitly in the next section.

As examples, Gödel shows how the interpretation of (A→ A) is provable
in Σ and how the rule of modus ponens is preserved by the interpretation.
Both of these use only the Explicit Definition principle. He says that the
proofs for the other axioms and rules of HA are a little longer but quite
straightforward. Gödel also remarks that his interpretation can be extended
to other intuitionistic systems whose primitive functions (relations) are cal-
culable (decidable). In addition, one obtains constructive consistency proofs
of certain classical systems by first translating them into corresponding in-
tuitionistic systems by the method of [Gödel 1933] and then applying the
functional interpretation. In particular, the system PA is thus reduced to Σ.
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4 The Dialectica paper.

The title of Gödel’s Dialectica paper, “Über eine noch nicht benützte Er-
weiterung des finiten Standpunktes”,4 signals his principal foundational con-
cern, developed in the discussion with which the paper begins. Here Hilbert’s
finitism is characterized as the mathematics of finite combinations of con-
cretely representable and directly visualizable objects such as numbers and
symbols. But, finitary mathematics is insufficient to establish the consistency
of classical number theory, let alone of classical mathematics more generally.
For that, continues Gödel, certain abstract notions are needed; one can retain
the constructive component of the finitary standpoint while admitting such
notions, as for example in intuitionistic logic. But the notion of computable
function(al) of finite type, while also abstract, is more definite than the ab-
stract notion of proof that underlies intuitionistic reasoning. The system T
of the Dialectica paper [previously referred to as Σ in the 1941 Yale lecture]
embodies directly evident principles for the functionals of finite type, and
this extension of finitism may be used to prove the consistency of classical
arithmetic.

As in the Yale lecture, the basic axioms and rules of T are only indicated;
the functional interpretation is spelled out, but no details are given of the
proof that HA is interpreted in T. In the supplemental footnotes to his 1972
version of the Dialectica paper, Gödel filled in various of those details. But
he also endeavored there to strengthen the case for the foundational progress
achieved by his interpretation, apparently without arriving at a formulation
that he considered sufficiently convincing.

Gödel’s functional interpretation was brought to the attention of the logic
community in a lecture by Georg Kreisel at the Summer Institute in Symbolic
Logic held at Cornell in 1957; of this, more below. From then on, a number
of researchers worked out Gödel’s interpretation in detail and extended it
(as he had expected) to a variety of other systems. To my mind, the best
introduction to Gödel’s own work and the subsequent literature (up to 1990)
is provided by Troelstra’s introductory notes to 1958 and 1972 in Volume II
of the Collected Works (pp.217–241). For further study of the technicalities
involved, [Troelstra 1973] sec. III.5 is required reading. [Kreisel 1987] pp.104–

4Or, in the English translation in [Gödel 1990], “On a hitherto unutilized extension of
the finitary standpoint.”
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120 provides a discursive assessment of Gödel’s interpretation and some of
its extensions.

Due to limitations of space, I can only touch here on a few results that
illustrate the kind of information that may be drawn from the Dialectica in-
terpretation and which illustrate its adaptability to a variety of situations.
We begin with setting down the interpretation in full and its first conse-
quences, following the expositions by Troelstra just mentioned. Many of the
necessary syntactic preliminaries found in those sources are omitted.

Let Lω be the language of finite types over that of elementary number
theory; in this, each term, and in particular each variable, has a specified type
σ. Atomic formulas are supposed to be equations between terms of type 0.
Equations between terms of higher type are supposed to be abbreviations for
equality at all (variable) arguments (when driven down to type 0). There
are constants Kσ,τ and Sρ,σ,τ of various types ρ, σ, τ as provided by the finite-
typed combinatory calculus, satisfying the equations:

Kσ,τxy = x , Sρ,σ,τxyz = xz(yz),(1)

(for x, y, z variables of appropriate type) which ensure closure under explicit
definition. There are also, in the case specifically of Gödel’s system T, recur-
sors Rσ for each type σ satisfying

Rσxy0 = x , Rσxy(z
′) = y(Rσxyz)z(2)

with x of type σ, y of type σ → 0 → σ and z of type 0. Other applications
make use of other kinds of recursions in place of (2) and/or additional con-
stants. QF denotes the class of quantifier-free formulas in Lω, and for any
class F of formulas, QF-F denotes the intersection of QF and F .

Sequences of variables (which may be empty) are given by boldface lower-
case or upper-case letters, viz x=(x1, . . . , xn) or X= (X1, . . . , Xn), where
n ≥ 0. When preceded by ∃ or ∀, xy is the concatenation of x and y;
within a formula, Xy indicates the result of applying each term of X to the
sequence y (when this is well-typed). With each formula φ of Lω is associated
its Dialectica (or D-) interpretation φD ≡ ∃x∀yφD(x,y) where φD is QF; the
free variables of φ will be exhibited only when necessary.5 This is defined
inductively as follows, using also ψD ≡ ∃u∀vψD (x, y):

5While Gödel defined φD only for first-order φ, its extension to φ in Lω is immediate.

10



(3) (i) For φ an atomic formula, x, y are empty and φD ≡ φD ≡ φ,
(ii) (φ ∧ ψ)D ≡ ∃xu∀vy(φD ∧ ψD),

(iii)(φ ∨ ψ)D ≡ ∃zxu∀vy[(z = 0 ∧ φD) ∨ (z = 1 ∧ ψD)] (z of type
0),

(iv) (φ→ ψ)D ≡ ∃UY∀x,v[φD(x,Yxv) → ψD(Ux,v)],

(v) ∀zφ(z))D ≡ ∃X∀z,y φD(Xz,y, z),

(vi) (∃zφ(z))D ≡ ∃zx∀y φD(x,y, z).

Gödel’s motivation for (iv) has been described in the preceding section.
Negation of φ is regarded as defined by ¬φ ≡ (φ → 0 = 1). Then one

obtains

(¬φ)D ≡ ∃Y∀x¬φD(x,Yx)(4)

and so

(¬¬φ)D ≡ ∃X∀Y¬¬φD(XY,Y(XY)).(5)

This is important to take note of, since Gödel’s 1933 double-negation or
“negative” translation of classical into intuitionistic systems replaces ∃zψ(z)
by ¬¬∃zψ(z) and ψ ∨ θ by ¬¬(ψ ∨ θ). In particular, we have:

(¬¬∃zR(z))D ≡ ∃z¬¬R(z) for R ∈ QF.(6)

Let HAω be the system extending HA in Lω by the combinatory axioms
(1) and recursor axioms (2), with the induction scheme extended to arbitrary
formulas of Lω.6 The quantifier-free part of QF-HAω is just another form of
Gödel’s system T [or his 1941 Σ];7 in the following we shall use PRω as a
more suggestive denotation for this theory of primitive recursive functionals
of finite type. Gödel showed that the D-interpretation carries HA into PRω,
in the sense that for every provable φ with φD ≡ ∃x∀yφD(x,y) we can find

6Troelstra [1990] uses ‘WE-HAω’ for our HAω, where ‘WE’ stands for ‘Weakly Exten-
sional’; there is a slight risk of confusion since he uses ‘HAω’ for a different system, but
that is not needed here.

7Except that Gödel can be understood as assuming basic decidable equality relations
at each type σ in 1958; this is the so-called intensional version of T (cf. [Troelstra 1990],
pp. 221–222).
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a sequence of terms t (directly from a proof of φ) with φD(t,y) provable in
PRω. With hardly any additional work, one obtains:

HAω � φ⇒ PRω � φD(t,y) for some t.(7)

The proof of (7) breaks into two parts. The first, quite general, part is to
show that the axioms and rules of intuitionistic logic in Lω are preserved
under the D-interpretation (in the sense of (7)); this uses only the axioms
(1) for explicit definition and the underlying logic of PRω. The second part
is to show that the non-logical axioms of HAω are preserved under the D-
interpretation; here the main step is to use the recursor axioms (2) to verify
the D-interpretation of the induction scheme. The latter involves a nice
exercise in the application of the definition of (φ→ ψ)D.

It is also easy to verify that the D-interpretation preserves the Axiom of
Choice, as given by the scheme:

AC ∀x∃yφ(x, y)→ ∃f∀xφ(x, fx).

This principle is generally accepted by intuitionists. However, the following
scheme is not (ordinarily), since it generalizes “Markov’s Principle”:

M′ ¬∀vR(v) → ∃v¬R(v), for R ∈ QF.

This principle figures in a slightly different analysis (than that given by Gödel
in his 1941 lecture) of how one arrives at the D-interpretation of implication;
cf. [Troelstra 1990] p. 226. Another such schema which is problematic for
intuitionists is a form of “independence of premiss” principle:

IP′ [∀yR→ ∃u∀vS]→ ∃u[∀yR→ ∀vS], for R, S ∈ QF.

That was used in the step from (1) to (2) in the preceding section, again in

the treatment of implication. Let H̃A
ω
= HAω + AC+M′ + IP′; then (7)

above can be strengthened to the following:

(i) H̃A
ω � φ↔ φD for any φ, and(8)

(ii) H̃A
ω � φ⇒ PRω � φD(t,y) for some t.

(See [Troelstra 1990] p. 232). The result (8) serves to simplify various veri-
fications. As an immediate application of (8)(i) one has, by (6):
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H̃A
ω � ¬¬∃zR(z) ↔ ∃zRz for R ∈ QF,(9)

since R is decidable; of course, (9) also follows from M′.

5 Application of the D-interpretation to clas-

sical systems.

For φ ∈ Lω considered as a formula in a system with classical logic, let φ−

be its “negative” translation, obtained by prefixing every disjunctive or exis-
tential subformula of φ by double negation. Let PAω be HAω with classical
logic, so PAω extends PA as HAω extends HA. [Gödel 1933] showed that
the negative translation sends PA into HA; this carries over immediately
to the corresponding finite type extensions. In connection with the further
application of the D-interpretation, [Howard 1968] p. 115 observed the fol-

lowing useful strengthening of this result. Let P̃A
ω
be PAω together with all

formulas of the form ψ ↔ (ψ−)D for ψ ∈ Lω. Then:

P̃A
ω � φ implies H̃A

ω � (φ−), hence H̃A
ω � (φ−)D.(1)

Application of the Dialectica interpretation to classical systems involves cal-
culating the effect of φ �→ (φ−)D for various φ.8 Let S− be the set of (θ)−

for θ ∈ S. Since ( )− preserves ∧ and →, we have:

P̃A
ω
+ S � φ⇒ H̃A

ω
+ S− � φ−.(2)

The easiest application of this observation is that

P̃A
ω
+ (QF− AC) � φ⇒ H̃A

ω � φ−.(3)

For, an instance ∀x∃yP (x, y) → ∃f∀xP (x, fx) of QF-AC, with P ∈ QF,
is sent into ∀x¬¬∃yP (x,y) → ¬¬∃f∀xP (x, fx). But the hypothesis is
equivalent to ∀x∃yP (x,y) by (9) of the preceding section and the conclusion

then follows from AC in H̃A
ω
. As a corollary, we obtain, for R ∈ QF:

8[Shoenfield 1967] pp. 219 ff provides an alternative interpretation which avoids passing
through the negative translation. This associates with each φ a formula φS of the form
∀x∃yφS(x, y) with φS ∈ QF, such that if PA� φ then PRω � φS(x, tx) for some t.
However, this provides no real saving in work in general.
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P̃A
ω
+ (QF−AC) � ∀x∃yR(x,y)⇒ PRω � R(x, tx) for some t.(4)

This shows among other things that every provably recursive function(al) of

P̃A
ω
+ (QF-AC) is definable by a term of PRω. By formalizing in PA the

model of PRω in HEO, the hereditarily extensional effective operations, this
shows that:

(5) The provably recursive functions of PA are the same as those of
PAω+QF-AC, and also the same as the functions of type 1 in PRω.

It follows from (5) and [Kreisel 1952] that the provably recursive functions
of type 1 in PRω are exactly the functions definable by effective transfinite
recursion on ordinals < ε0 (in its natural ordering). For more direct assign-
ments of ordinals < ε0 to the terms of PRω giving the same result, see the
references in [Troelstra 1990], p. 238.

6 Functional interpretation of classical anal-

ysis.

The historical material described above shows that for Gödel the primary
value of the functional interpretation was its use in reducing the consistency
of HA to that of PRω, a system embodying notions which he thought to
be closer to those of finitism than those underlying intuitionistic reasoning.
He noted in his 1941 Yale lecture that this reduction leads via the negative
translation to a proof of consistency of PA on the basis of PRω, and moreover,
that if PA proves ∃yR(y) with R in QF then R(t) holds for some t in PRω

(an evident precursor of (4) in the preceding section). Toward the end of the
same lecture, Gödel speculated that:

It is perhaps not altogether hopeless to try to generalize these con-
sistency proofs to analysis by means of functions of still higher
(i.e. transfinite) type. Future development will show if that is
possible at all and in which sense the system necessary to accom-
plish this proof will be constructed.(C, p.30)
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Kreisel [1987] p. 104 reports that Gödel told him, very soon after their
first meeting in 1955, about his functional interpretation work in the 1940’s,
“... later incorporated in the so called Dialectica interpretation (with a to-
tal shift of emphasis).” Evidently Gödel misremembered: there is really
no significant difference in emphasis, though the 1941 lecture mentions a
few applications that are not contained in the 1958 Dialectica article.9 Of
Gödel’s supposed change in emphasis, Kreisel (loc. cit.) goes on to say that
“He [Gödel] wanted to fill the superficially principal gap left by his negative
translation... He dropped the project after he learned of recursive realizabil-
ity that Kleene found soon afterward.” It is true that the association with
each φ, provable in HA, of terms t in PRω such that φD(t,y) holds, is akin to
Kleene’s original realizability interpretation [1945], though, as Kreisel points
out, neither one yields the existential definability property for HA.10

Be that as it may, given Kreisel’s general interests in constructivity in
the 1950’s and his prior development of the no-counterexample functional
interpretation for classical arithmetic, he was in an excellent position (per-
haps uniquely so) to appreciate Gödel’s accomplishment in this respect and
to exploit it further. Before long he was spreading the word about Gödel’s
functional interpretation and, by 1957, arrived at an extension to a system
for full second-order analysis. Kreisel first presented this work to a large
audience of logicians at the Summer Institute for Symbolic Logic held at
Cornell in June 1957, under the title “Gödel’s interpretation of Heyting’s
Arithmetic”, though most of his lecture was about his own extension of the
interpretation to analysis. Later that same summer he lectured on this mate-
rial at the Colloquium on Constructivity in Mathematics held in Amsterdam;
his article for its proceedings appeared in [Kreisel 1959]. The formulation of
analysis used there is a second-order system with full Comprehension Axiom
scheme CA. In view of the preceding discussion, it is natural to extend this
to the language Lω and to infer CA from the (full) Axiom of Choice scheme
AC. Now by (8)(i) of section 4 above we have:

9It is a question of Gödel’s memory, since he wrote Bernays in 1968, “In those days... I
set no particular store by the philosophical aspect; rather, it was chiefly the mathematical
result that was important to me, while now it is the other way around.”([Troelstra 1990],
p. 217)

10That property was established later by [Kleene 1952] §82 using Γ-realizability (and,
for that purpose, simplified still later to “slash” realizability).
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PAω +AC � φ↔ (φ−)D for each φ,(1)

since φ is equivalent to φ− with classical logic and M′ and IP′ are classically
valid. Another way of stating (1) using the notation of the preceding section,

is that P̃A
ω
is contained in PAω+ AC.

One of the main results of [Kreisel 1959] is that if φ is provable in analysis
and (φ−)D ≡ ∃x∀yR(x,y) with R ∈ QF then (∃x ∈ RC)(∀y ∈ C)R(x,y)
holds, where C consists of the continuous functionals of finite type and RC
of the recursively continuous functionals.11 The classes C and RC had been
developed independently by Kreisel and Kleene, with their respective treat-
ments both published in the proceedings of the 1957 Amsterdam confer-
ence; however, only Kreisel pursued the connection with Gödel’s functional
interpretation.12 A direct strengthening of Kreisel’s result to the system in
(1) is:

(2) If PAω + AC � φ and (φ−)D ≡ ∃x∀yR(x, y) then there
exists f ∈ RC such that for all y in C, R(f, y) holds.

It was then natural to ask whether the class RC in (2) could be replaced
by a class of functionals determined by schemata extending Gödel’s PRω.
This was pursued intensively by Clifford Spector during the year 1960–61
which he spent at the Institute for Advanced Study in Princeton, where
he had frequent contact with Kreisel and also benefited from conversations
with Gödel and Bernays. Spector succeeded in achieving this goal by the
adjunction of a new scheme to PRω, called Bar Recursion:

BR F (n, c) =

{
G(n, 〈c0, . . . , c(n− 1)〉) if Y (〈c0, . . . , c(n− 1)〉) < n else
H(λa.F (n+ 1, 〈c0, . . . , c(n− 1), a〉), n, 〈c0, . . . , c(n− 1)〉).

Here the values c(k) may be at any type σ (with a of the same type) . The
scheme (BR) is justified for continuous Y , since Y (c) will be determined
by a finite amount of information 〈c0, . . . , c(n − 1)〉 about c and then for

11In fact, according to [Kreisel 1959], φ is equivalent to (∃x ∈ RC)(∀y ∈ C)R(x, y).
12There is a wealth of results and observations in [Kreisel 1959]. Among others, it is

noted that the n.c.i. for PA follows from Gödel’s functional interpretation. Kreisel also
considered the status of the formulas (φ−)D in other classes of functionals of finite type
including the hereditarily effective operations and Kleene’s recursive functionals.
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sufficiently large n one can make Y (c) = Y (〈c0, . . . , c(n− 1)〉) < n. Given c,
F “searches” for such an n in (BR). The terminology “Bar Recursion” was
suggested by that of Brouwer’s Bar Theorem, which uses an intuitionistically
accepted form of the principle of transfinite induction on well-founded trees
of natural numbers. This may be generalized to trees of objects of any type σ
as a principle called Bar Induction (BI), and Bar Recursion is then a related
principle of definition by recursion on such well-founded trees.

BRω is used here to denote the formal quantifier-free system extending
PRω by adjunction of the defining equations (BR) at each type. The main
result of Spector’s work may then be formulated as follows:

(3) If PAω +AC � φ and (φ−)D ≡ ∃x∀yR(x,y) with R ∈ QF
then we can find terms t of BRω such that BRω � R(t,y).

This appeared in [Spector 1962], brought to publication by Kreisel after
Spector’s tragic sudden death due to leukemia. Another proof of (3) was
later given by William Howard [1968], which perhaps explains better the role
of BR in Spector’s interpretation of analysis. Howard showed that the scheme
AC is implied classically by a subscheme of BI whose negative translation
follows from H̃A

ω
+ BI; he then used BR to realize the D-interpretation of

BI. In other publications (cf. [Troelstra 1990] for references), Howard made
further substantial contributions to the analysis and use of the Dialectica
interpretation for various systems.

While Spector’s interpretation did not follow the lines of Gödel’s spec-
ulation that one might be able to extend his functional interpretation to
analysis by the use of transfinite types, it did bear transfinite features by its
use of recursion on certain well-founded trees. The main foundational issue
following Spector’s result became the question as to whether it provided a
constructive consistency proof of analysis. That it constituted a real ad-
vance in perspicuity over Kreisel’s 1957 model in the continuous functionals
was clear to all. But what was not evident was the intuitionistic acceptability
of Bar Recursion; in this respect, [Spector 1962] p. 2 reported varying de-
grees of opinion among Bernays, Gödel, Heyting and Kreisel. Spector himself
thought that its acceptability to the intuitionists was questionable, and that
further work would be required to give it a “suitable foundation”; in this,
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Kreisel concurred.13 It should be noted that in this respect, the constructiv-
ity of intuitionism itself was taken for granted; this was not an attempt to
reduce that to “more constructive” principles as had been Gödel’s aim with
his previous work.

The question of the constructivity of Bar Recursion was the main subject
of a Seminar on the Foundations of Analysis, held at Stanford in the summer
of 1963 under the leadership of Kreisel. Contributions to the seminar were
prepared as a volume of reports, circulated to interested parties but never
published per se, whose authors were G. Kreisel, W. A. Howard, W. W. Tait
(with several parts each), J. Harrison and R. J. Parikh. While much informa-
tion was obtained in this seminar about classical and intuitionistic systems
of analysis, theories of generalized inductive definitions, the functional inter-
pretations and classes of functionals of finite type, the conclusion about the
main question was disappointing. In the words of Kreisel’s introduction to
Vol. II of these Reports (p. i), in answer to the question: “Can bar recursion
of finite type be constructively justified?”... “the answer is negative by a wide
margin, since not even bar recursion of type 2 can be proved consistent.”14

That assessment seems unchanged to date.

7 The D-interpretation as a general proof-

theoretical tool.

Gödel’s concentration on the consistency problem both in the development
of his functional interpretation of arithmetic and in his special interest in
Spector’s extension of it to analysis, was a direct continuation of the central
concern of Hilbert’s program, though with the recognized necessity of giv-
ing up adherence to strictly finitistic methods. But proof theory in general
has had to broaden its concerns and methods. The main line of technique
which has been developed from the original work of Herbrand and Gentzen

13Spector had originally entitled his paper “Probably recursive functionals in analysis:
a consistency proof by an extension of intuitionistic principles.” At Gödel’s suggestion (cf.
[Spector 1962] ftn. 1), “to avoid misunderstandings”, this was changed to “...: a consis-
tency proof by an extension of principles formulated in current intuitionistic mathematics.”

14On the basis of the species of representing functions of continuous functionals, which
Kreisel then considered to be the only possible candidate which could be used to provide
a justification (op. cit., Vol. I, p. 0.2).
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uses normalization of derivations in some sense or other; modern extensions
of these methods in many cases make heavy use of infinitary derivations.
Except for some of the more traditional proof-theorists, establishing consis-
tency of formal systems has receded as the main goal, to be replaced by a
more general reductive program. This still takes foundational aims to be
primary, but gives up hopes for any supposedly absolute foundation in fa-
vor of reductions of various systems to others recognizably more basic in
terms of concepts and/or principles (cf. [Feferman 1988, 1993]). At the same
time, proof-theoretical tools have been applied to obtain results of a more
mathematical character that one may describe as extractive, namely to draw
explicit or computational information from proofs of statements of existential
or universal-existential form. Under the latter one would count the use of
proof theory in characterizing the provably recursive functions (or function-
als, where that is appropriate) of a formal system. In practice, both reductive
and extractive proof theory work hand in hand, and are related to assess-
ments of proof-theoretic strength in one sense or another, most frequently as
measured by the provably recursive well-orderings of a system.

Though the D-interpretation has not been applied as extensively as the
Herbrand-Gentzen methods of syntactic transformation, it has proved to be
a rather powerful and versatile tool with distinctive advantages, especially
for extractive purposes. Applied to intuitionistic systems it takes care of
the underlying logic once and for all, verifies the Axiom of Choice AC in all
types, and interprets various forms of induction by suitably related forms of
recursion. This then leads for such systems to a perspicuous mathematical
characterization of the provably recursive functions and functionals. For ap-
plication to classical systems, one must first apply the negative translation
(again taken care of once and for all). Since the D-interpretation verifies
Markov’s Principle even at higher types (principle M′ in sec. 4 above) at
least the provably recursive functions and functionals are preserved, as well
as QF-AC in all types and induction schemata. The main disadvantage,
though, comes with the analysis of other statements whose negative transla-
tion may lead to a complicated D-interpretation; special tricks may have to
be employed to handle these.

My own experience with the D-interpretation came toward the end of the
1960’s, when I used it (among other things) to show that certain reductive
results obtained by use of model-theoretic methods by Friedman for subsys-
tems of classical analysis based on Σ1

n-AC (n = 1, 2, . . .) could be re-obtained
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and strengthened (e.g. to higher types) by use of the D-interpretation. The
trick here was to reduce Σ1

n-AC to QF-AC by the introduction of Skolem func-
tions which are eventually eliminated (cf. [Feferman 1977], §8, and [Feferman
1987], pp. 466ff). I subsequently came to the conclusion that Herbrand-
Gentzen methods worked just as well and were simpler; evidence for this was
given in [Feferman and Sieg 1981] and [Feferman and Jäger 1983]. In more
recent years, however, I have returned to a more positive view of the merits
of the D-interpretation, and want to encourage people to learn how it has
worked so far and to get a sense of its potentialities.

Thus, in conclusion, I want to mention some results which show how
the D- interpretation may be stretched down to fragments of arithmetic and
analysis, i.e. in the direction opposite to the stretch upwards to full analysis
described in the preceding section. An early instance of such, and first to be
mentioned here, is Parsons’ result [1970] that the subsystems Σ◦

1-IA and Π◦
2-

IR of PA are both conservative over PRA (Primitive Recursive Arithmetic)
for Π◦

2 statements, and hence have exactly the primitive recursive functions as
their provably recursive functions. This was established by a D-interpretation
into a subclass of the primitive recursive functionals with restricted recur-
sors. Following later model-theoretic work of Friedman which showed that
Σ◦

1-IA + ∆◦
1-CA + WKL is conservative over PRA, [Sieg 1985] showed how

to obtain the same result by Herbrand-Gentzen methods, and also strength-
ened it by replacing ∆◦

1-CA by Σ◦
1-AC. (WKL is the so called Weak König’s

Lemma, i.e. for subtrees of 2<ω.) A key step in Sieg’s treatment of WKL
was the use of a majorization argument due to [Howard 1973], originally
applied to Gödel’s PRω functionals for quite different purposes. In unpub-
lished notes [Feferman 1990] I returned to the D-interpretation and showed
how this majorization argument could also be applied to systems based on
Kalmar-elementary arithmetic as well as Buss’ feasible arithmetic S1

2 ([Buss
1986]), when QF-AC is allowed in all types and WKL is adjoined. I learned
then that Cook and Urquhart had already applied the D-interpretation to S1

2

in 1988 in order to recapture Buss’ characterization of its provably recursive
functions (in a suitably modified sense) as the polynomial time computable
functions; their work is to appear in [Cook and Urquhart 1994]. However,
my result for the adjunction of WKL strengthened both that and the result
of [Ferreira 1988] for S1

2 +∆◦
1-CA+WKL. In the meantime, Sieg has inde-

pendently pursued Herbrand-Gentzen methods to obtain all the same results
(cf. [Sieg 1991]). Thus, to a considerable extent, for these purposes it is a
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matter of taste which approach to prefer. It is my plan to write up the details
of my 1990 notes so that interested readers may have a reasonable basis of
comparison, also in the hope that this will stimulate finding new applications
of the D-interpretation. In any case, I strongly recommend reading the ear-
lier sources referred to in sections 4–6 above, which already demonstrate the
considerable elasticity of Gödel’s functional interpretation.
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