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Buffalo, August 1968. Conference on Intuitionism
and Proof Theory

Tubingen, April 1973. Workshop on Proof Theory

The problem:The need for an ordinally
informative, conceptually clear, proof-theoretic
reduction of classical theories of iterated inductive
definitions to corresponding constructive systems.

At Tubingen:Wolfram Pohlers, Wilfried Buchholz,
both students of Kurt Schutte in Munich.
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Stanford Seminar on the Foundations of Analysis,
Summer 963

Georg Kreisel introduces classical and constructive
first-order theories of “generalized” inductive
definitions and their iterations

Paradigmatic: recursive ordinal number classes,
accessibility inductive definitions
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Buffalo 1968 Conference on Intuitionism and Proof
Theory (Proceedings ed. by Kino, Myhill and Vesley)

H. Friedman: Conservation of (3 ',-AC) over
(nl |'CA)<£(0)

S. Feferman: Reduction of ([]'i-CA)xand ([T'1-CA)<x,
for various & and A, to classical IDg, resp. ID<.

W.Tait: Consistency of (2 '2-AC) by abstract constructive
cut-elimination methods applied to uncountably long
derivations.
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The Problems and
Some Solutions

What is the proof theoretic ordinal of IDq!?

Is ID« proof-theoretically reducible to a constructive ID,
e.g.an IDx(acc)?

Pohlers (1975-1978): |IDo| < &€(Qu+1)0
Buchholz and Pohlers (1977): @&(Q2a+1)0 < |IDx(acc)]|

Sieg (1977): Formalization of Tait’s argument to reduce
ID<)\ to ID<)\(acc)
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BFPS 1981: Iterated Inductive Definitions

and Subsystems of Analysis

Buchholz (in BFPS 1981): the method of ()y+|-rules

Pohlers (in BFPS 1981): the method of local
predicativity

Both use cut-elimination

Both recapture ordinal analysis and constructive
reduction for the |IDy and ID<)
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End of Story!?

Further significant improvements by both Buchholz
and Pohlers; H-controlled derivations

Work on related theories of iterated fixed points
(Feferman, Jager, Strahm, ...)

Work on monotone inductive definitions in a
constructive setting (Takahashi, Rathjen, ...)
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® Back to ID: My original attempt (1968, unpublished, but
outlined in Avigad and Feferman chapter on Godel’s
functional interpretation in the Handbook of Proof Theory

(1998))

Aim: to get a constructive reduction of ID|, and then
iterated ID’s, via a functional interpretation in an abstract

theory of constructive ordinals.

® Blocked at a final crucial step.




Finally Overcome (2008)




Finally Overcome (2008)

® Jeremy Avigad and Henry Towsner (2008), “Functional
interpretation and inductive definitions”




Finally Overcome (2008)

® Jeremy Avigad and Henry Towsner (2008), “Functional
interpretation and inductive definitions”

Uses a modified interpretation (without ordinal analysis)
and a new idea to overcome that obstacle. The method

works to reduce ID;, to IDn(acc)'.




Finally Overcome (2008)

® Jeremy Avigad and Henry Towsner (2008), “Functional
interpretation and inductive definitions”

Uses a modified interpretation (without ordinal analysis)
and a new idea to overcome that obstacle. The method

works to reduce ID;, to IDn(acc)'.

The saga 1968-2008: Shifting interest from applications
to subsystems of analysis to interest in theories of
inductive definitions in their own right.
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Separating the Elements

Ordinal analysis of formal systems
Proof-theoretic reduction
Classical and constructive systems

The subjective criteria: to be informative and
conceptually clear

The methods: cut-elimination and functional
interpretation
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Monotone Inductive Operators
Over any Set M

[:P(M) = P(M) is monotone if for all XY € M,
XY =T(X)c [(Y)

X is closed under I if [(X) € X

[ has a least fixed point | = the intersection of all subsets
X of M which are closed under I

So: (i) ['(I) € I'and (i) if [(X) € X then | € X.
Hence (iii) ['(I) = |
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The LFP of I, Defined From Below

Let lo = @ and lx = Uz<al (%)
B <X = IB C Io(

Hence,if x = B + |, lx = '(Ip)

if K = card(M) then there exists Y < K* with
Iy — |y+|

| = Iy for the least such Y (the closure ordinal of I')
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Stages of Elements of |

® |etY = the closure ordinal of I

® For m € |, |m|i = the least ordinal & <Y such that
M < Io(+| - Io(

® This is its first stage of appearance in |.
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Monotone Operators from a

Logical Point of View

Concentrate on [ over N ={0, I, 2,...}

Consider [ first-order definable (variables interpreted as

ranging over N) in extensions L of the language Lo of
arithmetic.

Form L(P), P unary predicate symbol

A(x, P) of L(P) in which P has only positive occurrences
defines a monotone operator

[A(X) ={x € N |A(x, X)}
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® The positivity condition: if A is reduced to negation
normal form, i.e. is built up from atomic formulas
or their negations by A, v, Vv, and 3, the atomic

formulas P(t) never occur negated.

[ A(P) C P is expressed by the formula
vx(A(x, P) = P(x)) of L(P)
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Example |:Accessible Part

® Suppose a partial ordering relation < on the

natural numbers is defined by a formula R(x,y) of L
interpreted as y < x.

o LetA(x,P) = vy(R(x,y) = P(y))

® The least fixed point of [ ais the accessible part of
the < relation, i.e. its well-founded initial part.




Example 2: Church-Kleene
Recursive Notations for Ordinals




Example 2: Church-Kleene
Recursive Notations for Ordinals

® Codes e € N for partial recursive functions: {e}(n) = m.
Use a recursive pairing function (n,m) # 0




Example 2: Church-Kleene
Recursive Notations for Ordinals

® Codes e € N for partial recursive functions: {e}(n) = m.
Use a recursive pairing function (n,m) # 0

® O, is the smallest set satisfying: (i) 0 € Oy, and

(ii) if e is an index of a total recursive function and for
each n € N, {e}(n) € O, then (l,e) € O,.




Example 2: Church-Kleene
Recursive Notations for Ordinals

® Codes e € N for partial recursive functions: {e}(n) = m.
Use a recursive pairing function (n,m) # 0

® O, is the smallest set satisfying: (i) 0 € Oy, and

(ii) if e is an index of a total recursive function and for
each n € N, {e}(n) € O, then (l,e) € O,.

® |a|,fora € O),is defined by: (i) |0] = 0, and
(i) [(1, e)] = sup{ [{e}(n)] + | :n € N}.
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® The elements of O, represent N-branching well-
founded trees.

® O, is an analogue in recursive terms of the set of
the set of ordinals less than )), the first

uncountable ordinal (also denoted () or w)).

o W K=sup{lal:aec O1}; WK< w,
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Recursive Notations for Higher
Ordinal Number Classes

To define O», in addition to (i), (ii) now on Oy, take:

(iii) if e is the index of a partial recursive function such
that for each a € Oy, {e}(a) € Oy, then (2,¢e) € Oa.

Then take |(2, €)| = sup{ [{e}(a)| + |:a € O\}.

NB: O, appears without the positivity restriction in the
definition of O3

W2k =sup{|a] :a € O} ; WIK< WL <w..

This procedure can be iterated to form O3, Oy, etc. It can
also be extended into the transfinite, by taking the

effective join at limits, e.g. <n,m) € Oy < m € O, and

then continuing on.
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The Formal System 1D>(O)

® Take the language L, of ID>(O) to be L extended by a
unary predicate O3(x). Let A2(x, P) be the formula

x =0 v 3z[x = (l,z) A vu P({z}(u))] v
Iw(x = (2, w) A vv(Oi(v) = P(Ew}V))].

® The axioms of ID2(O) are those of ID(O) plus:
[. (Closure) vx(A2(x, O2) = Oz(x))
Il. (Induction) ¥x( Az(x, F) = F(x)) = vx( O2(x) = F(x)),

where F(x) is any formula of L.

e NB. Now we must also make sure to allow F to be any
formula of L, in the induction axioms for both N and O,.
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® Construct ID«(O) and ID<q(O) in general for any ordinal
X for which we have a natural linear recursive ordering <

of N of order type X. For example, Cantor’s ordinal &

In general, ID) is the extension of ID(O) by predicates
Pa for each arithmetic A(x, P) in which P has only positive
occurrences, and by the associated closure and induction
axioms, where now all induction axioms for N, O, and all
the PA’s allow substitution instances by formulas F in the
full language. Then ID; extends ID; and ID2(O) in the
same way.
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Iterated ID Systems (cont’d)

® |ike the constructions of the iterated ID(O)
theories, the construction of the full ID systems
may be iterated up to any naturally presented
ordinal X to give ID« and thence ID<q for limit &.

ID«(acc) uses only A’s that are of the form to give
an accessibility inductive definition.

o IDO((O) C IDo((aCC) C IDo(
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What Makes a System Constructive!

Core requirement: a proof of Ix A(x) must produce a
witness t and a constructive proof of A(t).

Thus, reject proof by contradiction,
73ax A(x) = IxX A(X) or VxA(X) = Ix A(X).

These follow from Law of Excluded Middle (LEM),
A v 1A rejected in general

The intuitionistic school of constructivity (L.E.]. Brouwer)

Intuitionistic logic (Arend Heyting): omit LEM from
suitable forms of classical logic.
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Constructive Systems (cont’d)

Let S be a formal system based on classical logic; S'is
obtained from S by omitting LEM from the underlying
logic, leaving the non-logical axioms and rules of S
unchanged.

Is S" constructive! Not necessarily, since the axioms of S
may not be constructively acceptable as they stand.

The systems IDq' are not constructive in general;
positivity requirement has to be modified.

Even so, not evidently constructive.

But the ID«(O)' and IDx(acc)' are generally accepted to
be constructive.
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The Negative (or Double Negation)

Translation

This works to translate S into S' for certain S (Gentzen,
Godel 1933, indep.)

A* = == for A atomic, (mA)* = 1A%
(A v B)* = == (A* v B¥), (A A B)* = A* A B,
(Ix A)* = == Ix A¥ and (VX A)* = vx A*

Alternatively, can take (A v B)* = =(=2A* A =B*) and
(Ax A)* = = vxa A*

A = HA®
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Negative Translation of Arithmetic

Heyting Arithmetic, HA = PAl
PA+A = HA I A*

HA proves LEM for atomic A

The negative translation of PA in HA is conservative for
(v, 3)-free formulas, because HA + A* < A for A atomic.

The negative translation does not necessarily work in
general to reduce S to S, since atomic formulas need not
be decidable in S'. This is the case with the ID' theories;
so something else must be done to reduce S to S..
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eoretic Reduction

Suppose S in Ls and T in Lt are systems with possibly
different underlying logics, and that @ is a set of
formulas, ® C Lsn L.

Proof-theoretic rec

uction S < T [®P] means that we have

an effective method T such that, provably in T:

(*) F € ® & Proofs(

0, F) = Proofr(T(p), F)

In practice, T is primitive recursive and (*) is provable in

Primitive Recursive

S<TmeansS=<T

Arithmetic (PRA).

[P] for suitable @, sufficient to insure

relative consistency.

Translation is a special case of proof-theoretic reduction.
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Proof-Theoretic Reduction for ID’s

® Buchholz and Pohlers reduction:
IDx < IDx(acc)
(with ordinal analysis, below)

® Sieg reduction:
ID<) < ID<x(acc) for limit A
(without ordinal analysis)

® The trade-offs




Ordinal Analysis




Ordinal Analysis

® Goes back to Gentzen’s 1937 proof of consistency of PA
by transfinite induction on &o.




Ordinal Analysis

® Goes back to Gentzen’s 1937 proof of consistency of PA
by transfinite induction on &o.

Best possible, since Tl(<«) is provable in PA for each
X < €o, using a primitive recursive well-ordering < of

order type €o, and suitable formulation of Transfinite
Induction (TI).




Ordinal Analysis

® Goes back to Gentzen’s 1937 proof of consistency of PA
by transfinite induction on &o.

Best possible, since Tl(<«) is provable in PA for each
X < €o, using a primitive recursive well-ordering < of

order type €o, and suitable formulation of Transfinite
Induction (TI).

One definition of |S] in general: = the sup of the |<| such
that S  TI(<).




Ordinal Analysis

Goes back to Gentzen’s 1937 proof of consistency of PA
by transfinite induction on &o.

Best possible, since Tl(<«) is provable in PA for each
X < €o, using a primitive recursive well-ordering < of

order type €o, and suitable formulation of Transfinite
Induction (TI).

One definition of |S] in general: = the sup of the |<| such
that S  TI(<).

A definition that works for the ID systems S (classical or
intuitionistic): S| = sup{ [n| : S+ Oy(n) }
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Ordinal analysis for consistency proofs of stronger
systems pursued systematically by Schutte beginning in
the 1950s. (Takeuti used “ordinal diagrams”.)

But ordinal analysis is meaningful independently of the
Hilbert-Gentzen-Schutte-Takeuti consistency program.

0: ON — ON is normal if it is continuous and strictly
Increasing.

The critical process: Every normal 0 has unbounded fixed
points, B(¢) = &, that are enumerated by another normal

function, Cr(0).

For O(x) = W% Cr(0)(x) = &« ( also written £(X))
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Systems of Ordinal Functions for

Ordinal Analysis

The critical process can be iterated transfinitely:
Po(P) = WP, Pu+1 = Cr(p«) and for limit A,
(px enumerates { € : Px(E) = & for every & < A}

Define @oB = @u«(P).

Veblen generalized this to (pX|...Xx for variable n, and
even more generally.

Schutte developed a recursive notation system based on
the Veblen functions.
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Uncountable Transfinite Iteration of Cr

® Bachmann found a different way of transfinitely iterating
the critical process, using names of many Q). To begin
with, (g enumerates { & : P«(0) = 0 }, then
®Pa+1 = Cr(Paq), etc.

Extensions of the Bachmann process by Pfeiffer and Isles.

Further successive simplifications and extensions by
Feferman, Aczel, Bridge, and Buchholz.

Buchholz’ recursive notation system using a variant of
the p functions.

The Buchholz-Pohlers ordinal analysis:
ID«| = |[IDa(acc)| = [IDx(O)'| = @e(Qdxt1)0.




Godel’s Functional (“Dialectica™)

Interpretation of HA




Godel’s Functional (“Dialectica™)

Interpretation of HA

® T, a quantifier-free theory of primitive recursive
functionals of finite type over N.




Godel’s Functional (“Dialectica™)

Interpretation of HA

® T, a quantifier-free theory of primitive recursive
functionals of finite type over N.

e AP =13vvx R(y, x),V, X, variables of finite type, R q.f., for
A in LHA.




Godel’s Functional (“Dialectica™)

Interpretation of HA

® T, a quantifier-free theory of primitive recursive
functionals of finite type over N.

e AP =13vvx R(y, x),V, X, variables of finite type, R q.f., for
A in LHA.

® HAFA =T+ R(f,x) for sometermsfinT;so HA <T




Godel’s Functional (“Dialectica™)

Interpretation of HA

T, a quantifier-free theory of primitive recursive
functionals of finite type over N.

AP = 3vvx R(y, x), v, X, variables of finite type, R q.f,, for
A in LHA.

HA+A =T+ R(f,x) for some termsfinT;so HA <T

But the passage from A to AP is not fully constructive:
(7=3yR)° & (3yR)®.




Godel’s Functional (“Dialectica™)

Interpretation of HA

T, a quantifier-free theory of primitive recursive
functionals of finite type over N.

AP = 3vvx R(y, x), v, X, variables of finite type, R q.f,, for
A in LHA.

HA+A =T+ R(f,x) for some termsfinT;so HA <T

But the passage from A to AP is not fully constructive:
(7=3yR)° & (3yR)®.

So PA+ vx3y R(x,y) = HA F vx— =3y R(x,y) =
T + R(x, f(x)) for some finT.
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Interpretation of HA

T, a quantifier-free theory of primitive recursive
functionals of finite type over N.

AP = 3vvx R(y, x), v, X, variables of finite type, R q.f,, for
A in LHA.

HA+A =T+ R(f,x) for some termsfinT;so HA <T

But the passage from A to AP is not fully constructive:
(7=3yR)° & (3yR)®.

So PA+ vx3y R(x,y) = HA F vx— =3y R(x,y) =
T + R(x, f(x)) for some finT.

Prov-Rec(PA) = Prov-Rec(HA) = |-Sec(T)
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The Avigad-Towsner Interpretation

ID| < OR| + (), where OR| is a classical theory of
abstract tree ordinals, and |(x, &) is interpreted as x € lq.

This < is by direct translation.

Tq is a quantifier-free theory of primitive recursive
functionals of finite type over the tree ordinals;

QTq allows quantifiers over all finite type variables,
QoTq only over natural number variables.

OR| + (I) = QoTq by the Diller-Nahm-Shoenfield variant
of the Godel functional interpretation.
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Avigad- Towsner Interpretation (cont'd)

QoTa < (QTq)' by Sieg-style formalization of cut-
elimination for QoTq.

(QTa)' < ID|(acc)), by formalization of the HRO model
of Ta.

Avigad-Towsner reduction: ID| < ID/(acc),
without ordinal analysis, but with Prov-Rec(ID)) =

Prov-Rec(ID|(acc)’) = I-Sec(Tq).

They sketch extension of their work for finitely iterated
IDn’s.
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Some Questions

What (mathematically) can be done in ID?
(Avigad-Towsner say Szemeredi theorem.)

What can be done in iterated ID’s?

What does ordinal analysis tell us about the
provable uncountable ordinals of the ID’s?

What is the unfolding of schematic ID,?

Are there reasonable theories of ID’s over other
sets M, e.g. the reals?




The End



