The Proof Theory of Classical and Constructive Inductive Definitions

A 40 year saga

Solomon Feferman

The Pohlersfest, Münster 18 July 2008

 Buffalo, August 1968. Conference on Intuitionism and Proof Theory

- Buffalo, August 1968. Conference on Intuitionism and Proof Theory
- Tübingen, April 1973. Workshop on Proof Theory

- Buffalo, August 1968. Conference on Intuitionism and Proof Theory
- Tübingen, April 1973. Workshop on Proof Theory
- The problem: The need for an ordinally informative, conceptually clear, proof-theoretic reduction of classical theories of iterated inductive definitions to corresponding constructive systems.

- Buffalo, August 1968. Conference on Intuitionism and Proof Theory
- Tübingen, April 1973. Workshop on Proof Theory
- The problem: The need for an ordinally informative, conceptually clear, proof-theoretic reduction of classical theories of iterated inductive definitions to corresponding constructive systems.
- At Tübingen: Wolfram Pohlers, Wilfried Buchholz, both students of Kurt Schütte in Munich.

Stanford Seminar on the Foundations of Analysis,
 Summer 1963

- Stanford Seminar on the Foundations of Analysis,
 Summer 1963
- Georg Kreisel introduces classical and constructive first-order theories of "generalized" inductive definitions and their iterations

- Stanford Seminar on the Foundations of Analysis,
 Summer 1963
- Georg Kreisel introduces classical and constructive first-order theories of "generalized" inductive definitions and their iterations
- Paradigmatic: recursive ordinal number classes, accessibility inductive definitions

- Stanford Seminar on the Foundations of Analysis,
 Summer 1963
- Georg Kreisel introduces classical and constructive first-order theories of "generalized" inductive definitions and their iterations
- Paradigmatic: recursive ordinal number classes, accessibility inductive definitions
- ID_{α} , $ID_{\alpha}(acc)$, $ID_{\alpha}(acc)^{i}$

• Howard (1965?, pub. 1972)

- Howard (1965?, pub. 1972)
- The Howard ordinal $|ID_I(acc)^i| = \varphi \epsilon (\Omega + I)0$

- Howard (1965?, pub. 1972)
- The Howard ordinal $|ID_I(acc)^i| = \varphi \epsilon (\Omega + I)0$
- Howard's method: functional interpretation.

- Howard (1965?, pub. 1972)
- The Howard ordinal $|ID_I(acc)^i| = \varphi \epsilon (\Omega + I)0$
- Howard's method: functional interpretation.
- Question: what is the (proof-theoretic) ordinal of ID₁?

- Howard (1965?, pub. 1972)
- The Howard ordinal $|ID_I(acc)^i| = \varphi \epsilon (\Omega + I)0$
- Howard's method: functional interpretation.
- Question: what is the (proof-theoretic) ordinal of ID₁?
- Is ID₁ proof-theoretically reducible to an ID₁(acc)ⁱ?

 Buffalo 1968 Conference on Intuitionism and Proof Theory (Proceedings ed. by Kino, Myhill and Vesley)

- Buffalo 1968 Conference on Intuitionism and Proof Theory (Proceedings ed. by Kino, Myhill and Vesley)
- H. Friedman: Conservation of $(\sum_{i=1}^{I} -AC)$ over $(\prod_{i=1}^{I} -CA) < \epsilon(0)$

- Buffalo 1968 Conference on Intuitionism and Proof Theory (Proceedings ed. by Kino, Myhill and Vesley)
- H. Friedman: Conservation of $(\sum_{i=2}^{I}-AC)$ over $(\prod_{i=1}^{I}-CA)<\epsilon(0)$
- S. Feferman: Reduction of $(\prod^{I}_{I}-CA)_{\alpha}$ and $(\prod^{I}_{I}-CA)_{<\lambda}$, for various α and λ , to classical ID_{α} , resp. $ID_{<\lambda}$.

- Buffalo 1968 Conference on Intuitionism and Proof Theory (Proceedings ed. by Kino, Myhill and Vesley)
- H. Friedman: Conservation of $(\sum_{i=1}^{I} -AC)$ over $(\prod_{i=1}^{I} -CA) < \epsilon(0)$
- S. Feferman: Reduction of $(\prod^{I}_{I}-CA)_{\alpha}$ and $(\prod^{I}_{I}-CA)_{<\lambda}$, for various α and λ , to classical ID_{α} , resp. $ID_{<\lambda}$.
- W. Tait: Consistency of $(\sum_{i=1}^{l} -AC)$ by abstract constructive cut-elimination methods applied to uncountably long derivations.

• What is the proof theoretic ordinal of ID_{α} ?

- What is the proof theoretic ordinal of ID_{α} ?
- Is ID_{α} proof-theoretically reducible to a constructive ID, e.g. an $ID_{\alpha}(acc)^{i}$?

- What is the proof theoretic ordinal of ID_{α} ?
- Is ID_{α} proof-theoretically reducible to a constructive ID, e.g. an $ID_{\alpha}(acc)^{i}$?
- Pohlers (1975-1978): $|ID_{\alpha}| \leq \varphi \epsilon (\Omega_{\alpha}+1)0$

- What is the proof theoretic ordinal of ID_{α} ?
- Is ID_{α} proof-theoretically reducible to a constructive ID, e.g. an $ID_{\alpha}(acc)^{i}$?
- Pohlers (1975-1978): $|ID_{\alpha}| \leq \varphi \epsilon (\Omega_{\alpha} + 1)0$
- Buchholz and Pohlers (1977): $\varphi \epsilon (\Omega_{\alpha} + 1)0 \leq |ID_{\alpha}(acc)^{i}|$

- What is the proof theoretic ordinal of ID_{α} ?
- Is ID_{α} proof-theoretically reducible to a constructive ID_{α} e.g. an $ID_{\alpha}(acc)^{i}$?
- Pohlers (1975-1978): $|ID_{\alpha}| \leq \varphi \epsilon (\Omega_{\alpha}+1)0$
- Buchholz and Pohlers (1977): $\varphi \varepsilon (\Omega_{\alpha} + 1)0 \leq |ID_{\alpha}(acc)^{i}|$
- Sieg (1977): Formalization of Tait's argument to reduce $ID_{<\lambda}$ to $ID_{<\lambda}(acc)^i$

• Buchholz (in BFPS 1981): the method of $\Omega_{\alpha+1}$ -rules

- Buchholz (in BFPS 1981): the method of $\Omega_{\alpha+1}$ -rules
- Pohlers (in BFPS 1981): the method of local predicativity

- Buchholz (in BFPS 1981): the method of $\Omega_{\alpha+1}$ -rules
- Pohlers (in BFPS 1981): the method of local predicativity
- Both use cut-elimination

- Buchholz (in BFPS 1981): the method of $\Omega_{\alpha+1}$ -rules
- Pohlers (in BFPS 1981): the method of local predicativity
- Both use cut-elimination
- Both recapture ordinal analysis and constructive reduction for the ID_{α} and ID_{λ}

End of Story?

End of Story?

 Further significant improvements by both Buchholz and Pohlers; H-controlled derivations

End of Story?

- Further significant improvements by both Buchholz and Pohlers; H-controlled derivations
- Work on related theories of iterated fixed points (Feferman, Jäger, Strahm, ...)

End of Story?

- Further significant improvements by both Buchholz and Pohlers; H-controlled derivations
- Work on related theories of iterated fixed points (Feferman, Jäger, Strahm, ...)
- Work on monotone inductive definitions in a constructive setting (Takahashi, Rathjen, ...)

 Back to ID_I: My original attempt (1968, unpublished, but outlined in Avigad and Feferman chapter on Gödel's functional interpretation in the Handbook of Proof Theory (1998))

- Back to ID_I: My original attempt (1968, unpublished, but outlined in Avigad and Feferman chapter on Gödel's functional interpretation in the Handbook of Proof Theory (1998))
- Aim: to get a constructive reduction of ID₁, and then iterated ID's, via a functional interpretation in an abstract theory of constructive ordinals.

- Back to ID_I: My original attempt (1968, unpublished, but outlined in Avigad and Feferman chapter on Gödel's functional interpretation in the Handbook of Proof Theory (1998))
- Aim: to get a constructive reduction of ID₁, and then iterated ID's, via a functional interpretation in an abstract theory of constructive ordinals.
- Blocked at a final crucial step.

 Jeremy Avigad and Henry Towsner (2008), "Functional interpretation and inductive definitions"

- Jeremy Avigad and Henry Towsner (2008), "Functional interpretation and inductive definitions"
- Uses a modified interpretation (without ordinal analysis) and a new idea to overcome that obstacle. The method works to reduce ID_n to $ID_n(acc)^i$.

- Jeremy Avigad and Henry Towsner (2008), "Functional interpretation and inductive definitions"
- Uses a modified interpretation (without ordinal analysis) and a new idea to overcome that obstacle. The method works to reduce ID_n to $ID_n(acc)^i$.
- The saga 1968-2008: Shifting interest from applications to subsystems of analysis to interest in theories of inductive definitions in their own right.

Ordinal analysis of formal systems

- Ordinal analysis of formal systems
- Proof-theoretic reduction

- Ordinal analysis of formal systems
- Proof-theoretic reduction
- Classical and constructive systems

- Ordinal analysis of formal systems
- Proof-theoretic reduction
- Classical and constructive systems
- The subjective criteria: to be informative and conceptually clear

- Ordinal analysis of formal systems
- Proof-theoretic reduction
- Classical and constructive systems
- The subjective criteria: to be informative and conceptually clear
- The methods: cut-elimination and functional interpretation

• $\Gamma: P(M) \to P(M)$ is monotone if for all $X,Y \subseteq M$, $X \subseteq Y \Rightarrow \Gamma(X) \subseteq \Gamma(Y)$

- $\Gamma: P(M) \to P(M)$ is monotone if for all $X,Y \subseteq M$, $X \subseteq Y \Rightarrow \Gamma(X) \subseteq \Gamma(Y)$
- X is closed under Γ if $\Gamma(X) \subseteq X$

- $\Gamma: P(M) \to P(M)$ is monotone if for all $X,Y \subseteq M$, $X \subseteq Y \Rightarrow \Gamma(X) \subseteq \Gamma(Y)$
- X is closed under Γ if $\Gamma(X) \subseteq X$
- Γ has a least fixed point I = the intersection of all subsets
 X of M which are closed under Γ

- $\Gamma: P(M) \to P(M)$ is monotone if for all $X,Y \subseteq M$, $X \subseteq Y \Rightarrow \Gamma(X) \subseteq \Gamma(Y)$
- X is closed under Γ if $\Gamma(X) \subseteq X$
- Γ has a least fixed point I = the intersection of all subsets
 X of M which are closed under Γ
- So: (i) $\Gamma(I) \subseteq I$ and (ii) if $\Gamma(X) \subseteq X$ then $I \subseteq X$. Hence (iii) $\Gamma(I) = I$

• Let $I_0 = \emptyset$ and $I_{\alpha} = \bigcup_{\xi < \alpha} \Gamma(I_{\xi})$

- Let $I_0 = \emptyset$ and $I_{\alpha} = \bigcup_{\xi < \alpha} \Gamma(I_{\xi})$
- $\beta < \alpha \Rightarrow I_{\beta} \subseteq I_{\alpha}$

- Let $I_0 = \emptyset$ and $I_{\alpha} = \bigcup_{\xi < \alpha} \Gamma(I_{\xi})$
- $\beta < \alpha \Rightarrow I_{\beta} \subseteq I_{\alpha}$
- Hence, if $\alpha = \beta + I$, $I_{\alpha} = \Gamma(I_{\beta})$

- Let $I_0 = \emptyset$ and $I_{\alpha} = \bigcup_{\xi < \alpha} \Gamma(I_{\xi})$
- $\beta < \alpha \Rightarrow I_{\beta} \subseteq I_{\alpha}$
- Hence, if $\alpha = \beta + I$, $I_{\alpha} = \Gamma(I_{\beta})$
- if K = card(M) then there exists $\gamma < K^+$ with $I_{\gamma} = I_{\gamma+1}$

- Let $I_0 = \emptyset$ and $I_{\alpha} = \bigcup_{\xi < \alpha} \Gamma(I_{\xi})$
- $\beta < \alpha \Rightarrow I_{\beta} \subseteq I_{\alpha}$
- Hence, if $\alpha = \beta + I$, $I_{\alpha} = \Gamma(I_{\beta})$
- if K = card(M) then there exists $\gamma < K^+$ with $I_{\gamma} = I_{\gamma+1}$
- $I = I_{\gamma}$ for the least such γ (the closure ordinal of Γ)

• Let γ = the closure ordinal of Γ

- Let γ = the closure ordinal of Γ
- For $m \in I$, $|m|_I =$ the least ordinal $\alpha < \gamma$ such that $m \in I_{\alpha+1}$ I_{α}

- Let γ = the closure ordinal of Γ
- For $m \in I$, $|m|_I =$ the least ordinal $\alpha < \gamma$ such that $m \in I_{\alpha+1}$ I_{α}
- This is its first stage of appearance in I.

• Concentrate on Γ over $N = \{0, 1, 2, ...\}$

- Concentrate on Γ over $N = \{0, 1, 2, ...\}$
- Consider Γ first-order definable (variables interpreted as ranging over N) in extensions L of the language L_0 of arithmetic.

- Concentrate on Γ over $N = \{0, 1, 2, ...\}$
- Consider Γ first-order definable (variables interpreted as ranging over N) in extensions L of the language L_0 of arithmetic.
- Form L(P), P unary predicate symbol

- Concentrate on Γ over $N = \{0, 1, 2, ...\}$
- Consider Γ first-order definable (variables interpreted as ranging over N) in extensions L of the language L_0 of arithmetic.
- Form L(P), P unary predicate symbol
- A(x, P) of L(P) in which P has only positive occurrences defines a monotone operator $\Gamma_A(X) = \{x \in N \mid A(x, X)\}$

Definable Operators (cont'd)

Definable Operators (cont'd)

• The positivity condition: if A is reduced to negation normal form, i.e. is built up from atomic formulas or their negations by \land , \lor , \forall , and \exists , the atomic formulas P(t) never occur negated.

Definable Operators (cont'd)

- The positivity condition: if A is reduced to negation normal form, i.e. is built up from atomic formulas or their negations by \land , \lor , \forall , and \exists , the atomic formulas P(t) never occur negated.
- $\Gamma_A(P) \subseteq P$ is expressed by the formula $\forall x(A(x, P) \rightarrow P(x))$ of L(P)

 Suppose a partial ordering relation < on the natural numbers is defined by a formula R(x,y) of L interpreted as y < x.

- Suppose a partial ordering relation < on the natural numbers is defined by a formula R(x,y) of L interpreted as y < x.
- Let $A(x, P) = \forall y(R(x, y) \rightarrow P(y))$

- Suppose a partial ordering relation < on the natural numbers is defined by a formula R(x,y) of L interpreted as y < x.
- Let $A(x, P) = \forall y(R(x, y) \rightarrow P(y))$
- The least fixed point of Γ_A is the accessible part of the < relation, i.e. its well-founded initial part.

• Codes $e \in N$ for partial recursive functions: $\{e\}(n) \approx m$. Use a recursive pairing function $(n, m) \neq 0$

- Codes $e \in N$ for partial recursive functions: $\{e\}(n) \approx m$. Use a recursive pairing function $(n, m) \neq 0$
- O_1 is the smallest set satisfying: (i) $0 \in O_1$, and (ii) if e is an index of a total recursive function and for each $n \in N$, $\{e\}(n) \in O_1$ then $(1, e) \in O_1$.

- Codes e ∈ N for partial recursive functions: {e}(n) ≃ m.
 Use a recursive pairing function (n, m) ≠ 0
- O_1 is the smallest set satisfying: (i) $0 \in O_1$, and (ii) if e is an index of a total recursive function and for each $n \in N$, $\{e\}(n) \in O_1$ then $\{1, e\} \in O_1$.
- |a|, for $a \in O_1$, is defined by: (i) |0| = 0, and (ii) $|(1, e)| = \sup\{ |\{e\}(n)| + 1 : n \in N \}$.

 The elements of O_I represent N-branching wellfounded trees.

- The elements of O_I represent N-branching wellfounded trees.
- O_I is an analogue in recursive terms of the set of the set of ordinals less than Ω_I , the first uncountable ordinal (also denoted Ω or ω_I).

- The elements of O_I represent N-branching wellfounded trees.
- O_I is an analogue in recursive terms of the set of the set of ordinals less than Ω_I , the first uncountable ordinal (also denoted Ω or ω_I).
- $\omega_1^{CK} = \sup\{ |a| : a \in O_1 \}; \omega_1^{CK} < \omega_1 \}$

• To define O_2 , in addition to (i), (ii) now on O_2 , take: (iii) if e is the index of a partial recursive function such that for each $a \in O_1$, $\{e\}(a) \in O_2$, then $(2, e) \in O_2$. Then take $|(2, e)| = \sup\{ |\{e\}(a)| + 1: a \in O_1\}$.

- To define O_2 , in addition to (i), (ii) now on O_2 , take: (iii) if e is the index of a partial recursive function such that for each $a \in O_1$, $\{e\}(a) \in O_2$, then $(2, e) \in O_2$. Then take $|(2, e)| = \sup\{ |\{e\}(a)| + 1: a \in O_1 \}$.
- NB: O₁ appears without the positivity restriction in the definition of O₂

- To define O_2 , in addition to (i), (ii) now on O_2 , take: (iii) if e is the index of a partial recursive function such that for each $a \in O_1$, $\{e\}(a) \in O_2$, then $(2, e) \in O_2$. Then take $|(2, e)| = \sup\{ |\{e\}(a)| + 1: a \in O_1\}$.
- NB: O₁ appears without the positivity restriction in the definition of O₂
- $\omega_2^{CK} = \sup\{ |a| : a \in O_2 \}; \ \omega_1^{CK} < \omega_2^{CK} < \omega_1.$

- To define O_2 , in addition to (i), (ii) now on O_2 , take: (iii) if e is the index of a partial recursive function such that for each $a \in O_1$, $\{e\}(a) \in O_2$, then $(2, e) \in O_2$. Then take $|(2, e)| = \sup\{ |\{e\}(a)| + 1: a \in O_1 \}$.
- NB: O₁ appears without the positivity restriction in the definition of O₂
- $\omega_2^{CK} = \sup\{ |a| : a \in O_2 \}; \ \omega_1^{CK} < \omega_2^{CK} < \omega_1.$
- This procedure can be iterated to form O_3 , O_4 , etc. It can also be extended into the transfinite, by taking the effective join at limits, e.g. $\langle n, m \rangle \in O_\omega \leftrightarrow m \in O_n$, and then continuing on.

• The language L_1 of $ID_1(O)$ is the language L_0 of arithmetic extended by a unary predicate $O_1(x)$. Let $A_1(x, P)$ be the formula $x = 0 \lor \exists z[x = (1, z) \land \forall u P(\{z\}(u))]$.

- The language L_1 of $ID_1(O)$ is the language L_0 of arithmetic extended by a unary predicate $O_1(x)$. Let $A_1(x, P)$ be the formula $x = 0 \lor \exists z[x = (1, z) \land \forall u P(\{z\}(u))]$.
- The axioms of ID_I(O) are the axioms of Peano Arithmetic, PA, with induction on N extended to all formulas, plus the following:

- The language L_1 of $ID_1(O)$ is the language L_0 of arithmetic extended by a unary predicate $O_1(x)$. Let $A_1(x, P)$ be the formula $x = 0 \lor \exists z[x = (1, z) \land \forall u P(\{z\}(u))]$.
- The axioms of ID_I(O) are the axioms of Peano Arithmetic, PA, with induction on N extended to all formulas, plus the following:
- I. (Closure) $\forall x (A_1(x, O_1) \rightarrow O_1(x))$

- The language L_1 of $ID_1(O)$ is the language L_0 of arithmetic extended by a unary predicate $O_1(x)$. Let $A_1(x, P)$ be the formula $x = 0 \lor \exists z[x = (1, z) \land \forall u P(\{z\}(u))]$.
- The axioms of ID_I(O) are the axioms of Peano Arithmetic, PA, with induction on N extended to all formulas, plus the following:
- I. (Closure) $\forall x (A_1(x, O_1) \rightarrow O_1(x))$
- II. (Induction) $\forall x (A_1(x, F) \rightarrow F(x)) \rightarrow \forall x (O_1(x) \rightarrow F(x))$, where F(x) is any formula of L_1 .

• Take the language L_2 of $ID_2(O)$ to be L_1 extended by a unary predicate $O_2(x)$. Let $A_2(x, P)$ be the formula $x = 0 \lor \exists z[x = (1, z) \land \forall u P(\{z\}(u))] \lor \exists w(x = (2, w) \land \forall v(O_1(v) \rightarrow P(\{w\}(v))].$

- Take the language L_2 of $ID_2(O)$ to be L_1 extended by a unary predicate $O_2(x)$. Let $A_2(x, P)$ be the formula $x = 0 \lor \exists z[x = (1, z) \land \forall u \ P(\{z\}(u))] \lor \exists w(x = (2, w) \land \forall v(O_1(v) \rightarrow P(\{w\}(v))].$
- The axioms of $ID_2(O)$ are those of $ID_1(O)$ plus:

- Take the language L_2 of $ID_2(O)$ to be L_1 extended by a unary predicate $O_2(x)$. Let $A_2(x, P)$ be the formula $x = 0 \lor \exists z[x = (1, z) \land \forall u \ P(\{z\}(u))] \lor \exists w(x = (2, w) \land \forall v(O_1(v) \rightarrow P(\{w\}(v))].$
- The axioms of $ID_2(O)$ are those of $ID_1(O)$ plus:
- I. (Closure) $\forall x (A_2(x, O_2) \rightarrow O_2(x))$

- Take the language L_2 of $ID_2(O)$ to be L_1 extended by a unary predicate $O_2(x)$. Let $A_2(x, P)$ be the formula $x = 0 \lor \exists z[x = (1, z) \land \forall u \ P(\{z\}(u))] \lor \exists w(x = (2, w) \land \forall v(O_1(v) \rightarrow P(\{w\}(v))].$
- The axioms of $ID_2(O)$ are those of $ID_1(O)$ plus:
- I. (Closure) $\forall x (A_2(x, O_2) \rightarrow O_2(x))$
- II. (Induction) $\forall x (A_2(x, F) \rightarrow F(x)) \rightarrow \forall x (O_2(x) \rightarrow F(x))$, where F(x) is any formula of L_2 .

- Take the language L_2 of $ID_2(O)$ to be L_1 extended by a unary predicate $O_2(x)$. Let $A_2(x, P)$ be the formula $x = 0 \lor \exists z[x = (I, z) \land \forall u \ P(\{z\}(u))] \lor \exists w(x = (2, w) \land \forall v(O_1(v) \rightarrow P(\{w\}(v))].$
- The axioms of $ID_2(O)$ are those of $ID_1(O)$ plus:
- I. (Closure) $\forall x (A_2(x, O_2) \rightarrow O_2(x))$
- II. (Induction) $\forall x (A_2(x, F) \rightarrow F(x)) \rightarrow \forall x (O_2(x) \rightarrow F(x))$, where F(x) is any formula of L_2 .
 - NB. Now we must also make sure to allow F to be any formula of L_2 in the induction axioms for both N and O_1 .

Iterated ID Systems

Iterated ID Systems

• Construct $ID_{\alpha}(O)$ and $ID_{<\alpha}(O)$ in general for any ordinal α for which we have a natural linear recursive ordering < of N of order type α . For example, Cantor's ordinal ϵ_0

Iterated ID Systems

- Construct $ID_{\alpha}(O)$ and $ID_{<\alpha}(O)$ in general for any ordinal α for which we have a natural linear recursive ordering < of N of order type α . For example, Cantor's ordinal ϵ_0
- In general, ID₁ is the extension of ID₁(O) by predicates P_A for each arithmetic A(x, P) in which P has only positive occurrences, and by the associated closure and induction axioms, where now all induction axioms for N, O, and all the PA's allow substitution instances by formulas F in the full language. Then ID₂ extends ID₁ and ID₂(O) in the same way.

Iterated ID Systems (cont'd)

Iterated ID Systems (cont'd)

• Like the constructions of the iterated ID(O) theories, the construction of the full ID systems may be iterated up to any naturally presented ordinal α to give ID $_{\alpha}$ and thence ID $_{<\alpha}$ for limit α .

Iterated ID Systems (cont'd)

- Like the constructions of the iterated ID(O) theories, the construction of the full ID systems may be iterated up to any naturally presented ordinal α to give ID $_{\alpha}$ and thence ID $_{<\alpha}$ for limit α .
- $ID_{\alpha}(acc)$ uses only A's that are of the form to give an accessibility inductive definition.

Iterated ID Systems (cont'd)

- Like the constructions of the iterated ID(O) theories, the construction of the full ID systems may be iterated up to any naturally presented ordinal α to give ID $_{\alpha}$ and thence ID $_{<\alpha}$ for limit α .
- $ID_{\alpha}(acc)$ uses only A's that are of the form to give an accessibility inductive definition.
- $ID_{\alpha}(O) \subseteq ID_{\alpha}(acc) \subseteq ID_{\alpha}$

• Core requirement: a proof of $\exists x A(x)$ must produce a witness t and a constructive proof of A(t).

- Core requirement: a proof of $\exists x A(x)$ must produce a witness t and a constructive proof of A(t).
- Thus, reject proof by contradiction, $\neg \neg \exists x \, A(x) \rightarrow \exists x \, A(x) \text{ or } \neg \forall x \neg A(x) \rightarrow \exists x \, A(x).$

- Core requirement: a proof of $\exists x A(x)$ must produce a witness t and a constructive proof of A(t).
- Thus, reject proof by contradiction, $\neg\neg\exists x \, A(x) \rightarrow \exists x \, A(x) \text{ or } \neg\forall x \neg A(x) \rightarrow \exists x \, A(x).$
- These follow from Law of Excluded Middle (LEM),
 A ∨ ¬A, rejected in general

- Core requirement: a proof of $\exists x A(x)$ must produce a witness t and a constructive proof of A(t).
- Thus, reject proof by contradiction, $\neg\neg\exists x \, A(x) \rightarrow \exists x \, A(x) \text{ or } \neg\forall x \neg A(x) \rightarrow \exists x \, A(x).$
- These follow from Law of Excluded Middle (LEM),
 A ∨ ¬A, rejected in general
- The intuitionistic school of constructivity (L.E.J. Brouwer)

- Core requirement: a proof of $\exists x A(x)$ must produce a witness t and a constructive proof of A(t).
- Thus, reject proof by contradiction, $\neg\neg\exists x \, A(x) \rightarrow \exists x \, A(x) \text{ or } \neg\forall x \neg A(x) \rightarrow \exists x \, A(x).$
- These follow from Law of Excluded Middle (LEM),
 A ∨ ¬A, rejected in general
- The intuitionistic school of constructivity (L.E.J. Brouwer)
- Intuitionistic logic (Arend Heyting): omit LEM from suitable forms of classical logic.

 Let S be a formal system based on classical logic; Sⁱ is obtained from S by omitting LEM from the underlying logic, leaving the non-logical axioms and rules of S unchanged.

- Let S be a formal system based on classical logic; Sⁱ is obtained from S by omitting LEM from the underlying logic, leaving the non-logical axioms and rules of S unchanged.
- Is Si constructive? Not necessarily, since the axioms of S may not be constructively acceptable as they stand.

- Let S be a formal system based on classical logic; Sⁱ is obtained from S by omitting LEM from the underlying logic, leaving the non-logical axioms and rules of S unchanged.
- Is Si constructive? Not necessarily, since the axioms of S may not be constructively acceptable as they stand.
- The systems ID_{α}^{i} are not constructive in general; positivity requirement has to be modified.

- Let S be a formal system based on classical logic; Sⁱ is obtained from S by omitting LEM from the underlying logic, leaving the non-logical axioms and rules of S unchanged.
- Is Si constructive? Not necessarily, since the axioms of S may not be constructively acceptable as they stand.
- The systems ID_{α}^{i} are not constructive in general; positivity requirement has to be modified.
- Even so, not evidently constructive.

- Let S be a formal system based on classical logic; Sⁱ is obtained from S by omitting LEM from the underlying logic, leaving the non-logical axioms and rules of S unchanged.
- Is Si constructive? Not necessarily, since the axioms of S may not be constructively acceptable as they stand.
- The systems ID_{α}^{i} are not constructive in general; positivity requirement has to be modified.
- Even so, not evidently constructive.
- But the $ID_{\alpha}(O)^i$ and $ID_{\alpha}(acc)^i$ are generally accepted to be constructive.

• This works to translate S into Sⁱ for certain S (Gentzen, Gödel 1933, indep.)

- This works to translate S into Sⁱ for certain S (Gentzen, Gödel 1933, indep.)
- $A^* = \neg \neg A \text{ for } A \text{ atomic, } (\neg A)^* = \neg A^*,$ $(A \lor B)^* = \neg \neg (A^* \lor B^*), (A \land B)^* = A^* \land B^*,$ $(\exists x A)^* = \neg \neg \exists x A^*, \text{ and } (\forall x A)^* = \forall x A^*$

- This works to translate S into Sⁱ for certain S (Gentzen, Gödel 1933, indep.)
- $A^* = \neg \neg A \text{ for } A \text{ atomic, } (\neg A)^* = \neg A^*,$ $(A \lor B)^* = \neg \neg (A^* \lor B^*), (A \land B)^* = A^* \land B^*,$ $(\exists x A)^* = \neg \neg \exists x A^*, \text{ and } (\forall x A)^* = \forall x A^*$
- Alternatively, can take $(A \lor B)^* = \neg(\neg A^* \land \neg B^*)$ and $(\exists x A)^* = \neg \forall x \neg A^*$

- This works to translate S into Sⁱ for certain S (Gentzen, Gödel 1933, indep.)
- $A^* = \neg \neg A \text{ for } A \text{ atomic, } (\neg A)^* = \neg A^*,$ $(A \lor B)^* = \neg \neg (A^* \lor B^*), (A \land B)^* = A^* \land B^*,$ $(\exists x A)^* = \neg \neg \exists x A^*, \text{ and } (\forall x A)^* = \forall x A^*$
- Alternatively, can take $(A \lor B)^* = \neg(\neg A^* \land \neg B^*)$ and $(\exists x A)^* = \neg \forall x \neg A^*$
- $\vdash^{c} A \Rightarrow \vdash^{i} A^{*}$

• Heyting Arithmetic, HA = PAⁱ

- Heyting Arithmetic, HA = PAⁱ
- $PA \vdash A \Rightarrow HA \vdash A^*$

- Heyting Arithmetic, HA = PAⁱ
- $PA + A \Rightarrow HA + A^*$
- HA proves LEM for atomic A

- Heyting Arithmetic, HA = PAⁱ
- $PA \vdash A \Rightarrow HA \vdash A^*$
- HA proves LEM for atomic A
- The negative translation of PA in HA is conservative for (\lor, \exists) -free formulas, because HA \vdash A* \leftrightarrow A for A atomic.

- Heyting Arithmetic, HA = PAⁱ
- $PA \vdash A \Rightarrow HA \vdash A^*$
- HA proves LEM for atomic A
- The negative translation of PA in HA is conservative for (\lor, \exists) -free formulas, because HA \vdash A* \leftrightarrow A for A atomic.
- The negative translation does not necessarily work in general to reduce S to Sⁱ, since atomic formulas need not be decidable in Sⁱ. This is the case with the IDⁱ theories; so something else must be done to reduce S to Sⁱ.

• Suppose S in L_S and T in L_T are systems with possibly different underlying logics, and that Φ is a set of formulas, $\Phi \subseteq L_S \cap L_T$.

- Suppose S in L_S and T in L_T are systems with possibly different underlying logics, and that Φ is a set of formulas, $\Phi \subseteq L_S \cap L_T$.
- Proof-theoretic reduction $S \le T \ [\Phi]$ means that we have an effective method T such that, provably in T: (*) $F \in \Phi \& Proof_S(p, F) \Rightarrow Proof_T(T(p), F)$

- Suppose S in L_S and T in L_T are systems with possibly different underlying logics, and that Φ is a set of formulas, $\Phi \subseteq L_S \cap L_T$.
- Proof-theoretic reduction $S \le T [\Phi]$ means that we have an effective method T such that, provably in T:

 (*) $F \in \Phi \& Proof_S(p, F) \Rightarrow Proof_T(T(p), F)$
- In practice, T is primitive recursive and (*) is provable in Primitive Recursive Arithmetic (PRA).

- Suppose S in L_S and T in L_T are systems with possibly different underlying logics, and that Φ is a set of formulas, $\Phi \subseteq L_S \cap L_T$.
- Proof-theoretic reduction $S \le T \ [\Phi]$ means that we have an effective method T such that, provably in T: (*) $F \in \Phi \& Proof_S(p, F) \Rightarrow Proof_T(T(p), F)$
- In practice, T is primitive recursive and (*) is provable in Primitive Recursive Arithmetic (PRA).
- $S \le T$ means $S \le T$ [Φ] for suitable Φ , sufficient to insure relative consistency.

- Suppose S in L_S and T in L_T are systems with possibly different underlying logics, and that Φ is a set of formulas, $\Phi \subseteq L_S \cap L_T$.
- Proof-theoretic reduction $S \le T$ [Φ] means that we have an effective method T such that, provably in T: (*) $F \in \Phi \& Proof_S(p, F) \Rightarrow Proof_T(T(p), F)$
- In practice, T is primitive recursive and (*) is provable in Primitive Recursive Arithmetic (PRA).
- $S \le T$ means $S \le T$ [Φ] for suitable Φ , sufficient to insure relative consistency.
- Translation is a special case of proof-theoretic reduction.

Buchholz and Pohlers reduction:
 ID_α ≤ ID_α(acc)ⁱ
 (with ordinal analysis, below)

- Buchholz and Pohlers reduction:
 ID_α ≤ ID_α(acc)ⁱ
 (with ordinal analysis, below)
- Sieg reduction: $|D_{\lambda}| \leq |D_{\lambda}(acc)^{i} \text{ for limit } \lambda$ (without ordinal analysis)

- Buchholz and Pohlers reduction:
 ID_α ≤ ID_α(acc)ⁱ
 (with ordinal analysis, below)
- Sieg reduction: $ID_{<\lambda} \le ID_{<\lambda} (acc)^i$ for limit λ (without ordinal analysis)
- The trade-offs

Ordinal Analysis

Ordinal Analysis

• Goes back to Gentzen's 1937 proof of consistency of PA by transfinite induction on ε_0 .

Ordinal Analysis

- Goes back to Gentzen's 1937 proof of consistency of PA by transfinite induction on ε₀.
- Best possible, since $TI(<_{\alpha})$ is provable in PA for each $\alpha < \epsilon_0$, using a primitive recursive well-ordering < of order type ϵ_0 , and suitable formulation of Transfinite Induction (TI).

Ordinal Analysis

- Goes back to Gentzen's 1937 proof of consistency of PA by transfinite induction on ε₀.
- Best possible, since $TI(<_{\alpha})$ is provable in PA for each $\alpha < \epsilon_0$, using a primitive recursive well-ordering < of order type ϵ_0 , and suitable formulation of Transfinite Induction (TI).
- One definition of |S| in general: = the sup of the |<| such that S + TI(<).

Ordinal Analysis

- Goes back to Gentzen's 1937 proof of consistency of PA by transfinite induction on ε₀.
- Best possible, since $TI(<_{\alpha})$ is provable in PA for each $\alpha < \epsilon_0$, using a primitive recursive well-ordering < of order type ϵ_0 , and suitable formulation of Transfinite Induction (TI).
- One definition of |S| in general: = the sup of the |<| such that S + TI(<).
- A definition that works for the ID systems S (classical or intuitionistic): |S| = sup{ |n| : S + O₁(n) }

 Ordinal analysis for consistency proofs of stronger systems pursued systematically by Schütte beginning in the 1950s. (Takeuti used "ordinal diagrams".)

- Ordinal analysis for consistency proofs of stronger systems pursued systematically by Schütte beginning in the 1950s. (Takeuti used "ordinal diagrams".)
- But ordinal analysis is meaningful independently of the Hilbert-Gentzen-Schütte-Takeuti consistency program.

- Ordinal analysis for consistency proofs of stronger systems pursued systematically by Schütte beginning in the 1950s. (Takeuti used "ordinal diagrams".)
- But ordinal analysis is meaningful independently of the Hilbert-Gentzen-Schütte-Takeuti consistency program.
- θ : ON \rightarrow ON is normal if it is continuous and strictly increasing.

- Ordinal analysis for consistency proofs of stronger systems pursued systematically by Schütte beginning in the 1950s. (Takeuti used "ordinal diagrams".)
- But ordinal analysis is meaningful independently of the Hilbert-Gentzen-Schütte-Takeuti consistency program.
- θ : ON \rightarrow ON is normal if it is continuous and strictly increasing.
- The critical process: Every normal θ has unbounded fixed points, $\theta(\xi) = \xi$, that are enumerated by another normal function, $Cr(\theta)$.

- Ordinal analysis for consistency proofs of stronger systems pursued systematically by Schütte beginning in the 1950s. (Takeuti used "ordinal diagrams".)
- But ordinal analysis is meaningful independently of the Hilbert-Gentzen-Schütte-Takeuti consistency program.
- θ : ON \rightarrow ON is normal if it is continuous and strictly increasing.
- The critical process: Every normal θ has unbounded fixed points, $\theta(\xi) = \xi$, that are enumerated by another normal function, $Cr(\theta)$.
- For $\Theta(\alpha) = \omega^{\alpha}$, $Cr(\Theta)(\alpha) = \varepsilon_{\alpha}$ (also written $\varepsilon(\alpha)$)

• The critical process can be iterated transfinitely: $\phi_0(\beta) = \omega^{\beta}$, $\phi_{\alpha+1} = Cr(\phi_{\alpha})$ and for limit λ , ϕ_{λ} enumerates $\{ \xi : \phi_{\alpha}(\xi) = \xi \text{ for every } \alpha < \lambda \}$

- The critical process can be iterated transfinitely: $\phi_0(\beta) = \omega^\beta, \, \phi_{\alpha+1} = Cr(\phi_\alpha) \text{ and for limit } \lambda, \\ \phi_\lambda \text{ enumerates } \{ \, \xi : \phi_\alpha(\xi) = \xi \text{ for every } \alpha < \lambda \}$
- Define $\phi \alpha \beta = \phi_{\alpha}(\beta)$.

- The critical process can be iterated transfinitely: $\phi_0(\beta) = \omega^{\beta}$, $\phi_{\alpha+1} = Cr(\phi_{\alpha})$ and for limit λ , ϕ_{λ} enumerates $\{ \xi : \phi_{\alpha}(\xi) = \xi \text{ for every } \alpha < \lambda \}$
- Define $\varphi \alpha \beta = \varphi_{\alpha}(\beta)$.
- Veblen generalized this to $\phi\alpha_1...\alpha_n$ for variable n, and even more generally.

- The critical process can be iterated transfinitely: $\phi_0(\beta) = \omega^{\beta}$, $\phi_{\alpha+1} = Cr(\phi_{\alpha})$ and for limit λ , ϕ_{λ} enumerates $\{ \xi : \phi_{\alpha}(\xi) = \xi \text{ for every } \alpha < \lambda \}$
- Define $\varphi \alpha \beta = \varphi_{\alpha}(\beta)$.
- Veblen generalized this to $\phi\alpha_1...\alpha_n$ for variable n, and even more generally.
- Schütte developed a recursive notation system based on the Veblen functions.

• Bachmann found a different way of transfinitely iterating the critical process, using names of many Ω_{V} . To begin with, ϕ_{Ω} enumerates $\{\alpha:\phi_{\alpha}(0)=0\}$, then $\phi_{\Omega+1}=\text{Cr}(\phi_{\Omega})$, etc.

- Bachmann found a different way of transfinitely iterating the critical process, using names of many Ω_{V} . To begin with, ϕ_{Ω} enumerates $\{\alpha:\phi_{\alpha}(0)=0\}$, then $\phi_{\Omega+1}=\text{Cr}(\phi_{\Omega})$, etc.
- Extensions of the Bachmann process by Pfeiffer and Isles.

- Bachmann found a different way of transfinitely iterating the critical process, using names of many Ω_{ν} . To begin with, ϕ_{Ω} enumerates $\{\alpha:\phi_{\alpha}(0)=0\}$, then $\phi_{\Omega+1}=Cr(\phi_{\Omega})$, etc.
- Extensions of the Bachmann process by Pfeiffer and Isles.
- Further successive simplifications and extensions by Feferman, Aczel, Bridge, and Buchholz.

- Bachmann found a different way of transfinitely iterating the critical process, using names of many Ω_{ν} . To begin with, ϕ_{Ω} enumerates $\{\alpha:\phi_{\alpha}(0)=0\}$, then $\phi_{\Omega+1}=Cr(\phi_{\Omega})$, etc.
- Extensions of the Bachmann process by Pfeiffer and Isles.
- Further successive simplifications and extensions by Feferman, Aczel, Bridge, and Buchholz.
- Buchholz' recursive notation system using a variant of the φ functions.

- Bachmann found a different way of transfinitely iterating the critical process, using names of many Ω_{v} . To begin with, ϕ_{Ω} enumerates $\{\alpha:\phi_{\alpha}(0)=0\}$, then $\phi_{\Omega+1}=Cr(\phi_{\Omega})$, etc.
- Extensions of the Bachmann process by Pfeiffer and Isles.
- Further successive simplifications and extensions by Feferman, Aczel, Bridge, and Buchholz.
- Buchholz' recursive notation system using a variant of the φ functions.
- The Buchholz-Pohlers ordinal analysis: $|ID_{\alpha}| = |ID_{\alpha}(acc)^{i}| = |ID_{\alpha}(O)^{i}| = \varphi \epsilon (\Omega_{\alpha} + I)0.$

 T, a quantifier-free theory of primitive recursive functionals of finite type over N.

- T, a quantifier-free theory of primitive recursive functionals of finite type over N.
- $A^D = \exists \underline{v} \forall \underline{x} R(\underline{v}, \underline{x}), \underline{v}, \underline{x}$, variables of finite type, R q.f., for A in L_{HA}.

- T, a quantifier-free theory of primitive recursive functionals of finite type over N.
- $A^D = \exists \underline{v} \forall \underline{x} R(\underline{v}, \underline{x}), \underline{v}, \underline{x}$, variables of finite type, R q.f., for A in L_{HA}.
- $HA \vdash A \Rightarrow T \vdash R(\underline{f}, \underline{x})$ for some terms \underline{f} in T; so $HA \leq T$

- T, a quantifier-free theory of primitive recursive functionals of finite type over N.
- $A^D = \exists \underline{v} \forall \underline{x} R(\underline{v}, \underline{x}), \underline{v}, \underline{x}$, variables of finite type, R q.f., for A in L_{HA}.
- $HA \vdash A \Rightarrow T \vdash R(\underline{f}, \underline{x})$ for some terms \underline{f} in T; so $HA \leq T$
- But the passage from A to A^D is not fully constructive: $(\neg \neg \exists y R)^D \leftrightarrow (\exists y R)^D$.

- T, a quantifier-free theory of primitive recursive functionals of finite type over N.
- $A^D = \exists \underline{v} \forall \underline{x} R(\underline{v}, \underline{x}), \underline{v}, \underline{x}$, variables of finite type, R q.f., for A in L_{HA}.
- $HA \vdash A \Rightarrow T \vdash R(\underline{f}, \underline{x})$ for some terms \underline{f} in T; so $HA \leq T$
- But the passage from A to A^D is not fully constructive: $(\neg \neg \exists y R)^D \leftrightarrow (\exists y R)^D$.
- So PA $\vdash \forall x \exists y \ R(x, y) \Rightarrow HA \vdash \forall x \neg \neg \exists y \ R(x, y) \Rightarrow$ T $\vdash R(x, f(x))$ for some f in T.

- T, a quantifier-free theory of primitive recursive functionals of finite type over N.
- $A^D = \exists \underline{v} \forall \underline{x} R(\underline{v}, \underline{x}), \underline{v}, \underline{x}$, variables of finite type, R q.f., for A in L_{HA}.
- $HA \vdash A \Rightarrow T \vdash R(\underline{f}, \underline{x})$ for some terms \underline{f} in T; so $HA \leq T$
- But the passage from A to A^D is not fully constructive: $(\neg \neg \exists y R)^D \leftrightarrow (\exists y R)^D$.
- So PA $\vdash \forall x \exists y \ R(x, y) \Rightarrow HA \vdash \forall x \neg \neg \exists y \ R(x, y) \Rightarrow$ T $\vdash R(x, f(x))$ for some f in T.
- Prov-Rec(PA) = Prov-Rec(HA) = I-Sec(T)

• ID₁ \leq OR₁ + (I), where OR₁ is a classical theory of abstract tree ordinals, and I(x, α) is interpreted as $x \in I_{\alpha}$. This \leq is by direct translation.

- ID₁ \leq OR₁ + (I), where OR₁ is a classical theory of abstract tree ordinals, and I(x, α) is interpreted as $x \in I_{\alpha}$. This \leq is by direct translation.
- T_{Ω} is a quantifier-free theory of primitive recursive functionals of finite type over the tree ordinals; QT_{Ω} allows quantifiers over all finite type variables, Q_0T_{Ω} only over natural number variables.

- ID₁ \leq OR₁ + (I), where OR₁ is a classical theory of abstract tree ordinals, and I(x, α) is interpreted as $x \in I_{\alpha}$. This \leq is by direct translation.
- T_{Ω} is a quantifier-free theory of primitive recursive functionals of finite type over the tree ordinals; QT_{Ω} allows quantifiers over all finite type variables, Q_0T_{Ω} only over natural number variables.
- $OR_1 + (I) \le Q_0 T_{\Omega}$ by the Diller-Nahm-Shoenfield variant of the Gödel functional interpretation.

• $Q_0T_{\Omega} \leq (QT_{\Omega})^i$ by Sieg-style formalization of cutelimination for Q_0T_{Ω} .

- $Q_0T_{\Omega} \leq (QT_{\Omega})^i$ by Sieg-style formalization of cutelimination for Q_0T_{Ω} .
- $(QT_{\Omega})^i \leq ID_1(acc)^i$, by formalization of the HRO model of T_{Ω} .

- $Q_0T_{\Omega} \leq (QT_{\Omega})^i$ by Sieg-style formalization of cutelimination for Q_0T_{Ω} .
- $(QT_{\Omega})^i \leq ID_1(acc)^i$, by formalization of the HRO model of T_{Ω} .
- Avigad-Towsner reduction: $ID_1 \leq ID_1(acc)^i$, without ordinal analysis, but with $Prov-Rec(ID_1) = Prov-Rec(ID_1(acc)^i) = I-Sec(T_{\Omega})$.

- $Q_0T_{\Omega} \leq (QT_{\Omega})^i$ by Sieg-style formalization of cutelimination for Q_0T_{Ω} .
- $(QT_{\Omega})^i \leq ID_1(acc)^i$, by formalization of the HRO model of T_{Ω} .
- Avigad-Towsner reduction: $ID_1 \leq ID_1(acc)^i$, without ordinal analysis, but with $Prov-Rec(ID_1) = Prov-Rec(ID_1(acc)^i) = I-Sec(T_{\Omega})$.
- They sketch extension of their work for finitely iterated ID_n's.

What (mathematically) can be done in ID₁?
 (Avigad-Towsner say Szemeredi theorem.)

- What (mathematically) can be done in ID₁?
 (Avigad-Towsner say Szemeredi theorem.)
- What can be done in iterated ID's?

- What (mathematically) can be done in ID₁?
 (Avigad-Towsner say Szemeredi theorem.)
- What can be done in iterated ID's?
- What does ordinal analysis tell us about the provable uncountable ordinals of the ID's?

- What (mathematically) can be done in ID₁?
 (Avigad-Towsner say Szemeredi theorem.)
- What can be done in iterated ID's?
- What does ordinal analysis tell us about the provable uncountable ordinals of the ID's?
- What is the unfolding of schematic ID₁?

- What (mathematically) can be done in ID₁?
 (Avigad-Towsner say Szemeredi theorem.)
- What can be done in iterated ID's?
- What does ordinal analysis tell us about the provable uncountable ordinals of the ID's?
- What is the unfolding of schematic ID₁?
- Are there reasonable theories of ID's over other sets M, e.g. the reals?

The End