
The Proof Theory of

Classical and Constructive

Inductive Definitions

A 40 year saga

Solomon Feferman

The Pohlersfest, Münster 18 July 2008

The Problem

The Problem
• Buffalo, August 1968. Conference on Intuitionism

and Proof Theory

The Problem
• Buffalo, August 1968. Conference on Intuitionism

and Proof Theory

• Tübingen, April 1973. Workshop on Proof Theory

The Problem
• Buffalo, August 1968. Conference on Intuitionism

and Proof Theory

• Tübingen, April 1973. Workshop on Proof Theory

• The problem: The need for an ordinally
informative, conceptually clear, proof-theoretic
reduction of classical theories of iterated inductive
definitions to corresponding constructive systems.

The Problem
• Buffalo, August 1968. Conference on Intuitionism

and Proof Theory

• Tübingen, April 1973. Workshop on Proof Theory

• The problem: The need for an ordinally
informative, conceptually clear, proof-theoretic
reduction of classical theories of iterated inductive
definitions to corresponding constructive systems.

• At Tübingen: Wolfram Pohlers, Wilfried Buchholz,
both students of Kurt Schütte in Munich.

Background-I

Background-I

• Stanford Seminar on the Foundations of Analysis,
Summer 1963

Background-I

• Stanford Seminar on the Foundations of Analysis,
Summer 1963

• Georg Kreisel introduces classical and constructive
first-order theories of “generalized” inductive
definitions and their iterations

Background-I

• Stanford Seminar on the Foundations of Analysis,
Summer 1963

• Georg Kreisel introduces classical and constructive
first-order theories of “generalized” inductive
definitions and their iterations

• Paradigmatic: recursive ordinal number classes,
accessibility inductive definitions

Background-I

• Stanford Seminar on the Foundations of Analysis,
Summer 1963

• Georg Kreisel introduces classical and constructive
first-order theories of “generalized” inductive
definitions and their iterations

• Paradigmatic: recursive ordinal number classes,
accessibility inductive definitions

• IDα, IDα(acc), IDα(acc)i

Background-II

Background-II

• Howard (1965?, pub. 1972)

Background-II

• Howard (1965?, pub. 1972)

• The Howard ordinal |ID1(acc)i| = φε(Ω+1)0

Background-II

• Howard (1965?, pub. 1972)

• The Howard ordinal |ID1(acc)i| = φε(Ω+1)0

• Howard’s method: functional interpretation.

Background-II

• Howard (1965?, pub. 1972)

• The Howard ordinal |ID1(acc)i| = φε(Ω+1)0

• Howard’s method: functional interpretation.

• Question: what is the (proof-theoretic) ordinal of
ID1?

Background-II

• Howard (1965?, pub. 1972)

• The Howard ordinal |ID1(acc)i| = φε(Ω+1)0

• Howard’s method: functional interpretation.

• Question: what is the (proof-theoretic) ordinal of
ID1?

• Is ID1 proof-theoretically reducible to an ID1(acc)i?

Background-III

Background-III

• Buffalo 1968 Conference on Intuitionism and Proof
Theory (Proceedings ed. by Kino, Myhill and Vesley)

Background-III

• Buffalo 1968 Conference on Intuitionism and Proof
Theory (Proceedings ed. by Kino, Myhill and Vesley)

• H. Friedman: Conservation of (∑12-AC) over
(∏11-CA)<ε(0)

Background-III

• Buffalo 1968 Conference on Intuitionism and Proof
Theory (Proceedings ed. by Kino, Myhill and Vesley)

• H. Friedman: Conservation of (∑12-AC) over
(∏11-CA)<ε(0)

• S. Feferman: Reduction of (∏11-CA)α and (∏11-CA)<λ,
for various α and λ, to classical IDα, resp. ID<λ.

Background-III

• Buffalo 1968 Conference on Intuitionism and Proof
Theory (Proceedings ed. by Kino, Myhill and Vesley)

• H. Friedman: Conservation of (∑12-AC) over
(∏11-CA)<ε(0)

• S. Feferman: Reduction of (∏11-CA)α and (∏11-CA)<λ,
for various α and λ, to classical IDα, resp. ID<λ.

• W. Tait: Consistency of (∑12-AC) by abstract constructive
cut-elimination methods applied to uncountably long
derivations.

The Problems and
Some Solutions

The Problems and
Some Solutions

• What is the proof theoretic ordinal of IDα?

The Problems and
Some Solutions

• What is the proof theoretic ordinal of IDα?

• Is IDα proof-theoretically reducible to a constructive ID,
e.g. an IDα(acc)i?

The Problems and
Some Solutions

• What is the proof theoretic ordinal of IDα?

• Is IDα proof-theoretically reducible to a constructive ID,
e.g. an IDα(acc)i?

• Pohlers (1975-1978): |IDα| ≤ φε(Ωα+1)0

The Problems and
Some Solutions

• What is the proof theoretic ordinal of IDα?

• Is IDα proof-theoretically reducible to a constructive ID,
e.g. an IDα(acc)i?

• Pohlers (1975-1978): |IDα| ≤ φε(Ωα+1)0

• Buchholz and Pohlers (1977): φε(Ωα+1)0 ≤ |IDα(acc)i|

The Problems and
Some Solutions

• What is the proof theoretic ordinal of IDα?

• Is IDα proof-theoretically reducible to a constructive ID,
e.g. an IDα(acc)i?

• Pohlers (1975-1978): |IDα| ≤ φε(Ωα+1)0

• Buchholz and Pohlers (1977): φε(Ωα+1)0 ≤ |IDα(acc)i|

• Sieg (1977): Formalization of Tait’s argument to reduce
ID<λ to ID<λ(acc)i

BFPS 1981: Iterated Inductive Definitions

and Subsystems of Analysis

BFPS 1981: Iterated Inductive Definitions

and Subsystems of Analysis

• Buchholz (in BFPS 1981): the method of Ωα+1-rules

BFPS 1981: Iterated Inductive Definitions

and Subsystems of Analysis

• Buchholz (in BFPS 1981): the method of Ωα+1-rules

• Pohlers (in BFPS 1981): the method of local
predicativity

BFPS 1981: Iterated Inductive Definitions

and Subsystems of Analysis

• Buchholz (in BFPS 1981): the method of Ωα+1-rules

• Pohlers (in BFPS 1981): the method of local
predicativity

• Both use cut-elimination

BFPS 1981: Iterated Inductive Definitions

and Subsystems of Analysis

• Buchholz (in BFPS 1981): the method of Ωα+1-rules

• Pohlers (in BFPS 1981): the method of local
predicativity

• Both use cut-elimination

• Both recapture ordinal analysis and constructive
reduction for the IDα and ID<λ

End of Story?

End of Story?

• Further significant improvements by both Buchholz
and Pohlers; H-controlled derivations

End of Story?

• Further significant improvements by both Buchholz
and Pohlers; H-controlled derivations

• Work on related theories of iterated fixed points
(Feferman, Jäger, Strahm, ...)

End of Story?

• Further significant improvements by both Buchholz
and Pohlers; H-controlled derivations

• Work on related theories of iterated fixed points
(Feferman, Jäger, Strahm, ...)

• Work on monotone inductive definitions in a
constructive setting (Takahashi, Rathjen, ...)

A Blocked Effort (1968)

A Blocked Effort (1968)

• Back to ID1: My original attempt (1968, unpublished, but
outlined in Avigad and Feferman chapter on Gödel’s
functional interpretation in the Handbook of Proof Theory
(1998))

A Blocked Effort (1968)

• Back to ID1: My original attempt (1968, unpublished, but
outlined in Avigad and Feferman chapter on Gödel’s
functional interpretation in the Handbook of Proof Theory
(1998))

• Aim: to get a constructive reduction of ID1, and then
iterated ID’s, via a functional interpretation in an abstract
theory of constructive ordinals.

A Blocked Effort (1968)

• Back to ID1: My original attempt (1968, unpublished, but
outlined in Avigad and Feferman chapter on Gödel’s
functional interpretation in the Handbook of Proof Theory
(1998))

• Aim: to get a constructive reduction of ID1, and then
iterated ID’s, via a functional interpretation in an abstract
theory of constructive ordinals.

• Blocked at a final crucial step.

Finally Overcome (2008)

Finally Overcome (2008)

• Jeremy Avigad and Henry Towsner (2008), “Functional
interpretation and inductive definitions”

Finally Overcome (2008)

• Jeremy Avigad and Henry Towsner (2008), “Functional
interpretation and inductive definitions”

• Uses a modified interpretation (without ordinal analysis)
and a new idea to overcome that obstacle. The method
works to reduce IDn to IDn(acc)i.

Finally Overcome (2008)

• Jeremy Avigad and Henry Towsner (2008), “Functional
interpretation and inductive definitions”

• Uses a modified interpretation (without ordinal analysis)
and a new idea to overcome that obstacle. The method
works to reduce IDn to IDn(acc)i.

• The saga 1968-2008: Shifting interest from applications
to subsystems of analysis to interest in theories of
inductive definitions in their own right.

Separating the Elements

Separating the Elements

• Ordinal analysis of formal systems

Separating the Elements

• Ordinal analysis of formal systems

• Proof-theoretic reduction

Separating the Elements

• Ordinal analysis of formal systems

• Proof-theoretic reduction

• Classical and constructive systems

Separating the Elements

• Ordinal analysis of formal systems

• Proof-theoretic reduction

• Classical and constructive systems

• The subjective criteria: to be informative and
conceptually clear

Separating the Elements

• Ordinal analysis of formal systems

• Proof-theoretic reduction

• Classical and constructive systems

• The subjective criteria: to be informative and
conceptually clear

• The methods: cut-elimination and functional
interpretation

Monotone Inductive Operators
Over any Set M

Monotone Inductive Operators
Over any Set M

• Γ: P(M) → P(M) is monotone if for all X, Y ⊆ M,
X ⊆ Y ⇒ Γ(X) ⊆ Γ(Y)

Monotone Inductive Operators
Over any Set M

• Γ: P(M) → P(M) is monotone if for all X, Y ⊆ M,
X ⊆ Y ⇒ Γ(X) ⊆ Γ(Y)

• X is closed under Γ if Γ(X) ⊆ X

Monotone Inductive Operators
Over any Set M

• Γ: P(M) → P(M) is monotone if for all X, Y ⊆ M,
X ⊆ Y ⇒ Γ(X) ⊆ Γ(Y)

• X is closed under Γ if Γ(X) ⊆ X

• Γ has a least fixed point I = the intersection of all subsets
X of M which are closed under Γ

Monotone Inductive Operators
Over any Set M

• Γ: P(M) → P(M) is monotone if for all X, Y ⊆ M,
X ⊆ Y ⇒ Γ(X) ⊆ Γ(Y)

• X is closed under Γ if Γ(X) ⊆ X

• Γ has a least fixed point I = the intersection of all subsets
X of M which are closed under Γ

• So: (i) Γ(I) ⊆ I and (ii) if Γ(X) ⊆ X then I ⊆ X.
Hence (iii) Γ(I) = I

The LFP of Γ, Defined From Below

The LFP of Γ, Defined From Below

• Let I0 = ∅ and Iα = ∪ξ<αΓ(Iξ)

The LFP of Γ, Defined From Below

• Let I0 = ∅ and Iα = ∪ξ<αΓ(Iξ)

• β < α ⇒ Iβ ⊆ Iα

The LFP of Γ, Defined From Below

• Let I0 = ∅ and Iα = ∪ξ<αΓ(Iξ)

• β < α ⇒ Iβ ⊆ Iα

• Hence, if α = β + 1, Iα = Γ(Iβ)

The LFP of Γ, Defined From Below

• Let I0 = ∅ and Iα = ∪ξ<αΓ(Iξ)

• β < α ⇒ Iβ ⊆ Iα

• Hence, if α = β + 1, Iα = Γ(Iβ)

• if κ = card(M) then there exists γ < κ+ with
Iγ = Iγ+1

The LFP of Γ, Defined From Below

• Let I0 = ∅ and Iα = ∪ξ<αΓ(Iξ)

• β < α ⇒ Iβ ⊆ Iα

• Hence, if α = β + 1, Iα = Γ(Iβ)

• if κ = card(M) then there exists γ < κ+ with
Iγ = Iγ+1

• I = Iγ for the least such γ (the closure ordinal of Γ)

Stages of Elements of I

Stages of Elements of I

• Let γ = the closure ordinal of Γ

Stages of Elements of I

• Let γ = the closure ordinal of Γ

• For m ∈ I, |m|I = the least ordinal α < γ such that
m ∈ Iα+1 - Iα

Stages of Elements of I

• Let γ = the closure ordinal of Γ

• For m ∈ I, |m|I = the least ordinal α < γ such that
m ∈ Iα+1 - Iα

• This is its first stage of appearance in I.

Monotone Operators from a

Logical Point of View

Monotone Operators from a

Logical Point of View

• Concentrate on Γ over N = {0, 1, 2, ...}

Monotone Operators from a

Logical Point of View

• Concentrate on Γ over N = {0, 1, 2, ...}

• Consider Γ first-order definable (variables interpreted as
ranging over N) in extensions L of the language L0 of
arithmetic.

Monotone Operators from a

Logical Point of View

• Concentrate on Γ over N = {0, 1, 2, ...}

• Consider Γ first-order definable (variables interpreted as
ranging over N) in extensions L of the language L0 of
arithmetic.

• Form L(P), P unary predicate symbol

Monotone Operators from a

Logical Point of View

• Concentrate on Γ over N = {0, 1, 2, ...}

• Consider Γ first-order definable (variables interpreted as
ranging over N) in extensions L of the language L0 of
arithmetic.

• Form L(P), P unary predicate symbol

• A(x, P) of L(P) in which P has only positive occurrences
defines a monotone operator
ΓA(X) = {x ∈ N |A(x, X)}

Definable Operators (cont’d)

Definable Operators (cont’d)

• The positivity condition: if A is reduced to negation
normal form, i.e. is built up from atomic formulas
or their negations by ∧, ∨, ∀, and ∃, the atomic
formulas P(t) never occur negated.

Definable Operators (cont’d)

• The positivity condition: if A is reduced to negation
normal form, i.e. is built up from atomic formulas
or their negations by ∧, ∨, ∀, and ∃, the atomic
formulas P(t) never occur negated.

• ΓA(P) ⊆ P is expressed by the formula
∀x(A(x, P) → P(x)) of L(P)

Example 1: Accessible Part

Example 1: Accessible Part

• Suppose a partial ordering relation ≺ on the
natural numbers is defined by a formula R(x,y) of L
interpreted as y ≺ x.

Example 1: Accessible Part

• Suppose a partial ordering relation ≺ on the
natural numbers is defined by a formula R(x,y) of L
interpreted as y ≺ x.

• Let A(x, P) = ∀y(R(x, y) → P(y))

Example 1: Accessible Part

• Suppose a partial ordering relation ≺ on the
natural numbers is defined by a formula R(x,y) of L
interpreted as y ≺ x.

• Let A(x, P) = ∀y(R(x, y) → P(y))

• The least fixed point of ΓA is the accessible part of
the ≺ relation, i.e. its well-founded initial part.

Example 2: Church-Kleene
Recursive Notations for Ordinals

Example 2: Church-Kleene
Recursive Notations for Ordinals

• Codes e ∈ N for partial recursive functions: {e}(n) ≃ m.
Use a recursive pairing function (n, m) ≠ 0

Example 2: Church-Kleene
Recursive Notations for Ordinals

• Codes e ∈ N for partial recursive functions: {e}(n) ≃ m.
Use a recursive pairing function (n, m) ≠ 0

• O1 is the smallest set satisfying: (i) 0 ∈ O1, and
(ii) if e is an index of a total recursive function and for
each n ∈ N, {e}(n) ∈ O1 then (1, e) ∈ O1.

Example 2: Church-Kleene
Recursive Notations for Ordinals

• Codes e ∈ N for partial recursive functions: {e}(n) ≃ m.
Use a recursive pairing function (n, m) ≠ 0

• O1 is the smallest set satisfying: (i) 0 ∈ O1, and
(ii) if e is an index of a total recursive function and for
each n ∈ N, {e}(n) ∈ O1 then (1, e) ∈ O1.

• |a|, for a ∈ O1, is defined by: (i) |0| = 0, and
(ii) |(1, e)| = sup{ |{e}(n)| + 1 : n ∈ N}.

O1(cont’d)

O1(cont’d)

• The elements of O1 represent N-branching well-
founded trees.

O1(cont’d)

• The elements of O1 represent N-branching well-
founded trees.

• O1 is an analogue in recursive terms of the set of
the set of ordinals less than Ω1, the first
uncountable ordinal (also denoted Ω or ω1).

O1(cont’d)

• The elements of O1 represent N-branching well-
founded trees.

• O1 is an analogue in recursive terms of the set of
the set of ordinals less than Ω1, the first
uncountable ordinal (also denoted Ω or ω1).

• ω1CK = sup{ |a| : a ∈ O1} ; ω1CK < ω1

Recursive Notations for Higher
Ordinal Number Classes

Recursive Notations for Higher
Ordinal Number Classes

• To define O2, in addition to (i), (ii) now on O2, take:
(iii) if e is the index of a partial recursive function such
that for each a ∈ O1, {e}(a) ∈ O2, then (2, e) ∈ O2.
Then take |(2, e)| = sup{ |{e}(a)| + 1: a ∈ O1}.

Recursive Notations for Higher
Ordinal Number Classes

• To define O2, in addition to (i), (ii) now on O2, take:
(iii) if e is the index of a partial recursive function such
that for each a ∈ O1, {e}(a) ∈ O2, then (2, e) ∈ O2.
Then take |(2, e)| = sup{ |{e}(a)| + 1: a ∈ O1}.

• NB: O1 appears without the positivity restriction in the
definition of O2

Recursive Notations for Higher
Ordinal Number Classes

• To define O2, in addition to (i), (ii) now on O2, take:
(iii) if e is the index of a partial recursive function such
that for each a ∈ O1, {e}(a) ∈ O2, then (2, e) ∈ O2.
Then take |(2, e)| = sup{ |{e}(a)| + 1: a ∈ O1}.

• NB: O1 appears without the positivity restriction in the
definition of O2

• ω2CK = sup{ |a| : a ∈ O2} ; ω1CK < ω2CK < ω1.

Recursive Notations for Higher
Ordinal Number Classes

• To define O2, in addition to (i), (ii) now on O2, take:
(iii) if e is the index of a partial recursive function such
that for each a ∈ O1, {e}(a) ∈ O2, then (2, e) ∈ O2.
Then take |(2, e)| = sup{ |{e}(a)| + 1: a ∈ O1}.

• NB: O1 appears without the positivity restriction in the
definition of O2

• ω2CK = sup{ |a| : a ∈ O2} ; ω1CK < ω2CK < ω1.

• This procedure can be iterated to form O3, O4, etc. It can
also be extended into the transfinite, by taking the
effective join at limits, e.g. ⟨n, m⟩ ∈ Oω ↔ m ∈ On, and

then continuing on.

The Formal System ID1(O)

The Formal System ID1(O)

• The language L1 of ID1(O) is the language L0 of arithmetic
extended by a unary predicate O1(x). Let A1(x, P) be the
formula x = 0 ∨ ∃z[x = (1, z) ∧ ∀u P({z}(u))].

The Formal System ID1(O)

• The language L1 of ID1(O) is the language L0 of arithmetic
extended by a unary predicate O1(x). Let A1(x, P) be the
formula x = 0 ∨ ∃z[x = (1, z) ∧ ∀u P({z}(u))].

• The axioms of ID1(O) are the axioms of Peano
Arithmetic, PA, with induction on N extended to all
formulas, plus the following:

The Formal System ID1(O)

• The language L1 of ID1(O) is the language L0 of arithmetic
extended by a unary predicate O1(x). Let A1(x, P) be the
formula x = 0 ∨ ∃z[x = (1, z) ∧ ∀u P({z}(u))].

• The axioms of ID1(O) are the axioms of Peano
Arithmetic, PA, with induction on N extended to all
formulas, plus the following:

I. (Closure) ∀x(A1(x, O1) → O1(x))

The Formal System ID1(O)

• The language L1 of ID1(O) is the language L0 of arithmetic
extended by a unary predicate O1(x). Let A1(x, P) be the
formula x = 0 ∨ ∃z[x = (1, z) ∧ ∀u P({z}(u))].

• The axioms of ID1(O) are the axioms of Peano
Arithmetic, PA, with induction on N extended to all
formulas, plus the following:

I. (Closure) ∀x(A1(x, O1) → O1(x))

II. (Induction) ∀x(A1(x, F) → F(x)) → ∀x(O1(x) → F(x)),

where F(x) is any formula of L1.

The Formal System ID2(O)

The Formal System ID2(O)

• Take the language L2 of ID2(O) to be L1 extended by a
unary predicate O2(x). Let A2(x, P) be the formula
x = 0 ∨ ∃z[x = (1, z) ∧ ∀u P({z}(u))] ∨
∃w(x = (2, w) ∧ ∀v(O1(v) → P({w}(v))].

The Formal System ID2(O)

• Take the language L2 of ID2(O) to be L1 extended by a
unary predicate O2(x). Let A2(x, P) be the formula
x = 0 ∨ ∃z[x = (1, z) ∧ ∀u P({z}(u))] ∨
∃w(x = (2, w) ∧ ∀v(O1(v) → P({w}(v))].

• The axioms of ID2(O) are those of ID1(O) plus:

The Formal System ID2(O)

• Take the language L2 of ID2(O) to be L1 extended by a
unary predicate O2(x). Let A2(x, P) be the formula
x = 0 ∨ ∃z[x = (1, z) ∧ ∀u P({z}(u))] ∨
∃w(x = (2, w) ∧ ∀v(O1(v) → P({w}(v))].

• The axioms of ID2(O) are those of ID1(O) plus:

 I.́ (Closure) ∀x(A2(x, O2) → O2(x))

The Formal System ID2(O)

• Take the language L2 of ID2(O) to be L1 extended by a
unary predicate O2(x). Let A2(x, P) be the formula
x = 0 ∨ ∃z[x = (1, z) ∧ ∀u P({z}(u))] ∨
∃w(x = (2, w) ∧ ∀v(O1(v) → P({w}(v))].

• The axioms of ID2(O) are those of ID1(O) plus:

 I.́ (Closure) ∀x(A2(x, O2) → O2(x))

 II.́ (Induction) ∀x(A2(x, F) → F(x)) → ∀x(O2(x) → F(x)),

where F(x) is any formula of L2.

The Formal System ID2(O)

• Take the language L2 of ID2(O) to be L1 extended by a
unary predicate O2(x). Let A2(x, P) be the formula
x = 0 ∨ ∃z[x = (1, z) ∧ ∀u P({z}(u))] ∨
∃w(x = (2, w) ∧ ∀v(O1(v) → P({w}(v))].

• The axioms of ID2(O) are those of ID1(O) plus:

 I.́ (Closure) ∀x(A2(x, O2) → O2(x))

 II.́ (Induction) ∀x(A2(x, F) → F(x)) → ∀x(O2(x) → F(x)),

where F(x) is any formula of L2.

• NB. Now we must also make sure to allow F to be any
formula of L2 in the induction axioms for both N and O1.

Iterated ID Systems

Iterated ID Systems

• Construct IDα(O) and ID<α(O) in general for any ordinal
α for which we have a natural linear recursive ordering ≺
of N of order type α. For example, Cantor’s ordinal ε0

Iterated ID Systems

• Construct IDα(O) and ID<α(O) in general for any ordinal
α for which we have a natural linear recursive ordering ≺
of N of order type α. For example, Cantor’s ordinal ε0

• In general, ID1 is the extension of ID1(O) by predicates
PA for each arithmetic A(x, P) in which P has only positive
occurrences, and by the associated closure and induction
axioms, where now all induction axioms for N, O, and all
the PA’s allow substitution instances by formulas F in the
full language. Then ID2 extends ID1 and ID2(O) in the
same way.

Iterated ID Systems (cont’d)

Iterated ID Systems (cont’d)

• Like the constructions of the iterated ID(O)
theories, the construction of the full ID systems
may be iterated up to any naturally presented
ordinal α to give IDα and thence ID<α for limit α.

Iterated ID Systems (cont’d)

• Like the constructions of the iterated ID(O)
theories, the construction of the full ID systems
may be iterated up to any naturally presented
ordinal α to give IDα and thence ID<α for limit α.

• IDα(acc) uses only A’s that are of the form to give
an accessibility inductive definition.

Iterated ID Systems (cont’d)

• Like the constructions of the iterated ID(O)
theories, the construction of the full ID systems
may be iterated up to any naturally presented
ordinal α to give IDα and thence ID<α for limit α.

• IDα(acc) uses only A’s that are of the form to give
an accessibility inductive definition.

• IDα(O) ⊆ IDα(acc) ⊆ IDα

 What Makes a System Constructive?

 What Makes a System Constructive?

• Core requirement: a proof of ∃x A(x) must produce a
witness t and a constructive proof of A(t).

 What Makes a System Constructive?

• Core requirement: a proof of ∃x A(x) must produce a
witness t and a constructive proof of A(t).

• Thus, reject proof by contradiction,
¬¬∃x A(x) → ∃x A(x) or ¬∀x¬A(x) → ∃x A(x).

 What Makes a System Constructive?

• Core requirement: a proof of ∃x A(x) must produce a
witness t and a constructive proof of A(t).

• Thus, reject proof by contradiction,
¬¬∃x A(x) → ∃x A(x) or ¬∀x¬A(x) → ∃x A(x).

• These follow from Law of Excluded Middle (LEM),
A ∨ ¬A, rejected in general

 What Makes a System Constructive?

• Core requirement: a proof of ∃x A(x) must produce a
witness t and a constructive proof of A(t).

• Thus, reject proof by contradiction,
¬¬∃x A(x) → ∃x A(x) or ¬∀x¬A(x) → ∃x A(x).

• These follow from Law of Excluded Middle (LEM),
A ∨ ¬A, rejected in general

• The intuitionistic school of constructivity (L.E.J. Brouwer)

 What Makes a System Constructive?

• Core requirement: a proof of ∃x A(x) must produce a
witness t and a constructive proof of A(t).

• Thus, reject proof by contradiction,
¬¬∃x A(x) → ∃x A(x) or ¬∀x¬A(x) → ∃x A(x).

• These follow from Law of Excluded Middle (LEM),
A ∨ ¬A, rejected in general

• The intuitionistic school of constructivity (L.E.J. Brouwer)

• Intuitionistic logic (Arend Heyting): omit LEM from
suitable forms of classical logic.

Constructive Systems (cont’d)

Constructive Systems (cont’d)

• Let S be a formal system based on classical logic; Si is
obtained from S by omitting LEM from the underlying
logic, leaving the non-logical axioms and rules of S
unchanged.

Constructive Systems (cont’d)

• Let S be a formal system based on classical logic; Si is
obtained from S by omitting LEM from the underlying
logic, leaving the non-logical axioms and rules of S
unchanged.

• Is Si constructive? Not necessarily, since the axioms of S
may not be constructively acceptable as they stand.

Constructive Systems (cont’d)

• Let S be a formal system based on classical logic; Si is
obtained from S by omitting LEM from the underlying
logic, leaving the non-logical axioms and rules of S
unchanged.

• Is Si constructive? Not necessarily, since the axioms of S
may not be constructively acceptable as they stand.

• The systems IDαi are not constructive in general;
positivity requirement has to be modified.

Constructive Systems (cont’d)

• Let S be a formal system based on classical logic; Si is
obtained from S by omitting LEM from the underlying
logic, leaving the non-logical axioms and rules of S
unchanged.

• Is Si constructive? Not necessarily, since the axioms of S
may not be constructively acceptable as they stand.

• The systems IDαi are not constructive in general;
positivity requirement has to be modified.

• Even so, not evidently constructive.

Constructive Systems (cont’d)

• Let S be a formal system based on classical logic; Si is
obtained from S by omitting LEM from the underlying
logic, leaving the non-logical axioms and rules of S
unchanged.

• Is Si constructive? Not necessarily, since the axioms of S
may not be constructively acceptable as they stand.

• The systems IDαi are not constructive in general;
positivity requirement has to be modified.

• Even so, not evidently constructive.

• But the IDα(O)i and IDα(acc)i are generally accepted to
be constructive.

The Negative (or Double Negation)

Translation

The Negative (or Double Negation)

Translation

• This works to translate S into Si for certain S (Gentzen,
Gödel 1933, indep.)

The Negative (or Double Negation)

Translation

• This works to translate S into Si for certain S (Gentzen,
Gödel 1933, indep.)

• A* = ¬¬A for A atomic, (¬A)* = ¬A*,
(A ∨ B)* = ¬¬(A* ∨ B*), (A ∧ B)* = A* ∧ B*,
(∃x A)* = ¬¬ ∃x A*, and (∀x A)* = ∀x A*

The Negative (or Double Negation)

Translation

• This works to translate S into Si for certain S (Gentzen,
Gödel 1933, indep.)

• A* = ¬¬A for A atomic, (¬A)* = ¬A*,
(A ∨ B)* = ¬¬(A* ∨ B*), (A ∧ B)* = A* ∧ B*,
(∃x A)* = ¬¬ ∃x A*, and (∀x A)* = ∀x A*

• Alternatively, can take (A ∨ B)* = ¬(¬A* ∧ ¬B*) and
(∃x A)* = ¬ ∀x¬ A*

The Negative (or Double Negation)

Translation

• This works to translate S into Si for certain S (Gentzen,
Gödel 1933, indep.)

• A* = ¬¬A for A atomic, (¬A)* = ¬A*,
(A ∨ B)* = ¬¬(A* ∨ B*), (A ∧ B)* = A* ∧ B*,
(∃x A)* = ¬¬ ∃x A*, and (∀x A)* = ∀x A*

• Alternatively, can take (A ∨ B)* = ¬(¬A* ∧ ¬B*) and
(∃x A)* = ¬ ∀x¬ A*

• ⊦c A ⇒ ⊦i A*

Negative Translation of Arithmetic

Negative Translation of Arithmetic

• Heyting Arithmetic, HA = PAi

Negative Translation of Arithmetic

• Heyting Arithmetic, HA = PAi

• PA ⊦ A ⇒ HA ⊦ A*

Negative Translation of Arithmetic

• Heyting Arithmetic, HA = PAi

• PA ⊦ A ⇒ HA ⊦ A*

• HA proves LEM for atomic A

Negative Translation of Arithmetic

• Heyting Arithmetic, HA = PAi

• PA ⊦ A ⇒ HA ⊦ A*

• HA proves LEM for atomic A

• The negative translation of PA in HA is conservative for
(∨, ∃)-free formulas, because HA ⊦ A* ↔ A for A atomic.

Negative Translation of Arithmetic

• Heyting Arithmetic, HA = PAi

• PA ⊦ A ⇒ HA ⊦ A*

• HA proves LEM for atomic A

• The negative translation of PA in HA is conservative for
(∨, ∃)-free formulas, because HA ⊦ A* ↔ A for A atomic.

• The negative translation does not necessarily work in
general to reduce S to Si, since atomic formulas need not
be decidable in Si. This is the case with the IDi theories;
so something else must be done to reduce S to Si.

Proof-Theoretic Reduction

Proof-Theoretic Reduction

• Suppose S in LS and T in LT are systems with possibly
different underlying logics, and that Φ is a set of
formulas, Φ ⊆ LS ∩ LT.

Proof-Theoretic Reduction

• Suppose S in LS and T in LT are systems with possibly
different underlying logics, and that Φ is a set of
formulas, Φ ⊆ LS ∩ LT.

• Proof-theoretic reduction S ≤ T [Φ] means that we have
an effective method τ such that, provably in T:
(*) F ∈ Φ & ProofS(p, F) ⇒ ProofT(τ(p), F)

Proof-Theoretic Reduction

• Suppose S in LS and T in LT are systems with possibly
different underlying logics, and that Φ is a set of
formulas, Φ ⊆ LS ∩ LT.

• Proof-theoretic reduction S ≤ T [Φ] means that we have
an effective method τ such that, provably in T:
(*) F ∈ Φ & ProofS(p, F) ⇒ ProofT(τ(p), F)

• In practice, τ is primitive recursive and (*) is provable in
Primitive Recursive Arithmetic (PRA).

Proof-Theoretic Reduction

• Suppose S in LS and T in LT are systems with possibly
different underlying logics, and that Φ is a set of
formulas, Φ ⊆ LS ∩ LT.

• Proof-theoretic reduction S ≤ T [Φ] means that we have
an effective method τ such that, provably in T:
(*) F ∈ Φ & ProofS(p, F) ⇒ ProofT(τ(p), F)

• In practice, τ is primitive recursive and (*) is provable in
Primitive Recursive Arithmetic (PRA).

• S ≤ T means S ≤ T [Φ] for suitable Φ, sufficient to insure
relative consistency.

Proof-Theoretic Reduction

• Suppose S in LS and T in LT are systems with possibly
different underlying logics, and that Φ is a set of
formulas, Φ ⊆ LS ∩ LT.

• Proof-theoretic reduction S ≤ T [Φ] means that we have
an effective method τ such that, provably in T:
(*) F ∈ Φ & ProofS(p, F) ⇒ ProofT(τ(p), F)

• In practice, τ is primitive recursive and (*) is provable in
Primitive Recursive Arithmetic (PRA).

• S ≤ T means S ≤ T [Φ] for suitable Φ, sufficient to insure
relative consistency.

• Translation is a special case of proof-theoretic reduction.

Proof-Theoretic Reduction for ID’s

Proof-Theoretic Reduction for ID’s

• Buchholz and Pohlers reduction:
IDα ≤ IDα(acc)i

(with ordinal analysis, below)

Proof-Theoretic Reduction for ID’s

• Buchholz and Pohlers reduction:
IDα ≤ IDα(acc)i

(with ordinal analysis, below)

• Sieg reduction:
ID<λ ≤ ID<λ(acc)i for limit λ
(without ordinal analysis)

Proof-Theoretic Reduction for ID’s

• Buchholz and Pohlers reduction:
IDα ≤ IDα(acc)i

(with ordinal analysis, below)

• Sieg reduction:
ID<λ ≤ ID<λ(acc)i for limit λ
(without ordinal analysis)

• The trade-offs

Ordinal Analysis

Ordinal Analysis

• Goes back to Gentzen’s 1937 proof of consistency of PA
by transfinite induction on ε0.

Ordinal Analysis

• Goes back to Gentzen’s 1937 proof of consistency of PA
by transfinite induction on ε0.

• Best possible, since TI(≺α) is provable in PA for each
α < ε0, using a primitive recursive well-ordering ≺ of
order type ε0, and suitable formulation of Transfinite
Induction (TI).

Ordinal Analysis

• Goes back to Gentzen’s 1937 proof of consistency of PA
by transfinite induction on ε0.

• Best possible, since TI(≺α) is provable in PA for each
α < ε0, using a primitive recursive well-ordering ≺ of
order type ε0, and suitable formulation of Transfinite
Induction (TI).

• One definition of |S| in general: = the sup of the |≺| such
that S ⊦ TI(≺).

Ordinal Analysis

• Goes back to Gentzen’s 1937 proof of consistency of PA
by transfinite induction on ε0.

• Best possible, since TI(≺α) is provable in PA for each
α < ε0, using a primitive recursive well-ordering ≺ of
order type ε0, and suitable formulation of Transfinite
Induction (TI).

• One definition of |S| in general: = the sup of the |≺| such
that S ⊦ TI(≺).

• A definition that works for the ID systems S (classical or
intuitionistic): |S| = sup{ |n| : S ⊦ O1(n) }

Ordinal Analysis (cont’d)

Ordinal Analysis (cont’d)

• Ordinal analysis for consistency proofs of stronger
systems pursued systematically by Schütte beginning in
the 1950s. (Takeuti used “ordinal diagrams”.)

Ordinal Analysis (cont’d)

• Ordinal analysis for consistency proofs of stronger
systems pursued systematically by Schütte beginning in
the 1950s. (Takeuti used “ordinal diagrams”.)

• But ordinal analysis is meaningful independently of the
Hilbert-Gentzen-Schütte-Takeuti consistency program.

Ordinal Analysis (cont’d)

• Ordinal analysis for consistency proofs of stronger
systems pursued systematically by Schütte beginning in
the 1950s. (Takeuti used “ordinal diagrams”.)

• But ordinal analysis is meaningful independently of the
Hilbert-Gentzen-Schütte-Takeuti consistency program.

• θ: ON → ON is normal if it is continuous and strictly
increasing.

Ordinal Analysis (cont’d)

• Ordinal analysis for consistency proofs of stronger
systems pursued systematically by Schütte beginning in
the 1950s. (Takeuti used “ordinal diagrams”.)

• But ordinal analysis is meaningful independently of the
Hilbert-Gentzen-Schütte-Takeuti consistency program.

• θ: ON → ON is normal if it is continuous and strictly
increasing.

• The critical process: Every normal θ has unbounded fixed
points, θ(ξ) = ξ, that are enumerated by another normal
function, Cr(θ).

Ordinal Analysis (cont’d)

• Ordinal analysis for consistency proofs of stronger
systems pursued systematically by Schütte beginning in
the 1950s. (Takeuti used “ordinal diagrams”.)

• But ordinal analysis is meaningful independently of the
Hilbert-Gentzen-Schütte-Takeuti consistency program.

• θ: ON → ON is normal if it is continuous and strictly
increasing.

• The critical process: Every normal θ has unbounded fixed
points, θ(ξ) = ξ, that are enumerated by another normal
function, Cr(θ).

• For Θ(α) = ωα, Cr(Θ)(α) = εα (also written ε(α))

Systems of Ordinal Functions for

Ordinal Analysis

Systems of Ordinal Functions for

Ordinal Analysis

• The critical process can be iterated transfinitely:
φ0(β) = ωβ, φα+1 = Cr(φα) and for limit λ,
φλ enumerates { ξ : φα(ξ) = ξ for every α < λ}

Systems of Ordinal Functions for

Ordinal Analysis

• The critical process can be iterated transfinitely:
φ0(β) = ωβ, φα+1 = Cr(φα) and for limit λ,
φλ enumerates { ξ : φα(ξ) = ξ for every α < λ}

• Define φαβ = φα(β).

Systems of Ordinal Functions for

Ordinal Analysis

• The critical process can be iterated transfinitely:
φ0(β) = ωβ, φα+1 = Cr(φα) and for limit λ,
φλ enumerates { ξ : φα(ξ) = ξ for every α < λ}

• Define φαβ = φα(β).

• Veblen generalized this to φα1...αn for variable n, and
even more generally.

Systems of Ordinal Functions for

Ordinal Analysis

• The critical process can be iterated transfinitely:
φ0(β) = ωβ, φα+1 = Cr(φα) and for limit λ,
φλ enumerates { ξ : φα(ξ) = ξ for every α < λ}

• Define φαβ = φα(β).

• Veblen generalized this to φα1...αn for variable n, and
even more generally.

• Schütte developed a recursive notation system based on
the Veblen functions.

Uncountable Transfinite Iteration of Cr

Uncountable Transfinite Iteration of Cr

• Bachmann found a different way of transfinitely iterating
the critical process, using names of many Ων. To begin
with, φΩ enumerates { α : φα(0) = 0 }, then
φΩ+1 = Cr(φΩ), etc.

Uncountable Transfinite Iteration of Cr

• Bachmann found a different way of transfinitely iterating
the critical process, using names of many Ων. To begin
with, φΩ enumerates { α : φα(0) = 0 }, then
φΩ+1 = Cr(φΩ), etc.

• Extensions of the Bachmann process by Pfeiffer and Isles.

Uncountable Transfinite Iteration of Cr

• Bachmann found a different way of transfinitely iterating
the critical process, using names of many Ων. To begin
with, φΩ enumerates { α : φα(0) = 0 }, then
φΩ+1 = Cr(φΩ), etc.

• Extensions of the Bachmann process by Pfeiffer and Isles.

• Further successive simplifications and extensions by
Feferman, Aczel, Bridge, and Buchholz.

Uncountable Transfinite Iteration of Cr

• Bachmann found a different way of transfinitely iterating
the critical process, using names of many Ων. To begin
with, φΩ enumerates { α : φα(0) = 0 }, then
φΩ+1 = Cr(φΩ), etc.

• Extensions of the Bachmann process by Pfeiffer and Isles.

• Further successive simplifications and extensions by
Feferman, Aczel, Bridge, and Buchholz.

• Buchholz’ recursive notation system using a variant of
the φ functions.

Uncountable Transfinite Iteration of Cr

• Bachmann found a different way of transfinitely iterating
the critical process, using names of many Ων. To begin
with, φΩ enumerates { α : φα(0) = 0 }, then
φΩ+1 = Cr(φΩ), etc.

• Extensions of the Bachmann process by Pfeiffer and Isles.

• Further successive simplifications and extensions by
Feferman, Aczel, Bridge, and Buchholz.

• Buchholz’ recursive notation system using a variant of
the φ functions.

• The Buchholz-Pohlers ordinal analysis:
|IDα| = |IDα(acc)i| = |IDα(O)i| = φε(Ωα+1)0.

Gödel’s Functional (“Dialectica”)

Interpretation of HA

Gödel’s Functional (“Dialectica”)

Interpretation of HA
• T, a quantifier-free theory of primitive recursive

functionals of finite type over N.

Gödel’s Functional (“Dialectica”)

Interpretation of HA
• T, a quantifier-free theory of primitive recursive

functionals of finite type over N.

• AD = ∃v∀x R(v, x), v, x, variables of finite type, R q.f., for
A in LHA.

Gödel’s Functional (“Dialectica”)

Interpretation of HA
• T, a quantifier-free theory of primitive recursive

functionals of finite type over N.

• AD = ∃v∀x R(v, x), v, x, variables of finite type, R q.f., for
A in LHA.

• HA ⊦ A ⇒ T ⊦ R(f, x) for some terms f in T; so HA ≤ T

Gödel’s Functional (“Dialectica”)

Interpretation of HA
• T, a quantifier-free theory of primitive recursive

functionals of finite type over N.

• AD = ∃v∀x R(v, x), v, x, variables of finite type, R q.f., for
A in LHA.

• HA ⊦ A ⇒ T ⊦ R(f, x) for some terms f in T; so HA ≤ T

• But the passage from A to AD is not fully constructive:
(¬¬∃yR)D ↔ (∃yR)D.

Gödel’s Functional (“Dialectica”)

Interpretation of HA
• T, a quantifier-free theory of primitive recursive

functionals of finite type over N.

• AD = ∃v∀x R(v, x), v, x, variables of finite type, R q.f., for
A in LHA.

• HA ⊦ A ⇒ T ⊦ R(f, x) for some terms f in T; so HA ≤ T

• But the passage from A to AD is not fully constructive:
(¬¬∃yR)D ↔ (∃yR)D.

• So PA ⊦ ∀x∃y R(x, y) ⇒ HA ⊦ ∀x¬¬∃y R(x, y) ⇒

T ⊦ R(x, f(x)) for some f in T.

Gödel’s Functional (“Dialectica”)

Interpretation of HA
• T, a quantifier-free theory of primitive recursive

functionals of finite type over N.

• AD = ∃v∀x R(v, x), v, x, variables of finite type, R q.f., for
A in LHA.

• HA ⊦ A ⇒ T ⊦ R(f, x) for some terms f in T; so HA ≤ T

• But the passage from A to AD is not fully constructive:
(¬¬∃yR)D ↔ (∃yR)D.

• So PA ⊦ ∀x∃y R(x, y) ⇒ HA ⊦ ∀x¬¬∃y R(x, y) ⇒

T ⊦ R(x, f(x)) for some f in T.

• Prov-Rec(PA) = Prov-Rec(HA) = 1-Sec(T)

The Avigad-Towsner Interpretation

The Avigad-Towsner Interpretation

• ID1 ≤ OR1 + (I), where OR1 is a classical theory of
abstract tree ordinals, and I(x, α) is interpreted as x ∈ Iα.
This ≤ is by direct translation.

The Avigad-Towsner Interpretation

• ID1 ≤ OR1 + (I), where OR1 is a classical theory of
abstract tree ordinals, and I(x, α) is interpreted as x ∈ Iα.
This ≤ is by direct translation.

• TΩ is a quantifier-free theory of primitive recursive
functionals of finite type over the tree ordinals;
QTΩ allows quantifiers over all finite type variables,
Q0TΩ only over natural number variables.

The Avigad-Towsner Interpretation

• ID1 ≤ OR1 + (I), where OR1 is a classical theory of
abstract tree ordinals, and I(x, α) is interpreted as x ∈ Iα.
This ≤ is by direct translation.

• TΩ is a quantifier-free theory of primitive recursive
functionals of finite type over the tree ordinals;
QTΩ allows quantifiers over all finite type variables,
Q0TΩ only over natural number variables.

• OR1 + (I) ≤ Q0TΩ by the Diller-Nahm-Shoenfield variant
of the Gödel functional interpretation.

Avigad-Towsner Interpretation (cont’d)

Avigad-Towsner Interpretation (cont’d)

• Q0TΩ ≤ (QTΩ)i by Sieg-style formalization of cut-
elimination for Q0TΩ.

Avigad-Towsner Interpretation (cont’d)

• Q0TΩ ≤ (QTΩ)i by Sieg-style formalization of cut-
elimination for Q0TΩ.

• (QTΩ)i ≤ ID1(acc)i, by formalization of the HRO model
of TΩ.

Avigad-Towsner Interpretation (cont’d)

• Q0TΩ ≤ (QTΩ)i by Sieg-style formalization of cut-
elimination for Q0TΩ.

• (QTΩ)i ≤ ID1(acc)i, by formalization of the HRO model
of TΩ.

• Avigad-Towsner reduction: ID1 ≤ ID1(acc)i,
without ordinal analysis, but with Prov-Rec(ID1) =
Prov-Rec(ID1(acc)i) = 1-Sec(TΩ).

Avigad-Towsner Interpretation (cont’d)

• Q0TΩ ≤ (QTΩ)i by Sieg-style formalization of cut-
elimination for Q0TΩ.

• (QTΩ)i ≤ ID1(acc)i, by formalization of the HRO model
of TΩ.

• Avigad-Towsner reduction: ID1 ≤ ID1(acc)i,
without ordinal analysis, but with Prov-Rec(ID1) =
Prov-Rec(ID1(acc)i) = 1-Sec(TΩ).

• They sketch extension of their work for finitely iterated
IDn’s.

Some Questions

Some Questions

• What (mathematically) can be done in ID1?
(Avigad-Towsner say Szemeredi theorem.)

Some Questions

• What (mathematically) can be done in ID1?
(Avigad-Towsner say Szemeredi theorem.)

• What can be done in iterated ID’s?

Some Questions

• What (mathematically) can be done in ID1?
(Avigad-Towsner say Szemeredi theorem.)

• What can be done in iterated ID’s?

• What does ordinal analysis tell us about the
provable uncountable ordinals of the ID’s?

Some Questions

• What (mathematically) can be done in ID1?
(Avigad-Towsner say Szemeredi theorem.)

• What can be done in iterated ID’s?

• What does ordinal analysis tell us about the
provable uncountable ordinals of the ID’s?

• What is the unfolding of schematic ID1?

Some Questions

• What (mathematically) can be done in ID1?
(Avigad-Towsner say Szemeredi theorem.)

• What can be done in iterated ID’s?

• What does ordinal analysis tell us about the
provable uncountable ordinals of the ID’s?

• What is the unfolding of schematic ID1?

• Are there reasonable theories of ID’s over other
sets M, e.g. the reals?

The End

