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• Tübingen, April 1973.  Workshop on Proof Theory

• The problem: The need for an ordinally 
informative, conceptually clear, proof-theoretic 
reduction of classical theories of iterated inductive 
definitions to corresponding constructive systems.

• At Tübingen: Wolfram Pohlers, Wilfried Buchholz, 
both students of Kurt Schütte in Munich.  
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Background-I

• Stanford Seminar on the Foundations of Analysis, 
Summer 1963

• Georg Kreisel introduces classical and constructive 
first-order theories of “generalized” inductive 
definitions and their iterations

• Paradigmatic: recursive ordinal number classes,  
accessibility inductive definitions

• IDα, IDα(acc), IDα(acc)i
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• Buffalo 1968 Conference on Intuitionism and Proof 
Theory (Proceedings ed. by Kino, Myhill and Vesley)

• H. Friedman: Conservation of (∑12-AC) over              
(∏11-CA)<ε(0) 

• S. Feferman: Reduction of (∏11-CA)α and (∏11-CA)<λ,     
for various α and λ, to classical IDα, resp. ID<λ.  

• W. Tait: Consistency of (∑12-AC) by abstract constructive 
cut-elimination methods applied to uncountably long 
derivations.  
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The Problems and
Some Solutions

• What is the proof theoretic ordinal of IDα? 

• Is IDα proof-theoretically reducible to a constructive ID, 
e.g. an IDα(acc)i? 

• Pohlers (1975-1978):  |IDα| ≤ φε(Ωα+1)0

• Buchholz and Pohlers (1977):  φε(Ωα+1)0 ≤ |IDα(acc)i|

• Sieg (1977): Formalization of Tait’s argument to reduce 
ID<λ to ID<λ(acc)i
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BFPS 1981: Iterated Inductive Definitions 

and Subsystems of Analysis

• Buchholz (in BFPS 1981): the method of Ωα+1-rules

• Pohlers (in BFPS 1981): the method of local 
predicativity

• Both use cut-elimination

• Both recapture ordinal analysis and constructive 
reduction for the IDα and ID<λ



End of Story?



End of Story?

• Further significant improvements by both Buchholz 
and Pohlers; H-controlled derivations



End of Story?

• Further significant improvements by both Buchholz 
and Pohlers; H-controlled derivations

• Work on related theories of  iterated fixed points 
(Feferman, Jäger, Strahm, ...)



End of Story?

• Further significant improvements by both Buchholz 
and Pohlers; H-controlled derivations

• Work on related theories of  iterated fixed points 
(Feferman, Jäger, Strahm, ...)

• Work on monotone inductive definitions in a 
constructive setting (Takahashi, Rathjen, ...)
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A Blocked Effort (1968)
 

• Back to ID1: My original attempt (1968, unpublished, but 
outlined in Avigad and Feferman chapter on Gödel’s 
functional interpretation in the Handbook of Proof Theory 
(1998))

• Aim: to get a constructive reduction of ID1, and then 
iterated ID’s, via a functional interpretation in an abstract 
theory of constructive ordinals.  

• Blocked at a final crucial step.
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Finally Overcome (2008)

• Jeremy Avigad and Henry Towsner (2008), “Functional 
interpretation and inductive definitions”

• Uses a modified interpretation (without ordinal analysis) 
and a new idea to overcome that obstacle.  The method 
works to reduce IDn to IDn(acc)i. 

• The saga 1968-2008:  Shifting interest from applications 
to subsystems of analysis to interest in theories of 
inductive definitions in their own right.
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Separating the Elements

• Ordinal analysis of formal systems

• Proof-theoretic reduction

• Classical and constructive systems

• The subjective criteria: to be informative and 
conceptually clear

• The methods: cut-elimination and functional 
interpretation
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Monotone Inductive Operators
Over any Set M

• Γ: P(M) → P(M) is monotone if for all X, Y ⊆ M,             
X ⊆ Y ⇒ Γ(X) ⊆  Γ(Y)

• X is closed under Γ if Γ(X) ⊆ X

• Γ has a least fixed point I = the intersection of all subsets 
X of M which are closed under Γ

• So:  (i) Γ(I) ⊆ I and (ii) if Γ(X) ⊆ X then I ⊆ X.           
Hence (iii) Γ(I) = I



The LFP of Γ, Defined From Below



The LFP of Γ, Defined From Below

• Let I0 = ∅ and Iα = ∪ξ<αΓ(Iξ)



The LFP of Γ, Defined From Below

• Let I0 = ∅ and Iα = ∪ξ<αΓ(Iξ)

• β < α ⇒ Iβ  ⊆ Iα 



The LFP of Γ, Defined From Below

• Let I0 = ∅ and Iα = ∪ξ<αΓ(Iξ)

• β < α ⇒ Iβ  ⊆ Iα 

• Hence, if α = β + 1, Iα = Γ(Iβ)



The LFP of Γ, Defined From Below

• Let I0 = ∅ and Iα = ∪ξ<αΓ(Iξ)

• β < α ⇒ Iβ  ⊆ Iα 

• Hence, if α = β + 1, Iα = Γ(Iβ)

• if κ = card(M) then there exists γ < κ+ with          
Iγ = Iγ+1  



The LFP of Γ, Defined From Below

• Let I0 = ∅ and Iα = ∪ξ<αΓ(Iξ)

• β < α ⇒ Iβ  ⊆ Iα 

• Hence, if α = β + 1, Iα = Γ(Iβ)

• if κ = card(M) then there exists γ < κ+ with          
Iγ = Iγ+1  

• I = Iγ for the least such γ (the closure ordinal of Γ)
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Stages of Elements of I

• Let γ = the closure ordinal of Γ

• For m ∈ I, |m|I = the least ordinal α < γ such that 
m ∈ Iα+1 - Iα 

• This is its first stage of appearance in I.
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Monotone Operators from a 

Logical Point of View

• Concentrate on Γ over N = {0, 1, 2, ...}

• Consider Γ first-order definable (variables interpreted as 
ranging over N) in extensions L of the language L0 of 
arithmetic. 

• Form L(P), P unary predicate symbol

• A(x, P) of L(P) in which P has only positive occurrences 
defines a monotone operator                                       
ΓA(X)  = {x ∈ N |A(x, X)} 
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Definable Operators (cont’d)

• The positivity condition: if A is reduced to negation 
normal form, i.e. is built up from atomic formulas 
or their negations by ∧, ∨, ∀, and ∃, the atomic 
formulas P(t) never occur negated.  

• ΓA(P) ⊆ P is expressed by the formula         
∀x(A(x, P) → P(x)) of L(P)
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Example 1: Accessible Part

• Suppose a partial ordering relation ≺ on the 
natural numbers is defined by a formula R(x,y) of L 
interpreted as y ≺ x.

• Let A(x, P) =  ∀y(R(x, y) → P(y))

• The least fixed point of ΓA is the accessible part of 
the ≺ relation, i.e. its well-founded initial part.
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Recursive Notations for Ordinals

• Codes e ∈ N for partial recursive functions:  {e}(n) ≃ m.                                                       
Use a recursive pairing function (n, m) ≠ 0 

• O1 is the smallest set satisfying: (i) 0 ∈ O1,  and             
(ii) if e is an index of a total recursive function and for 
each n ∈ N, {e}(n) ∈ O1 then (1, e) ∈ O1. 

• |a|, for a ∈ O1, is defined by: (i) |0| = 0, and                    
(ii) |(1, e)| = sup{ |{e}(n)| + 1 : n ∈ N}.  
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• The elements of O1 represent N-branching well-
founded trees.

• O1 is an analogue in recursive terms of the set of 
the set of ordinals less than Ω1, the first 
uncountable ordinal (also denoted Ω or ω1). 

• ω1CK = sup{ |a| : a ∈ O1} ;  ω1CK < ω1
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Recursive Notations for Higher 
Ordinal Number Classes

• To define O2, in addition to (i), (ii) now on O2, take:      
(iii) if e is the index of a partial recursive function such 
that for each a ∈ O1, {e}(a) ∈ O2,  then (2, e) ∈ O2.                                                    
Then take |(2, e)| = sup{ |{e}(a)| + 1: a ∈ O1}. 

• NB: O1 appears without the positivity restriction in the 
definition of O2

• ω2CK = sup{ |a| : a ∈ O2} ;  ω1CK < ω2CK  < ω1.

• This procedure can be iterated to form O3, O4, etc. It can 
also be extended into the transfinite, by taking the 
effective join at limits, e.g. ⟨n, m⟩ ∈ Oω ↔ m ∈ On, and 

then continuing on. 
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The Formal System ID2(O)

• Take the language L2 of ID2(O) to be L1 extended by a 
unary predicate O2(x). Let A2(x, P) be the formula          
x = 0 ∨ ∃z[x = (1, z) ∧ ∀u P({z}(u))] ∨                            
∃w(x = (2, w) ∧ ∀v(O1(v) →  P({w}(v))].

• The axioms of ID2(O) are those of ID1(O) plus:

   I.́  (Closure) ∀x( A2(x, O2) → O2(x))

   II.́ (Induction) ∀x( A2(x, F) → F(x)) → ∀x( O2(x) → F(x)),       

where F(x) is any formula of L2.

• NB. Now we must also make sure to allow F to be any 
formula of L2 in the induction axioms for both N and O1.
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Iterated ID Systems

• Construct IDα(O) and ID<α(O) in general for any ordinal 
α for which we have a natural linear recursive ordering ≺ 
of N of order type α.  For example, Cantor’s ordinal ε0 

• In general, ID1 is the extension of ID1(O) by predicates 
PA for each arithmetic A(x, P) in which P has only positive 
occurrences, and by the associated closure and induction 
axioms, where now all induction axioms for N, O, and all 
the PA’s allow substitution instances by formulas F in the 
full language.  Then ID2 extends ID1 and ID2(O) in the 
same way.  
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Iterated ID Systems (cont’d)

• Like the constructions of the iterated ID(O) 
theories, the construction of the full ID systems 
may be iterated up to any naturally presented 
ordinal α to give IDα and thence ID<α for limit α. 

• IDα(acc) uses only A’s that are of the form to give 
an accessibility inductive definition. 

• IDα(O) ⊆ IDα(acc) ⊆ IDα
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• Thus, reject proof by contradiction,                          
¬¬∃x A(x) → ∃x A(x) or ¬∀x¬A(x) → ∃x A(x).

• These follow from Law of Excluded Middle (LEM),          
A ∨ ¬A, rejected in general

• The intuitionistic school of constructivity (L.E.J. Brouwer)

• Intuitionistic logic (Arend Heyting): omit LEM from 
suitable forms of classical logic.
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• Let S be a formal system based on classical logic;  Si is 
obtained from S by omitting LEM from the underlying 
logic, leaving the non-logical axioms and rules of S 
unchanged.

• Is Si constructive?  Not necessarily, since the axioms of S 
may not be constructively acceptable as they stand.  

• The systems IDαi are not constructive in general; 
positivity requirement has to be modified. 

• Even so, not evidently constructive.  

• But the IDα(O)i and IDα(acc)i are generally accepted to 
be constructive. 
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• A* = ¬¬A for A atomic, (¬A)* = ¬A*,                                
(A ∨ B)* = ¬¬(A* ∨ B*), (A ∧ B)* = A* ∧ B*,               
(∃x A)* =  ¬¬ ∃x A*, and (∀x A)* = ∀x A*

• Alternatively, can take (A ∨ B)* = ¬(¬A* ∧ ¬B*) and        
(∃x A)* =  ¬ ∀x¬ A*

• ⊦c A ⇒ ⊦i A* 
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Negative Translation of Arithmetic

• Heyting Arithmetic, HA = PAi

• PA ⊦ A ⇒ HA ⊦ A*

• HA proves LEM for atomic A

• The negative translation of PA in HA is conservative for 
(∨, ∃)-free formulas, because HA ⊦ A* ↔ A for A atomic. 

• The negative translation does not necessarily work in 
general to reduce S to Si, since atomic formulas need not 
be decidable in Si.  This is the case with the IDi theories; 
so something else must be done to reduce S to Si. 
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• Suppose S in LS and T in LT are systems with possibly 
different underlying logics, and that Φ is a set of 
formulas, Φ ⊆ LS ∩ LT. 

• Proof-theoretic reduction S ≤ T [Φ] means that we have 
an effective method τ such that, provably in T:               
(*) F ∈ Φ & ProofS(p, F) ⇒ ProofT(τ(p), F)

• In practice, τ is primitive recursive and (*) is provable in 
Primitive Recursive Arithmetic (PRA).  

• S ≤ T means S ≤ T [Φ] for suitable Φ, sufficient to insure 
relative consistency.  

• Translation is a special case of proof-theoretic reduction.  
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• Buchholz and Pohlers reduction:                              
IDα ≤ IDα(acc)i                                                                         

(with ordinal analysis, below)

• Sieg reduction:                                                        
ID<λ ≤ ID<λ(acc)i for limit λ                                          
(without ordinal analysis)

• The trade-offs
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• Goes back to Gentzen’s 1937 proof of consistency of PA 
by transfinite induction on ε0. 

• Best possible, since TI(≺α) is provable in PA for each      
α < ε0, using a primitive recursive well-ordering ≺ of 
order type ε0, and suitable formulation of Transfinite 
Induction (TI). 

• One definition of |S| in general: = the sup of the |≺| such 
that S ⊦ TI(≺).   

• A definition that works for the ID systems S (classical or 
intuitionistic): |S| = sup{ |n| : S ⊦ O1(n) }
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• Ordinal analysis for consistency proofs of stronger 
systems pursued systematically by Schütte beginning in 
the 1950s.  (Takeuti used “ordinal diagrams”.)

• But ordinal analysis is meaningful independently of the 
Hilbert-Gentzen-Schütte-Takeuti consistency program. 

• θ: ON → ON is normal if it is continuous and strictly 
increasing.  

• The critical process: Every normal θ has unbounded fixed 
points, θ(ξ) = ξ, that are enumerated by another normal 
function, Cr(θ).

• For Θ(α) = ωα, Cr(Θ)(α) = εα ( also written ε(α))
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Systems of Ordinal Functions for 

Ordinal Analysis

• The critical process can be iterated transfinitely:       
φ0(β) = ωβ, φα+1 = Cr(φα) and for limit λ,                 
φλ enumerates { ξ : φα(ξ) = ξ for every α < λ}

• Define φαβ =  φα(β).  

• Veblen generalized this to φα1...αn for variable n, and 
even more generally.

• Schütte developed a recursive notation system based on 
the Veblen functions.
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Uncountable Transfinite Iteration of Cr

• Bachmann found a different way of transfinitely iterating 
the critical process, using names of many Ων.  To begin 
with, φΩ enumerates { α : φα(0) = 0 }, then                
φΩ+1 = Cr(φΩ), etc. 

• Extensions of the Bachmann process by Pfeiffer and Isles. 

• Further successive simplifications and extensions by 
Feferman,  Aczel, Bridge, and Buchholz. 

• Buchholz’ recursive notation system using a variant of 
the φ functions.  

• The Buchholz-Pohlers ordinal analysis:                            
|IDα| = |IDα(acc)i| = |IDα(O)i| = φε(Ωα+1)0.
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Interpretation of HA
• T, a quantifier-free theory of primitive recursive 

functionals of finite type over N.

• AD = ∃v∀x R(v, x), v, x, variables of finite type, R q.f., for  
A in LHA.

• HA ⊦ A ⇒ T ⊦ R(f, x) for some terms f in T; so HA ≤ T

• But the passage from A to AD is not fully constructive: 
(¬¬∃yR)D ↔ (∃yR)D.

• So PA ⊦ ∀x∃y R(x, y) ⇒ HA ⊦ ∀x¬¬∃y R(x, y) ⇒              

T ⊦ R(x, f(x)) for some f in T.

• Prov-Rec(PA) = Prov-Rec(HA) = 1-Sec(T)
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The Avigad-Towsner Interpretation

• ID1 ≤ OR1 + (I), where OR1 is a classical theory of 
abstract tree ordinals, and I(x, α) is interpreted as x ∈ Iα.  
This ≤ is by direct translation. 

• TΩ is a quantifier-free theory of primitive recursive 
functionals of finite type over the tree ordinals;          
QTΩ allows quantifiers over all finite type variables,   
Q0TΩ only over natural number variables.

• OR1 + (I) ≤ Q0TΩ by the Diller-Nahm-Shoenfield variant 
of the Gödel functional interpretation.
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Avigad-Towsner Interpretation (cont’d)

• Q0TΩ  ≤ (QTΩ)i by Sieg-style formalization of cut-
elimination for Q0TΩ. 

• (QTΩ)i ≤ ID1(acc)i, by formalization of the HRO model 
of TΩ.

• Avigad-Towsner reduction: ID1 ≤ ID1(acc)i,                  
without ordinal analysis, but with Prov-Rec(ID1) =        
Prov-Rec(ID1(acc)i) = 1-Sec(TΩ). 

• They sketch extension of their work for finitely iterated 
IDn’s. 
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Some Questions

• What (mathematically) can be done in ID1? 
(Avigad-Towsner say Szemeredi theorem.)

• What can be done in iterated ID’s?

• What does ordinal analysis tell us about the 
provable uncountable ordinals of the ID’s? 

• What is the unfolding of schematic ID1?

• Are there reasonable theories of ID’s over other 
sets M, e.g. the reals?  



The End


