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A THEORY OF VARIABLE TYPES

®

Solomon Feferman

1. INTRODUCTION.

Several publications in recent years have presented various formal theories
T in which considerable portions of mathematical practice (particularly analy-
sis) can be more or less directly formalized and which are proof-theoretically
weak; cf. Feferman 1977, Takeuti 1978 and Friedman 1980. Indeed, on the classi-
cal side we have such T which are conservative over PA (Peano's Arithmetic) ),

The paper Feferman 1977 will be taken as the point of reference here (but
the reader need not be familiar with it to follow the present paper). It used
functional finite type theories as the basic framework. One of the theories, de-
noted Res—z(w)d-(u) is shown there to be conservative over PA, but stronger the-
ories for more substantial portions of mathematics were also dealt with.

For the past several years I have been engaged (off and on) in working up
the material of my 1977 paper into a book. One of the first improvements in car-
ryingon that project was to obtain a theory VT of variable types which provid-
es a much more natural framework for the.direct formalization of mathematics.
In this paper the system VT is further improved and presented in print for the
first time. VT and its extension and restrictions to be considered are described
formally in Sec. 2. Some conservation results are stated in Sec. 3 and their
proofs are outlined. The concluding Sec. 4 outlines how one goes about formal-
izing substantial portions of classical and modern analysis in the VT systems.

2. VARIABLE TYPE SYSTEMS.

In ordinary functional finite type theories one begins by specifying the

(1) Research for this paper was supported by a grant from the U.S. National Sci-
ence Foundation, grant number MCS81-048869.

(2) There are comparable results for comstructive theories T, e.g., such T in
which,Bishop's constructive analysis can be formalized and which are conger-
vative over HA (Heytingfs Arithmetic); cf. Friedman 1977, Feferman 1979 (esp.
pp. 217 ££.), and Beeson 1980.
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type symbols 0,T,... . For 7% these are generated from 0 by closure under o,t
w» oxt, (o + 1) (3). For each type (symbol) one then has variables xT,yT,zT,. .
of type t. The intended interpretation is that these range over M. where M, =
N = the set of natural numbers, M, =M M and M(o-vr) is a (the) set of
(all) functions from M, to M. One advantage of such a setting is that func-
tional existence axioms are simply provided by the typed A-calculus. However,
there is no natural way of forming sub-types {x°|¢(x0,.. .)} in this framework
and then iterating the operations of % and + applied to them, etc. Further,
cquations between individual terms ty =t, are permitted only between terms of
the same type. If we were to regard members of {x°|#(x°,...)} as belonging to
a new type ol¢, we could not say that an object of type ol¢ is (equal to) an ob-
jeoct of type o. The VT systems to be described here have the following advan-
tages: (i) the types are variable , so that statements of generality can be
expressed dimcﬁtly, yet (ii) every individual term t is still syntactically of
a wnique type, and hence (iii) the typed A-calculus may be extended to this
language; but also (iv) equations between terms of arbitrary type are admitted,
and (v) we can apply separation to form sub-types from given types.

The basic system to be described is denoted VTO. To specify its language we
generate simultaneously the following syntactic classes, together with the re-
lation, t is of type T:

1. individual terms s,t,...

a) With each type temm T is associated an infinite list of individual var-

iables xT,yT,zT,... (of type T). '

b) If s is of type S and t of type T, then (s,t) is of type SxT.

c) If u is of type SxT, then p1(u) is of type S and pz(u) is of type T.

d) If s is of type S and t is of type (S+T), then ts is of type T.

c) If t is of type T, then )‘xs.t is of type S ».T.

2. type terms S,T,...
a) Each type variable X,Y,Z,... is a .type temm.
b) If S,T are type terms and ¢ is a formula, then SxT, S + T, and {xsl¢}
are type terms.

3. formulas ¢,y,... .
a) Each equaticm»t1 =t, (tl,t2 of arbitrary type) is a formula.
b) If ¢,y are formulas so also are 11¢ and ¢ + ¢
c) If ¢ is a formula and S is a type term, then VXS¢ is a formula.

NOTE. (i) In extensions of the language we may specify some individual

(3) Actually the z” described in the 1977 paper only built types by the opera-
tion 0,71+ (0 + 1). The dispensability of product types is familiar from
the combinatory literature.
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econstants (of certain types) and type constants, which are then counted as in-
dividual terms and type terms, resp. Other means of constructing individual
terms may also be supplied. (ii) Quantifiers are not applied to type variables.
This simplifies the conservation arguments below. However, one can also extend
those results to VT systems with quantified type variables.

Before stating the axioms of VI‘0 we make some abbreviations and conventions.
(1) The operators A,v,+, 3xs(.. .) are defined classically.
(2) VXS¢(x,. ..) is written for sz¢(xs,. ..), and similarly for stq)(x,. ).
That is, once the type of a variable is established, we suppress it in the fol-
lowing context.
(3) Types are also called classes and type variables are called class variables,
etc. The former terminology figures in our syntactic description, the latter
in our mathematical uses of the theory.
4) t €T is defined as axT(t = x), where 'x\' does not occur in t. {x = T|¢}
is written for {xT|¢}, and ¥x « T(¢) for VxT(¢).
(5) S T is defined as ¥x e S (x «T), i.e., as sz 3yT(x =y).
(6) S =T is defined as S TATc S.
(7) We write t(s,...) for t(s/x) when t(x,...) is written for t; similarly for
¢(x,...) and ¢(s,...) = ¢(s/x).

AXIOMS OF VT, :

I. Abstraction-Application.
vy € X[Axx.t(x,. Ly = tly,.. )],
II. Pairing-Projections.
i) vxeX ¥y eY[p,(x,y) = x ap,(x,y) =]
ii) vz € X¥[z = (p;(2),p,(2))].
INI. Separation.
{x e X]¢(x,...)} €X a vy X[y € {x €X]¢(x,...)} = ¢(v,...)].

The logic of VI is that of the many-sorted classical predicate calculus.
Since the type variables are treated as free, we use the rule of substitution
for these: ¢(X,...)/¢(T,...).

The system VI is an extension of VTO with axioms for the natural numbers.
We adjoin a constant type symbol N, individual constants 0 and sc, and indivi-
dual temms rp for each type term T, where 0 is of type N, sc is of type (N + N}
and Iy is of type (NxT =+ T)xT » (N + T). The variables 'n,' 'm,' ''p' with or
without subscripts are reserved for variables of type N. We write n' for sc(n).
We shall tend to use letters 'f,' 'g,' etc. for members of function types &+ T).
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AXIOMS'OF VT (= VI, plus):

Iv. 0, Successor.
i) (m' #0).

ii) (' =m' > n = m).

V. Induction.
0cXawmneX+n'eX+NeX

VI. Recursion.
fe WX +X) AacXAry(f,a) =g+gd=ang' =£f(n,gn).

REMARK. Officially, Axiom VI would be written
mexx"x)VaxV}"'xv:r[rx(f,a) =g+g0=anrgx=f(x,x)].

We put 1 =0', 2 = 1', etc. Then {0,1} is defined as {n|n =0 v n = 1}. By
a characteristic function on T we mean an element c of T + {0,1}. Identify 0
with "true'" and 1 with "'false'; then write x € ¢ for cx = 0. The elements of
T + {0,1} are also called sets, more precisely subsets of T, and we also write
S(T) for the class of all such, i.e., for T + {0,1}. Set-induction (onN) or
restricted induction is the principle

ceSNAOecavmnec+n'€c)+> ¥hec).
This is equivalent to the statement
f,g «e@N+N) A f0=g0 A vn(fn=gn~+ fn' = gn') +~ ¥yn(fn = gn),

as well as the same with g = An<0., By restricted recursion we mean the princi-
ple VI taken only for X = N; this means use only of primitive recursion with
values in N. By Res-VT is meant the system VT in which V is replaced by restric-
ted induction and VI by restricted recursion.

Primitive recursive arithmetic and Kleene's extension of it to higher fin-
ite types are routinely developed in Res-VT. The following compares the pres-
ent systems with those of Feferman 1977.

LEMMA. (i) VT ie an extension of Yl .
(ii) Res-VT ie an extension of Res-2".

Each type symbol T of Z* corresponds to a closed type term T, where T =N,
T(oXT) = Tcl’l'_t and T(Oﬂ’) = (Ta‘-»TT). The T_r are called the finite types.

For classical analysis we need to adjoin various non-constructive functions
to VI. The first of these is the wnbounded minimum operator u of type (N + N) -
N. When this is adjoined as a constant symbol, the associated axiom is taken
to be: :
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(W) feW- N afn=0~>£f@f) =0arufgn

This allows us to define quantification over N as a functional operator:

Ne - [0 if f(uf) = 0, 1 otherwise]. Stronger systems are obtained by intro-
d'cing functionals corresponding to the Suslin quantifier, quantification over
N+ N), etc. We shall not detail those here.

The final principle to be considered is the Axiom of Choice taker as a
s eme:

(AC) VXX3)’ o(x,y) - Z-Iz Vx ¢(x zX) .

We denote vy (AC)S 1 the result of replacing X by 5 and Y by T in (AC). By re-
b
stricted (AC)S T is meant the statement:
’

res(AC) Cc € S(SxT: A Vx 3y (x,y) c] + st »T S (x,2x) € ¢
S,T

In other words, this takes A: only for matrices ¢ which define sets. The scheme
(AC)]N N is already quite st g (stronger than full second-order analysis).
Writing IN, for N and N, for. N, we write (AC)0 g for (AC)]\ . In Feferman
1977 the scheme Res(AC)s T " all finite types was denoted (QF -AQ) LQF .
quantifier- free] We shall w  the same designation here. Then(QF A(,)0 1 is
ReS(AC)No,N . By way of com ison with familar systems, P () o+ (QF AC)O 1
contains the second-order sy m ( -AC). The same thus holds for

VI () 4 (QF-AD)

3. CONSERVATION RESULTS.

The type levels 1lev(T) of .inite type terms are defined by lev(N) =
1ev(SxT) = max(1ev(S),lev(T)) and lev(S*T) = max(lev(S)+1,1ev(T)). For T = T o
we put lev(t) = lev(T). By a second-order sentence of the language of ¥ is
meant one, all of whose variables are of type-level g 1.

’ MAIN THEOREM.
(1) VI = (w) £ (QF-AQ), . a conservative extension of ™ () (QF~AC)0 1
for second~order . ‘:. i s.

(ii) The same holds w' - Res-\T in place of VT and Res-2¥ in place of 7%,

COROLLARY.
(1) Res-VT + () + (QF- AC)0 1 18 a conservative extension of‘ PA.

(ii) VT + () + (QF- AC)O 1 w a conservative extenaion of (Z]-AC) [and hence
of (13-aa), &)

The «corollary follows by Feferman 1977, 8.6-8.7 [and Friedman's theorem for
zl—AC also proved loc. cit.]. Similar conservation results may be obtained with
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adjunction of stronger functional constants.

The steps in the proof of the main theorem are now outlined. For simplicity
we concentrate on the reduction of VT to Z”. Each of the other stated results

follows by a parallel argument.

Step 1. Reduction of VT to a theory CT of (semi-) constant types. CT dif-
fers from VT in that it has no type variables, though it has type terms which
may vary depending on individual parameters. (For this reason they are called
semi-constant.) The terms and formulas of CT are generated as in 1.-3. of the
preceding section, omitting 2.a) (type variables), but including N, 0, sc, and
ry for each semi-constant type term T. The axioms of CT are obtained from those
of VI by substituting semi-constant type terms throughout for the type variables.
The logic of CT is the same as for VT except that one can dispense with the
substitution rulc for types. It is readily seen that VT is conservative over CT.

Step 2. Reduction of CT to a theory FI of finite types. The finite types
were defined above. The language of FT is a part of CT with two essential re-
strictions: (i) there are no sub-type terms {x € S|4}, and (ii) equations
t; = t, are allowed only between terms of the same finite type. The axioms of
IT consist of appropriate restrictions to its language of:I (Abstraction-Appli-
cation), II (Pairing-Projections), IV (0, successor), V (Induction), and VI
(Recursion), where now V consists of all instances of the induction scheme
$(0) A ¥n[o(n) + ¢(n')] + ¥nd(n) for ¢ a formula of FT. (Note the Axiom III is
dropped). The proof that CT is conservative over FT is by a model-theoretic ar-
gunent. With each model M of FT is associated a model M* of CT which satisfies
the same sentences of FT.

Without loss of generality one can assume that the types of M are disjoint.
Let Ll:l’ Ly be the languages of CT, FT, resp. with constants for all the indivi-
duals in M. With each term or formula of L;/l is associated a corresponding term
or formula of Ly which will be its interpretarion in M, except that type terms
S are interpreted as pairs (A,¢(x)) or fommal temms s* = {XAM(X)} with A a
finite type (of FT) and ¢ a formula of Ly. Given also T = {xBM(x)} of the
same kind, we take

&M * = (ZMPlop,(2)) A v, ))),
D" = B om) > vz},
S8 1" = Mo A 8" (0},

t" is then defined in an obvious way for individual terms t. Next, for formu-
las, if s, t are terms of type S, T, resp. we take
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"=t if A=B

(s=t"-=
0#0 if A # B.
Ihis definition is appropriate since if A # B, then A and B are disjoint by hy-
pothesis. ( )* preserves 71 and +, while (vxse(x))* = VXA[¢(x) + 6*()()] for
S* = {xAl¢(x)}. It is then straightforward to prove that this interpretation of
L;:l in LM serves to define a model M* of CT ()

Step 3. Reduction of FT to FT[0] with type 0 equations. The system FT[0]
is obtained from FT by use only of those formulas built up from equations ty =
t, between objects of type-level 0. Equality at higher types is introduced by
definition. This is used in re-expressing Axioms I, II, VI of VT and CT. To ver-
ify the laws of equality at higher types we need the axiom Ext of Extensionality.
It is then shown that FT[0] + (Ext) is interpretable in FI'[0], by the following
(formal) model of hereditarily extensional objects. With each finite type A is
associated a pair of formulas x 2y and EA(x) for objects x, y of type A by:

»

(1) %\I(X)G X=X, Xjyex=y,
(i) Epp(x)« Ep(P1(2)) a Eg(Py(2)), 2 Zp e Py(2) =, Py(W) A Py(2) 3 Po(w),
(iii) E(A—»B) (2) & VXA[EA(x) - EB(zx)] A vxiyyA[x NG EBzy],

2 2 ep)W V)(A[EA(X) + 72X Ewa] .
Note that when lev(A) < 1 we have VXA.E A(x). It follows that FT is conservative

over FT[0] for second-order statements. (This is the point where restriction of
conservation to second-order statements enters the Main Theorem).

Step 4. The system FT[0] is actually a form of Z° As noted in ftn.3, the
system Z* of Feferman 1977 is practically the same, but without product types.
The latter are eliminable in the presence of extensionality, i.e., FT[0]+ (Ext)
is conservative over z% + (Ext). Then Y (Ext) is reduced to ¥ as in Step 3.
The present step is unnecessary if the conservation results of Feferman 1977,
8.6-8.7 are established directly for FT[0] in place of z”. That can be done by
the same methods described loc. cit.

Step 5. The conservation results apply to extensions by the Axioms (u)
and/or (QF-AC) 0.1 since these are second-order statements.
’

Finally it may be seen that each step can be carried out just as well to
reduce Res-VT to Res-ﬁ“’, again with conservation for second-order statements,

(%) Becauwse of the interpretation of VT (via CT) in FT, I have also called VT
a theory of variable finite types and denoted it VFT. For formalisms in
which one can construct transfinite types cf. Feferman 1979.
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and thence the same for extensiones by (u) and/or (F-AQ) 4.

4. MATHEMATICS IN Res-VT+(u)

The following is an outline of an informal development which can be formal-
ized directly in Res-VI+(n). This shows that a considerable portion of mathe-
matical analysis is predicative and, indeed, is no stronger than PA. Cf. also
Feferman 1977, §3.2, Takeuti 1978, and Friedman 1980(5). In the approach taken
here neither extensionality nor AC is needed, though both can be admitted to a
certain extent by the formal results of Sec. 3.

A,B,C,...,X,Y,Z range over classes (which are treated formally as the type
variables of VI). All constructions on classes are given explicitly, so all
statements about jasses are given in universal form VX1, . ..,VXn¢(X1, .. .,Xn);
this is justified in our framework when the formula ¢(X1, . ..,Xn) is established
in Res-VI+(w). Structures are if the form A = <A,E,R1,..,Igﬂ,f1,..,fn,a1,. .,a >

p
where E Az, Ri c A 1, fi eAt A, and a; e A, and E is a congruen~ lation
on A. E is called the equality relation of A and is often denoted =, even
=pr A homomorphism between structures A = <A,=A,...>, and A' = <A’ TAraees” of

the same signature .s . member h of A > A' such that ¥xeA ¥ye /\Lx=Ay~>hx=Nh 15
and h preserves the operations and relations of A. The appropriate notion of
injective and surjective homomorphisms then leads to the notion of <somorphism
for such structures.

We start with N = <N,=,<,+,¢,0,1>, where = is the identity relation. The
integers Z are then defined to be NXN with (x1,y1) =z(x2,y2) © Xgty, = Xty
An ordered integral domain structure Z = <2,=z,<z,+z,~z,oz,lz> is put on 2 in
the usual way, so that one has an injective homomorphism h of N into 2, and Z
is generated from the range of h. Similarly one passes from Z to the rationals
Q = <Q,=Q,<Q,...>, i.e., the quotient field of (an image of) Z. Finally the
real number systemR = @":]R’iR" ..> is defined by taking R to consist of all
Cauchy sequences of rationals, i.e.,

' 1
R= {z CQNIVm In ki ky[ky 2 n Ak, >0 |zky-zk,| < —4])

where the expresion '|zk,-zk,| < —-m—l—f' is evaluated in Q. The relations =,
and the operations on R are then defined as usual. R forms an ordered field
which is Cauchy complete in the sense that every Cauchy sequence of reals has
a limit in R, But R is not (provably) complete in the Dedekind sense that every
Dedekind section in @ determines a real. The complex number system C =<I:,=m, 2
is obtained in the standard way from R.

From the reals we can move to metric spaces. All of the topological work

(5) For further original sources on predicative mathematics cf. Feferman 1964
and the references there to the work of Weyl, Lorenzen, and Kreisel.
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is done with separable metriec spaces A = (A,...) wich carry as part of their
structure a dense countable subset <x > _ o A Among the spaces wich are
specially used are the real and complex finite-dimensional spaces R" and " ,
Cantor space ZN, and Baire space ]JN All of these (and more) are show to be le-
cally sequentially compact, i.e., every bounded sequence contains a convergent
subsequence. The proof uses Xonig's Lemma, which is here applied to trees t
which are represented as members of S(N) (i.e., which have a characteristic func-
tion). Here the operator u and the associated operator N e Q\p + {0,1}) make
an essential appearance, The definition of an infinite path through t is prim-
itive recursive in BIN (and t). Only restricted induction is necessary to verify
the required property of the path.

One cannot prove (local) compactness of these spaces in the usual sense of
reduction of open covers to finite subcovers, but one can give a form of this
for countable open covers. Some further general theorems which can be establish-
ed in this setting for (Cauchy) complete separable metric spaces are the Baire
Category Theorem and the Contraction Mapping Theorem.

Turning to classical analysis, the objects one deals with must usually be:
presented with additional information so as to be able to operate with them by
the limited functignal means provided in Res-VT+(y). For example, an element of
the class C(A,A') of continuous functions from A to A' (where A,A' are given
metric spaces), is a pair (f,8) for which f is a mapping in A+ A' and § is a
modulus-o f-continuity function §(x,e), i.e., such that '

dy(x,y) < 8(x,€) > dy, (£09,£(y) < e.()

Similarly, wniformly continuous functions are given as pairs (f,8) where § isa
modulus-of-uniform continuity &(e) for £. It is shown for countably compact
spaces that continuity implies uniform continuity and that maxima and minima
are attained. Sequencesand series of functions are studied in C(A;R) when A is
sequentially compact. This forms a metric space with respect to the sup-norm
Jf-gl = )s(gglf(x)-g(x)]; the Stone-Weierstrass Theorem can be proved, thus show-
ing C(A,R)} to be separable.

Mo.st classical topics in the differential and integral caleulus (Riemann
integration) go through quite readily. The extensions to complex analysis are

(6) In this respect we follow Bishopts lead in his development of constructive
analysis (Bishop 1967); cf. also Feferman 1979, esp.pp.177 ff. The use of
(4) and thence of jm is a way of incorporating mathematically what Bishop
calls the Limited Principle of Omiscience, LPO. Bishop says that his re-
sults are constructive substitutes ¢' for classical counterparts ¢, such
that ¢'+LPO implies ¢. Thus the formalization of Bishop's work in a system
conservative over HA (cf.ftn.2 above) implies the formalization (in prin-
ciple) of the corresponding body of classical mathematics in a system con
servative over PA., The point of the approach here is to be able insteadto
step as directly as possible from current classical mathematics to its form
alization in systemsof known limited strength.
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also straightforward, as are establishment of the properties of the familiar
stock of transcendental functions.

New considerations are required when one passes to more modern topics, viz.
measure theory and functional analysie. Standard approaches which start Lebesge
measure theory in R" with outer measure u*(X) make essential use of the g.1.b.
operation on scts of reals, which in turn requires Dedekind completeness of R;
but that is not available in VT+(u). Instead, one can define measurable sets X
and their measure u(X) directly, using sequences of covering approximations to
cach of X and the complement of X by countable unions of open intervals. Another
clegant route is to obtain the theory of Lebesgue integration directly using
Riesz's approach: every measurable function is represented as a difference of
two monotone sequence of step functions which converge a.e., and its integral
is defined in terms of integrals of step functions. For this only the concept
of sct of measurz 0 is needed. Then the theory of measurable sets is obtained
from the integration theory. Itturns out all of that can be carried out in Res-
VT+(u). lowever, when performing operations on measurable functions and
scquences of such, one must consistently work with pregentations of them in
terms of sequences of step functions (as described).

Finally, one can obtain the main initial material from functional analysis
for linear operators on separable Banach spaces and Hilbert spaces. Usable
forms of the Riesz Representation Theorem, Hahn-Banach Theorem, Uniform Bounded-
ness Theorem, and the Open Mapping Theorem are obtained (under heavy use of sep-
arability). Finally, I have verified that one can obtain the principal results
of the spectral theory of compact self-adjoint operators on a Hilbert space. It
seems then that all applicable analysis can be carried out in this conservative
cxtension of PA.

A theme running throughout this development is that the Z.u.b. (or g.l.b.)
property of the reals, which is constantly used in classical analysis, but which
is not derivable in VI+(u), can be avoided by dealing systematically with se-
quences of reals rather than sets of reals. For bounded sequences we do have
l.u.b., g.1.b. (and sequential compactness more generally).

There are of course many results of theoretical analysis which cannot be
derived in this setting. Additionally, by the result of Paris-Harrington 1977,
there are simple combinatorial I, statements which are consequences of RT (in-
finite Ramsey's Theorem) but which are not provable in Res-VT+(u). We leave the
question of what can be done in various extensions of this theory to another
occasion. '
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