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 There are some great math and science cartoons by Sidney Harris that you can 

find on the web.  Three of my favorites feature two professors, one bearded and the other 

with glasses, standing by a blackboard filled with long, complicated mathematical 

formulas.  In the first of these cartoons, the bearded professor is pointing to a break in the 

formulas where it is written, “Here a miracle occurs!” as he says, “I think you should be 

more explicit in step two.” In the second one, the same professor is pointing to the very 

beginning of the list of formulas and saying, “Here’s where you made your mistake.”  In 

the third cartoon, now the bearded one is landing a haymaker on the chin of the other 

professor, knocking off his glasses while saying, “You want proof?  I’ll show you proof!”  

Those illustrate some of the extremes of what can go wrong with proofs, even in 

mathematics.   

But I imagine most people consider mathematics to provide the paradigm of what 

constitutes a proof, to which all other subjects aspire.  For, what’s more certain and 

permanent?  We can still follow Euclid’s proof of Pythagoras’ theorem 2400 years later 

and be led step by step from the assumptions to the incontrovertible conclusion.  Actually, 

it took 2200 of those years for mathematicians to realize that not everything in Euclid’s 

development of geometry was justified by his axioms, but instead made use of what 

appeared to be evident properties of the diagrams accompanying his proofs.  And though 

mathematics nowadays has arrived at an unprecedented general degree of rigor and 

reliability, problems with the validity of proofs can arise even at the most advanced parts 

of the subject.  What I want mainly to do here is explain what makes mathematical proofs 

so special and why the ideal can be achieved when it is achieved, and I’ll be doing this 

from the perspective of mathematical logic.  But I want, first, to say some words about 

the very different view of our subject from the perspective of practice.   
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Presentations of proofs take place in a variety of social contexts such as in the 

classroom, or with one or a few colleagues in an office, or in a lecture for a seminar, 

colloquium or a meeting; standards vary accordingly.  It also takes place more 

permanently in writing and subject to greater scrutiny in a publication in a journal or in a 

book.  Journal publications vary in length from a few pages to hundreds of pages in 

possibly several parts.  The longest proof thus far, the so-called classification of finite 

simple groups runs over 10,000 pages, scattered over hundreds of papers written by 

hundreds of mathematicians.  In 2005, one of those mathematicians, Michael Aschbacher, 

wrote that:  

By consensus of the community of group theorists, the Classification has been 

accepted as a theorem for roughly 25 years, despite the fact that, for at least part 

of that period, gaps in the proof were known to exist.  At this point in time, all 

known gaps have been filled.   

One of those gaps alone took two volumes and 1200 pages to fill.  Who is to say whether 

there may not still be some unidentified gaps?  The book by Steven Krantz, The Proof is 

in the Pudding. The changing nature of mathematical proof, written for a general 

audience, has a number of other interesting examples of famous problematic proofs.   

At the everyday publication level, articles in journals are supposed to be refereed, 

and some referees are very conscientious and check every detail.  Other referees may just 

skim, relying on their general experience of what works in the specific subject at hand 

and/or the reputation of the author.  Errors may come out later when other 

mathematicians try to use the claimed results.  As Krantz writes,  

It should be stressed that all mathematicians make mistakes.  Any first-rate 

mathematician is going to take some risks, work on some hard problems, shoot 

for the moon. In doing so, this person may become convinced that he/she has 

solved a major problem.  And thus mistakes get made.  Almost any good 

mathematician has published a paper with mistakes in it…And the referee did not 

catch the mistake either, so it must have been a pretty good mistake. 
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Then there is the question who can be called on to referee.  To begin with, the 

field breaks down into between five and ten general subfields, depending on how you 

count: geometry, algebra, analysis and so on are some of the usual ones.  But the 

Mathematical Classification Scheme (MCS) used by the two main review journals has a 

three-level break down.  Its top level has 64 distinct categories; at the second level, each 

of those is further subdivided into something like 8-20 subspecialties, and on the third 

level, we get to the fine nitty-gritty of areas of work.  Altogether, this works out to over 

5000 third-level classifications. I count myself as generally knowledgeable across the 

board in the top level of my own field, Mathematical Logic and the Foundations of 

Mathematics, but I would not be able to referee anything at the cutting edge of research 

outside of my specialty of Proof Theory and Constructive Mathematics at the next level 

and even much of that would take a real effort.  All of this points to the exceptional 

degree of specialization in mathematics and why confirmation of the correctness of 

proofs is usually limited to a small number of experts. 

Still another problem is raised in recent years by the massive use of computers in 

several proofs.  Two famous examples are the verification of the 4 Color conjecture, 

according to which 4 colors suffice for any map, and Kepler’s sphere packing conjecture, 

according to which, roughly speaking, the most economical way of stacking spheres of 

the same size is in a pyramid, the way a grocer stacks his oranges.  Thomas Hales 

submitted his 200 page proof of the Kepler conjecture, plus computer program, to the 

prestigious Annals of Mathematics in 1998. About this, Steven Krantz writes that: 

The refereeing process was so protracted and arduous that there was some 

attrition among the referees: some quit and others retired or died.  At the end they 

said that they were able to check the mathematical part of the paper but it was 

impossible to check the computer work…[but] they were 99% sure it was right.   

It took seven years for Hales’ paper to be finally accepted by the Annals, and that 

was only in an outline form; it took another five years for the full details to be published 

in a series of papers elsewhere. 
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Despite this fragmentation and these problems, we experience mathematics as a 

distinctive unity, and there is substantial agreement in the mathematical community as to 

what sort of thing counts as mathematical knowledge and⎯on the other side⎯what can 

be dismissed out of hand.  I think we need to turn to the theoretical account of 

mathematics offered by mathematical logic to explain how and why this is so.   Curiously, 

even though the current standards of rigor in mathematics require closely reasoned 

arguments, most mathematicians make no explicit reference to the role of logic in their 

proofs, and few of them have studied logic in any systematic way.  That just shows that 

the study of logic is not necessary for the ability to use it correctly, no more than the 

study of linguistics is necessary to speak one’s language correctly, nor of physiology to 

digest our food properly, and so on.   Nevertheless, I think we have to look at the logical 

analysis of mathematics to see what’s special about mathematical proofs.  I beg your 

patience while I go into some of the details of this picture. 

That analysis breaks into two parts, first concerning the vocabulary of 

mathematics and then the principles of reasoning that are formulated in that vocabulary. 

The vocabulary itself breaks into two parts: the first deals with mathematical objects of 

various kinds and is thus subject specific, while the second is the logical part of the 

vocabulary and is subject independent.  Mathematical objects are conceived to be abstract 

and immutable, with no location in space or time (though mathematical theories are of 

course applied to concrete objects and forces that do exist in space and time).  Among the 

basic kinds of objects we would count the integers, the real numbers (i.e. measurement 

numbers), functions and sets.  Also in the subject specific side of our vocabulary we have 

such simple primitive notions as that of equality and order, of sum and product of two 

numbers, of application of a function to an object, and of membership of an object in a 

set.  These are taken to be undefined, though explanations of them are given informally. 

All further mathematical notions are supposed to be defined in terms of the basic ones, 

and for that purpose we need only use the logical part of our vocabulary. That is simply 

given by the words “not”, “and”, “or”, “if…then…” (or “implies”), “if and only if”, and 

“all” (or “every”) and “some” (“or there exists”). The operations “all” and “some” are 

said to be the universal and existential quantifiers, because they tell how many elements 

of the domain have a given property. What I have just described is called the language of 
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first order logic (FOL).  (There are languages for what are called second order and higher 

order logics, but we don’t need to consider them here.)  It is a remarkable empirical fact 

that every concept that has come to be accepted as a precise mathematical notion can be 

defined within FOL given the primitive notions at the base.  It is the use of the universal 

and existential quantifiers that has proved to be essential for this representation of 

mathematical concepts.  Some simple examples are those of being a prime number, or an 

irrational real number, or a continuous function, or an infinite set, and so on.  I don’t have 

any idea how many distinct precisely defined mathematical notions there are in use, but if 

we take our three-level MCS as a basis, with some 5000 or so terminal nodes, and if each 

of those sub-sub-specialties makes use, say, of a hundred basic definitions, we are talking 

of a half-million or so mathematical notions in use.  (Of course that’s not very much 

when people are throwing around a billion-this and a billion-that, a trillion-this and a 

trillion-that.)  

Up until the mid-19th century, logic was largely the province of philosophers, 

building on the work of Aristotle.  But their language and principles of reasoning were 

completely inadequate to represent Euclidean geometry, let alone all further 

mathematical developments.  Mathematicians entered the picture in the mid-19th century, 

beginning with the work of George Boole, but the language of FOL did not emerge until 

early in the 20th century.  The great mathematician David Hilbert took an increasing 

interest in logic and the foundations of mathematics, and in the 1920s he isolated a simple 

basic system of reasoning for classical FOL.  The word “classical” here is used for logics 

in which every statement is regarded as true or false; there is no in-between.  And that is 

reflected in what is called the Law of Excluded Middle, i.e. that A or not-A holds for each 

statement A. Classical FOL is a system of pure logic, applicable to all domains of 

discourse with any given primitive notions.  In 1928, Kurt Gödel showed that Hilbert’s 

system for this logic is complete in the sense that if A is valid in every domain of 

discourse and for every choice of the primitive notions, then A is provable from the 

logical axioms by closing under the rules of inference, and vice versa.  Classical FOL is 

just one among a plethora of logics that have been considered in modern times, but none 

of them has as satisfactory a completeness theorem (if it has one at all), and most of them 

are not relevant to mathematics.   
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Coming back to Gödel’s completeness theorem, it readily extends to particular 

mathematical axiom systems, like those for geometry, number theory, analysis and set 

theory in the following way.  Suppose S is any system of axioms⎯such as one of 

these⎯for given basic mathematical notions; by a proof from S is meant any sequence of 

statements, each of which is either an axiom of S or an axiom of classical FOL or follows 

from earlier statements by one of the rules of inference of that logic. Then a statement A 

is said to be provable from S (or to be a theorem of S) if there is a proof from S that ends 

with A.  Gödel’s completeness theorem in general tells us that if A is true in every 

interpretation of the vocabulary of S that makes each axiom of S true, then A is provable 

from S, and vice versa.  Note well, though, that this notion of proof is a relative one, not 

an absolute one as mathematicians think of their work in practice.  What the proof 

demonstrates is not necessarily true in some absolute sense, but only true in any world 

satisfying the underlying axioms.  Which of those axioms ought to be accepted then 

becomes a separate issue.  The mathematical study, initiated by Hilbert, of what exactly 

can and can’t be proved from given axiom systems is called metamathematics.   

It is again a remarkable empirical fact that every proof found in mathematical 

practice can be formalized, that is it can be represented as a formal proof from a suitable 

system of axioms for that part of practice.  That is a more controversial claim, because it 

is not immediately obvious how to do this for many proofs.  To begin with, the 

underlying axioms are not usually mentioned and there is in general a long chain from 

such axioms through a large background of previously established theorems that is taken 

for granted, all of whose proofs must be formalized before the given one is treated.  

Secondly, simple logical steps are usually omitted, and the formal version has to supply 

these.  Also the proof may contain phrases like: “it is obvious that”, or “it may be seen 

that”, or “one argues by symmetry”, or “the other cases may be treated in a similar way”, 

and so on. In some proofs there are large jumps that are only readily filled by experts.  

Finally, the proof may make essential use of diagrams that are not immediately converted 

into symbolic form.  Nevertheless, there is a comprehensive body of work, much of it that 

has been carried out using computers, that verifies the formalizability of substantial, 
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paradigmatic proofs in practice from appropriate background axiom systems based on 

classical FOL.1  

What can we say about the role of logic and proofs outside of mathematics?  

Looking, to begin with, at the role of quantifiers in everyday discourse, we find that one 

is faced with a much richer collection than is expressed within FOL.  Here are a few 

examples, taken from the work of linguists on quantifiers in natural language.  

1. Most linguists are bilingual. 

2. More science students than humanities students work hard. 

3. Not as many boys as girls did well on the exam.   

Note that in each case, the domain of discourse such as “linguists”, “science 

students”, and so on, is understood to be finite, unlike FOL where we also allow infinite 

domains.  The semantics of “most”, “more …than…”, “not as many as”,  etc. can each be 

given by comparing the numbers of members of the relevant sets.  But they are not 

definable in FOL and again do not carry any fully worked out system of logic.  Also, the 

semantics that linguists take for “Most As are Bs” makes it true just in case more than 

half of the As have the property B.  According to this, if there are, say, 100 linguists in 

our universe of discourse, it only takes 51 of them to be bilingual in order to assert that 

most linguists are bilingual.  But that doesn’t accord to our usual sense of “most”; we’d 

think it would take a lot more to draw that conclusion.  But how much more?  60%? 

70%?  Any such proposed alternative semantics for “most” seems arbitrary; indeed in 

actual use “most” is a vague quantifier.  That is clearly the case for the quantifier “many”, 

as in 

4. Many people have stopped smoking,  

                                                
1 See my discussion of the Formalizability Thesis in the article, “And so on… Reasoning 
with infinite diagrams”, Synthese 186 (2012), 371-386 (also on my home page at 
http://math.stanford.edu/~feferman/papers/And_so_on(pub).pdf .) 
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for which no exact definition at all can be proposed.  This last also shows that when we 

use quantifiers in everyday language, the domain of discourse to which they apply (e.g., 

living people) is often not fixed in any definite way.   

Aside from quantifiers, our daily exchanges and in the media are replete with 

vague concepts, witness those that have relentlessly occupied the recent political 

campaigns: “middle class”, “inequality”, “job creators”, “taxes”, “small businesses,” etc.   

And look back at what I said a minute ago and you’ll see that practically every general 

noun, adjective, verb and adverb I’ve used is vague: “domain of discourse”, “understood”, 

“allow”, “semantics”, “relevant”, “linguist”, “bilingual”, etc., etc.   

So the presumption underlying the use of FOL that we are dealing with definite 

domains of discourse and definite concepts that are true or false of the members of those 

domains is simply not satisfied in our day-to-day use of language.  Some have suggested 

that we need to modify our logic accordingly, that we should use some kind of logic of 

vague concepts.  The first problem with that is the famous Sorites Paradox, typified by 

the Paradox of the Heap: consider a heap of sand; if one removes a single grain from it, 

the result is still a heap of sand.  Continuing step by step in this way, we are brought to 

the conclusion that a single grain of sand is still a heap.  So if there is to be a logic of 

vague concepts, it must somehow avoid this paradox.  One way that has been suggested 

is in the use of what is called fuzzy logic.  In that, propositions do not have just the two 

truth values, True and False, but instead lie in a continuum of truth values ranging from 

Absolutely True (or degree 1) down to Absolutely False (or degree 0), with everything in 

between as just true to a degree.  In this logic, a heap is not just a heap without 

qualification, but rather a heap to a certain degree.  But the assignment of that degree 

seems to be somewhat arbitrary⎯what determines when a collection of grains of sand is 

a heap to degree 1, but is less so when one removes one grain?  Where in the visual 

spectrum must something occur to be absolutely red, but from which the slightest change 

in frequency makes it less red?  Fuzzy logic itself happens to be a coherent (and precise!) 

formal system, but it does not help in making day-to-day reasoning more exact.  

Interestingly, fuzzy logic has had some practical applications, for example in control 

systems.  By the way, once, when my wife and I were on the market for a new 



 9 

dishwasher, the salesman showed us one that he said is governed by fuzzy logic: it 

supposedly adjusts its program according to how dirty are the dishes that have been 

stacked in it.  We didn’t buy it.  

Despite the ubiquity of vague concepts, vague domains of discourse and vague 

quantifiers in everyday use, the ubiquitous application of classical reasoning seems to be 

inescapable in our daily lives.  The reason is that we are continually faced with choices, 

some minor and routine, some major.  The simplest form of a choice is whether or not to 

take some action.  For example, if one has some chronic physical condition like a very 

bad knee, one is faced with the decision whether or not to have surgery; there is no in-

between.  We then start thinking: the surgery has a non-trivial risk of failure which is 

worrisome, and even if it works well, it will take six months to fully recover; on the other 

hand, if I don’t do the surgery, I will continue to be in pain and be seriously hampered in 

my walking.  It is only when contemplating the possible consequences of each side of 

such a choice in terms of possible risks and benefits that we go beyond classical logic 

into issues of probability and the subjective value we place on various possible 

consequences.  

Beyond our personal lives we have a constant need for careful, critical reasoning 

in both our public lives and our professional pursuits, but the problems of vagueness limit 

how well suited to that task is the logic underlying mathematics.  On the other hand, there 

is no evidence that any of the logics that have been proposed to deal with vague concepts 

can help us carry the requisite reasoning in any way better than we do by the light of day.  

Some claim that an approach called Argumentation Theory, or Informal Logic, is much 

more suited to those needs in the case of public discussions.  That analyzes various 

general forms of both good arguments and fallacious reasoning, in a way that is also 

aided to some extent by formal logic.  But that only goes so far, especially for arguments 

that are carried out on the fly.  And I can’t say I know of any chain of reasoning in public 

discussions that deserves to be called a conclusive proof.  By contrast, the systematic 

disciplines of natural science, social science, medicine, the law, and philosophy are 

marked by critical reasoning of quite varied kinds and it is their hope and aim to come to 

some definitive conclusions that would warrant being called proofs. But clearly, what 
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constitutes a proof in physics is quite different from what constitutes a proof in medicine 

or the law.  We can assume that reasoning in these disciplines all respect the basic laws of 

logic, but we would require another story above and beyond that in each case as to what 

makes a proof a proof of that sort.  In other words, for each of these, we’d need a “meta” 

study that does for it what metamathematics does for mathematics, and that’s where the 

respective experts would need to take over.   


