A LANGUAGE AND AXIOMS FOR EXPLICIT MATHEMATICS

Solomon Feferman +

1. Introduction

Systematic explicit mathematics (of various kinds, to be
described below) deals with funetions and classes only via certain
means of definition or presentation. The former operational
definitions are called here rules or operationg; definitions of the
latter are called classifications. In the literature one has also
used eonstructione for the first and predicates, properties, types or
gpecies for the second. A new language £ 1is introduced for which

such notions of operation and classification are basic.

Two systems of axioms T, and T, are formulated in £,
the firet of which is evident when the operations are interpreted to
be given by rules for mechanical computation. In Tl these must
be understood instead to be given by definitions admitting quantific-
ation over N (the natural numbers); Tl is obtained from TD by
adjoining a single axiom. In both cases, the classifications may be
conceived of as successively explained or generated from preceding
ones, Some variants and extensions of TD and 'I‘1 suggested by the

same ideas are also considered.

Several metamathematical results (as to models, conservative

gxtemssioms, ete.) are obtained for these theories. It is also shown
Research supported by NSF Grant 34091X.
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how to formalize directly in them or treat in terms of their models
such enterprises as constructive, recursive, predicative and hyper-
arithmetic mathematics. This permits a rather clear view of what
portions of mathematies arve accounted for by these systematic redevelop.

ments.

The following are some distinctive features of the notions

axiomatized here, in contrast with current set-theoretical conceptions,

(i) The set-theoretical notions of function and class are
viewed extensionally, e.g. two classes which have the same members are
identical. The notions here are viewed intensionally, e.g. two
essentially distinct rules may well compute the same values at the same

arguments,

(1ii) The notions of function and set are interreducible:
functions may be explained in terms of sets of ordered pairs and sets
in terms of characteristic functions.  In contrast, the characteristic
function associated with a classification A is net in general given
by a rule. (For example, in the constructive interpretation of TO,
there is no rule for telling which sequences of rationals belong to
the classification A of being Cauchy.) There is a eignificant
asymmetry in the treatment of the basic notions here. Foughly
speaking, rules are taken to be of a quite restricted character, while
the properties expressed by classifications may be quite rich.
Mathematics consists in discovering which such properties are held by
given mathematical objects (e.g. numbers, syntactic expressions,

operations and classifications themselves).

(iii) Self-application is both possible and reasonable for

rules and classifications. The identity operation is given by the rule
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which associates with any object x the value x. The universal
classification V holds of all objects. In general though,

operations are partial, i.e. have domains which may be a proper part

of the universe and so need not be self-applicable. (For example,

the operation cf differentiation is defined only for certain operations
from reals to reals.) Further there may be no extension of a rule

f to all of V when there is no test for membership in the domain

of f.

(iv) Operations may be applied to classifications as well
g8 operations. Important examples are the operation ¢ which
applies to any A,B to give the Cartesian product A x B, and the
operation e which applied to any A,B gives the exponentiation
classification BA holding of just those f which map A into B.
still further we have a join operation Jj which applies to any A, f
for which fx is a classification B, ~whenever x belongs to Aj
this holds exactly of those pairs =z = (x,y) for which x belongs t¢
A and y belongs to Bx. These operations are all guaranteed by
the axioms of Ty In addition, general prineiples of inductive

generation in T permit their transfinite iteration.

The classifications generated by e applied any finite num-
ber of times starting with N are usually called the finite types.
The objects falling under these clagssifications are the funectionals of
finite type. The important recognition of this as a constructively
admissible notion is due to Gbdel [58]. Conetructive theories of
trans finite types have been formulated by Scott [70] and Martin-Lof
[prelim.Msl.  The theory T, is also constructively justified and is
richer than these. Its formulation seems to me to constitute an

improvement in other respects as well; however, no detailed comparison
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is made here2.

Some ideas for extensions of T, are discussed at the cop-
clusion. The interest there is to find much stronger reasonable
axioms for classifications; such go beyond current practice if not the

needs of explicit mathematics.

2. The language L

2.1. Syntax

Variables: a,b,Cy...3X,y,2

Congtante: 0, k, s, d, P, P1» Bo> gn(n<m), Js i

Atomie relations: x =y, App(f,x,y), Cl(a), xna

Atomie formulae: any substitution instance by variables or
constants in atomic relations, togethe with an atomic sentence |

Connectives and quantifiers: A, v, =+, ¥, 3

Formulas are generated from the atomic formulas by the connectives

and quantifiers. $, ¥y, 8, ... Tange over formulas.

2.8. Informal interpretation of the basic syntax
The variables will be interpreted as ranging over a universe of
mathematical objects among which are rules and classifications.
The meaning of the constants will be explained in connection with
the axioms.
1 is a false or absurd proposition.
X =y holds when x and y are identical.
App(f,x,y) holds when f is a rule (or operation) which is

defined at the argument x and which has value y when applied

2ct, Scott [70] for an extensive discussion of previcus work.

(Added in proof: cf. the addenda below.)




9N

to X
cl1(x) holds when x is a classification.
xna holds when x falls under (belongs to, is in) the classific-

ation a.

9.3, Abbreviations
W for (¢ o+ L)y (¢ ) for (¢ » ) A (Y + ¢
¢(t/x) for ‘Sub(t,x,w) — this is also written o¢(t,...) when ¢
is written ¢(x,...);
Fixe for 3Axld A ¥y(dly/x) »x = y)]l; x #y for "Ux=y);

dxnad for Ixl{xna A ¢); ¥xna¢ for ¥x(xna + ¢).

2.4. Application terme or, simply terms, are generated as follows:
(i) ELach variable and constant is a term;
(ii) if tl’t? are terms then tth is a term.

The informal interpretation is that tyt, is the unique value vy
of 1ty applied to oo if ty is defined at t,. In that case we
wpite tyt, = v, Since there may be no y with App(tl,tz,y),
strictly speaking terms cannot be considered part of L. Their use

with £ can be established by the following abbreviations

(t,tl,...,t all terms):
! n
t ~y for t =y, when t  is a variable or constant

tl'ﬁ? ~y for Exl’}(?{’tl S tfg ~ Hop A APP(XngQ,y)J;
(td) for 3Fy(t ~ yv);
$(ty...) for dylt ~y A $ly,..adls

tlt?*'&“’tri i\c}’z‘% (*Ql(tlt?)ﬁ‘!)‘tn

in each of these abbreviations, the quantified variables on
the right are to be distinct and not appear in the expression on the

left,
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2.5. Classification variables

The classification variables: A,B,C,...,X,Y,Z are intro-
duced by convention to range over the objects for which Cl(x) holds.
In other words ¥X¢(X) is written for ¥x[CL(x) -+ ¢(x)] and 3IX¢(X)
for 3Ix[Cl(x) A ¢(x)]. Alternatively, we may consider L as being

£ (2) having this new sort of

expanded to a 2-sorted language
variable which may be used in any of the atomic formulas. We then

take as axioms

(1) dx(x=X),
(2) Cl(x) + 3IX(x=X).
When we write ¢(xl,...,xn, Xl,...,Xm) we are treating ¢ as a

(2)

formula of <« (all of whose free variables are among XpseensX

X .,Xm).
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2.6. Elementary formulas

A formula ¢(xl,...,xn, xl,...,xm> is said to be elementary

(with respect to classifications) if

(1) its atomic formulas are all of the form Tty = ot,,
App(tl,tz,ts) or tlnXi for tl,tz,t3 constanty

or individual variables, and

(i1) ¢ contains no bound classification variables.

Informally, such ¢ does not refer in any way to the general
notion of classification. Any given classifications Xl,...,%m may

be tested only with respect to questions as to which objects belong to

them,




93

Each formula ¢ is assigned a Godel number ¢ in a

gtandard way. We shall write g¢ for 9F¢7 when ¢ is elementary.

2.7. Remarka on the choice of language

1. It might be thought that there should also be a predicate
op(£) expressing that f is an operation. For our purposes this

could be introduced instead by definition
Op(f) » Ax,y(fx L y),

since we never really have to deal with completely undefined rules.
However, it would not serve our purposes to define Cl(a) as 3dx(xna),
since it is important to reserve the possibility that a given

classification is empty (a common matter for mathematical investigation).

2., befine A:1 ¢ A by Vx[anl + xnA] and f : A + B by

¥x[xnA + fxnBl. 1t follows that if £ : A+ B and A, C A then

1
f Al - B, One might prefer to follow the practice of category
theory so that for any { there is at most one A (and at most one
B) such that { : A~ B holds. The syntax and axioms could easily
be modified accordingly if desired. For our purposes it is more
convenient not to do this. The algebraic notion of morphism can be
explained in T in terms of triples (f,A,B) where f : A~ B.

3. The use of the many constants is not essential but is only
to simplify statement of the axioms.
8. The theory T,
3.1. Logical axioms are taken to be those of intuitionistic predicate
calculus. Use of elassical logic (law of excluded middle) will also
be permitted when noted explicitly. (1f £ is identified with £(2)

then also axioms 2.5(1), (2) are included.)
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3.2, The axiome of TO are given in five groups I-V. Some further

abbreviations are introduced after II and IV.

I (i) =y vx # y.
(ii1) fx ~ vy A fx >y, >y = Y,

(iii) =xna - Cl(a).

II Basic operations
(i) (Constant) kxy ~ x

(ii) (Substitution) sxy$ a sxyz . xz(yz)

(iii) (Defn. by cases) (x =y = dabxy ~ a) A (x # y ~ dabxy ~

(iv) (Pairing, projection) pxix,4 A pjz¢ A pozt A Py (pxi%,)
(v) (Zero) ™(pxy ~ 0)

Abbreviations:  (x,y) for pxy
(Xl""’xn+l) for ((xl,...,xn), xﬂ+1)

k' for (x,0); 1 for 0'.
III Elementary comprehension scheme. For each elementary
¢ = ¢(x,yl,...,yn, Ajsen A

3C{g¢(yl,...,yn,Al,...,Am) ~ C A ¥x[xnC «+ ¢l}.

IV Join

¥xnAdx(fx L X) > 30{j(A,f) ~ J A ¥zlznd » Ix,y(z=(x,y) ~ xnA
A ynfx) 1}

Y Induetive generation. For each formula :
JI{i(A,R) ~ I A ¥xnA[¥y{(y,x)nR + ynI) + xnl]

{(¥xnAL¥y ((y,xInR » p(y/x)) + I -+ ¥xnl.y}.

{2

These axioms are fairly transparent. Some fine points of meaning
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will emerge in the next section. The consistency of 'I‘0 and some

direct extensions will be established in §u?a

3.3. Some consequences of the axioms These are treated informally

and only sketched.

(1) Feplicit definition.
By the usual argument for the combinators k, s we can associate
with each (application) term t a new term t* such that

vars(t*) C vars(t)-{x} and
t*) and ¥x[t*x . t].

t is denoted Ax.t. Informally, it is reasonable that t* have a
value no matter what choice of values for its variables, namely, it is
the rule which at x follows out the rule given by t. The special
case Az.sxyz is incorporated in the axiom for s, according to which

sxyt .

(2) Paipring, n-tupling. Note that the projection operations p;
are defined for all objects. Thie is in accord with the informal
idea that we can tell whether or not an object =z is an ordered pair
(xl,x2) or not. In the first case take BiZ = Xis otherwise

.2 = 0 (say). Thus 3x,y.z = (X,y) ¢ p(p,2)(p,2) ~ Z. From the
By 2 PiPy2) Ro2/ ~

pairing axiom we derive (xl,xz) = (yl,yz) - Ry E Y AKXy B Y,

For each n » 2 and 1 < i <n we can find p? such that

n .
pi(xl,...,xn) ~ X Then given any t we

. ¢}
Vﬁ.;ﬁ?if&; e} V}Cl,...,x i

n’
can find t¥% with vars(t*) ¢ vars(t) -{xq,...,%, } such that

t* A t*(xl,...,xn) ~ t.

2dyy o s : cos
“myhill has shown that schema III can be replaced by finitely many
axioms, in the expected way.
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Namely, t* is Az.t[p?z/xl,...,pgz/xn]. We write

t® = A(xl,...,xn).t.

(3) The Recursion Theorem. (Self~Referential Rules). The
following form

¥EdgW¥y s .oy lay -y« feyy .yl

is proved essentially as in recursion theory: first define the term

s, = Ay.zxy with vars.z,x. Then for all x=,y,2:
sl[z,x?¢ A (sl[z,x])y ~ ZXY.
Next, form Axky.f(sl[x,x])y ; this exists, call it h. Then also

g = sl[h,h] exists, and for all vy
gy ~ fgy,
hence also BYq - Yy :_fgyl...yn.
We can equally well get the theorem in the form

VEIg¥yy ey LBy 5oy ) = gy sy O]

(4) Elementary operations on classes. For each elementary

¢(x,yl,...,yn,Al,...,Am) write

ﬁ¢(x:y1,‘t-’yn,Al,,l"%) for %(yl’ﬂl!’yn,Al,QQ*,Am)h
We may then make the following abbreviations:

V for R.x=x j

A for R.x#x ;

{a,b} for R(x=a v x=b) ;
{a} for {a,al}

-A  for R.7(%nA) ;
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AN B for R(xnA A xnB); AUB for R(xnA v xnB);

A x B for f(x = (ElX,EQX) A DpXnA A.EQXHB)S

f : A+ B for W¥x(xnA » fxB) [i.e. for ¥xnA Iy(fx ~ Y A ynB)l;
f : A £ B for (f : A -+ B) a VxlnA VxQnA[(xl,xz)nEl

+ (fxl,fxz)nEQJ;

BA for F(f:A - B):
(A,E) )
(B,Ez) for f£(f : A - B);
Ey5E,
D(£) for =R.Ay(fx . y).
(8) Join and product; union and intersection. When ¥xnA3B(fx ~ B)
we write Bx for fx and then zanBx for J(A,f). Thus zn(anABx)

just in case 2z has the form (x,y) where xnA, ynB,, . Under the

same hypothesis we can write

HanBx for £.¥x(xnA -+ gxnB ), [i.e. for g.¥x{xnA -~ (x,gx)nj(A,£)}].

If we take f = Ax.B then we write I B and I B for these,

xnA =xnA

resp. Thus zn(Z_ _,B) # zn(A x B) and zn(nanB) « zn(BA).

XnA

Again, under the same hypotheses for A, f and Bx we can

introduce B and ﬁanBx with the usual definitions.

anA pl4

(6) The natural numbers. We defined x' = (x,0). By the axioms

for zero and pairing we have:

(1) x' #0

f£]

(ii) x'" = y' » x = vy

p_lx .

1

(idd) x = y' » y

Thus we may consider ' ag the successor operation for generating
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natural numbers and Py the predecessor operation.

These are now used to set up the inductive generation of N,

3

Let A = {0} U R.3y (x=y') = {0} VR (x=(pyx)"). Let R =
i(A,R). It is seen that

H

2dx,y[z=(y,x) a x=y']l. Define N

(iii) OnN
(iv) =xnN = %x'nN

(v) for any Y(x,...):
PO, ve) A ¥x[P(x,...) + P(x', 0] » ¥xnN.p(x,...).

Using the Recursion Theorem and definition by cases, we find

N such that for all x, f, a

a if =0

PN(x,a,f) ~ o |
f(Rlx,rN(Rl(x),a,f)) if x # 0.

In other words

(vi)  ry(0,a,f) ~ a

rN(x',a,f) ~ f(x,rN(x,a,f)).

Hence for any B,

NxB -

: N x B x B B.

I"N.

r is a recursion operator for N. Using it we may successively

N
define all primitive recursive functions of natural numbers.

The bounded minimum operator (uy < x)fy . 0 and the
predicate of bounded existential quantification dy & x.fy . 0 are
obtained by primitive recursive defining schemes. Applying the

recursion theorem we find g such that
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by < x)fy . 0 if 3Jy < x.fy ~

o

(vii) g(fo}() ~
g(f,x") otherwise.
Let uf ~ g(£,0); then uf is defined and equal to ux.fx . 0 when

Ix(fx ~ 0 A ¥y < x.fyd).

Having primitive recursion and u, we obtain Kleene's
enumeration of the partial recursive functions, which associates with
each znN a rule {z} ;3 the total recursive functions are those for

which {z} : N - N,

Church's Thesis may then be formulated in this language by:

N

(cT) YFnN" FznN ¥xnN[fx . {z}x].

(7 Reecureion on induectively generated classifications. Consider
any i(A,R) ~ I in general. By the Recursion Theorem we can find rg

such that
(i) rI(x,f) ~ f(x,rI).
Let ?dR(x) = §.(y,x)nR. Suppose f 1s such that

(ii) whenever xnlI and g:PdR(x) + V then f(x,g)¢; then

VxnI.rI(x,f)L.

ry is a special case of rr.
(8) Tree ordinals. The countable tree ordinals 0, are inductively

generated from 0 using successor and N-supremum, where we may identify

sup hx with (h,N).
XnN

In general, define supxh or sup hx simply as (h,X).
an
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Suppose A consists only of non-empty classifications, i.e.
¥xnAdX(x=X A dz(znX)). Thus 2nX A XnA+ (X,z)nd where J = zynAy
and =xnA « 3dz.(x,z)nd. We can use the principle of inductive

generation to find a classification I = 0A satisfying the following:

(i) Ono,

(1i) anA -+ x'nOA

(1ii) XnA A h:(X » 0,) = (supxh)nOA

(iv) () A ¥x[yY(x) + P(x')] A ¥XnA¥h[¥znXy(hz) - Y (supyh)1 +
vaXnOA.w(x), for each Y(x) = P(x,...).

Namely OA is i(B,R) where
B= {0} U R.Ayx=y") U R.IXnAZh(¥ynX(hyt) A x = (h,X))
and (y,x)nR ¢ x = y'v AX,y,zlx = (h,X) A XnA A znX Ay = hzl.

When A 1is empty, 0, has the same numbers as N. Fop
A=A = {N}, 0, is the 0, described above. Then for A = A, =

{N,Ol}, 0, 1is 0,, ete. We may define An and 0, recursively
for nnN by: 0 = OAn and A ., = A U {On}. Then we can pass to

transfinite number classes e.g. by taking 0

“x. More generally,

= U
xnl
given any C we can associate an Ox in a natural way with each xnow

by recursion on OC.

(9) Finite and transfinite types. Suppose A consists only of non-
empty classifications, as in the preceding section. siven  a,b,h

write a x b for (0,a,b), (a+b) for (L,a,b), ¥

:xnahx for (2,a,h)

and Hxnahx for (3,a,h). We inductively generate a classification
TypA of A-ary type symbole, by which is intended that we can form

* -

I and @I over any X in A.




101

(i) OnTypy
(ii) anTypy ~ bnTyp, - (a X bInTyp, ~ (a > bINTyp,
(iii) XnA a (h:X > Typ,) » (£ hx)nTyp, (I

Xnth)nTypA.

We have in addition a corresponding principle of proof by
induction on Typ, for each formula 1V, which permits definition by
pecursion on A. Greek letters o, T,... are used in the following

for type symbols.

When A = A we call TypA the finite type symbols. TypN
is written for Typ{N}, the N-ary type symbols. For any A we may
define by recursion an operation on TypA whose value at each o 1is

denoted by Na’ satisfying:

(i) NO = N

P - U
(11) Nyg, = N, * N » Ngs. = N
(iii) Nf hx - zmeth’ Nﬁ hx nanth‘

THNH
It is proved by induction that
(iv) anlyp, + Cl(NU).

We call the operation o » N_, the (non-extensional) A-ary type

hierarchy.

An extensional A-ary type hierarchy can also be defined.
This determines for each ¢€Typ, two classifications N& and EO,
defined simultaneously. We write down the clauses for the finite

type symbols only:
(i) W, =N, Ej= 9. 3x(z=(x,%)).
E s = %.Bxl,yl,xz,yz[z = ((xl,yl),(xz,yz))

A (xl,xg)nxg A (yl,yz)nET].
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_ _ (N ,E ) o _
(iii) N3 = (N ,E)) = B{£:N > N o ¥x,ynN_[(x,y)nE,
> (fx,fy)nET]}
Ege = 2.3f,g{z=(f,g) A f,gnﬁ'o_;T A ¥any(fx,gx)nET} .

It is seen that:

(iv) for each finite type symbol o, Cl(N&) A Cl(EU) and Eo

is an equivalence relation on N&.

It is obvious how to extend the definition of (N&,EG) to all dnTypA.

Inductively generated classifications of trees with pre-
scribed codings and branchings can be treated in a way similarly to
that for the 0, and TypA. Infinite formulas and terms may be

considered among such.

3.4. Non-extensionality of the basic notions

The classifications ﬁe, E, introduced in 3.3(9) will be
used at various points below to relate certain statements in Ty to
classical mathematical statements concerning extensionally conceived
functions and sets. It was stressed in the introduction that for T0
as a whole the intended conception of the basic notions is intensional.
Kreisel has raised the question whether there is an actual conflict
between extensionality and self-application in this context. He
also referred back to a related specific question in Kreisel [711],
p.186, as to whether enumeration without repetition conflicts with the
axioms for enumerative recursion theory called BRFT in Friedman [711].
As it happens, Friedman stated (loc. cit. p.11l7) that these are jointly

inconsistent. This can be transferred to the present context, since

the axioms I(i) and II of T0 are essentially the same as for an
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onumerative eystem in Friedman [71], which are in turn equivalent to
pRFT.  In addition, there is also a conflict of extensionality with
self—applicatimn for classifications (at least as formulated in TO).

The details are as follows.

The statement of extensionality for rulee may be considered

in either of the following forms:

(i) (a) Wf,glyx(fx .. gx) » £ = gl,
(b) ¥f,g,hl¥x(fx ~ gx) + hi o hgl.

These are equivalent as we see by applying (b) to h = Ax.x. Similar-
ly the statement of extensionality for elassificationsis considered in
the forms:

(11) Ca)  ¥A,BL¥x(unA » xnB) +« A = B,

(L) ¥A,B,C[¥x(xnh » xnl) + (Ant » BnC)l],

Again these are equivalent by applying (b) to O = (A},

Let  Tot(x) be the formula Wydza(xy . 2) expressing that
x i8 a total operation, Let e = ax.ay.d00(xy)0, By 3,3(1) we can

prove in T, that for all ®,y: ext and  exy . d00(xy)0. Thus

(iii) Totle), ¥ylexyd = xyl), ¥ylxyd = exy . 0) and

Totlin) » Totlex).

Let 0% = An.0. 1{ extensionality held for rules we would have

i
s

(iv)  Tot{x) « ex -~ 0%,
Put n = %g.ﬁlﬂaw B3

s e b d

(v) Tatl{n) and ¥ziHne ~ 2).
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Finally, let f = ix.d(n(xx))0 (ex)0* so that for all x:

(vi) fx ~

n(xx) 1if ex ~ 0%
{g_ otherwise.

Tot(f) because Tot(e) and Tot(x) whenever ex . 0%*; hence
ef ~ 0% and ff ~ n(ff) which is impossible by (v). It is seen by
this argument that extensionality for rules ie inconsistent with

arxioms I(i), (ii) and II of T,

Turning to classifications, let ¢(y,x) be 3Jz.xy .~ 2z and

By Axiom III, cx¢ for all x, and Cl(cx). Thus

C =gy
(vii) Tot(e) and ¥ylyn(ex) ¢ Jz.xy ~ z], so ¥y(ynlex)) «

Tot (x).
If extensionality held for classifications we would have
(viii) Tot(x) ¢ cx . V.

In the definition (vi) of f above replace e by ¢ and 0% by V,
It is seen that extensionality for classifications is ineconsistent

with axioms I, II, IIT of TO'

4. Metamathematical results concerning T0 and related theories

4.1. A recursion-theoretic model of TO‘ I believe that the general
informal interpretation given in 2.2 should be clear enough for one
to recognize that the axioms of TD are correct, hence consistent.

As a particular informal interpretation, V may be taken to consist
of all expressions generated from finitely many (>1) symbols, and

fx ~ y to hold whenever f is a program (represented in V) for a
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mechanical computation which yields the value y at the argument x.
Further, the classifications are taken to be certain finite or

infinite formulas ¢ represented in V, successively built up and

with meaning explained according to the axioms III-V; an¢ is written
when ¢ holds of a. Evidently, (CT) is also correct in this

interpretation.

The following serves to establish the consistency of
Ty + (CT) assuming set-theory and classical logic. (It is not
excluded that one may accept both this and the preceding.) Here
"model" is used in its usual sense so that alsc the laws of classical
logic may be applied in Ty. The proof itself gives set-theoretical

form to the informal interpretation just given.

THEOREM 4.1.1

There ie a model of TO in which the range of the variables
is the set w of natural numbers and fx ~y 18 interpreted as

{f}1(x) ~ vy. (CT) s true in thie model.

Note: We are using w for the natural numbers, to distinguish it
from N which is to be interpreted as a particular element of w.
{f} (f=0,1,2,...) 1is a standard enumeration of the partial recursive
functions on w. Church's Thesis (CT) is formulated in terms of N

as in 3.3(8).

The proof is straightforward and will only be sketched.
By ordinary recursion theory we may choose numbers k, s, d, p, Py> Py
so that the basic operation axioms II are satisfied. (Pairing is
chosen so that (x,y) # 0.) Take {e }z » (1,n,2), {j}(a,f) ~ (2,2,8),

{i}(a,r) ~ (3,a,r).
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A set Cla is defined by transfinite recursion for each
ordinal o3 the predicate a € UaCla will be the interpretation of
Cl(a). We also define {x : x € w & xna} for a € Cl A along with
Cl,- Let C1, be empty. Suppose given Cla and n restricted
to w X Clu. Then for elementary ¢(x,yl,...,yn,Al,...,Am), the
truth of ¢ as a function is well-determined when we assign to each
Ai the value a; 1in Clu. Cla+l consists of all numbers D
obtained by one of the following clauses (i)-(iv); {x : xnb} is

also defined for each of these:

(i) becl = b € Cl xnb is unchanged.

a+l’?
(ii) If ¢(x,y1,...,yn,Al,...,Am) is elementary and
8q 50008y € Cla and b = {c¢}(y1,...,yn,al,...,am) then

b € Cla+l;

xnb # ¢(x,yl,...,yn,al,...,am) is true.

(iii) If a € Cl  and yxnal{f}(x) € C1 1 then b = {ilca,f)
= Cla+l5

znb ¢ Ax,ylz = (x,y) ~ yn{fI(x1].
(iv) If a, r € Cl, then b = {i}(a,r) € Cly41s
unb ® u € NX{X C w ~ ¥xnal¥y((y,x)nr = y € X) = x € X1}.

If o is a limit number take Cl, = Ug Cl,. It is then seen that
Cl = UCl lo countable] provides a model of the axioms III-V. In
this model, the interpretation of N (a particular {il(a,r)) is

such that
(iv)N NN  u € NX{0 € X A ¥x(x € X = (x,0) € X)}.

Thus N is isomorphic with w®, with the successor operation on w
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corresponding to the operation x » (x,0) which is x' in £. This

recursive isomorphism is used to show that (CT) is true in the model.

(1) Remarks. (a) Except for (CT) the same method of proof may be
applied to give a model of TO on any structure
(M,App,D,k,s,d,p,pl,pQ) which satisfies the axioms I(ii) and II of
TU' As mentioned in §3.4 above these are essentially the same as the
enumerative systems of Friedman [71] (8§1). Recursion theory on
admissible sets satisfying Zl—uniformization gives a wide and familiar
class of examples of such structures. The theory of prime computable
functions on any structure (Moschovakis [69]) provides still further
examples; this simplifies when the structure is on a transitive set

closed under pairing.

(b) It might be thought we could just as well get a
model with Cl = w, e.g. simply by taking xha for each a & U@Cla a
defined in the proof. However, TO + ¥aCl(a) is inconsistent: for
it follows from ¥aCl(a) that there is a classification B = Eanva;

then take xnC ¢ (x,x)WB.

(c) The proof of Theorem 4.1l.1 can be formalized in
classical 2nd order analysis, by taking Cl and the graph of the
characteristic function of n as the least pair of sets satisfying
certain (arithmetical) closure conditionss. It may be of interest to
see if there are some familiar subsystems of analysis (or set theory)

which are of the same strength as TO.

3To be more precise, TO + (CT) may be translated into the subsystem

(H%FCA) + (BI) of 2nd order analysis.



108
(2) Question. Is T(C) (in classical logic) no stronger than
0
T(i) (in intuitionistic logic)?
0

The usual reduction by G&del's TTI-translation breaks down
with iterated inductive definitions. (cf. Zucker [73] for some of
the problems involved in comparing classical with intuitionistic

theories of such definitions.)

(3) Explieit definability and disjunction properties. These have
been established for most intuitionistic systems which have been con-
sidered in the literature, including various theories of species and
sets (cf. (Troelstra [73] for much of this and further references).
Contrary to my expectation, Myhill pointed out that they fail for TO
for the simple reason that though (a = b v a # b) is an axiom, the
theory does not decide which of (tl = tz) or 7(tl = t,) holds for
various closed (and defined) tl’ t,. He conjectures that the
properties in question do hold for some simple extensions of T, by
such basic sentences. In any case, as Kreisel and Troelstra have
both emphasized, the fact that a theory enjoys these properties is
neither necessary nor sufficient for its constructivity (cf. Troelstra

[73], p.91).

Let FT be the language of finite type theory with induction

and recursion over N, e.g. the language N -~ HAY of (Troelstra [73])

I.6, expanded to include product types. We have variables xa, yc,...
and an equality relation = for each type symbol 0. If o is a
g
(N59307 (N,E)
sentence of £FT let 8 or simply © be its

translation into £, taking the variables of type o to range over

the members of ﬁ& and translating x =_y Dby (x,y)nE,.
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Note that the interpretation of (ﬁO,EO)0 in the model
(w,Cl,...) of Theorem 1 is in 1-1 correspondence with the hierarchy

) (due

of hereditarily extensional (recursive) operations (HEog,Ec o

to Kreisel; cf. (Troelstra [73]1, II.u). This is an isomorphism with

e(HEO,E

respect to pairing, projections and application. is written

for the interpretation of 6 in this hierarchy.

COROLLARY 4.1.2

(N,E)

If © ie a sentence of Lpp and T F o (with

e(HEO,E)

elasstical logic) then 18 true.

The definition of (HEO ) can be extended in an obvious

g%
way to transfinite types, for which the corollary continues to hold.

4. 2. Set~theoretical interpretation of Ty- Here we want an inter-
pretation which matches up the extensional finite type hierarchy
(N&’Ec)c with the set-theoretical mazimal type structure (M_)_

defined by: M0 = N, MGQT = M0 X MT and

M3, = {F|Fun(F) ~ Dom(F) = Mo A F M~ MT}.

These are defined in Zermelo set-theory (ZS).
To extend the following group of results to transfinite

types we need Zermelo-Fraenkel set theory; +thus they are stated for

ZF¥ instead of ZS.

THEOREM 4.2.1

(i) For any model 2L = (A,€) of ZF we can associate a

model U* of T, in whiech V = A.
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(i1) The intervpretation of the NG,EG in M* {s sueh
that NU/E0 ig in 1-1 correspondence with M, of WU for each finite
type O. This correspondence is the identity on N and preserves

pairing, projections and applications.

The idea of the proof is to use the theory of prime comput-
able functions (Moschovakis [69]) for the structure 0" = (A,E,F,(a)aﬁAh
where F(u,x) u(x); this gives an enumerative system of functions PR(@)
which includes every constant functionaa. Take ClO = {0} x A ;

for x,y € A take =xn(0,y) + 3z[x=(0,2) A~ z € yl. Then proceed to

determine Cla and n on Cla for o > 0 Just as in 4.1.1. The
definition of ClO gives an injection of (A,€) in (Cl,n). The
correspondence is set up recursively. For example, associate with

each f in NO$0 the function Mx € N.fx in M this

0+0°
association is surjective since every element of Mg:, is a partial
function in PR@U) and equivalent members of Ngs. correspond to

the same function.

(M)

For 6 in LFT let © be its interpretation in the

maximal type structure, taking =y to be = for each o.

COROLLARY 4.2.2

then

If © <& a sentence of £FT and T, F Q(WaED

zr | o),

4.3. Realizing axioms of chotice. By the relative axiom of choice

gehema in £ we mean all formulas:

SaJ. Stavi pointed out to me that my previous formulation of this
argument in terms of admissible sets worked only for ZFC and then
only with some additional considerations. He suggested the use of
Moschovakis [69] instead.
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(AC) ¥xnA Ay ¢(x,y) » If ¥xnA ¢(x,fx).

For particular A we denote this by (AC,). This may be analyzed

as a consequencé of

(ACV) ¥x Jy ¢(x,y) + 3If ¥x ¢(x,fx)

and a principle called Independence of Premiss:

(IP) ¥xnA Iy o(x,y) -+ ¥x Jy(xnA -+ ¢(x,y)).

It will be shown here that (AC) gives a conservative extension of
a certain subtheory Té—) of TO’ where the use of the existential
quantifier in defining properties 1is restricted to the cases in which
that use can be made explicit. It can be shown that T, itself is

consistent with some instances of (AC), including (ACV).

The axiom groups I, II for Té") are the same as for Tj.

ITI-V are modified as follows:

IIT. Elementary comprehension schema is restricted to ¢ which

do not contain existential quantifiers.

III''. We add axioms for operations e, dm where e(A,B) o BA,

dmf . B ().

IV is as before for join; to this is added an axiom

IV' for product, pr(A,f) ~ Hanfx under the same hypothesis.

V. Inductive generation is modified to an axiom for an operation
i* (A,8), replacing '(y,x)nR' throughout by '3dz.(y,x,z)nS'.
Again the logic of Té”) is taken to be intuitionistic, unless

otherwise noted.
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(=)

It is seen that T0 has practically the same mathematical

consequences as those indicated in 3.3 for TO' Continuing the idea

here we could consider a theory Té"-)

in which also the use of dis-
junction in defining properties is restricted. The only loss then
are the general v and U operations; the disjoint union always

serves for the remaining mathematical uses.

The classes ?76, ?i of formulas of £ are defined as

follows.

(i) each 9& contains all atomic formulas and is closed under

the operations of 4, v and universal quantification;

(ii) If ¢ is in S«"O and ¢ is in F,; then (¢ » ¢) is in
¥, and (¢ + ¢) is in Jl;
(iii) If ¢ ds in ¥, then Ix¢ is in Fo-

Thus all formulas without 3 are in both Wb and ?i.

THEOREM 4.3.1

Té') + (AC) 18 a conservative extension of Té") for

formulas in ?0; in fact, if Té") + (AC) } Ix.¢(x) where ¢ 8 in

Fo, then Té') L ¢(t) for some application term t.

Again the proof is sketched. We assoclate with each formula
¢ a formula p¢ with one new free variable f which we write fpéd

and read "f realizes ¢".u

(i) for ¢ atomic, fpo dis (£=£f) A ¢,

"cf. Troelstra [73], Ch. III for similar variants of Kleene's
definitions of realizability.
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(i) fo(¢ a ¥) dis (py£)pd A (pyflpy
(iii) fplé v ¥) is (p;flpd v (pyflpy 3
(iv) fpl¢ + y¥) is vglgpd + fgpyl;

(v) (fe¥xd) dis W¥x(fxp¢)

(vi) (fp3Ix¢) dis 3Ix[f = (le,x) A (Elf)p¢].

Also with each ¢ is associated in Té") a non-empty class Typ(¢)

which includes all rules £ which may realize ¢. In particular, we
take Typ(y + ¢) = Typ(¢)Typ(w).

The following may be shown:

(=)

0
application term t.

(vii) If T + (AC) | ¢ then Té-) } (tp¢) for some
(viii) If ¢ € ¥ then T{) } 3f(fpe) + ¢ and if § € ¥ then
Té") F g » ¥EnTyp(y) (£py).

The theorem follows directly from (vii), (viii).

COROLLARY 4.3.2

Té') + (AC) + (CT) 18 consistent.

More generally, Té“) + (AC) 1is consistent with any ¢

such that 3JIf(fpy) dis true in the model of 4.1l.1.

(==)

A similar theorem can be established for T , by

appropriately modifying the definition of WO, 3&. One can also

obtain analogous results for ‘I‘0 in place of Té"), but only for

certain extensions (ACA) of Ty - roughly speaking for those classes
(-)
0

A whose existence is established in T . But this seems to require

a somewhat more delicate treatment of realizability starting with

fp(xnA) written as (f,x)nA* (A* a variable associated with A).
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It is easily seen that Té—) + (AC) + (CT) is inconsistent with

classical logic.

QUESTION®

Is Ty * (ACV) + (CT) consistent with classical logtie?

Using the primitive recursive relation < on N, the schema

for the least element principle is the following:
(LE) IxnN.¢ » IxnNLP A ¥y(y < x + T (y/x)].

There is a corresponding rule (LER), +to infer the conclusion of this
implication from the hypothesis. If that were a derived rule of
Té_) + (AC) then whenever Té_) + AC } dxnN.¢, the conclusion ¢
would be proved to be realizable in Té-). But then Jf(fpy) would
be true in the model of 4.1.1. It would follow that if ¢ i a
number-theoretical statement then Y is recursively realizable.

Hence by the result of Kleene (Kleene [52], p.511) we obtain:

COROLLARY 4.3.3

(LER) <8 not a derived rule of Té“) + (AC) even for

hypotheses provable in Té">.

5. Relations with constructive and recursive mathematics

The discussion in this section will be sketchy and program-

matic.

[
“Raised by R. Statman.
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5.1, Constructivity is understood here in the sense of intuitionisms
pishop [671, [70] takes a more restrictive position but within which he
redevelops substantial portions of mathematics (cf. also Bishop,

chang [721). The essential difference is that he rejects use of
Brouwer's notion of choice sequence, using alternative means for the
treatment of analysis and topology. The dispensability of choice
sequences was theoretically justified in some systems of intuitionis-

tic analysis by Kreisel, Troelstra [70].

L dis informally interpreted in intuitionistic terms as
follows: fx ~ y holds if f 1is a construction (or constructive
function) which gives the value y when applied to x. The notion
of clasgification is interpreted as that of speecies (or type) and
xnA by: x belongs to the species A. Bishop's notion of ‘set may
be identified more particularly with pairs (A,E) for which A, E
are classifications and E is an equivalence relation on A.
(Inversely, classifications may be explained in Bishop's terms as sets
equipped with the relation of literal identity; for alternative

explanations cf §7.3 below.)

There is no notion in £ which expresses that of choice
sequence. Nor is there a means of expressing in £ the notion of
construetive proof. The latter is essential for the intuitionistic

reduction of logic to mathematics (ef. Kreisel [65], §2).
(1) Claim. Ty is constructively correct.

It seems to me that this should be accepted under all the explanations

Scf. e.g. Heyting [72], Kreisel [651, §2, Tait [68], and Troelstra [69]
for various explanations of this position.
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of the constructivist position mentioned here; cf. particularly the

line of argument in (Tait [681]).

(2) Claim. All of Bishop's work (Bishop [67], Bishop, Chang [72])

can be formalized in TO.

A related claim for a portion of Bishop [67], using a somewhat weaker
theory of finite types in place of T, has been made by Goodman and
Myhill [72]. However, they did not see how to deal with Bishop's
general concept of set. As explained above, this is handled directly
in TO‘ Actually for (2) one should need only that part of V

(along with I-IV) required to obtain N and inductively generated

N-branching trees (used for countable ordinals and Borel sets).

5.2. Relations with recursive mathematics

There have been a number of investigations of recursive

. . 7 . .
analogues of classical notions . These yileld results concerning

¢(rec)

statements formulated in recursive terms analogous to some

(cl). ¢(ra¢)

classical statement ¢ The results for which is true
are often called positive while those for which it is false are called
negative. For example, the theorem on the existence of the maximum
of a continuous function on a closed interval has a positive recursive
analogue; the statement that the maximum is taken on at some point

has a negative analogue.

The interest of such a program obviously depends to a good

(cl)

(rec) given ¢ . It may be asked

extent on the choice of ¢

whether reasonable requirements for this choice can be formulated in

TFor set theory cf. e.g. Dekker, Myhill [601], Crossley [69]); for alge-
bra, Mal'cev [71], Rabin [62], Ershov [68]; for analysis, Specker [5],
the Markov school (Sanin [68] and Tseytin, Zaslavsky, Shanin [661);
and for topology, Lacombe [59].
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precise terms. The following is an example of such for a class of

statements that covers many of the actual examples.

(1) Suppose ¢(Cl) ie provably equivalent in set theory (say
7FC) to @(M) where © 1is a sentence of Lpn; then g (HEO,2) ;4 4
(rec) (cl)

candidate as the choice for ¢ (For example, where ¢
concerns real numbers, 6 will deal instead with Cauchy sequences of
rationals under an equivalence relation.) When a choice is made

according to (1) we can hope to learn much more from a positive result,

in the light of 4.1.2 and 4.2.2.

(2) Congecture. For each known positive result of recursive

mathematics of the form g (HEO,=

o (T,E)

where © 18 a sentence of EFT we

(W,E)

in this case as a construe-

have T, F We may regard

¢(cv) of ¢(c1)

tive analogue (or substitute) which in fact is a

generaligation of both ¢(rec) and ¢(01). Indeed, by 4.2.1(ii),
read classically ¢CCV) 18 equivalent to ¢(Cl). These relationships
illustrate the following.

(3) CGeneral expectation. (i) Each classical theorem ¢(C1)
for whieh a recursive analogue ¢(rec) has been considered has a
constructively meaningful form ¢(CV). (ii) When ¢(rec) 18 true,
¢(CV) ig constructively provable.

We may add, for the particular language and axioms considered:

(rec)

¢(cv)

18 independent of

(3) (iii) When ¢ is falese then

TOQ
Obviously we can also get independence results for any T such that

¢(CV) is interpreted as ¢(rec) in a suitable model.
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REMARKS

(a) Requirements of the kind (1) above are only a first
step to finding appropriate recursive and constructive analogues of
classical statements. For even if such a choice is made, we may

(el) 0(M)

have 8., 6, with ¢ equivalent in set theory to both 1

(M)
and 62

, yet 6, is true and 6, is false in (HEO,Z). For
example, the classicél theorem may have the form 3If ¥x€A ¢(x,£(x)).
If A is definable in the form 3Jy.(x,y) € B, it may not be possible
to find f as an effective function of x alone. On the other
hand, for the classically equivalent statement 3dg ¥(x,y) € Bo(x,g(x,y))
we may be able to find g as an effective function. This is & well-
recognized technique for finding positive recursive or constructive
substitutes of classical theorems. For a smooth-running positive
development one usually makes a choice of notions (e.g. Cauchy
sequences considered only as paired with a rate-of-convergence

function) which automatically involve this technique wherever needed.

(b) It is possible that the theory Té”) + (AC) could
lend itself to the purpose of (3) above in the following way. First
find a statement ¢ of £ which is equivalent in set theory to
¢(Cl) and such that Té-) + (AC) } ¢. Then take ¢(qv) to be
Jf(fpy). Note that ¢(CV) is also classically equivalent to ¢(Ql)
but now Té") - ¢CCV). Finally, let ¢(rec) be the interpretation
of ¢(cv) in the recursion-theoretic model of 4.1l.1. Even with this
approach one would still have to go through some of the work of the
preceding remark, since when applying (ACA) we can only use

(-)

classifications proved to exist in TD + AC; these in general do

not include existentially definable A.

(c) Since T, is not extensional, when dealing with
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generalizations of classical theorems it is necessary throughout to
replace sets by pairs (A,E) where E is an equivalence relation on
A. Similarly, instead of algebraic structures

U= (A Rl""’fl""’al"") one will consider more generally
pairs (U,E) of such for which E is a congruence relation on aq.
The operation U~ WE cannot be performed, but when E is carried

along, this is not necessary.

Call a classification X decidable relative to B if

X ¢B and X has a characteristic function g relative to B, i.e.

Van[(gX ~0veg, ~ 1) alg, ~0«xnX)].

p. 4 h*

Call A denumerable if there exists h : N on;o A. When A is

denumerable and [ 1is a decidable congruence relation (relative to

A2) we can choose representatives of the E-equivalence classes and
form a structure U/E. If each relation of U 1is also decidable
(relative to the appropriate A™ then in the model of 4.1.1, U/E

is isomorphic to a recursively enumerated etructure in the sense of
Mal'cev [71] Ch.18. However, for a program of constructive generalization of
algebra via formalization in TO it should not be necessary to demand
of all the structures (U,E) considered that they be denumerable or
decidable. Such additional information is only to be assumed where

necessary and verified where possible.

One place where decidability restrictions may play an
essential role in algebra is in the ideal theory of rings. For
example, a non-trivial ideal X in the integers can only be shown to
be principal if it has a least positive element 2. But as observed

in 4.3.3, this cannot be constructively derived in general. However,

if X is decidable with characteristic function g and X is any
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. s . . . 8
given positive element in X then we can find 2z as (uy < x)gy ~ 0.

6. T1 and related theories

6.1. Language and axioms. Tl uses the same language £ as TO
except that (for simplicity) we adjoin one new constant symbol ey.

There is only one new axiom:
VI (Numerical quantification)

fol)A (egf ~ 0« 3xnN. fx ~ 0)

(f : N> N) » (epf ~0 v ey 0

En

6.2. Some consequences. Using the partial minimum operator u of

§3.3(6) we define the unbounded minimum operator Mg in Tl by

|
1o
H
1R
=

H
|2
(=]

Thus u0f¢ for all £ : N » N.

The recursion-theoretic jump operator J : NN - 8V s

defined as J(f) ~ kx.gN(Ay. t(f,x,y)) for a certain primitive recurs-

ive t. Then the definition of the hyperarithmetic hierarchy
(Ha>anOl can be given in Tl, iterating J along Ol' From this,
one defines the predicate Hyp(f) expressing that an operation f in

N . . . . . .
N is hyperarithmetic, i.e. recursive in some Ha

There are several ways to introduce the notion of a function

partial recursive in ey, and to give an associated enumeration

8his suggests a response to Bishop's question in Bishop [70], pp.
55~-56.
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e

=N .
{z} (z=0,132500.). One way is by means of Kleene's notion of
partial recursive functional of finite type in Kleene [59]. This

e
leads to an inductive definition of {z}—N(xl,...,xn) ~y (for
Kz esX sy in N) which falls under Axiom V and can be carried out
conveniently in TU' Kleene shows that
N SN
¥EnN [Hyp(£f) < 3znN ¥xnN(fx ~ {z}  (x)) 1.

Thus the following statement is analogous to Church's Thesis:

(HT) YN Hyp(£).

6.3. Metamathematical results
THEOREM 6.3.1

There 18 a model of Tl in which the range of the variables

is the set w of natural numbers and (HT) is true.

By 4.1 Remark (a), this may be proved in exactly the same
way as 4.1.1. Note that as in Remark (c) there, this proof can also

be formalized in classical 2nd order analysis.

There is an obvious generalization of HEO to any enumerat-
ive system. In particular, the enumeration indicated in 6.2 of the
functions partial recursive in ey, induces a type structure

(e,,) (e
....N - =N
(HEO s g )

(ey?

or as we shall write it (HEO,=)
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COROLLARY 6.3.2

If © 18 a sentence of £FT and Tl F e(N’E) with

(e)
5 (HEO, = N

elassical logie then 18 true.

Without further work we also obtain the results of 4.2,
THEOREM 6.3.3

Theorem 4.2.1 remains correct when "TO” i8 rveplaced by

HT n
1 .

COROLLARY 6.3.4

(N,E)

If © is a sentence of Lpp and T, | 8 then

zr b oM,

Turning now to 4.3, define T{”) to be Ti—> + (Axiom VI

for eN). The classes of formulas fo, 7i are defined in the same

way as before.

THEOREM 6.3.5

Theorem 4.3.1 remains correct when "Té—)" i8 replaced by

HT](-_)H .

The proof is as before.

6.4. Relations with predicativity. The informal conception of
predicativity taken here is that one deals just with the definitions
and proofs implicit in assuming that the set of natural numbers is
given (as a kind of "completed infinite totality'"). Precise proposals

for explaining this have been given in terms of autonomous progressions
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of ramified theories Ra ;3 cf. Feferman [68] for a survey of work on
theseg. Viewed from the outside, the least non-autonomous ordinal
is a certain (recursive) e The general concept of ordinal (or
well-ordering) is itself not predicative. One may speak of
particular ordinals being predicative when it has been recognized by

these means that corresponding principles of transfinite induction

and recursion are justified.

The language £ does not match directly with formal
languages considered up to now in the study of predicativity.
Nevertheless, it makes sense to interpret V as o and the operations
and classifications as ranging over predicative definitions of partial
operations and subsets of w, resp. Clearly, not all of Axiom V for

inductive generation is justified under this interpretation. Let

(N)

VN be the special case used in 3.3(8) to derive N, and let Tl

be T, with Vg in place of V.

CONJECTURE

TiN) is (proof-theoretically) reducible to predicative

analysis U R

e
a<P0

It may even be that TEN)

is of the same strength as
predicative analysis. (The latter is known to be weaker than the

intuitionistic 1lst order theory of 0., hence also weaker than TO.)

The actual development of analysis by predicative means may
be referred to the hierarchies Nc or (NG,EG) in TiN). All of

classical analysis and much of the modern theory of measure and

8cf. also Feferman [64], Kreisel [70]. A more perspicucus formalization
without progressions is given by Feferman in a paper to appear in the
Lorenzen Festschrift.
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integration can be accounted for predicatively, though the l.u.b.
principle is available only for sequences rather than for sets in

generallo.

6.5. Borelian mathematics and Tl' Obviously it is necessary to yge
Axiom V to deal with the parts of mathematics where ordinals entep
unrestrictedly. In analysis this shows up in the sequence of derived
sets of a closed set, in the theory of Borel sets, etc. Borel and
his school (Baire, Lebesgue, etc.) talked of restricting mathematics
to that which was explicitly definable (Borel [1u1]). However, they
never made clear what means of definition or proof were to be admitted,
Some idea of this can be drawn from their practice, which is seen to
be accounted for in Tl' It would be of interest to see whether the
Borelian conception of mathemgtice can be explained in o precise way;

T would seem to be a strong candidate for this.

1

The axiom VI with intuitionistic logic implien what Bishop

9

+ N,

&l

calls the limited prineiple of omniseience; for { 1 b
(LPO) ¥x(fx ~ 0) v 3xu,y(fx ~ y + 1),

He says (Bishop [67], p.9) that each of his results ¢ is a constructive
substitute for a classical theorem ¢ such that ¢ together with

(LPO) implies . Relying on this and §.1(2) we have:

CLAIM
All of the classical mathematics replaced by Hiohop's work

can be formalized in Tl.

10

cf. Lorenzen [65] for classical analysis. I have given a predic-
ative development of measure theory in unpublished notes. Transcen-

dental methods in algebraic number theory have also Leen treated
predicatively (Larson [697]).
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In most cases this is simpler to verify directly than to pass through

this work.

6.6. Relations with hyperarithmetic mathematics. The idea here is
the same as for recursive mathematics, and the discussion of §5.2

can be paralleled completely, but the subject itself has not been
pursued to anywhere near the same extent. For the most part the
positive results have already been realized as predicative theorems,
hence as generalizations of both hyperarithmetic and classical results.
By 6.3.2, negative results such as that of Kreisel [59] for the
cantor-Bendixson theorem may be used to give independence of some

classical theorems from Tl'

There is one recent positive development in hyperarithmetic
mathematics that ought to be re-examined with an eye to generalization

by means of formalization in 1 namely hyperarithmetic model theory.

12
This was initiated by Cleave [68] particularly in a study of hyper-
apithmetic analogues of ultrafilters, ultrapowers, etc. Cutland [72]
has continued this for saturated models and forms of categoricity.
Denumerable models should play a special role since for these the

satisfaction relation is decidable.

7. Coneluding questions and remarks

7.1.  Systematic and ad hoec explicit mathematics. What we have
called here systematic explicit mathematics are attempts to redevelop
substantial portions of mathematics by means of restricted methods of
definition and/or proof. By contrast, ad hoec work examines partic-
ular existential results of classical mathematics with the aim to

obtain more explicit or sharper information. No (deliberate)
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restriction is made on methods of definition or proof; rather one
employs refined considerations or gpecial new methods. The most
striking (and frequently cited)ll example is Baker's work on some
classes of diophantine equations, giving explicit bounds for the
solutions which had previously only been known to be finite in numberp,
Taking a systematic approach will not automatically lead one to such

improvements.

NOTE

Explicit definability results for theories with logic
restricted to be intuitionistic give them an appearance of systematic
explicit mathematics. Here the emphasis instead has been on the
choice of basic notions to more accurately reflect actual practice,

Intuitionist logic plays a role only in some metatheorems.

7.2, Proof-theoretical work on subsyetems.

For certain subtheories T of T , 7T it has been pussible

n* ")

to characterize the operations from N to N which are proved in T
to exist. These characterizations are given in terms of certain
hierarchies of functions up to some familiar ordinals. The tech-
niques are proof-theoretical, by Gédel's funetional interpretation
(Godel [58]) followed by normalization of terms. This has been done
for systems of finite type over N in Tait [65] and, with ) in
Feferman [707]. Howard [72] treats a system of finite type over N,
Ol which is interpretable in Tﬂ, and Zucker (Troelstra [72]1) pives

some extensions of this to iterated inductive definitions; it should

11 . . s Tan e
Particularly by Kreisel; cf. Kreisel [7u] for a more adequate
discussion.
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pe possible to use similar methods when the axiom VI for is added.

e
=N
Tt may be of interest to see whether these techniques can be applied
directly to related and stronger subsystems. of 'I‘O and Tl with
tyapiable types'. Some such has been done by Girard [71] and

Martin-Lof Me ]

7.3. Bounded claseifications and sets

The following kind of extension Sg of T, might provide

a more flexible comparison with set theory. The language £ of

Bd
5 has one new basic predicate symbol Bd(x) which we read as:

x is a bounded classification; the idea is that x is contained in

gome classification built up by sums and products from N. The

axioms of by apree with those of TO through I-IVy; V is
modified so an to allow any formula ¢ of ﬁBd' We have in addition

the following axioms for B

(i) Bd(x) » CI(x)

(ii) BdA(M)
(i11) Bd(A) A ¥unA., BA(fx) - HﬂCﬁanfx) A Bd(ﬂanfx)
(iv) BACA) A X € A + Bd(X)

(v) A scheme for proof by induction on  Bd.

Since A » B c ﬁyuﬁh and BA ¢ 1 we also have closure of BEd

- an)’
under these operations. Note that if onTypy then BA(N,), Bd(NG)
and Hﬂ(ﬁw); more generally these hold for onTypA where each X

in A is bounded.

Sp * (UT) has a model just like that for T, in H.1.1.

Simply take kd 1o be the smallest set gatisfying (ii)-(iv), The

same method works in any model, where i(a,r) 1s set-theoretically
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defined by:

zniCa,r) # z € N X{¥xnal¥y(y,x) r =y € X) = x € X]}

QUESTION

Is S, a conservative extension of T, 7

We can associate with each model of set theory a model of SO in
which the bounded classifications are just those coextensive with the

sets:
THEOREM 7.3.1

Let U = (A,€) be any model of IF. There is a model U*

of S, in whieh V = A and Bd(a) # Cl(a) ~ 3b € A ¥x € Alxna « x€b],

0

The method of proof is the same as for 4.2.1.

For a nice result like 4#.2.2 one should perhaps deal
instead with axioms for the predicate Set(A,E) which holds when

3d(A) and E 1is an equivalence relation on A.

NOTE
Bishop's notion of set in Bishop [67] may be more

appropriately interpreted by such a predicate.
7.4. Impredicatively defined operations

In analogy with the introduction of ey we might further

consider the theory T, obtained from T, by adding a constant g .
N
with the axiom:

+N) > (e o f 0 ve of~1)ale f~0« HgnNN.fg ~ 01
N N N -
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Mathematically, this permits application of the l.u.b. principle to

decidable sets of real numbers. Questions here would be whether we
could get a model like that in 6.3.1 for Tl, and to what extent we
could get interesting proof-theoretical information about subsystems

of T2 including the new axiomn.

7.5. Impredicatively defined classifications

Here we would like to know to what extent TO can be
strengthened by classification existence axioms so that the resulting
theory T#* is also intuitively correct, or at least for which we can
get a model of T* + (CT) in which N is standard. Particularly

to be considered are instances of the comprehension axiom scheme

(CA,) 3¢ ¥x[xnC + ¢(x)]

¢

where ¢ is not an elementary formula. The fact that the un-
restricted application of this principle leads to contradiction shows
that the concept of classification is not completely clear; cf. §7.7
below . Some experimentation to see how far the use of (CA) can

be pushed may be helpful to obtain clarification in these circumstances.
The specific cases considered in this section and the next were

suggested by past experience.

(2) satisfying

Call ¢ 2nd order if it is a formula of £
the conditions to be an elementary formula (2.6) except that
quantifiers with classifications variables ¥X(...), 3IX(...) are
(ca)

permitted. Write ¢ for the result of replacing each such

quantifier by ¥X € A(...), IX C AC...).

It turns out possible to get a model of T, + (CT) +
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(CA¢(§N))¢ ond ordep I which N is standard. This can be done more
generally with N replaced by any bounded classification. Let

(CA(Z)) be the schema (CA,) for all 2nd order ¢.

¢

QUESTION

Does T, + (CT) + (CA(Z))

0
whieh N 18 standard?lz

have a model, particularly one in

Note that the inductive generation axiom V is derivable from (CA(Q)).

7.6. Impredicatively defined classtifications (cont.)

Another collection of instances of the scheme (CA) which
should be considered is suggested by self-applicable concepts in algebra
such as the "category of all categories". In Ty, (single~sorted)
structures of signature v = ((nl,...,nk), (ml,...,ml), (ml,...,mz),p)

are defined to be (1 + k + & + p)-tuples:

(1) a = (ARys... R, fl""’fz’ cl,...,cp)
where

m.

n.
(ii) each R; C A *, £, AT~ A, and cynA.

bR

Write Strv(a) for the formula in £ which expresses that there exist
A,Rl,...,cp satisfying (i), (ii). Given any sentence 6 in the

lst order language £él)

of structures of type v, write Sate(a) for
the formula which expresses that the structure a satisfies (or is a
model of) © 3 we also write a F & for this. Finally, write

a, = a, to express that a,, a, are isomorphic structures of the same

signature.

The first question would be whether we can consistently

assume for each v : 3B ¥x[xnB « Strv(x)]. This is not possible

12(pdded in proof) The answer is positive; c¢f. Addenda (A2) below.
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with TO for then we could derive the existence of a C such that
¥x[xnC < Ca(x)1. A form of Russell's paradox follows by taking

J = Exncx and D = R.(x,x)¥J. But this does not exclude the
possibility of having classes of representatives (with respect to =)
of all structures of a given type, which is all that is important

algebraically.

QUESTION

Is T, consistent with the following sentences

ACL¥x(xnC + Str (%) A x E 68) A Vy(StrV(y) Ay E 6> 3xnC(y = x))]

for each signature Vv and sentence 6 of £5l)?

Perhaps more promising is the use of Ty + (CA(Z))

of the
preceding section. We can already speak in that theory (to be more
precise, in a slight extension) of the category of all functors
between any given "large" categories (e.g. groups, classes, etc.):

for, functors are just operations satisfying special conditions

explained by quantifying over structures.

REMARK

The sysems developed in (Feferman [Msl) could deal
with all these kinds of self-applicable concepts, but at a cost of
other deficiencies. A principal difference is that operations were
explained there in terms of classes rather than treated independently

as here. The present language should permit greater flexibility.

7.7. Partial and total classifications.

Returning to the question of clarifying the concept Cl, one
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way of putting the difficulty is that not every well-formed formula
6(x,...) of £ need be recognized as determining a property which is
meaningful for all X. For example, it might be said that the
property of being a Cauchy sequence is only meaningful for sequences,
This suggests considering a notion of partial property or
eclassification, one whose domain of significance may be only a part A

of V. We would only be able to say in this case:
IC ¥xnA [xnC « ¢(x)].

This appealing idea goes back to Russell; one form of it has been
pursued by Gilmore [70]. Another point that might appeal in the
present context is that it appears to put operations and classificationg

on a similar footing.

If T is to be embedded in a theory of partial classific.

0
ations it seems we should have a new operation ¢ such that

Cl(x) =+ éxb A CL(6x).

Here Cl(x) is read as: x 1is a partial classification, and 6&x is
read as: the domain of significance of x. We would call x  a

total classification if V C éx; it is such that we have had in mind
up to this section. In a theory of this kind, the partial comprehen-

sion scheme would take the form for arbitrary ¢ :
IC ¥xnéC [xnC + ¢(x)].

If nothing more is said about the members of C, this theory is
trivially consistent. The problem with this idea is that we have
shifted the initial question to: which ¢ have V C §C% Ope would

hope to get simple evident (sufficient) conditions for this, to
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precapture at least axioms III-V, if not more’S.

7.8, Pergpective

The study of systematic explicit mathematics may be more of
logical and/or philosophical interest than of mathematical interest.
In any case it is relevant to significant portions of actual
mathematics. The problems raised in 7.5 - 7.7 are very intriguing
from the logical point of view, but they have little mathematical

relevance, as far as one can see now.

ADDENDA
(Al) To Footnote 2.
Following circulation of this paper I learned of a theory CST
of functions and sets independently developed by Myhill, which has
several aspects in common with T,. His stated purpose is to provide

a constructive framework for constructive mathematics as exemplified in

Bishop [671]. C8T differs from TD in the basic respect that extension-
ality for both functions and sets is taken among the axioms. For this
reason, CST is not evidently constructive. It is possible though that

Myhill's metamathematical work on the theory will show it reducible to

constructive principles. (This is being prepared for publication.)

T also learned from Myhill of the paper by Cocchiarella [to

appear] which introduces some axioms for predicates and corresponding

sets (here: classifications) that may be said to anticipate the idea for

la(Added in proof) Subsequent to the above I found some theories of
partial operations and classifications which accomplish a good deal
of this aim as well as that of 7.6. The work will appear 1n a
paper for the Schiitte Festschrift.
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axiom schema III of TU (3.3 below).

(A2) To §7.5.
This gives an affirmative answer to the question raised in
§7.5 whether there is a model Il for T, + (CT) with full 2nd order
comprehension CA(Q) (and in which N is standard). The proof is
by a non~constructive modification of the proof of 4.l.l.

Let M = (w,Puw, ~, €); the interpretations of 0, k, 8, d , Ps Pys Py

are chosen as before. Associate with each 2nd order formula
¢(x1,...,xn, Xl,...,Xm,Y) (where the variables listed include all
free variables of ¢) a Skolem function Y = F¢(xl,...,xn,xl,...,xm)
in M. Now define the subsets C&, of w and for a €& C&L, the

set e(a) = {x : xna}l by induction on a (e(a) is the extension

of a) as follows. CLO = 0 and for limit A, ka = Y, czu.

Clotq is C%a together with

(i) all (l,¢,(xl,...,xn,al,...,am)) where ¢ 1is 2nd order
as above and each Bpseeesdp € cza, as well as

(ii) all (2,a,f) such that a € CL, and ¥xnal{f}(x) € cza].
In case (i), take zn(l,¢,(xl,...,xn,al,...,am)) @ 7 € F¢(Xl""’xn’
e(al),...,e(am)) and in (ii), take zn(2,a,f) ¢ 3xna Ayn{f}(x)
[z = (x,y)]. Let Ct =UCL and N = (w,CR,~sn) e
LEMMA

For any 2nd order w(xl,...,xn,xl,...,xm) (considered as a

formula of L) and any KyseoenXy € w, L. € CR we have

N E w(xl,...,xn,al,...,am) « M E w(xl,...,xn,e(al),...,e(am)).

Thus M is a model of (CA‘Z)) + (CT) as well as axioms I,

II, IV of Tq- The verification of (CA(Z)) takes care of IIIX
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(Elementary Comprehension) and V (Inductive generation).

In the same way we can strengthen Theorem 6.3.1.

PO I % Rk
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