


What Proofs Must Do

® A proof must convince us of the truth of
the statement being proved.

® “Truth” is taken in its prima facie sense, i.e.
we are supposed to understand the
meanings of the notions in that statement.

® TJo be convinced of a proof, one must
follow the argument and check the steps
using also background knowledge.




What Proofs Must Do (contd.)

® So to follow a proof we must also
understand the meanings of the
notions used in the proof and from
background knowledge.

® FEven given that, it is possible to go
through the steps of a proof and not
“really understand” the proof itself.




Really Understanding Proofs

® When we're led to say, 'Oh, | see!”

® |t’s a special kind of insight into how
and why the proof works.

® That kind of understanding of proofs
is necessary in order to be a full-
fledged consumer and producer of
mathematics.




Diagrams in Proofs

® Ubiquitous in geometry from the
Greeks to the present, as well as in
early analysis.

® Doubts cast on their validity because
the diagrams used might not be
“typical”’.




Diagrams in Proofs (cont'd)

| 9th c. rigorization of mathematics
supposedly led to the elimination in
principle of diagrams from proofs.

But the practice of reliance on diagrams is
still integral to the presentation of
mathematical proofs of all sorts.

That’s because such use is often part of
what is needed for real understanding.




What Are Diagrams!

Two-dimensional representations of

(possibly parts of possibly infinite)
mathematical configurations.

Lines, curves, arrows, labels, marks,
shaded areas.

Broken lines, dotted lines, dots.

It's questionable whether one can
define this concept in general.




Typicality in Diagrams

® |nteresting mathematical theorems
state a fact about infinitely many
objects of a certain kind, e.g. triangles.

® But the diagram used in a proof
represents only one such object.

® |t is an issue whether the
representation taken is typical.




Infinite Diagrams and Typicality

® [n modern mathematics often deal with a
diagram representing a typical part of a
single infinite configuration, the balance
indicated by dots.

® The use of such infinite diagrams is
essential to understanding certain proofs.

® The statement of some theorems can’t
even be understood without reference to
such a diagram.




The Dynamic View of Diagrams

® We should not think of diagrams, finite
or infinite, as static completed figures.

® Rather, think of them as constructed
and reasoned about in stages.

® Or retrace static representations in a
dynamic way.

® Example: Pythagoras’ Theorem.




—adapted from the Chou pei suan ching
(author unknown, circa B.c. 2007?)




Proofs Without Words
Roger B. Nelsen (ed.)

® The title is misleading: we need words to
say what the diagrams are proofs of and
words to guide us dynamically through the
proofs.

® Nelsen:“generally, PWWVs are pictures or
diagrams that help the observers see why a
particular statement may be true, and also
to see how one might begin to go about
proving it true.”







Some Arithmetical PYWWVs

Proofs of some identities
f(1)+f(2)+...+f(n) = g(n).

Typical diagram is given for some specific
n, usually smaller than 0.

They constitute completely convincing
evidence for the truth of the identity.

But they don’t at all suggest the usual proof
by induction.




1
1+2+---+n=3n(n+1)







-1) = n?

+ (2n

1+3+5+




L
3

g

n

(n + 1)(
n+

12+
22 4
+n?




“Hilbert’s Thesis”

® The thesis that every proof can be
formalized, i.e. turned into a formal proof in
a formal system.

® Defenders and critics; cf,, e.g., the Azzouni-
Rav exchange in Philosophia Mathematica.

® The possible significance of
metamathematical results for mathematical
practice depends on the thesis.




The Main Challenge to
Hilbert’s Thesis

® Understanding of both meanings and
proofs is essential to higher
mathematical activity, and that is in no
way reflected in the formal model.

® The cases of essential use of reasoning
with diagrams is part of that challenge.
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everal pieces having a total Iength of One oot ITOMI TIIE OIIZITAL OTIE TO0T
ong piece, what's left? Whatever is left, if anything at all, will have a
otal measure, or length, of zero. But what about the cardinality of the
emaining point set? Would it be zero? Could it be anything but zero?
f the pieces are removed in a special way, the remaining set, known as
he Cantor set, or Cantor dust, turns out to be quite remarkable.

Begin with a line segment of unit length and remove the mlddle
mrd That is, from [0, 1] remove all points strictly between 3 and

. What remains is [0, 1]— (;, £)=[0,3 ]U[s,’ 1]. Now remove the
niddle third from each of the two remaining pieces. Continue the
rocess through infinitely many steps by always removing the middle
hird of the remaining pieces. Figure 4.20 shows the first few steps of
ais process.

It is difficult to illustrate the Cantor set beyond this point; however,
: appears as if there would be little if any left of our original segment
“rer infinitely many such steps. Supporting this is the fact that the rotal
:ngth of all intervals removed is one, the length of our original segment.
e show this by eva.luating the infinite geometric series
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It follows that the measure, or total length of the remaining point
=z, is zero. In fact, if we randomly choose a point from the original
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Figure 4.20. Formation of the Cantor set.
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Comp]exes, Homo/ogy, and Ext

In this chapter we plan to define Ext and establish a few of its basic
properties. As the reader will note, the process takes a considerable amount
of space and lots of machinery, some of which will be used in later chapters.

DEFINITION. A complex (sometimes called a graded differential complex) is a
sequence of R modules

C= {Culim-w
together with a collection of R homomorphisms

M O a
or
{dn: Cn - Cn+l}:= —

called differentials such that

d,,_ld,. =() or d,,.Hd,. = 0.

For simplicity in the following discussion, we shall treat only the case that
the differential goes down (d,: C,, — C,_1). All the analogous properties can
be shown in the other case by merely renumbering. In application, both cases
will occur.

If C is a complex of R modules with differentials d,: C,, — C._1, then
Kerd, 2 Im d,4,. Let H,(C) = Ker d,/Im dn41. The groups, H.(C), are
called the homology groups of the complex. If H.(C) = (0) for every #, then
the complex is an exact sequence, and conversely.

If A and C are two complexes of R modules with differentials d4: 4, —
An- and d: Cp— Cooy, respectively, then a complex map f: A — C is a
collection of R homomorphisms f,: 4, — C, such that the following diagram
is commutative:

A
'_’An—7—l—>x‘1n—1—’"'
L R
. _)CnTcn—l_’"’

That is, for each n, f,_1d2 = dSf..
27




28 COMPLEXES, HOMOLOGY, AND EXT

In the following text, we are going to drop the subscripts and super-
scripts on differentials and complex maps except in those cases where confusion
would otherwise result. Usually it will be clear from the context which sub-
scripts and superscripts are called for.

Proposition. If 4 and C are complexes of R modules, then a complex
map f: A — C induces (for each n) an R homomorphism fs: H,(4) — H,(C).

Proof. Consider f,,: A, — C,. Notice that the relation fudy 1 = dy41fnsn
implies that f,(Im d,,41) € Im d,41 in C,. Thus, f, induces f,: 4,/Im dpy1—
Cn/Im dyy 4y, Similarly, the relation dvnfn = fu_1d, shows that f«(Ker d,) C
Ker d, in C,. That is, we have the induced map

Jalaw: Hy(4) = H,(C).
This mapping is fs.
DeriNirioN.  The sequence
0-44LB5C—0
where 4, B, C, and 0 are complexes of R modules (0 is the complex of zero R

modules). The sequence is called an exact sequence of complexes if 0 — A, j,
=, and C — 0 are complex maps and

0> A4, B, ™ C,—0

is exact for each 7.
The Exact Sequence of Homology Theorer. If
0—-44LB85C—0

is an exact sequence of complexes, it induces the following exact sequence of
homology:

* = Hpa(C) 5 Ho(4) 2 H,(B) =
Ho(C) 5 Hur(4) 2 Ho (B) ™ H,_,(C) 55 -

Remarks. The R homomorphisms 4 are called connecting maps. Note that
we have omitted subscripts on the connecting maps. Many proofs in this
chapter involve a certain amount of “diagram chasing,” and for this proof
the following diagram is appropriate:
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0 0 0o 0 0
! l ! l

Apa = Ant S A0 S Aacs S Ans
1 ! ir 2l il
B-ol -t Bh}l —" Bu 7‘ B-—l - B-—i
| i 17/

Cott 5 Cott $C. 4 Coci 5 Caa
| ! ¥ . 3 !

0 0 0 0 0

Recall that this diagram is commutative.

Proof. First we wish to define the connecting homomorphism 6: /,(C) ~+
H,.:(A). Note on the preceding diagram the dashed arrow from Cy to A4y
This indicates the path to follow for the construction of 8. There will be
several choices involved in the construction, but after we have completed
the definition, we shall show that it did not depend on these choices,

Let x € H.(C) and choose ¢ € C. such that ¢ is in the coset x. By the
definition of the homology groups, we see that d(¢) = 0. Since B, 5 €, =+ 0
is exact, there exists b € B, such that x(b) = ¢. Now form d(b) € B, ., and
observe that, from the commutativity of the diagram, xd(b) = dx(b) = dlc) =
0. Since An_y 2 Byt % Co.y is exact, there exists a € A, such that
j(@) = d(b). There is noarbitrary choice involved in the selection of a, since
j is a monomorphism. The definition of 6(x) now emerges: Let 6(x) be the
coset in H,_,(A) containing the clement a. We note first that a is in such a
coset, since jd{a) = dj(a) = dd(b) = 0 and the fact that j is a monomorphism
imply that d{a) = 0.

The reader will note that in the construction of 8(x), we made two arbi-
trary choices, the selection of the clements b and ¢. In the following discussion,
we shall show that 8(x) is independent of these selections.

(a) 6(x) is independent of the choice of b. Suppose that ¢ has been
selected and that b, & have the property that x(8) « =(¥') = ¢ Then, from
the exactness of A. 2 B, 5 C,, we see that & = b + jlae) for as € A,
Applying d and a little commutativity, we see that d(b) = d(¥) + jdly).
Now suppose that we try to construct #(x), using 3" instead of &; then we
obtain an (unique) element o’ € A,y such that jla’) = 4(d°). However, the
above equation implies that @ = &' 4 d(a,) and that @ and &’ are in the same
coset mod Im d. That is, once ¢ has been chosen, #(x) does not depend on the
choice of b.

(b) ®(x) is independent of the choice of ¢. Suppose that ¢ and ¢ are
two elements in the coset x; then ¢ = ¢ < dlee) for ¢o € Cyyy. Since the
map x is an epimorphism, there exists by € B,y such that x(bg) = o The
above equation can be rewritten ¢ = ¢ + =d(by), using the commutativity
of the big diagram,

. —







