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What is Explicit Mathematics? 

Explicit Mathematics is a flexible unified framework for the systematic logical study of 

those parts of higher mathematics in which proofs of existence guarantee the 

computability or definability by specified means of what is demonstrated to exist. It 

would seem that such parts of mathematics must be relatively restricted, given the 

ubiquity of existence proofs throughout modern mathematics for which no method is 

known, either in practice or in principle, to produce the objects asserted to exist.  Indeed, 

the main parts of mathematics covered by the Explicit Mathematics framework are 

referred to as constructive, predicative, and descriptive in the senses that will be 

described below, and each was originally pursued on philosophical grounds that 

mathematicians for the most part have not found persuasive and too confining for the 

purposes of practice.  What is not generally known and will be revealed in the present 

work through the logical analysis provided by our framework is that in gaining the 

uniform explicitness of solutions one does not pay a great price in terms of both the 

workability and mathematical reach of these approaches, despite their philosophical and 

methodological restrictions.  In particular, a weak predicative system already serves to 

account for all scientifically applicable mathematics in current use. Though the 

constructive, predicative and descriptive approaches are the main parts of mathematics 

with which this book is concerned, Explicit Mathematics has proved to be adaptable to a 

variety of other contexts ranging from theories of feasible computation and finitist 

mathematics to large cardinals in set theory, as will be described in the final part of this 

book.      

The Origins of Explicit Mathematics 
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I was led to the initial development of Explicit Mathematics in the mid 1970s when 

trying to understand what Errett Bishop had accomplished in his groundbreaking work, 

Foundations of Constructive Analysis (1967).  His constructive redevelopment of 

analysis went much farther in the subject than anything that had been previously 

accomplished in the school of Brouwerian intuitionism and its variants. The culprit in 

non-constructive existence proofs had been identified by Brouwer to lie in the general 

application of the method of proof by contradiction: to establish ∃xA(x), assume its 

negation ¬∃xA(x) and show that that leads to a falsehood.  That method in turn depends 

in an essential way on the assumption of the Law of the Excluded Middle (LEM).  The 

general use of LEM, except for effectively decidable properties, was thus excluded from 

intuitionistic logic.   It was later shown by the so-called “realizability” interpretations 

introduced by Kleene in 1945 that in a suitable sense, intuitionistic number theory is 

compatible with the assumption that every function proved to exist is recursive, contrary 

to what holds in classical number theory. Though Bishop agreed with the Brouwerians 

that one should restrict oneself to reasoning in intuitionistic logic, I came to the 

conclusion that that was not the real reason why one could give a systematic recursive 

interpretation to his results.  Rather, its success in that respect depends essentially on two 

features, one general and the other more specific.  The general point is that all of 

Bishop’s basic notions are considered without assumption of extensionality, and in that 

sense are intensional, although in an abstract sense.  (It is that which the ‘Explicit’, in 

‘Explicit Mathematics’, is intended to suggest.) In particular, operations can be 

interpreted directly as computational programs, or indices of partial recursive functions. 

But they can also be considered extensionally, thus making the basic notions a part of 

classical mathematics.  The second, more specific, feature of Bishop’s methodology that, 

in my view, accounted for the success of his approach, was the way he modified classical 

notions to incorporate certain “witnessing data” that is implicitly carried along in proofs.  

Together, his notions and results may be considered to be a refinement of classical 

mathematics that at the same time admits of a constructive interpretation in recursive 

form.  Since Bishop’s redevelopment of analysis is simply a part of classical 

mathematics, that is another way in which it diverges significantly from Brouwerian 

intuitionism.  Brouwer treated real numbers as “choice sequences” of rational numbers, 
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of which one would only have a finite amount of information at any time, and functions 

of real numbers would thus be recast in terms of functions of choice sequences.  From 

this, Brouwer was led to the theorem that every function on a closed interval is 

continuous, patently contradicting classical analysis.  Bishop’s approach, by contrast, 

admits dealing with discontinuous (partial) functions on the real numbers in his theory of 

measure. 

From this reading of Bishop style constructive analysis, I was led to introduce an 

axiomatic system T0 based on classical logic in which all his work could be directly 

formalized. As in Bishop’s work, the ontology of T0 was taken to be that of a universe of 

objects including (i) the natural numbers, (ii) operations (in general partial) and (iii) 

classes1 (a natural extension of Bishop’s sets); moreover, operations and classes are to be 

understood as given intensionally. Operations of pairing and projection are taken as basic, 

and operations can be applied to any objects in the universe, including operations and 

classes.  For example, we have an operation f which takes any pair X, Y of classes to 

produce their cartesian product, X×Y and another operation g which takes X, Y to the 

cartesian power YX, also written X → Y.  The formation of such classes is governed by 

an Elementary Comprehension Axiom scheme (ECA) which tells which properties 

determine classes in a uniform way from given classes; these are given by formulas in 

which classes may be used as parameters to the right of the membership relation and in 

which we do not quantify over classes. But to form general products we need further 

notions and an additional axiom. Given a class I, by an I-termed sequence of classes is 

meant an operation f with domain I such that for each i ∈ Ι  the value of f(i) is a class Xi; 

one wishes to use this to define ΠXi[i ∈ I].  It turns out that in combination with ECA a 

more basic operation is that of forming the disjoint sum or join ∑Xi[i ∈ I], but an 

additional axiom called Join is needed to assure its existence.  Using lower case letters    

a, b, c,…, x, y, z for objects in general⎯ among which operations f, g, h,…⎯and upper 

case letters A, B, C, …, X, Y, Z for classes, the ontology just described requires the 

                                                
1 In the original publication on Explicit Mathematics, Feferman (1975), I used the word 
classifications for what I simply referred to as classes in the follow-up publication, 
Feferman (1979).    
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curious looking axiom ∀X∃x(X = x).  Though it may seem peculiar at first sight, it is 

reasonable when one considers that all the objects with which one deals may be 

conceived of as given intensionally, i.e. by means of presentations that can be coded by 

individuals.   

In the approach to the formalization of Explicit Mathematics due to Jäger (1988), it 

turned out to be more convenient to treat classes extensionally but with many possible 

representations within the universe V of individuals; that is the approach that will be 

followed in this book.2  Membership has its usual meaning, but a new basic relation is 

needed, namely that an object x names or represents the class X, written R(x, X).  In 

these terms, for example, one has operations f and g such that whenever R(x, X) and 

R(y, Y) hold then R(f(x, y), X × Y) and R(g(x, y), X → Y) hold.   

As mentioned above, operations are in general partial as in ordinary mathematics.            

A basic relation for these is that of application, App(x, y, z), which expresses that the 

operation x applied to y is defined and has value z; this is also written xy ≃ z and 

alternatively as x(y) ≃ z.  Underlying all systems of Explicit Mathematics is a simple set 

of axioms for the applicative (operational) structure that is given by the partial 

combinatory calculus, from which the partial λ-calculus is directly derived.  It is 

convenient here to allow the unrestricted formation of terms by closure under the 

application operation xy, and to take a new basic relation t↓ to express that the term t is 

defined.  One must then make some simple modifications to the usual predicate calculus 

via what is called The Logic of Partial Terms (LPT), due to Beeson (1985).  For example, 

in place of the usual axioms ∀xA(x) → A(t) one takes ∀A(x) ∧ t↓ →A(t).  In these 

terms, for any types X and Y,   X → Y consists of all z such that for all x ∈ X, z(x)↓ and 

z(x) ∈ Y.   

Bishop-style constructive analysis within the framework of Explicit Mathematics 

More features of T0 and its reorganization in this book will be described below.  

Meanwhile, let us return to the formalization of Bishop-style constructive analysis within 
                                                
2 There is a difference in terminology, though.  Jäger used ‘types’ for our classes.  
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it that was one of the initial motivations for its .  Starting with the natural numbers N, one 

can form the integers Z and rationals Q in the usual way via their representatives formed 

by pairing; write N+ for the positive integers.  Then Bishop defines a real number to be an 

N+-termed sequence x whose values xn (i.e., x(n)) all lie in Q and for which one has          

|xn − xm| ≤ 1/n + 1/m for all n, m; thus each xn is within 1/n of the “limit” of the 

sequence.3 R is defined to be the set of all real numbers; for x, y in R, one defines x =R y 

to hold just in case |xn − yn| ≤ 2/n for all n.  A real-valued function of real numbers is an 

operation f: R→ R such that whenever x =R y then f(x) =R f(y).  In classical analysis it is 

shown that every continuous function on a closed interval [a, b] is uniformly continuous, 

i.e. for each ε > 0 there exists δ > 0 such that whenever x, y lie in [a, b] and |x − y| < δ 

then |f(x) − f(y)| < ε.  For constructive purposes, Bishop instead defines a continuous 

function on [a, b] to be a pair (f, d) where f is a function from [a, b] to R and d: R+ → R+ 

is such that whenever ε > 0 and |x − y| < d(ε) then |f(x) − f(y)| < ε.  In other words a 

continuous function incorporates as witnessing data a uniform modulus of continuity 

operation that is carried along when inferring its properties.  This allows us, for example, 

to construct the sum of two continuous functions (f, d) and (g, e) to yield a new 

continuous function.  

This is just a bare indication of how the formalization of Bishop style constructive 

analysis proceeds within the framework of T0.  As will be shown in Ch. 14, for most of 

this work only a very limited part of T0 is needed, namely, the partial combinatory 

structure together with the natural numbers, the elementary comprehension principle 

(ECA) and induction on N limited to classes.  As will be seen, the resulting system is of 

the same proof-theoretical strength as Peano Arithmetic, PA. Finally, there is no need to 

restrict to intuitionistic logic in the development of Bishop’s approach and in any case we 

want to have classical logic as our basic system of reasoning throughout in order to deal 

in a common way with constructive, predicative and descriptive mathematics. 

Predicative analysis in the framework of Explicit Mathematics 
                                                
3 A common alternative in the constructive literature is to take real numbers to be pairs 
(x, c) of sequences x: N → Q and c: N → N, for which |xn − xm| ≤ 2−k

 for all n, m ≥ c(k);  
c is then a modulus of convergence operation. 
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Bishop asserted of his approach to constructive analysis that for each theorem A of 

classical analysis one has a constructive version A* such that A follows from A* under 

the assumption of what is called the Limited Principle of Omniscience, 

(LPO)   ∀n (fn ≠ 0) ∨ ∃n (fn = 0), 

where f: N → N.4  (Actually, more is needed, as will be explained in Ch. 14.) LPO is a 

consequence of the Law of Excluded Middle, and even that special case is rejected by the 

intuitionists as well as by Bishop.5  Intuitively, given f, we can only decide number by 

number whether it is equal to 0 or not, but that is insufficient to decide whether or not it 

holds for all natural numbers.  In more philosophical language, within constructive 

mathematics N is regarded as a potential totality.  By contrast, in predicative 

mathematics growing out of the ideas of Henri Poincaré and initially developed by 

Hermann Weyl in his fundamental work, Das Kontinuum (1918), N is regarded as a 

completed totality.  In that approach, not only is LPO accepted, but every operation 

which can be defined by quantification over N is accepted too.  The basic mathematical 

operation which guarantees this is the so-called unbounded minimum operator µ, which 

is defined for each operation f: N → N, and is least such that the following condition 

holds: 

(µ)    ∃n(f(n) = 0) → f(µf) = 0.6 

Then of course  

 ∃n(f(n) = 0) ↔ f(µf) = 0  and  ∀n (fn ≠ 0) ↔ f(µf) ≠ 0, 

so that every arithmetical statement is decided.   

                                                
4 Cf. Bishop and Bridges (1985), pp. 11-12. 
5 LPO is also not recursively realizable when we take f to be a free function variable in 
arithmetic.   
6 Alternatively, we can use the operation E0 which is such that for each operation f that is 
total on N, E0(f) is 0 or 1, and E0(f) = 0 if and only ∃n(f(n) = 0). 
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An example from number theory, namely the famous Hilbert/Waring theorem, illustrates 

a basic difference between constructive and predicative mathematics. Lagrange proved in 

the 18th century that every positive integer is the sum of at most four squares; three 

squares do not suffice in general.  Waring then made the bold conjecture that for each n 

there exists a k such that every integer m is the sum of at most k nth powers.  Hilbert 

proved Waring’s conjecture in 1909.  Let f(n) be the least k for which the Hilbert/Waring 

theorem holds for all sufficiently large integers m.7  The only n for which the exact value 

of f(n) has been determined are f(2) = 4 and f(4) = 16; for example, for n = 3 it is only 

known that 4 ≤ f(3) ≤ 7.  On the face of it, f is not a constructively defined function and 

may well be recursively incomputable.  On the other hand, f  is a perfectly well defined 

function for the predicativist. 

The system T1 of Explicit Mathematics is obtained from T0 by adjoining the above axiom 

(µ).  Its applicative axioms can then be interpreted in terms of what is called recursion in 

the µ operator. 8 Basic results of that theory show that the total number-theoretic 

functions recursive in µ are exactly the hyperarithmetical (HYP) functions, and the partial 

functions recursive in µ are exactly the ∏1
1 functions.  The HYP functions are also 

viewed as obtained by iteration of the so-called  jump operation through the recursive 

ordinals. 

The development of predicative analysis can proceed along lines similar to that of 

constructive analysis but with various notions simplified to be closer to their classical 

counterparts.  But the key classical existential principle that cannot be met in full using 

only predicatively justified assumptions is that of the Least Upper Bound: this asserts that 

for each non-empty subset S of the real numbers that is bounded above, the least upper 

bound of S⎯in symbols, lub(S)⎯exists.  In the case that l = lub(S) is a member of S, it 

appears that l is defined in terms of a totality of which it itself is one of the members.  

Poincaré thought that such circular or impredicative definitions lay behind the paradoxes, 

                                                
7 The letter ‘G’ is used for this function in the literature. 
8 Alternatively, it can be described in terms of recursion on the least admissible set 
containing ω. 
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for example in the definition of the Russell set in terms of the presumed totality of all 

sets, and should be systematically excluded.  Or to put it in positive terms, he thought that 

only definitions which successively appeal only to prior defined collections of objects are 

to be accepted in predicative mathematics.  It can be shown that the general LUB 

principle does not hold under that restriction.  But, as Weyl demonstrated, there is an 

acceptable predicative weakening of the LUB principle that is widely applicable, namely 

that if s: N → R is a sequence of real numbers that is bounded above, then lub{sn | n ∈N} 

exists.   

The issue of the LUB principle relates to another example of a basic difference between 

constructive and predicative mathematics, namely the extreme value theorem in analysis. 

Let a, b be real numbers with a ≤ b, and let f be a continuous function on the closed 

interval [a, b]. The classical extreme value theorem says that f attains both its maximum 

and its minimum on the given interval.  That is, in the case of the maximum, it tells us 

that there exists an x such that f(x) is the maximum of the range of f on [a, b]; similarly 

for the minimum.  The extreme value theorem was long accepted as intuitively obvious 

but only proved rigorously in the 19th century by the methods introduced by Cauchy.  

However, it is shown to be non-constructive by an example due to Specker (1959) in 

which a continuous f on [0, 1] is defined that is computable in the sense that f(x) is 

recursive for each recursive x, but there is no such x at which f attains its maximum.  By 

contrast, the extreme value theorem holds in predicative analysis. 

In fact, Weyl proved that all of the results of 19th century analysis can be obtained by 

predicative means.  This has subsequently been extended to considerable parts of 20th 

century functional analysis, including all that is currently used in scientifically applicable 

mathematics.  Moreover, we shall see in Ch. 15 that that development can all be 

formalized in a relatively weak subsystem of T1 that again turns out to be conservative 

over Peano Arithmetic.  T1 as a whole goes far beyond what is predicatively acceptable, 

even in principle.  But it shares with predicativity the property that it may be considered a 

refinement of classical mathematics whose existential results have an explicit 

interpretation using the operations recursive in the unbounded minimum operator.     

Descriptive set theory in the framework of Explicit Mathematics 
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We turn next to what may be called descriptive mathematics in the Explicit Mathematics 

framework.  The classical school of Descriptive Set Theory (DST) emerged at the hands 

of some of the leading French mathematicians at the turn of the 20th century, principally 

Baire, Borel, and Lebesgue, in reaction to Dirichlet’s idea of an arbitrary function as any 

many-one correspondence.  They took the real numbers for granted as a completed 

totality and thought that one should be concerned only with functions of real numbers 

that are analytically definable in some sense.  In particular, Baire introduced and studied 

in a hierarchy along the countable ordinals the smallest class that contains all the 

continuous functions and is closed under pointwise limits.  Relatedly, Borel introduced 

the smallest class of sets of reals that contains all the open intervals and is closed under 

countable unions and complements; the Borel sets are also classified along the countable 

ordinals.  Lebesgue introduced the concepts of measurability for sets and functions for his 

general theory of integration and showed that the Baire functions and Borel sets are all 

measurable, but that they do not exhaust the class of measurable functions and sets.  In 

1905 he went on to consider projections of Borel sets in the plane, and mistakenly 

concluded that they are again Borel.  Ten years later, that error was spotted by Suslin, 

then a student of Lusin in Moscow.  Suslin called the projections of Borel sets, analytic 

sets or A-sets and showed that they have many “good” properties, including that of 

Lebesgue measurability.  He also showed that the Borel sets are exactly the sets that are 

both analytic and have an analytic complement.  The analytic sets are the first level in 

what is called the projective hierarchy, obtained by closing under projections (P) and 

complementation (C).  Thus the CA sets are also Lebesgue measurable, but efforts to 

extend that property to sets at higher levels in the projective hierarchy did not succeed. 

The reason for that was later demonstrated in 1938 by Gödel who showed that in his 

model L of ZFC there are non-measurable PCA sets.9  

In the 1950s, Kleene developed effective analogues of Classical DST, using the analogy 

of recursive sets with the basic open sets and taking effective countable joins of sets as an 

                                                
9 Modern DST has extended measurability and other “good” properties of sets to all 
levels of the projective hierarchy, under the problematic assumption of what is called 
projective determinacy or equivalently, the existence of certain very large cardinal 
numbers.  See Martin and Steel (1989). 
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analogue to countable unions.  Thus the hyperarithmetic (HYP) sets emerge as the 

analogue of the Borel sets in Effective DST. Then the analogue of the A-sets are those 

that are in the class ∑1
1, i.e. those definable in the form {x | (∃f)(∀n)R(x, f|n)}, where f|n 

is the number of the sequence ⟨f(0),…,f(n−1)⟩ and R(x, y) is a recursive relation.  The 

∏1
1 sets are then the analogue of the CA sets.  Kleene’s analogue of the Suslin theorem is 

that HYP = ∑1
1∩∏1

1.  

All this suggests that it may be reasonable to study Classical and Effective DST under 

one roof in the framework of Explicit Mathematics, by formalizing DST in a suitable 

such system that has both classical and effective models; in fact that can be done in T0.  

Not mentioned so far is that the system T0 contains a quite general axiom IG of Inductive 

Generation, which we can use to generate what corresponds to the Borel sets.  However 

in the framework of T0, like the real numbers R, the Borel sets must be considered as 

certain names of classes.  Then IG allows us to define a class B of names that contains 

the names of open intervals of reals, and is closed under an operation corresponding to 

countable unions.  In the model of T0 in which the applicative structure is given by the 

indices of partial recursive functions, the members of B turn out to be the indices of 

hyperarithmetic sets, while those in the model based on an applicative structure 

containing codes of all set-theoretic functions, the interpretation of B corresponds to the 

Borel sets of Classical DST.  It is shown in Ch. 16  how to prove an abstract version of 

the Suslin-Kleene theorem in T0 (in fact, using only IG with countable closure 

conditions) which thus generalizes both its classical and effective versions.  

One can also consider a second approach to DST based on an extension T2 of T1 obtained 

by adding a constant for the Suslin operator E1 that tests for any given g whether or not 

(∃f)(∀n)g(x, f|n) = 0.  The applicative structure of T2 can thus be taken to be the partial 

functions recursive in E1.  In T2 without the IG axiom, we can go directly to the analytic 

sets, and prove a version of the Suslin-Kleene theorem there.  This leads to a second kind 

of Effective DST, but one where the partial recursive functions are replaced by those 

partial recursive in the Suslin operator. 

Plan of the book 
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In this book, the formulation of the systems Ti for i = 0, 1, 2 described above is 

reorganized in such a way that the work of describing models and obtaining proof-

theoretical lower and upper proof-theoretical bounds is more easily handled in stages.  

Essentially, this is by treating pure operational (applicative) theories first and only later 

adding classes via the theory of classes and names.  

The reader is assumed to have a general background in recursion theory and proof theory; 

several chapters are devoted to fixing the notation and notions that we use from these 

areas and stating the needed facts from the literature. In particular, Part A, Preliminaries 

(Chs. 1 and 2), sets down what we will need from recursion theory and the structure of 

monotone and nonmonotone inductive definitions.   

Part B, Operational Theories, consists of three chapters providing the basics of 

applicative theories.  The first of these (Ch. 3) presents LPT, the Logic of Partial Terms 

in quite general terms.  Then the pure operational theory BON, the Basic Theory of 

Operations and Numbers, is introduced in Ch. 4.  The universe of discourse of BON 

serves as a partial combinatory algebra with pairing and projections; in addition, we have 

a predicate N for the natural numbers, and are provided with the usual basic operations on 

N together with a recursor that is used to generate all primitive recursive functions.  In 

the language of BON we meet three distinct principles of induction on N, the weakest of 

which is called basic induction (B-IN) where one may induct on properties of N that have 

a characteristic function on N.  The strongest form of induction considered for N, (L-IN) 

is with respect to all properties definable in the language L of BON; that is also called full 

induction with respect to L.  We shall also consider a special case (Op-IN) of (L-IN) called 

operational induction, that allows one to prove that certain operations are total on N. As 

we shall see, distinctions between the forms of induction on N that appear in each theory 

of explicit mathematics make a real difference in the associated measures of proof-

theoretical strength. As will be shown in Ch. 7, it is easily seen that BON + (B-IN) 

includes and is of the same proof-theoretical strength as Primitive Recursive Arithmetic, 

PRA, while BON + (L-IN) includes and is of the same proof-theoretical strength as Peano 

Arithmetic, PA; in both cases we have conservation over the respective systems of 

arithmetic.  
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In Ch. 5 of Part C, Reference Systems for Proof-Theoretic Bounds, we shall remind 

the reader of various systems of first order and second arithmetic whose proof-theoretical 

strength has been precisely calibrated in the literature.  Again, these strengths are quite 

sensitive to what forms of induction are taken in each theory.  Then, as a bridge to 

establishing the proof-theoretical strength of our systems of Explicit Mathematics, in Ch. 

6 we introduce certain theories of numbers and ordinals in which both monotone and 

nonmonotone inductive definitions can be directly formalized.  In that case, the 

distinction between various forms of induction on ordinals will also play a crucial role. 

In Part D, Operational Theories Continued, we return to applicative theories, first (Ch. 

7) to relate BON and its different induction principles to subsystems of Peano Arithmetic 

as previously mentioned.  Then in Ch. 8 we extend these systems by the type two 

functionals µ and E1 described above in connection with predicative and descriptive 

mathematics and give their main models there, while the proof-theoretical strengths of 

these extensions are determined in Ch. 9.  The next major step comes in Part E, 

Theories of Classes and Names, that begins in Ch. 10 with a general introduction to 

these theories and a uniform form of the Elementary Comprehension Axiom, ECA, the 

principal axiom of the Elementary Theory of Classes, EC, beyond BON. The expansion 

of the language also leads to new models and the formulation of new forms of induction 

on N that must be considered. The proof-theoretical strength of EC in combination with 

the various forms of induction and the functional operations is determined in Ch. 11. In 

particular, writing (C-IN) for class induction, the systems EC + (C-IN) and EC(µ) + (B-IN) 

used to formalize substantial portions of constructive and predicative mathematics 

respectively, are both shown to be of the same strength as PA. The join and inductive 

generation axioms are introduced in Ch. 12 and the proof-theoretic strengths of the 

associated systems are determined in Ch. 13.  We now have all the ingredients for 

comparison with the original systems Ti (i = 0, 1, 2) of Explicit Mathematics.  

The subject matter of Part F, Constructive, Predicative and Descriptive Mathematics 

in Systems of Explicit Mathematics is obvious from its title, and Chs. 14, 15 and 16 

take these developments up successively.  The volume concludes with Part G, The 

Operational Penumbra, which shows how the basic operational structure may be 
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flexibly adapted to a variety of different contexts.  It is used in Ch. 17 to describe feasible 

operational theories, then in Ch. 18 for the so-called unfolding program for open 

schematic systems.  Ch. 19 surveys the work on theories of universes in explicit 

mathematics, and the book concludes in Ch. 20 with a presentation of operational set 

theory.  All of the chapters 17-20 are more informal, being devoted to explanations of 

basic notions and statements of results, detailed proofs of which can be found in the 

literature.   

Finally, we provide an annotated comprehensive Bibliography of Explicit Mathematics 

as of the time of writing that includes all secondary references cited in the book.  

However, an online version of that searchable by author, date, title, and other data, will 

be available at http://www.iam.unibe.ch/~til/em_bibliography/ that will be maintained to 

update for future additions.   

The book is structured so that it may be read in several different ways.  For example, 

those with the necessary mathematical background can skip Part A while those with the 

needed background in the proof theory of subsystems of analysis can skip Ch. 5 of Part 

C. Those interested in the mathematical developments in Part F but not in the proof 

theory of systems of explicit mathematics can skip Part D and Ch. 13 of Part E, while 

those interested in the latter but not the former can simply skip Part F.  In all these casa 

certain amount of skimming will suffice in order to go on to the main detailed 

developments of interest to the reader.  Finally, Part G may appeal to a variety of tastes 

by a reading of some but not all of its chapters.  Historical notes are provided throughout 

for those who want to learn more about the individual sources in the background 

literature.   

[The introduction will conclude with my deep personal thanks to my coauthors, Gerhard 

Jäger and Thomas Strahm, and our assistant, Ulrik Buchholtz, for seeing this through, as 

well as to all others who have helped in one way or another.] 

Solomon Feferman 
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