
ABOUT AND AROUND
COMPUTING OVER THE

REALS

Solomon Feferman
Logic Seminar, Stanford, April 17,

2012

Two Competing Theories of
Computing over R

• Two competing theories of computing over the
reals:

• The BSS (Blum-Shub-Smale) model

• The “bit” computation model (Banach-Mazur-
Grzegorczyck)

• Each [recently] claims to be the proper foundation
of scientific computing and computational
complexity

The BSS model

• Full exposition of the BSS model and applications
in Blum, Cuker, Shub, Smale, Complexity and Real
Computation (1997)

• Nice exposition in Lenore Blum, “Computing over
the reals: Where Turing meets Newton”, Notices
AMS 2004

The “Bit” Computation Model

• The “bit” computation (or “effective
approximation”) model: Banach and Mazur
ideas,1930s; developed by Grzegorczyck
and, independently, Lacombe, 1955.

• Nice exposition by Mark Braverman and
Stephen Cook in “Computing over the
reals: Foundations for scientific
computation”, Notices AMS 2006.

These Theories are Incompatible

• Examples of incompatibility:

• The exponential function is computable in the
effective approx. model but not in the BSS model.

• Given a polynomial p(x) over Q, the function
f(x)=1 if p(x) = 0, else 0, is computable in the BSS
model but not (in general) in the effective
approximation model.

Can Both be Reasonable?

• The BSS model is a reasonable theory of
computation over R as an algebraic
structure.

• The eff. approx. model is a reasonable
theory of computation over R as a
topological structure or as a second-order
structure.

Subsuming Both Under
Generalized Recursion Theories (g.r.t.)

• Turing and Register computability over arbitrary
algebraic structures (Friedman 1971)

• “While” computation schemata over arb. algebraic
and topological structures (Tucker and Zucker
2000)

• Higher type LFP schemata over arb. structures
(Platek 1966, Moschovakis 1989, Feferman 1992)

The BSS model

• The BSS model makes sense over any ring A,
possibly ordered.

• A BSS algorithmic procedure is given by a directed
graph; top node for inputs, successor node for
polynomial computation node, branching node on
test for = (or <). Also described in terms of
generalized Turing machines or register machines.

• Finite-dimensional case uses sequences of fixed
length, infinite dim. case sequences of arb. length.

Examples of BSS Algorithms

• Newton algorithm for R or C. Given a rational fn.
f and ε > 0, find a zero of f within accuracy ε: start
with an input x, update by x → (x - f(x)/f′(x)) until
reach |f(x)| < ε. [A finite dim. case]

• Hilbert’s Nullstellensatz. Given m polynomials in n
variables over R or C, decide whether or not they
have a common zero. [An infinite dim. case]

The BSS Model and Complexity

• The Mandelbrot set is not BSS-computable.

• Its complement is semi-computable; that
can be used to “draw” it.

• Notions of P/A and NP/A for any ring A.

• Transfer Thm. P/C = NP/C iff P/A = NP/A
for any alg. closed field A of char. 0.

The Effective Approximation Model[s]

• Explain for R, but generalizes to any complete
separable metric space.

• Sequential (S-) effective approximation and
Polynomial (P-) effective approximation.

S-Approximation Computability

• Let I be a finite or infinite interval in R.

• In order to define f : I →R effectively, find a
computable functional F which, given x in I,
maps any Cauchy sequence s of rationals
approaching x to F(s), a Cauchy sequence
approaching f(x).

S-Approximation Computability (cont’d)

• For simplicity, use approximations to reals x by
sequences of dyadic rationals φ(n)/2^n where
φ:N→Z and

• (i) |x - φ(n)/2^n| ≤ 1/2^n for all n.

• Then find computable F : (N→Z)→(N→Z) such
that whenever (i) holds and F(φ) = ψ then

• (ii) |f(x) - ψ(m)/2^m| ≤ 1/2^m for all m.

The S-Eff. Approx. Functionals

• Using the effective correspondence of Z
with N, this reduces to telling which
functionals F:(N→N)→(N→N) are
effectively computable.

• Let T be the class of total φ from N to N
and P the class of partial φ from N to N.

The S-Eff. Approx. Functionals (con’td)

• Define: F from T to T is eff. computable iff it is the
restriction to T of a partial recursive functional Φ
from P to P.

• Alternative characterization (Grzegorczyck): F is
eff. computable if it is generated by the primitive
recursive and μ (min operator) schemata for
functionals on T to T. [Analogous to Kleene’s
schemata for general rec. fns.]

• Cf. also Weirauch (2000) TTE uniform oracle
computability.

Continuity and P-Eff. Approx. Functions

• Theorem. If f : I →R is S-Approx. effectively
computable, then f is continuous on I.

• Weierstrass Approximation Theorem. Each
continuous f on a closed interval I is uniformly
approximable by polynomials over Q.

• P-Approximation theory (Pour-El 1974): Use
(effective) sequences of polynomials over Q to
directly approximate (computable) f.

Complexity in S-approx. Theory

• P, NP etc. defined for S-approx. functions
and functionals in Ker-I Ko (1991). (“In P,
or not in P, that is the question.”)

• Differentiation does not preserve P-time.

• Integration of f is P-time for all P-time
computable f iff there is a collapse in a
certain hierarchy.

Relevance to Scientific Computation?

• Scientific computation (aka numerical analysis):
techniques for solving one or more linear or
polynomial eqns., interpolation, numerical
integration and differentiation, max and mins,
optimization, numerical soln. of differential and
integral eqns. , etc.

• Classic algorithms: Newton method, Lagrange
interpolation, Gaussian elimination, Euler’s
method, etc. Modern use of computers.

• Uses “floating point arithmetic,” error estimates.

The View From GRT:
Register Machines on 1st

OrderStructures

• Register machine computability on arbitrary first-
order (possibly) many-sorted structures A
(Friedman 1971).

• A may have one or more basic domains,
operations on those domains, relations between
those domains and designated constants. Equality
on a given domain may or may not be included
among the basic relations.

Register Machine Procedures

• “Finite algorithmic procedures” (fap)

• Given A, (i) enter inputs from A; (ii) set a
register to a constant from A; (iii) perform
one of the A-operations on register
contents; (iv) test for one of the A-
relations on register contents and branch
according to instructions.

• FAP(A) = the partial fap computable fns.

Extensions of FAP Computability

• Let N = (N, Sc, Pd, 0, =). Then FAP(N) is the set of
all partial recursive functions.

• Define FAPC(A) = FAP(A, N), “faps with counting”.

• Take A* to be given by arbitrary finite sequences
(or “stacks”) for each domain of A, with operations
of adding (“push”) and deleting at the end (“pop”).

• Define FAPS(A) = FAP(A, A*) and FAPCS(A) =
FAP(A, N, A*).

FAP and BSS Computability on R

• Let R = (R, 0, 1, +, -, ×, ÷, =, <).

• FAP(R) = the BSS finite case partial computable
functions, and FAPS(R) = FAPCS(R) = the BSS
infinite case partial computable functions
(Friedman and Mansfield 1992).

• Generalizations to arbitrary rings and fields,
ordered or not, but always with the = relation.

“While” Computability on
First Order Structures

• “While” schemata for computability on arbitrary
first order structures (Tucker and Zucker 2000).
Relations are treated as boolean valued functions.

• “While” schemata S, S′,...; ‘b’ for Boolean terms, ‘t’
for individual terms built from variables and a
structure’s constants and functions:

• S :: = skip|x:=t|S;S′|if b then S else S′|while b do S.

While Partial Computable Functions

• While(A) = the partial functions on the domains of
A computable by While schemata

• WhileC(A) = While(A,N),
While*(A)=While(A,N,A*)

• Then While(A) = FAP(A), WhileC(A) = FAPC(A),
and While*(A) = FAPCS(A)

• Generalized Church-Turing Thesis.

“While” on Topological Partial Structures

• On structures A with a topology, the boolean
valued functions of = and (e.g. on R) < are
discontinuous, so must be replaced by partial
functions, undefined at (x, y) when x = y.

• Defn. of effectively uniform While and While*
computable functions on metric A.

• Equivalence with S-effective approximation
computability.

LFP Recursion on Arbitrary Structures

• The While and While* approach covers BSS
computability on R, and S-eff. approx. computability
on R via metric structures.

• The general theory of LFP recursion does the
same by going to type 2 schemata over arbitrary
structures, without invoking topology.

• Goes back to Platek (1966), Moschovakis (1984,
1989)

Abstract Computation Procedures

• Abstract Computation Procedures (ACPs),
(Feferman 1992); should have been called Abstract
Recursion Procedures.

• Here structures are specified by (possibly) many-
sorted domains, individual constants, partial
functions, and partial monotonic functionals of
type level 2.

ACP Computable Functions and
Functionals

• The ACP schemata are given by Explicit
Definition in type levels 1 and 2, and LFP
Recursion in type 2.

• ACP(A) = the set of partial functions over
A generated by the ACP schemata.

• ACP*(A) = ACP(A, N, A*)

Relations to the Other Approaches

• While(A) = ACP(A) and While*(A) = ACP*(A) by
Xu and Zucker 2005.

• So BSS finite and infinite dim. computable fns. on R
are subsumed under the ACP approach.

• The type 2 functionals generated in ACP(N) are
just the partial recursive functionals, so the S-
eff.approx. approach is also subsumed under the
ACP approach.

Extensional/Intensional Aspects

• The foregoing theories are all extensional.

• ACP(N) can also be given an intensional
interpretation by replacing the partial functions
and functionals by Gödel numbers.

• Each type 2 functional in this interpretation of
ACP(N) is an effective operator in the Myhill-
Shepherdson sense.

• Actual computers can actually compute on codes.

Selected References

• L. Blum (2004), Computability over the
reals: Where Turing meets Newton, Notices
AMS 51, 1024-1034.

• L. Blum, F. Cuker, M. Shub and S. Smale
(1997), Complexity and Real Computation.

• M. Braverman and S. Cook (2006),
Computing over the reals: Foundations of
scientific computing, Notices AMS 53,
318-329.

Selected References (cont’d)

• S. Feferman (1992), A new approach to
computation over abstract data types, II, Lecture
Notes in Comp. Sci. 626, 79-95.

• S. Feferman (t.a.), About and around computing
over the reals, to appear in Computability: Gödel,
Church, Turing and Beyond (J. Copeland, et al, eds.),
available at http://math.stanford.edu/~feferman/
papers/CompOverReals.pdf .

Selected References (cont’d)

• H. Friedman (1971), Algorithmic procedures,
generalized Turing algorithms, and elementary
recursion theory, in Logic Colloquium ’69 (R. O.
Gandy and C.E.M. Yates, eds.)

• A. Grzegorczyck (1955),Computable functionals,
Fundamenta Mathematicae 42, 168-202.

• K. Ko (1991), Complexity Theory of Real Functions.

Selected References (final)

• Y. Moschovakis (1989), The formal language of
recursion, J. Symbolic Logic 54, 1216-1252.

• J. V. Tucker and J. I. Zucker (2000), Computable
functions and semicomputable sets on many-
sorted algebras, in Handbook of Logic in Computer
Science, Vol. 5 (S. Abramsky et al., eds.).

