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Broadly speaking there are two kinds of theories of truth, philosophical and
logical. The philosophical theories of truth go back to the Greeks and forward
to the present day. Among these are the correspondence, coherentist, prag-
matist, deflationary and primitivist theories of truth. Logical theories of truth
are roughly of two kinds, semantical (or definitional) and axiomatic. Tarski
inaugurated semantical theories in the mid 1930s with his definition of truth
for a logically circumscribed language within a metalanguage for it, i.e. in a
typed setting in order to avoid inconsistency. However, the ordinary use of
truth in natural language is untyped, and so beginning in the 1960s, attempts
were made to obtain useful consistent untyped semantical theories by giving
up some of Tarski’s basic assumptions. One of the most successful was due
to Kripke in 1975, who defined a notion of truth for an untyped three-valued
language. My axiomatization of Kripke’s model a few years later inaugurated
a considerable body of work on a variety of axiomatic theories that continues
to be actively pursued. In this paper general considerations are presented as
to why one should axiomatize theories of truth and what criteria should be
applied to them. These are then illustrated with three examples from my own
work as to how one might try to go about meeting these criteria.

1 Introduction

Broadly speaking there are two kinds of theories of truth, philosophical and logical.
The philosophical theories of truth go back to the Greeks and forward to the present
day, including the correspondence, coherentist, pragmatist, deflationary and prim-
itivist theories of truth.1 Logical theories of truth, on the other hand, date only
⇤This paper is based on an invited lecture that I gave for the Pillars of Truth conference held at

Princeton University, April 8–10, 2011.
1As sources for these, both Kirkham (1995) and Burgess and Burgess (2011) provide excellent sur-

veys and expositions, while there are several fine collections of original articles such as those of Black-
burn and Simmons (1999) and Lynch (2001).
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to the 1930s. They are roughly of two kinds, semantical (or definitional) and ax-
iomatic. Tarski (1935) inaugurated semantical theories with his definition of truth
for a logically circumscribed language within a metalanguage for it, i.e. in a typed
setting. He argued that this was necessary since a language which contains its own
truth predicate is inconsistent if it satisfies a few basic assumptions, namely the
T-scheme, classical propositional logic,2 and the capacity to form self-referential
statements. However, the ordinary use of truth in natural language is untyped and
the constraints of a hierarchical theory seem unduly restrictive. Moreover, mathe-
matics provided an excellent example in replacing the theory of types by untyped
systems of set theory. Thus it was that beginning in the 1960s, attempts were made
to obtain useful consistent untyped semantical theories of truth by giving up some
part of Tarski’s basic assumptions.3 One of the most influential of these was that
due to Kripke (1975), who defined a notion of truth for an untyped three-valued
language.4 My axiomatization of Kripke’s model a few years later (see Feferman
1991) inaugurated a considerable body of work on a variety of axiomatic theories
that continues to be actively pursued.5 In this paper general considerations are pre-
sented as to why one should axiomatize theories of truth and what criteria ought to
be applied to them. These are then illustrated with three examples from my own
work (because that is what I know best) as to how one might try to go about meeting
these criteria and to what extent one may succeed.

2 Why axiomatize theories of truth?6

1. Axiomatic theories separate out what is needed to justify a given semantical
definition from what the definition is designed to achieve. The axiomatic
theory is usually much weaker than the (implicit) ambient theory in which
the semantical construction is carried out. Often the latter includes a consid-
erable portion of set theory.

2Actually, intuitionistic logic su�ces to derive a contradiction.
3A number of these e↵orts can be found in the articles collected in Martin (1970) and Martin (1984).
4Martin and Woodru↵ (1975) independently arrived at a closely related model. Theirs produces a

maximal fixed point for a certain monotonic operator, whereas Kripke obtained minimal fixed points
among others. Among other semantic approaches are those due to Barwise and Etchemendy (1987) and
Gupta and Belnap (1993).

5The first book to exposit a number of axiomatic theories was Cantini (1996); much of that has been
brought up to date in the excellent expository work, Halbach (2011); both incorporate original research
by the respective authors. Some of the noteworthy books devoted to specific axiomatic approaches are
those due to McGee (1991), Maudlin (2004), Field (2008) and Horsten (2011).

6There is some overlap in this section with the motivations for axiomatization given in Ch. 1 of
Halbach (2011).
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2. Many axiomatic theories of truth are based on a given semantic definition
and are thus automatically consistent. But those that are not may be shown
consistent by providing a suitable model or by proof-theoretical means.

3. Often, particular semantic constructions are designed to realize certain prima
facie required basic properties of truth such as the T-scheme or composition-
ality. What axiomatizing such a construction shows is precisely the extent to
which such properties are met.

4. Moreover, such axiomatization provides the explicit statement of further
properties that were not necessarily part of the original motivations for the
construction.

5. An axiomatization (not necessarily uniquely determined) of a given seman-
tical construction provides a framework in which one can reason systemati-
cally about various aspects of the construction. This helps to assess the value
and possible defects of such a construction.

6. One can compare like and unlike axiomatizations as to their proof-theoretical
strength using an extensive body of well-established metamathematical tech-
niques.

7. Given axiomatizations suggest natural variants such as by extending general
principles from one’s base theory (e.g., induction in arithmetic, or separation
in set theory) to the theory with a truth predicate.

8. A given philosophical conception of truth may suggest a semantical construc-
tion or an axiomatization, and once made more explicit in the latter way, we
are in a better position to assess the underlying conception.

It should be remarked that not all philosophical theories of truth are amenable to
axiomatic representation. How axiomatize, for example, coherence or pragmatic
theories of truth?

3 Criteria for a theory of truth

Various criteria have been proposed for consistent axiomatic theories of truth that
contain their own truth predicate. To my mind, the best articulation of such cri-
teria is one due to Hannes Leitgeb (2007).7 He sets down eight of these, each of

7But see also Sheard (2002). Another interesting discussion of criteria is to be found in McDonald
(2000).
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which has plausibility in its own right, and various of which are ordinarily taken for
granted, but the combination of all of which cannot simultaneously be realized on
pain of inconsistency. That is why Leitgeb calls his piece, “What theories of truth
should be like (but cannot be)”. His eight criteria (L1-L8) are as follows.

(L1) Truth should be expressed by a predicate (and a theory of syntax should be
available).

(L2) If a theory of truth is added to mathematical or empirical theories, it should
be possible to prove the latter true.

(L3) The truth predicate should not be subject to any type restrictions.

(L4) T-biconditionals [in the T-scheme] should be derivable unrestrictedly.

(L5) Truth should be compositional.

(L6) The theory should allow for standard interpretations.

(L7) The outer logic and the inner logic should coincide.

(L8) The outer logic should be classical.

These can be spelled out more precisely, as follows.
To meet (L1), we have first to address the common philosophical issue whether

truth is a predicate of sentences or of propositions. We would certainly grant that if
two sentences, from the same or di↵erent languages, express the same proposition
then their truth conditions agree. That would seem to argue in favor of truth as a
predicate of propositions. The argument in favor of sentences is that we have ex-
cellent theories of sentences as structured syntactic objects; these can be dealt with
in full precision and with great flexibility in formal theories of syntax as provided
for example in concatenation theory, or elementary set theory, or in arithmetic via
Gödel coding. The nature of propositions is obscure by comparison; one issue is
whether or not they are structured objects. And what does it mean for a sentence
to express a proposition? When do two sentences express the same proposition?
Are all propositions expressible in some language? Finally, do all sentences in a
given language express a proposition? When we settle, as is customary in work on
axiomatic theories of truth, on sentences being the truth-bearers, one avoids deal-
ing with all but the last of these di�cult questions, and concentrates instead in each
axiomatic theory on a more precise question: Which sentences are taken to be the
truth bearers? 8

8Some other arguments in favor of sentences as the truth-bearers can be found in Halbach (2011),
pp. 9–14, and Horsten (2011), pp. 2–3.
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Given that we will take the truth predicate to be applicable to some or all sen-
tences within a specified formal language, it is standard in the preponderance of the
literature to take Peano Arithmetic (PA) as a base theory, though weaker theories
su�ce for much of the work. Let L be the language of PA and LT be its extension
by the unary predicate symbol T (x). We shall be considering formal systems S
extending PA whose language L(S ) includes LT . We use A, B,C, . . . to range over
formulas and sentences of L(S ). Given a sentence A of L(S ), let #A be the numeral
of the Gödel number of A, so we can write T (#A) to express that A is true; for
simplicity in the following, write T (A) for T (#A). Among other things, this choice
of coding means that we can apply Gödel’s method of constructing self-referential
sentences. That is, given any formula C(x) of L(S ) we can construct a sentence A
such that A $ C(A) is provable in S . In particular, we can construct the “Liar”
sentence using ¬T (x) for C(x); I’ll use ⇤ to denote it instead of a Roman cap letter,
i.e. ⇤ is a sentence of LT and S proves ⇤$ ¬T (⇤).9

Now, a minimum requirement for (L2) is that S proves the sentence P: “all
sentences provable in PA are true”.

For (L3), T (A) is syntactically acceptable for every sentence A of L(S ).10

By the T -biconditionals in (L4) is meant the sentences T (A)$ A for A in L(S ).
Thus (L4) requires that all of these are provable in S .

Compositionality (L5) means that S proves T (¬A) $ ¬T (A), T (A _ B) $
T (A)_T (B), T (8xA(x))$ 8xT (A(num.(x))), and so on for the other propositional
operators and the existential quantifier. To formulate more general versions, we
use operations on numbers that correspond to the logical operations, via the “dot”
notation, i.e. ¬., _.,8., etc. Thus, for example ¬.#A = #(¬A). Then we can write
8x(SentL(S )(x)! [T (¬.x)$ ¬T (x)]), and so on, where SentL(S )(x) is a formula of
L expressing that x is the number of a sentence of L(S ).

(L6) means that S has a model in which the language of PA is given its standard
interpretation.

For (L7), by the “outer logic” of S is meant its basic logical axioms and rules.
By its “inner logic” is meant the laws holding for those A such that S proves T (A).

(L8) simply means that the basic logic of S (its “outer logic”) is classical.
Tarski’s Undefinability Theorem. If S satisfies (L1), (L3), (L4) and (L8) then S
is inconsistent.

The proof as usual makes use from (L1) and (L3) of the construction of a Liar
sentence ⇤ such that S proves ⇤ $ ¬T (⇤), which when combined with the as-

9Often, ‘�’ is used for a Liar sentence.
10Actually, as long as the truth predicate T is a predicate of numbers, we would say that T (A) is

syntactically acceptable for every sentence A (via its Gödel number) even for a typed theory of truth.
The significance of (L3) lies in connection with (L4) which would be restricted in the case of a typed
theory; the same holds for the compositionality conditions on truth in (L5).
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sumption from (L4) that ⇤ $ T (⇤), leads to a contradiction under the assumption
in (L8) of classical propositional logic. (In fact, as noted in fn. 2 intuitionistic logic
su�ces.)

The question in view of Tarski’s theorem is, if one is to axiomatize truth in a
consistent type-free way, which of the criteria to accept and which to reject. Of
course one will also want to give arguments for these. Given the aim, one will
certainly accept (L1), that we are working within an extension S of PA, and (L3),
that all sentences of L(S ) are admissible arguments for the T predicate. Moreover,
if S is to be consistent, we shall certainly want it to have a model, and it is desirable
then to grant (L6) that it has a model which is standard for the natural numbers and
hence in which all axioms of PA are true. It is then reasonable to demand that one
be able to prove that in S , i.e. to accept (L2).

This leaves (L4), (L5), (L7) and (L8) in question. Let me begin with the last
of these, namely that the outer logic of S should be classical. There have been a
number of approaches to the consistent type-free axiomatization of theories of truth
that are based on a restriction of classical logic, such as one form or another of
three-valued logic or many-valued logics more generally, or the rejection of such
principles as ex falso quodlibet in paraconsistent logics. In Feferman (1984), of
the former I wrote that “nothing like sustained ordinary reasoning” can be carried
out in them, and it is my impression that the same holds as well for the latter.
Other approaches have been based on extensions by new connectives, such as a new
conditional or biconditional, which do not satisfy the same laws as the classical (or
even intuitionistic) conditional or biconditional, in terms of which the T -scheme is
rewritten. One such is given in the third example of axiomatization from my own
work below, as an extension of classical logic. I defend such uses, but not those
which make essential restrictions in the logic otherwise, such as in Field (2008).
So in that sense, I strongly favor (L8). But for the cases where the T -scheme (L4)
is not written in terms of a new biconditional, this means that I can only accept it
with some restrictions; that in turn may a↵ect how much of compositionality (L5)
is accepted. Finally, I reject the demand that the outer logic equal the inner logic
(L7), if the inner logic is some essential weakening of classical logic such as those
mentioned above.

4 How to axiomatize: Three examples.

These three examples illustrate how my own choices as to which criteria to accept
and which to modify or reject have been dealt with in my own work on the axiom-
atization of truth. The reader is referred in each case to the publication in question
for the actual presentation of the systems involved; only certain specific aspects of
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those are discussed here as are needed to explain how they relate to the preceding
criteria. For certain reasons, I present these in reverse order from that of date of
publication.

4.1 Axioms for determinateness and truth (Feferman 2008).

This begins (pp. 206–207) with the statement of a general philosophical position:
Every predicate has a domain of significance; it makes sense to apply the predicate
only to objects in that domain (cf. also Russell 1908). In the case of the truth
predicate T , the domain D in question is taken to consist of the sentences that
are meaningful and determinate, i.e. have a definite truth value, true or false.11 D
includes various but not necessarily all grammatically correct sentences that involve
the notion of truth itself, for example the statement P that each sentence provable
in PA is true. At any rate, T (A)! D(A) holds for each sentence A. Write F(A) for
T (¬A); then also F(A)! D(A) for each A. It follows that D(A) can here be defined
as T (A)_ F(A), but there is a reason for keeping it as an additional basic predicate,
namely to state conditions on it that are prior to those for T . Thus, in the case of
this example, L(S ) is the extension of L by T and D, and S itself is denoted DT . In
accordance with the preceding, (L1), (L3) and (L8) are accepted but (L4) and (L5)
need to be restricted. Namely, the restriction of the T-scheme is to take the form,

(L4)* D(A)! (T (A)$ A) for each sentence A in L(DT ).

Similarly, compositionality for T should hold only under assumption of D for all
the formulas involved. The basic logical operations of DT are ¬, _, !, and 8,
with ! not defined in terms of ¬ and _, but its logic is the standard one of the
classical conditional, so that (L8) holds in full. Every L sentence satisfies D. The
(strong) compositionality axioms for both D and T come in pairs and are expressed
in generality via variables that are taken to range over the formulas of L(DT ). For
example, we assume

D(x _ .y)$ D(x) ^ D(y) ,

i.e. D holds of a disjunction i↵ it holds of both disjuncts, and then as usual,

D(x _ .y)! [T (x _ .y)$ T (x) _ T (y)] .

The axioms for negation and universal quantification are treated similarly. How-
ever, A! B behaves di↵erently from ¬A_ B within the context of the D predicate

11Some authors, e.g. Kripke (1975) regard the Liar sentence as meaningful though not determinate.
I do not agree, but in order to avoid controversy on this point, allow for the possibility of meaningful
statements that are not determinate.
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for a technical reason to be explained below. Namely, we take as axiom

D(x! .y)$ D(x) ^ [T (x)! D(y)] ,

but we still assume as usual

D(x! .y)! [T (x! .y)$ (T (x)! T (y))] .

The restricted T -scheme (L4)* above is then proved as a direct consequence of
these axioms and we have full compositionality for T under D, i.e. a form (L5)* of
(L5). Coming back to the D axiom for the conditional, it turns out that if! were
defined as usual in terms of ¬ and _, we could prove the sentence

P := 8x[SentL(x) ^ ProvPA(x)! T (x)].

This may be enough to satisfy (L2), depending on how we interpret it. A stronger
reading of (L2) is that we should also be able to prove T (P) as well, and for that we
need the above condition on D for conditionals.

The consistency of DT is proved by exhibiting a model which is standard for
the natural numbers, so that (L6) is met. Moreover, we have D(A) for each sentence
A of the language L of arithmetic, so we have the standard truth conditions for those
sentences.

Let us turn finally to (L7) and the relation of the outer logic to the inner logic
in this system. Constructing a Liar sentence ⇤ as usual, i.e. one for which ⇤ $
¬T (⇤) is provable, we see that ¬D(⇤) must hold, otherwise we would derive a
contradiction from (L4)*. It follows that ¬D(⇤_¬⇤) holds, by our axioms for D on
disjunctions. Since T (⇤_¬⇤) implies D(⇤_¬⇤), we then also have ¬T (⇤_¬⇤).
But in DT we of course prove ⇤ _ ¬⇤, so the outer logic does not equal the inner
logic in this case.12 The situation here is similar in this respect to what was met in
the system KF, discussed next.

4.2 The system KF (Feferman 1991).

My axiomatization of the (minimal) three-valued fixed point construction in Kripke
(1975) was circulated as notes in 1979. Reinhardt (1985, 1986) took that up for con-
sideration and dubbed the system “Kripke-Feferman”, which has since stuck with
the abbreviation KF. It then played a central role in the work of McGee (1991)
on the axiomatization of truth. The purpose of my own publication involving KF,
“Reflecting on incompleteness” (Feferman 1991) was instead completely instru-
mental, namely to use an axiomatic type-free theory of truth in order to establish

12The situation is similar for the sentence called the “Revenge of the Liar.”
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transfinitely iterated reflection principles without requiring a transfinite hierarchy
of truth theories. KF was the basic system introduced for that purpose; it was used
there to define the notion of reflective closure of a schematic axiom system. How-
ever, that was subsequently replaced by a more general notion of unfolding of a
schematic system, which did not make use of a theory of truth; cf. Feferman (1996)
and Feferman and Strahm (2000, 2010).

Since KF took on a life of its own within the work on axiomatic theories of
truth, let me consider only one problem about it that has been given much atten-
tion, namely that it violates criterion (L7) according to which the outer logic and the
inner logic of truth should coincide. In the KF case, the outer logic is classical and
the inner one is Kleene’s strong three valued logic. Despite the prima facie plausi-
ble arguments made by Leitgeb, Halbach, Horsten, and others for criterion (L7) I
have several reasons why I reject it in this and similar cases; it is not necessary to
know the details of the system KF to understand these.

(i) First of all, the distinction between outer and inner logics is only a problem
if one conflates two notions of truth, namely the notion of grounded truth
given by Kripke’s least fixed-point construction, and our everyday notion of
truth not tied to any particular semantical construction or theory. Thus, in
KF, T (A) expresses that the sentence A is a grounded truth while A itself, if
provable, is counted as true in the informal sense. So on that reading there is
no conflict between accepting both ¬T (⇤_¬⇤) and ⇤_¬⇤ for a formal liar
sentence ⇤.

(ii) For me, the main direct use of KF is to reason systematically about the prop-
erties of the Kripke construction under the Why purposes 4 and 5 above.
But as I have written in Feferman (1984) p. 264 concerning Kleene’s and
Lukasiewicz’ three valued logic, “nothing like sustained ordinary reasoning
can be carried out in either logic.” I admire the success of Halbach and
Horsten (2006) in axiomatizing the Kripke construction in Kleene 3-valued
logic in a system PKF, but inspection of the result has given me all the more
reason to disagree with the criterion (L7). In addition, even though Halbach
(2011) sec. 16.1 presents a variant of PKF, all the other systems he deals with
in his book are based on classical logic, and in Ch. 20 he gives at length a
number of reasons for preferring classical systems even where those violate
(L7).

(iii) Still, examples like that above with the Liar sentence ⇤, or related sentences
like the Revenge of the Liar, may give one pause. As to this, I wrote toward
the end of (Feferman 2008) where we met the similar problem:
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[T]he provability in DT of sentences ¬T (A) for which A is prov-
able might be regarded as “unintended consequences” or “anoma-
lies” or “little monsters”. In a way, this is analogous to other sit-
uations in mathematics. For example, to develop a good theory
of integration, Lebesgue introduced his theory of measure; that
has many excellent properties but also the unintended consequence
that there are nonmeasurable sets; [however, their] existence does
not a↵ect the positive applications of the theory . . . . Another ex-
ample is the existence of space-filling curves as a consequence of
a good theory of continuous mappings formulated in purely topo-
logical terms.

(iv) One of the reasons (number 6) given for axiomatization at the beginning of
this article is that one can compare like and unlike axiomatizations as to their
proof-theoretic strength. In Feferman (1991) I introduced two extensions of
KF for the notion of reflective closure, Ref(PA) and Ref⇤(PA), and deter-
mined their strengths to be the same as that of the union of the ramified sys-
tems RA↵ for ↵ < "0 and ↵ < �0, resp. At the end of Feferman (2008) I
conjectured that one would obtain the same strengths for the systems DT and
a suitable extension DT ⇤, resp. These conjectures were subsequently verified
in Fujimoto (2010). By contrast, the system PKF is relatively weak, as shown
in Halbach (2011) sec. 16.2, namely its proof-theoretic strength is the same
as the union of the RA↵ for ↵ < !!.13

4.3 An axiomatization of deflationism using an intensional equiv-
alence operator (from Feferman 1984).14

Deflationism is one of the most popular theories of truth these days. Actually, as ex-
plained in Ch. 3 of Burgess and Burgess (2011), this has been spelled out in a great
variety of ways, starting with the so-called redundancy theory of Ramsey (1927),
according to which there is nothing more to the assertion of truth of a sentence than
the assertion of the sentence itself. One of the foremost recent proponents of de-
flationism is Horwich (1990) under the label minimalism. Aside from the fact that

13In Feferman and Strahm (2000) it was shown that the strength of the full unfolding U⇤(NFA) of a
basic schematic system NFA of non-finitist arithmetic is the same as that of the union of the RA↵ for
↵ < �0, the least impredicative ordinal.

14The article Feferman (1984) was presented as Part I of a two-part article, with the second part to
be devoted of the formalisms developed to applications to mathematics, especially the foundations of
category theory in an unrestricted sense. But the second part was never written, because the applications
did not work out as hoped; instead I have pursued quite di↵erent approaches to the foundations of
category theory.
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Horwich treats truth as a predicate of propositions, rather than sentences, his view
is that

for one to understand the truth predicate is for one to have the disposi-
tion to accept any T-biconditional proposition. . . Against a background
of classical logic, this is more or less the same as having the disposi-
tion to infer the conclusion proposition from the premise proposition
in any T -introduction or T -elimination. . . (Burgess and Burgess 2011,
p. 44)

Considered axiomatically and taking the language to include the truth predicate as
well as using sentences rather than propositions, these are actually two di↵erent
ideas. The first is that one accepts all T -biconditionals in the language of LT , i.e.
all equivalences T (A) $ A. The second is that one accepts all inference rules of
the form A/T (A) and T (A)/A. These are quite di↵erent since as we know, over
Peano arithmetic in classical logic, the set of T -biconditionals is inconsistent. On
the other hand, Friedman and Sheard (1987) have shown that one can consistently
accept both all T -Introduction rules and all T -Elimination rules; cf. also Halbach
(2011), Ch. 14.

I shall here interpret deflationism in the form that, by definition, each T (A) eval-
uates out to truth (t) or falsity (f) in the same way as A, allowing for the possibility
that both A and T (A) may lack a truth value. Equivalence or equality by definition
is taken to be a new connective ⌘ di↵erent from the truth-functional biconditional
$, applicable to instances where both sides may fail to be defined.15 So, in general,
A ⌘ B is informally taken to mean that A and B evaluate out to truth or falsity in
the same way when defined.

In the following, a system of axioms S formulated within the classical first
order predicate calculus with equality is presented in the language L of PA extended
by the unary predicate symbol T and with the binary sentential operation symbol
applicable to all pairs of formulas A, B of L(S ) to form A ⌘ B. In this case we
write t for the formula (0 = 0) and f for its negation, and then take D(A) =def
(A ⌘ t _ A ⌘ f); A is called definite (or determinate) if D(A) holds. For simplicity,
several of the axioms of S are stated informally to encompass a number of formal
statements. In the following, unless otherwise specified ‘A’ is taken to range over
the formulas of L(S ). For A(x, y, . . . ) with possible free variables x, y, . . . , T (A)
is written for T (A(num.x, num.y, . . . )). In addition to the axioms of PA, S has the

15This is a frequent situation in analysis, for example where one takes

f 0(x) =def lim
u!0

( f (x + u) � f (x)/u) .
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following axioms for ⌘, T and D.16

Ax. 1 T (A) ⌘ A

Ax. 2 ⌘ is an equivalence relation

Ax. 3 ¬(t ⌘ f)

Ax. 4 ⌘ preserves ¬, _, ⌘ and 8
Ax. 5 D(A) holds for each atomic formula A of L

Ax. 6 D is closed under ¬, _,and 8
Ax. 7 [A ⌘ t! A] ^ [A ⌘ f ! ¬A], for each A.

Theorem (Aczel and Feferman 1980, Feferman 1984). S is a conservative exten-
sion of PA.

NB. In Aczel and Feferman (1980), we wrote T (A) for A ⌘ t, while here T (x) is
a basic predicate. Ax. 1 replaces the Abstraction Principle (AP) y 2 {x : A(x)} ⌘
A(y) used there; that is essentially the same as the scheme (T0)⌘ of Feferman (1984),
p.268. Note also that a more general theorem is proved op. cit. using S as the
extension by the axioms 1-6 of any given extension S 0 of PA in the language of
PA.

There are two proofs of this theorem. The first, due to me in the 1980 article
with Aczel, makes use of a combinatory style reduction relation for formulas,
A � B, which is shown to satisfy the Church-Rosser theorem. An N-standard
model for S is defined in which one takes A ⌘ B to hold just in case there exists
a C such that A � C and B � C. The second proof, due to Aczel, and presented
in Feferman (1984), pp. 268-269, is carried out by turning the 3-valued model of
Kripke (1975) into a 2-valued model in an unexpected way.

NB. The connective ⌘ fails to satisfy some expected laws such as to infer B from
A ⌘ B and A. For example, if we take a Liar sentence ⇤ such that S proves
⇤ $ ¬T (⇤), we have T (⇤) ⌘ ⇤ by Ax. 1, and thus ¬T (⇤) ⌘ T (⇤) by Ax. 2. But
¬T (⇤) is true in the just indicated model of S , so if the rule held with A = ¬T (⇤)
and B = T (⇤), we would have a contradiction.

We next show that in combination with a few of the other axioms Ax. 1 leads
to the usual truth biconditionals for definite formulas.

16I am indebted to Kentaro Fujimoto for his suggestions to improve the formulation of S and its
consequences that had been given in a draft of this paper.
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Lemma 1. D(T (A))$ D(A) for each formula A of L(S ).

Proof. By Ax. 1 and Ax. 2. ⇤

Lemma 2. D(A) ^ (A ⌘ B)! D(B).

Proof. By Ax. 2. ⇤

Lemma 3. D(A) ^ (A ⌘ B)! (A$ B).

Proof. By Ax. 7 and Lemma 2. Suppose D(A), (A ⌘ B), and A. Then A ⌘ t, for
if A ⌘ f then ¬A by Ax. 7; so B ⌘ t, so B by Ax. 7. Thus A ! B; similarly,
B! A. ⇤

Lemma 4. D(A)! (T (A)$ A).

Proof. By Ax. 1 and Lemma 3. ⇤

It may then be seen that the truth conditions for ¬ , _, and 8 are as usual for
definite formulas. Using the methods of Feferman (2008), the axioms of S can be
strengthened to having D be strongly compositional in Ax. 6 (i.e. the implications
are replaced by equivalences) and still have the system be conservative over PA.

Discussion. Since S is a conservative extension of PA, it does not satisfy the con-
dition (L2). For if S proved the sentence P expressing that all provable sentences
of PA are true, it would follow that S and hence PA itself proves the consistency of
PA. Also, S is not immune to the “generalization” problem that has been raised for
deflationary theories, i.e. the provability of formal versions of statements such as
that for any definite proposition p, p _ ¬p is true. For, that cannot be expressed in
L(S ) with the use of D as an operator, not a predicate. However, we can consistently
extend the axioms DT of Part I (i.e., of Feferman 2008) into the language L(S ) by
addition of Ax. 1 and some of the other axioms of S , in which such generalizations
can be expressed and proved, since there D(x) is written for T (x) _ T (¬.x).

5 Conclusion

Most of the preceding has been devoted to the considerations in each example of
which of the Leitgeb criteria (L1)-(L8) are to be accepted and which are to be
rejected, and little to the reasons for axiomatization given in Sec. 1, though those
are always in the background. But given those reasons, I would urge the pursuit
of axiomatizations of semantical or definitional approaches that have not yet been
thus treated, and the close examination of them in the light of the given criteria.
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