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March 8, 2012

1. Write F for the parametrization F (x1, ..., xn) =
(
x1, ..., xn,

∂f
∂x1
, ..., ∂f

∂xn

)
and ω =

dx1 ∧ dy1 + ...+ dxn ∧ dyn. Then∫
Lf

ω∧k =

∫
F−1(Lf )

F ∗(ω∧k) =

∫
F−1(Lf )

(F ∗ω)∧k.

But we calculate

F ∗ω =
n∑
i=1

dxi∧

(
n∑
j=1

∂2f

∂xj∂xi
dxj

)
=
∑
i 6=j

∂2f

∂xi∂xj
dxi∧dxj =

∑
i<j

∂2f

∂xi∂xj
(dxi∧dxj+dxj∧dxi) = 0.

Hence the integral vanishes.

2. Recall d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη. Hence, since ∂A is empty,

0 =

∫
∂A

ω ∧ η =

∫
A

dω ∧ η + (−1)kω ∧ dη.

It follows ∫
A

ω ∧ dη = (−1)k+1

∫
A

dω ∧ η = (−1)k+1+(k+1)l

∫
A

η ∧ dω.

The constant C may thus be taken to be (−1)(k+1)(l+1).
3. We parametrize X by F : [0, 2π)× [0, 2π)→ X,

F (θ, φ) = (cos θ, sin θ, cosφ, sinφ).
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The point x =


1
0
1
0

 is covered by θ = φ = 0 and at θ = φ = 0 we have

dF

dθ
=


− sin θ
cos θ

0
0

 =


0
1
0
0

 , dF

dφ
=


0
0

− sinφ
cosφ

 =


0
0
0
1

 .
Hence the orientation {θ̂, φ̂} of the parametrization space induces an orientation of the

tangent space of X given at the point a by {


0
1
0
0

 ,


0
0
0
1

}. Since

x2 ∧ x4(


0
1
0
0

 ,


0
0
0
1

) = 1 > 0

the parametrization orientation agrees with the specified orientation of X.
Note

F ∗(x1) = cos θ, F ∗(x2) = sin θ, F ∗(x3) = cosφ, F ∗(x4) = sinφ

F ∗(dx1) = − sin θdθ, F ∗(dx2) = cos θdθ, F ∗(dx3) = − sinφdφ, F ∗(dx4) = cosφdφ.

a. ∫
X

dx1 ∧ dx2 + dx3 ∧ dx4 =

∫ 2π

0

∫ 2π

0

− sin θ cos θ − sinφ cosφ dφ dθ = 0.

b. ∫
X

dx1 ∧ dx3 + dx2 ∧ dx4 =

∫ 2π

0

∫ 2π

0

sin θ sinφ+ cos θ cosφ dφ dθ = 0.

c. ∫
X

x2x4dx1 ∧ dx3 =

∫ 2π

0

∫ 2π

0

sin2 θ sin2 φ dφ dθ = π2.

4. Let V denote the submanifold given by x2 + y2 + z2 ≤ 1 with z ≥ 0, and let D denote
the disc of radius 1 centered at the origin and lying on the xy plane oriented with upwards
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pointing normal. Then ∂V = S ∪D. Let ω = dx∧ dy + zdz ∧ dx. Note that dω = 0, and so
by Stoke’s Theorem

=

∫
V

dω =

∫
S

ω −
∫
D

ω.

On D, z = 0 so
∫
S
ω =

∫
D
dx ∧ dy = π, the latter being just the area of the disc D.

To compute directly, parametrize S by P (x, y) = (x, y,
√

1− x2 − y2) for (x, y) ∈ D.
Note that the tangent plane is spanned by Tx = (1, 0, something) and Ty = (1, 0, something)
so Tx × Ty always has positive z component.

Now

dz =
2√

1− x2 − y2
(−2xdx− 2ydy),

so
zdz ∧ dx = z

y√
1− x2 − y2

dx ∧ dy = ydx ∧ dy.

Thus
∫
S
ω =

∫
D

(1 + y)dx∧ dy = π since the first term gives the area of the the disc, and the
second is odd in y while D is symmetric in y.

6. Let λ = ω−dα. We want to show that λ = 0. We claim that λ = β∧α for some 1-form β.
Fix any point a, and if necesasry, change the basis of R5

a to v1, ..., v5 so that αa = x5, where
x1, ..., x5 denote the coordinate functions. Then let λa =

∑
i<j ai,jxi∧xj. Since λa(xi, xj) = 0

for 1 ≤ i < j ≤ 4, we conclude that λa = (
∑

i<5 ai,5xi) ∧ αa (recall that αa = x5). Thus,
there exists some 1-form β such that λ = β ∧ α. 1

Now 0 = dω = d(aα + λ) = dλ = dβ ∧ α − β ∧ dα. Let H denote the hyperplane field
defined by α = 0. Then the above gives β ∧ dα|H = 0. It now suffices to show that β|H = 0,
since this implies that β = cα for some constant c, which in turn implies that λ = 0.

Before proceeding, let us note that the last condition α ∧ ω ∧ ω 6= 0 is equivalent to
α ∧ dα ∧ dα 6= 0, upon subsituting ω = β ∧ α + dα. We thus conclude that dα ∧ dα 6= 0.

Lemma 1. Fix any exterior 2-form γ on R4 such that γ ∧ γ 6= 0. We claim that the map
f : Λ1((R4)∗)→ Λ1((R4)∗) defined by f(δ) = δ ∧ γ is an isomorphism.

Proof. Again, fix a basis v1, ..., v4 with dual basis x1, ..., x4. Let γ =
∑

i<j ai,jxi ∧ xj. The
matrix for γ is a skew-symmetric matrix consisting of the ai,j on the upper half and −ai,j on
the lower half with 0 on the diagonal. Since all skew-symmetric matrices of even dimension
can be block diagonalized, we may change basis so that

γ = l1x1 ∧ x2 + l2x3 ∧ x4.

Then the condition that γ ∧ γ 6= 0 is equivalent to l1l2 6= 0. 2

1Note that αa = x5 is only a local condition at a. For instance, it is not possible to assume that α = dx5 globally.

2Incidentally, ±il1,±il2 are the (totally imaginery) eigenvalues of the matrix.
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Now, examine the linear map f on the basis x1, ..., x4 of Λ1((R4)∗). We have that f(x1) =
l2x1 ∧ x3 ∧ x4, f(x2) = l2x2 ∧ x3 ∧ x4, f(x3) = l1x3 ∧ x1 ∧ x2 = l1x1 ∧ x2 ∧ x3, and f(x4) =
l1x1 ∧ x2 ∧ x4. Since f sends the basis elements of Λ1((R4)∗) to basis elements of Λ3((R4)∗),
it is an isomorphism.

Now, we are nearly done. Apply the above lemma with γ = dαa|H to see that (β∧dα)|H =
0⇒ βH = 0, as desired.
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