Math 52H Homework 8 Solutions

March 8, 2012

1. Write F for the parametrization $F\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n}, \frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)$ and $\omega=$ $d x_{1} \wedge d y_{1}+\ldots+d x_{n} \wedge d y_{n}$. Then

$$
\int_{L_{f}} \omega^{\wedge k}=\int_{F^{-1}\left(L_{f}\right)} F^{*}\left(\omega^{\wedge k}\right)=\int_{F^{-1}\left(L_{f}\right)}\left(F^{*} \omega\right)^{\wedge k}
$$

But we calculate

$$
F^{*} \omega=\sum_{i=1}^{n} d x_{i} \wedge\left(\sum_{j=1}^{n} \frac{\partial^{2} f}{\partial x_{j} \partial x_{i}} d x_{j}\right)=\sum_{i \neq j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} d x_{i} \wedge d x_{j}=\sum_{i<j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\left(d x_{i} \wedge d x_{j}+d x_{j} \wedge d x_{i}\right)=0 .
$$

Hence the integral vanishes.
2. Recall $d(\omega \wedge \eta)=d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta$. Hence, since ∂A is empty,

$$
0=\int_{\partial A} \omega \wedge \eta=\int_{A} d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta
$$

It follows

$$
\int_{A} \omega \wedge d \eta=(-1)^{k+1} \int_{A} d \omega \wedge \eta=(-1)^{k+1+(k+1) l} \int_{A} \eta \wedge d \omega .
$$

The constant C may thus be taken to be $(-1)^{(k+1)(l+1)}$.
3. We parametrize X by $F:[0,2 \pi) \times[0,2 \pi) \rightarrow X$,

$$
F(\theta, \phi)=(\cos \theta, \sin \theta, \cos \phi, \sin \phi) .
$$

The point $x=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right]$ is covered by $\theta=\phi=0$ and at $\theta=\phi=0$ we have

$$
\frac{d F}{d \theta}=\left[\begin{array}{c}
-\sin \theta \\
\cos \theta \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right], \quad \frac{d F}{d \phi}=\left[\begin{array}{c}
0 \\
0 \\
-\sin \phi \\
\cos \phi
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Hence the orientation $\{\hat{\theta}, \hat{\phi}\}$ of the parametrization space induces an orientation of the tangent space of X given at the point a by $\left\{\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$. Since

$$
x_{2} \wedge x_{4}\left(\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\right)=1>0
$$

the parametrization orientation agrees with the specified orientation of X.
Note

$$
\begin{gathered}
F^{*}\left(x_{1}\right)=\cos \theta, F^{*}\left(x_{2}\right)=\sin \theta, F^{*}\left(x_{3}\right)=\cos \phi, F^{*}\left(x_{4}\right)=\sin \phi \\
F^{*}\left(d x_{1}\right)=-\sin \theta d \theta, F^{*}\left(d x_{2}\right)=\cos \theta d \theta, F^{*}\left(d x_{3}\right)=-\sin \phi d \phi, F^{*}\left(d x_{4}\right)=\cos \phi d \phi .
\end{gathered}
$$

a.

$$
\int_{X} d x_{1} \wedge d x_{2}+d x_{3} \wedge d x_{4}=\int_{0}^{2 \pi} \int_{0}^{2 \pi}-\sin \theta \cos \theta-\sin \phi \cos \phi d \phi d \theta=0
$$

b.

$$
\int_{X} d x_{1} \wedge d x_{3}+d x_{2} \wedge d x_{4}=\int_{0}^{2 \pi} \int_{0}^{2 \pi} \sin \theta \sin \phi+\cos \theta \cos \phi d \phi d \theta=0
$$

c.

$$
\int_{X} x_{2} x_{4} d x_{1} \wedge d x_{3}=\int_{0}^{2 \pi} \int_{0}^{2 \pi} \sin ^{2} \theta \sin ^{2} \phi d \phi d \theta=\pi^{2}
$$

4. Let V denote the submanifold given by $x^{2}+y^{2}+z^{2} \leq 1$ with $z \geq 0$, and let D denote the disc of radius 1 centered at the origin and lying on the $x y$ plane oriented with upwards
pointing normal. Then $\partial V=S \cup D$. Let $\omega=d x \wedge d y+z d z \wedge d x$. Note that $d \omega=0$, and so by Stoke's Theorem

$$
=\int_{V} d \omega=\int_{S} \omega-\int_{D} \omega .
$$

On $D, z=0$ so $\int_{S} \omega=\int_{D} d x \wedge d y=\pi$, the latter being just the area of the disc D.
To compute directly, parametrize S by $P(x, y)=\left(x, y, \sqrt{1-x^{2}-y^{2}}\right)$ for $(x, y) \in D$. Note that the tangent plane is spanned by $T_{x}=(1,0$, something $)$ and $T_{y}=(1,0$, something $)$ so $T_{x} \times T_{y}$ always has positive z component.

Now
so

$$
d z=\frac{2}{\sqrt{1-x^{2}-y^{2}}}(-2 x d x-2 y d y),
$$

$$
z d z \wedge d x=z \frac{y}{\sqrt{1-x^{2}-y^{2}}} d x \wedge d y=y d x \wedge d y
$$

Thus $\int_{S} \omega=\int_{D}(1+y) d x \wedge d y=\pi$ since the first term gives the area of the the disc, and the second is odd in y while D is symmetric in y.
6. Let $\lambda=\omega-d \alpha$. We want to show that $\lambda=0$. We claim that $\lambda=\beta \wedge \alpha$ for some 1 -form β. Fix any point a, and if necesasry, change the basis of \mathbb{R}_{a}^{5} to v_{1}, \ldots, v_{5} so that $\alpha_{a}=x_{5}$, where x_{1}, \ldots, x_{5} denote the coordinate functions. Then let $\lambda_{a}=\sum_{i<j} a_{i, j} x_{i} \wedge x_{j}$. Since $\lambda_{a}\left(x_{i}, x_{j}\right)=0$ for $1 \leq i<j \leq 4$, we conclude that $\lambda_{a}=\left(\sum_{i<5} a_{i, 5} x_{i}\right) \wedge \alpha_{a}$ (recall that $\left.\alpha_{a}=x_{5}\right)$. Thus, there exists some 1-form β such that $\lambda=\beta \wedge \alpha$. ${ }^{1}$

Now $0=d \omega=d(a \alpha+\lambda)=d \lambda=d \beta \wedge \alpha-\beta \wedge d \alpha$. Let \mathcal{H} denote the hyperplane field defined by $\alpha=0$. Then the above gives $\left.\beta \wedge d \alpha\right|_{\mathcal{H}}=0$. It now suffices to show that $\left.\beta\right|_{\mathcal{H}}=0$, since this implies that $\beta=c \alpha$ for some constant c, which in turn implies that $\lambda=0$.

Before proceeding, let us note that the last condition $\alpha \wedge \omega \wedge \omega \neq 0$ is equivalent to $\alpha \wedge d \alpha \wedge d \alpha \neq 0$, upon subsituting $\omega=\beta \wedge \alpha+d \alpha$. We thus conclude that $d \alpha \wedge d \alpha \neq 0$.

Lemma 1. Fix any exterior 2-form γ on \mathbb{R}^{4} such that $\gamma \wedge \gamma \neq 0$. We claim that the map $f: \Lambda^{1}\left(\left(\mathbb{R}^{4}\right)^{*}\right) \rightarrow \Lambda^{1}\left(\left(\mathbb{R}^{4}\right)^{*}\right)$ defined by $f(\delta)=\delta \wedge \gamma$ is an isomorphism.

Proof. Again, fix a basis v_{1}, \ldots, v_{4} with dual basis x_{1}, \ldots, x_{4}. Let $\gamma=\sum_{i<j} a_{i, j} x_{i} \wedge x_{j}$. The matrix for γ is a skew-symmetric matrix consisting of the $a_{i, j}$ on the upper half and $-a_{i, j}$ on the lower half with 0 on the diagonal. Since all skew-symmetric matrices of even dimension can be block diagonalized, we may change basis so that

$$
\gamma=l_{1} x_{1} \wedge x_{2}+l_{2} x_{3} \wedge x_{4} .
$$

Then the condition that $\gamma \wedge \gamma \neq 0$ is equivalent to $l_{1} l_{2} \neq 0 .{ }^{2}$

[^0]Now, examine the linear map f on the basis x_{1}, \ldots, x_{4} of $\Lambda^{1}\left(\left(\mathbb{R}^{4}\right)^{*}\right)$. We have that $f\left(x_{1}\right)=$ $l_{2} x_{1} \wedge x_{3} \wedge x_{4}, f\left(x_{2}\right)=l_{2} x_{2} \wedge x_{3} \wedge x_{4}, f\left(x_{3}\right)=l_{1} x_{3} \wedge x_{1} \wedge x_{2}=l_{1} x_{1} \wedge x_{2} \wedge x_{3}$, and $f\left(x_{4}\right)=$ $l_{1} x_{1} \wedge x_{2} \wedge x_{4}$. Since f sends the basis elements of $\Lambda^{1}\left(\left(\mathbb{R}^{4}\right)^{*}\right)$ to basis elements of $\Lambda^{3}\left(\left(\mathbb{R}^{4}\right)^{*}\right)$, it is an isomorphism.

Now, we are nearly done. Apply the above lemma with $\gamma=\left.d \alpha_{a}\right|_{\mathcal{H}}$ to see that $\left.(\beta \wedge d \alpha)\right|_{\mathcal{H}}=$ $0 \Rightarrow \beta_{\mathcal{H}}=0$, as desired.

[^0]: ${ }^{1}$ Note that $\alpha_{a}=x_{5}$ is only a local condition at a. For instance, it is not possible to assume that $\alpha=d x_{5}$ globally.
 ${ }^{2}$ Incidentally, $\pm i l_{1}, \pm i l_{2}$ are the (totally imaginery) eigenvalues of the matrix.

