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Likewise using imaginary parts, one derives
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b. This is very similar to what we did in class on monday. Recall that the binomial
theorem works for complex numbers. We find
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Summing again we have
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Using re
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so ↵ is exact on R3 \ {0}, which contains the curve �. It follows that
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4. a. Write ↵ = ↵1dx+↵2dy+↵3dz. Assume that there is a primitive F . If we integrate ↵1

with respect to x, we get
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for some function f(y, z) depending only on y and z. Di↵erentiate this w.r.t. y and set it
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Remark: That we were able to find a solution to the equations above implies that ↵ is
exact with F as its primitive. In fact, the equations we solved above imply that dF = ↵.
Also, note that finding a primitive for an exact 1-form is the same as finding a potential
function for a vector field. Finally, we remark here that one can guess the form of F very
easily by symmetry.

b. Since ↵ = dF , we have that
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since �(⇡) = �(0). In other words, � is a closed path, and so the integral of the exact form
↵ along � is 0.
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