Math 52H Homework 5 Solutions

February 15, 2012

1. Let a = €™, 8 = e~™ and observe that we have a3 = 1. Then
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so that there are two cases:
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Likewise using imaginary parts, one derives
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b. This is very similar to what we did in class on monday. Recall that the binomial
theorem works for complex numbers. We find
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Likewise, we have
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from which we find
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Summing again we have
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Using re? form of complex numbers we find that

(1 + Z)n _ \/ﬁneiwn/4’

and .
(1 o Z)n _ \/5 e*’LTrTL/4’

so that we have
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3.a. Write a = % and let G : R*\ {0} — R be defined by G(z,y,2) = —(z* + y* +
2%)2 . Then
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so « is exact on R? \ {0}, which contains the curve 7. It follows that

[a=c0m)-660) = (52 - 7).

b. Write o = %. On the set {(z,y) : * > 0} we have a = darctan(¥), so 7 is

exact on this domain. Since ~,(t) = 1 + %sin% > 0 for all ¢, the curve ~y is contained in
{(z,y) : © > 0}. Hence

/a = arctan(%(ﬂ)) - arctan(fyy(o)) =0-

4. a. Write a = aydx + asdy + azdz. Assume that there is a primitive F. If we integrate o
with respect to x, we get

F=2%3—-2°24+ay+x2z—ayz+ f(y, 2),
for some function f(y, z) depending only on y and z. Differentiate this w.r.t. y and set it
equal to as to get
of
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which is equivalent to f = y3/3 — y*/2 + yz + g(z) for some function g depending only on 2.
Now differentiate the expression we have for F' w.r.t. z and set equal to a3 to get

r—a2y+y+gd() =2 +r+y—2—ay,

whence g(z) = 23/3 — 22/2 + C for some constant C. We thus have
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Remark: That we were able to find a solution to the equations above implies that « is
exact with F' as its primitive. In fact, the equations we solved above imply that dF = a.
Also, note that finding a primitive for an exact 1-form is the same as finding a potential
function for a vector field. Finally, we remark here that one can guess the form of F' very
easily by symmetry.

F(z,y,2) = +ay+arz+yz—ayz+ C

b. Since o« = dF', we have that
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since y(m) = v(0). In other words, 7 is a closed path, and so the integral of the exact form
a along 7 is 0.



