# Math 52H Homework 5 Solutions 

February 15, 2012

1. Let $\alpha=e^{i x}, \beta=e^{-i x}$ and observe that we have $\alpha \beta=1$. Then

$$
\begin{aligned}
\frac{\sin n x}{\sin x}=\frac{e^{i n x}-e^{-i n x}}{e^{i x}-e^{-i x}}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} & =\alpha^{n-1}+\alpha^{n-2} \beta+\alpha^{n-3} \beta^{2}+\cdots+\alpha \beta^{n-2}+\beta^{n-1} \\
& =\alpha^{n-1}+\alpha^{n-3}+\cdots+\alpha^{-(n-1)}
\end{aligned}
$$

so that there are two cases:

$$
\frac{\sin n x}{\sin x}= \begin{cases}2(\cos (n-1) x+\cos (n-3) x+\cdots+\cos x) & n \text { even } \\ 2(\cos (n-1) x+\cos (n-3) x+\cdots+\cos 2 x)+1 & n \text { odd }\end{cases}
$$

2.a. We have

$$
\begin{aligned}
\sum_{k=0}^{n} \cos k \theta=\operatorname{Re} \sum_{k=0}^{n} e^{i k \theta} & =\operatorname{Re} \frac{1-e^{i(n+1) \theta}}{1-e^{i \theta}} \\
& =\operatorname{Re} \frac{e^{i(n+1) \theta / 2}}{e^{i \theta / 2}} \frac{e^{i(n+1) \theta / 2}-e^{-i(n+1) \theta / 2}}{e^{i \theta / 2}-e^{-i \theta / 2}} \\
& =\frac{\sin \frac{(n+1) \theta}{2}}{\sin \frac{\theta}{2}} \operatorname{Re} e^{i n \theta / 2} \\
& =\frac{\sin \frac{(n+1) \theta}{2} \cos \frac{n \theta}{2}}{\sin \frac{\theta}{2}}
\end{aligned}
$$

Likewise using imaginary parts, one derives

$$
\sum_{k=1}^{n} \sin k \theta=\frac{\sin \frac{(n+1) \theta}{2} \sin \frac{n \theta}{2}}{\sin \frac{\theta}{2}}
$$

b. This is very similar to what we did in class on monday. Recall that the binomial theorem works for complex numbers. We find

$$
\begin{gathered}
(1+1)^{n}=1+\binom{n}{1}+\binom{n}{2}+\cdots \\
(1-1)^{n}=1-\binom{n}{1}+\binom{n}{2}-\binom{n}{3}+\cdots,
\end{gathered}
$$

so that

$$
2^{n-1}=1+\binom{n}{2}+\binom{n}{4}+\cdots .
$$

Likewise, we have

$$
(1+i)^{n}=1+\binom{n}{1} i-\binom{n}{2}-\binom{n}{3} i+\binom{n}{4}+\cdots
$$

and

$$
(1-i)^{n}=1-\binom{n}{1} i-\binom{n}{2}+\binom{n}{3} i+\cdots
$$

from which we find

$$
\frac{(1+i)^{n}+(1-i)^{n}}{2}=1-\binom{n}{2}+\binom{n}{4}-\binom{n}{6}+\cdots .
$$

Summing again we have

$$
\frac{(1+i)^{n}+(1-i)^{n}+2^{n}}{4}=1+\binom{n}{4}+\binom{n}{8}+\binom{n}{12}+\cdots .
$$

Using $r e^{i \theta}$ form of complex numbers we find that

$$
(1+i)^{n}=\sqrt{2}^{n} e^{i \pi n / 4}
$$

and

$$
(1-i)^{n}=\sqrt{2}^{n} e^{-i \pi n / 4}
$$

so that we have

$$
2^{\frac{n}{2}-2} \cos \frac{\pi}{4} n+2^{n-2}=2^{\frac{n}{2}-2}\left(2^{\frac{n}{2}}+\cos \frac{\pi}{4} n\right)=1+\binom{n}{4}+\binom{n}{8}+\binom{n}{12}+\cdots
$$

3.a. Write $\alpha=\frac{x d x+y d y+z d z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}$ and let $G: \mathbb{R}^{3} \backslash\{0\} \rightarrow \mathbb{R}$ be defined by $G(x, y, z)=-\left(x^{2}+y^{2}+\right.$ $\left.z^{2}\right)^{\frac{-1}{2}}$. Then

$$
d G=-\left(x^{2}+y^{2}+z^{2}\right)^{\frac{-3}{2}}\left(\frac{-1}{2}\right)(2 x d x+2 y d y+2 z d z)=\alpha
$$

so $\alpha$ is exact on $\mathbb{R}^{3} \backslash\{0\}$, which contains the curve $\gamma$. It follows that

$$
\int_{\gamma} \alpha=G(\gamma(1))-G(\gamma(0))=\left(\frac{1}{\sqrt{6}}-\frac{1}{2 \sqrt{3}}\right) .
$$

b. Write $\alpha=\frac{x d y-y d x}{x^{2}+y^{2}}$. On the set $\{(x, y): x>0\}$ we have $\alpha=d \arctan \left(\frac{y}{x}\right)$, so $\gamma$ is exact on this domain. Since $\gamma_{x}(t)=1+\frac{1}{2} \sin \frac{t^{2}}{\pi}>0$ for all $t$, the curve $\gamma$ is contained in $\{(x, y): x>0\}$. Hence

$$
\int_{\gamma} \alpha=\arctan \left(\frac{\gamma_{y}(\pi)}{\gamma_{x}(\pi)}\right)-\arctan \left(\frac{\gamma_{y}(0)}{\gamma_{x}(0)}\right)=0-\frac{\pi}{4}=\frac{-\pi}{4}
$$

4. a. Write $\alpha=\alpha_{1} d x+\alpha_{2} d y+\alpha_{3} d z$. Assume that there is a primitive $F$. If we integrate $\alpha_{1}$ with respect to $x$, we get

$$
F=x^{3} / 3-x^{2} / 2+x y+x z-x y z+f(y, z),
$$

for some function $f(y, z)$ depending only on $y$ and $z$. Differentiate this w.r.t. $y$ and set it equal to $\alpha_{2}$ to get

$$
x-x z+\frac{\partial f}{\partial y}=y^{2}+x-y+z-x z,
$$

which is equivalent to $f=y^{3} / 3-y^{2} / 2+y z+g(z)$ for some function $g$ depending only on $z$. Now differentiate the expression we have for $F$ w.r.t. $z$ and set equal to $\alpha_{3}$ to get

$$
x-x y+y+g^{\prime}(z)=z^{2}+x+y-z-x y,
$$

whence $g(z)=z^{3} / 3-z^{2} / 2+C$ for some constant $C$. We thus have

$$
F(x, y, z)=\frac{x^{3}+y^{3}+z^{3}}{3}-\frac{x^{2}+y^{2}+z^{2}}{2}+x y+x z+y z-x y z+C .
$$

Remark: That we were able to find a solution to the equations above implies that $\alpha$ is exact with $F$ as its primitive. In fact, the equations we solved above imply that $d F=\alpha$. Also, note that finding a primitive for an exact 1 -form is the same as finding a potential function for a vector field. Finally, we remark here that one can guess the form of $F$ very easily by symmetry.
b. Since $\alpha=d F$, we have that

$$
\int_{\gamma} \alpha=F(\gamma(\pi))-F(\gamma(0))=0
$$

since $\gamma(\pi)=\gamma(0)$. In other words, $\gamma$ is a closed path, and so the integral of the exact form $\alpha$ along $\gamma$ is 0 .

