Math 52H Homework 3 Solutions

February 3, 2012

1. There are $\binom{4}{3}=4$ distinct 3 -dimensional faces, one for each choice of 3 vectors which span the face. To compute the volumes of the faces, we apply Proposition 3.3 of $\S 3.4$ of the notes. Let $P_{v_{1}, v_{2}, v_{3}}$ be the face spanned by the vectors v_{1}, v_{2}, v_{3}. We have that $\left(\operatorname{Vol}_{k} P_{v_{1}, v_{2}, v_{3}}\right)^{2}=\operatorname{det} G\left(v_{1}, v_{2}, v_{3}\right)$, where G is the Gram matrix

$$
G\left(v_{1}, v_{2}, v_{3}\right)=\left(\begin{array}{lll}
\left\langle v_{1}, v_{1}\right\rangle & \left\langle v_{1}, v_{2}\right\rangle & \left\langle v_{1}, v_{3}\right\rangle \\
\left\langle v_{2}, v_{1}\right\rangle & \left\langle v_{2}, v_{2}\right\rangle & \left\langle v_{2}, v_{3}\right\rangle \\
\left\langle v_{3}, v_{1}\right\rangle & \left\langle v_{3}, v_{2}\right\rangle & \left\langle v_{3}, v_{3}\right\rangle
\end{array}\right)=\left(\begin{array}{ccc}
4 & 2 & 2 \\
2 & 4 & 0 \\
2 & 0 & 4
\end{array}\right) .
$$

So a little computation yields

$$
\operatorname{Vol}_{k} P_{v_{1}, v_{2}, v_{3}}=4 \sqrt{2} .
$$

By symmetry, we have that

$$
\operatorname{Vol}_{k} P_{v_{1}, v_{2}, v_{3}}=\operatorname{Vol}_{k} P_{v_{1}, v_{2}, v_{4}}=\operatorname{Vol}_{k} P_{v_{1}, v_{3}, v_{4}},
$$

and lastly,

$$
G\left(v_{2}, v_{3}, v_{4}\right)=\left(\begin{array}{lll}
\left\langle v_{2}, v_{2}\right\rangle & \left\langle v_{2}, v_{3}\right\rangle & \left\langle v_{2}, v_{4}\right\rangle \\
\left\langle v_{3}, v_{2}\right\rangle & \left\langle v_{3}, v_{3}\right\rangle & \left\langle v_{3}, v_{4}\right\rangle \\
\left\langle v_{4}, v_{2}\right\rangle & \left\langle v_{4}, v_{3}\right\rangle & \left\langle v_{4}, v_{4}\right\rangle
\end{array}\right)=\left(\begin{array}{ccc}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right),
$$

and so computing the determinant,

$$
\operatorname{Vol}_{k} P_{v_{2}, v_{3}, v_{4}}=8 .
$$

Lastly, the change of basis matrix from $e_{1}, e_{2}, e_{3}, e_{4}$ to $v_{1}, v_{2}, v_{3}, v_{4}$ is given by

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1
\end{array}\right)
$$

which has determinant $=-8$, so the basis defined by $v_{1}, v_{2}, v_{3}, v_{4}$ is oppositely oriented to the standard basis.
2. First of all, we assume that $c \neq 0$. I claim that

Lemma 1. Let $\omega \neq 0$ be a k-form on V. Let

$$
L_{\omega}:=\left\{v \in V \mid \omega\left(v, x_{2}, \ldots, x_{k}\right)=0 \forall x_{2}, \ldots, x_{k} \in V\right\} .
$$

If $\ell_{1}, \ldots, \ell_{k}$ are linearly independent 1-forms, and we set $\omega=\ell_{1} \wedge \cdots \wedge \ell_{k}$, then $\operatorname{dim} L_{\omega}=n-k$, and moreover,

$$
L_{\omega}=\left\{v \in V \mid \ell_{1}(v)=\cdots=\ell_{k}(v)=0\right\}
$$

Proof. We show that for this choice of ω we have $\operatorname{dim} L_{\omega} \leq n-k$. Because $\omega \neq 0$, we have that for fixed $x_{2}, \ldots, x_{k}, \omega\left(v, x_{2}, \ldots, x_{k}\right)$ is a nonzero linear function of v, hence, has kernel dimension $n-1$. I claim that if x_{2}^{\prime} is linearly independent from then x_{2}, \ldots, x_{k}, then $\operatorname{ker} \omega\left(-, x_{2}^{\prime}, \ldots, x_{k}\right)$ is independent from $\operatorname{ker} \omega\left(-, x_{2}, \ldots, x_{k}\right)$. Indeed this is true because $\omega\left(v, x_{2}, \ldots, x_{k}\right)$ and $\omega\left(v, x_{2}^{\prime}, \ldots, x_{k}\right)$ are linearly independent as linear functions of v. Then we have that

$$
\operatorname{dim}\left\{v \in V \mid \omega\left(v, x_{2}, \ldots, x_{k}\right)=0 \quad \forall x_{2}, \ldots, x_{k} \in V\right\} \leq n-2
$$

Repeat this process for each entry to find that in fact the dimension is $\leq n-k$.
On the other hand, $\left\{v \in V \mid \ell_{1}(v)=\cdots=\ell_{k}(v)=0\right\}$ is clearly $n-k$ dimensional because the $\ell_{1}, \ldots, \ell_{k}$ are linearly independent, and

$$
\left\{v \in V \mid \ell_{1}(v)=\cdots=\ell_{k}(v)=0\right\} \subset L_{\omega}
$$

hence $\operatorname{dim} L_{\omega} \geq n-k$ and the two sets are in fact equal.
We have that by assumption

$$
\mathcal{A}^{*} \ell_{1} \wedge \cdots \wedge \mathcal{A}^{*} \ell_{k}=\mathcal{A}^{*}\left(\ell_{1} \wedge \cdots \wedge \ell_{k}\right)=c \ell_{1} \wedge \cdots \wedge \ell_{k}
$$

so that by the lemma we have
$\left\{v \in V \mid \ell_{1}(v)=\cdots=\ell_{k}(v)=0\right\}=L_{\ell_{1} \wedge \cdots \wedge \ell_{k}}=L_{\mathcal{A}^{*} \ell_{1} \wedge \cdots \wedge \mathcal{A}^{*} \ell_{k}}=\left\{v \in V \mid \mathcal{A}^{*} \ell_{1}(v)=\cdots=\mathcal{A}^{*} \ell_{k}(v)=0\right\}$.
Suppose now that for some $i, \mathcal{A}^{*} \ell_{i} \notin \operatorname{span}\left(\ell_{1}, \ldots, \ell_{k}\right)$. For any nonzero $\lambda \notin \operatorname{span}\left(\ell_{1}, \ldots, \ell_{k}\right)$, we have that $\left\{v \in V \mid \ell_{1}(v)=\cdots=\ell_{k}(v)=0\right\} \not \subset\{v \in V \mid \lambda(v)=0\}$. On the other hand, we also have that $\left\{v \in V \mid \mathcal{A}^{*} \ell_{1}(v)=\cdots=\mathcal{A}^{*} \ell_{k}(v)=0\right\} \subset\left\{v \in V \mid \mathcal{A}^{*} \ell_{i}(v)=0\right\}$. Thus we have reached a contradiction, and we must have $\mathcal{A}^{*} \ell_{i} \in \operatorname{span}\left(\ell_{1}, \ldots, \ell_{k}\right)$ for all $i=1, \ldots, k$.

3. I claim that

Lemma 2. For every 2-form η on V there exists a basis v_{1}, \ldots, v_{n} so that η can be written as

$$
x_{1} \wedge x_{2}+x_{3} \wedge x_{4}+\cdots+x_{k-1} \wedge x_{k}
$$

for some $k \leq n$ even.
Proof. Let L be the subspace of V given by the kernel of η, i.e. let

$$
L:=\{v \in V \mid \eta(v, x)=0 \quad \forall x \in V\} .
$$

Pick basis vectors $v_{k+1}, \ldots v_{n}$ for this space, and take vectors $\tilde{v_{1}}, \ldots, \tilde{v_{k}}$ which extend these to a basis of V. We will change the tilde vectors later. Then the matrix for η in the basis we are constructing has all 0 s in the last $k+1, \ldots, n$ rows and columns. Let M be the k-dimensional subspace of V generated by the $\tilde{v_{1}}, \ldots, \tilde{v_{k}}$. Then pick some nonzero $v_{k} \in M$. Then because $M \cap L=\{0\}$, we have that there exists $v_{k-1} \in M$ such that $\eta\left(v_{k}, v_{k-1}\right)=1$. Now, replacing v_{k-1} and $\tilde{v_{k}}$ by v_{k-1} and v_{k}, we have that the matrix of η with respect to this basis has a $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ block on the diagonal.

We now show that it is 0 in the two columns above this block. Take

$$
M_{1}:=\left\{v \in V \mid \eta(x, v)=0 \quad \forall x \in \operatorname{span}\left(v_{k-1}, v_{k}\right)\right\} .
$$

I claim that that M_{1} had dimension $n-2$. Indeed, $\eta\left(-, v_{k_{1}}\right)$ is a linear function on V, and because $v_{k-1} \notin L$, we have that this function is nonzero. Thus (by, say, the ranknullity theorem) it has kernel of dimension $n-1$. Then $U_{v_{k-1}}:=\{v \in V \mid \eta(v, w)=0 \forall w \in$ $\left.\operatorname{span}\left(v_{k-1}\right)\right\}$ has dimension $n-1$. By the same argument, we have that

$$
\left\{v \in U_{v_{k-1}} \mid \eta(v, w)=0 \quad \forall w \in \operatorname{span}\left(v_{k}\right)\right\}=M_{1}
$$

has dimension $n-2$. Thus all the other entries in the two columns above and below the 2×2 block are zero. Now the matrix is as-yet-undetermined in the upper left $(k-2) \times(k-2)$ block, has $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ on the diagonal $k-1, k$ place, and 0 elsewhere. Repeat this process. The process must terminate because V is finite-dimensional. In the last step, we must be left with an undetermined 0 dimensional space and not a 1 -dimensional space. Indeed, if the last undetermined entry in the matrix is a 1×1 in the upper-left, then it must be 0 by skew-symmetry, and hence it was in L to begin with. Thus k was even to begin with, and we have produced a basis with the desired property.

Now, observe that, in fact, the condition $\eta \wedge \eta$ actually forces $k=2$. Indeed, this can be seen by squaring-out the 2-form η explicitly in these coordinates. Thus $\eta=x_{1} \wedge x_{2}$.
4. First, we check that

$$
d f=\frac{\partial f}{\partial y_{1}} d y_{1}+\frac{\partial f}{\partial y_{2}} d y_{2}
$$

Indeed, $d_{y} f \in V_{y}^{*}$ is a linear function on the tangent space, so for any $h=h_{1} v_{1}+h_{2} v_{2} \in V_{y}$, we have

$$
d_{y} f(h)=h_{1} d_{y} f\left(v_{1}\right)+h_{2} d_{y} f\left(v_{2}\right)=\frac{\partial f}{\partial y_{1}}(y) h_{1}+\frac{\partial f}{\partial y_{2}}(y) h_{2}
$$

by the second displayed equation of page 46 of the notes, $\S 5.1$. Also, if y_{1}, y_{2} are the standard coordinate functions on V, which we now think of as smooth functions on V, then we have by linearity

$$
d y_{i}=\lim _{t \rightarrow 0} \frac{y_{i}(y+t h)-y_{i}(y)}{t}=y_{i}(h)=h_{i}
$$

so we get the formula for the differential we wanted.
Now we find the formula for the gradient. We have $\nabla f(y)=\mathcal{D}^{-1}\left(d_{y} f\right)$. Hence for any $h=h_{1} v_{1}+h_{2} v_{2} \in V_{y}$

$$
h_{1} \frac{\partial f}{\partial y_{1}}(y)+h_{2} \frac{\partial f}{\partial y_{2}}(y)=\langle\nabla f(y), h\rangle=\left\langle g_{1}(y) v_{1}+g_{2}(y) v_{2}, h_{1} v_{1}+h_{2} v_{2}\right\rangle
$$

or using symmetry and linearity of inner products,

$$
\left[\frac{\partial f}{\partial y_{1}}(y), \frac{\partial f}{\partial y_{2}}(y)\right]\left[\begin{array}{l}
h_{1} \\
h_{2}
\end{array}\right]=\left[g_{1}(y), g_{2}(y)\right]\left[\begin{array}{ll}
\left\langle v_{1}, v_{1}\right\rangle & \left\langle v_{2}, v_{1}\right\rangle \\
\left\langle v_{1}, v_{2}\right\rangle & \left\langle v_{2}, v_{2}\right\rangle
\end{array}\right]\left[\begin{array}{l}
h_{1} \\
h_{2}
\end{array}\right],
$$

so, since h was arbitrary,

$$
\left[g_{1}(y), g_{2}(y)\right]=\left[\frac{\partial f}{\partial y_{1}}(y), \frac{\partial f}{\partial y_{2}}(y)\right]\left[\begin{array}{cc}
1 & 1 \\
1 & 2
\end{array}\right]^{-1}=\left[2 \frac{\partial f}{\partial y_{1}}(y)-\frac{\partial f}{\partial y_{2}}(y),-\frac{\partial f}{\partial y_{1}}(y)+\frac{\partial f}{\partial y_{2}}(y)\right]
$$

so we have

$$
\nabla f(y)=\left(2 \frac{\partial f}{\partial y_{1}}(y)-\frac{\partial f}{\partial y_{2}}(y)\right) \frac{\partial}{\partial y_{1}}+\left(-\frac{\partial f}{\partial y_{1}}(y)+\frac{\partial f}{\partial y_{2}}(y)\right) \frac{\partial}{\partial y_{2}}
$$

