
Math 52H Homework 3 Solutions

February 3, 2012

1. There are
(
4
3

)
= 4 distinct 3-dimensional faces, one for each choice of 3 vectors which

span the face. To compute the volumes of the faces, we apply Proposition 3.3 of §3.4
of the notes. Let Pv1,v2,v3 be the face spanned by the vectors v1, v2, v3. We have that
(V olkPv1,v2,v3)

2 = detG(v1, v2, v3), where G is the Gram matrix

G(v1, v2, v3) =

 〈v1, v1〉 〈v1, v2〉 〈v1, v3〉〈v2, v1〉 〈v2, v2〉 〈v2, v3〉
〈v3, v1〉 〈v3, v2〉 〈v3, v3〉

 =

 4 2 2
2 4 0
2 0 4

 .

So a little computation yields
V olkPv1,v2,v3 = 4

√
2.

By symmetry, we have that

V olkPv1,v2,v3 = V olkPv1,v2,v4 = V olkPv1,v3,v4 ,

and lastly,

G(v2, v3, v4) =

 〈v2, v2〉 〈v2, v3〉 〈v2, v4〉〈v3, v2〉 〈v3, v3〉 〈v3, v4〉
〈v4, v2〉 〈v4, v3〉 〈v4, v4〉

 =

 4 0 0
0 4 0
0 0 4

 ,

and so computing the determinant,

V olkPv2,v3,v4 = 8.

Lastly, the change of basis matrix from e1, e2, e3, e4 to v1, v2, v3, v4 is given by
1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 ,

which has determinant = −8, so the basis defined by v1, v2, v3, v4 is oppositely oriented to
the standard basis.
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2. First of all, we assume that c 6= 0. I claim that

Lemma 1. Let ω 6= 0 be a k-form on V . Let

Lω := {v ∈ V |ω(v, x2, . . . , xk) = 0 ∀x2, . . . , xk ∈ V }.

If `1, . . . , `k are linearly independent 1-forms, and we set ω = `1∧· · ·∧`k, then dimLω = n−k,
and moreover,

Lω = {v ∈ V |`1(v) = · · · = `k(v) = 0}.

Proof. We show that for this choice of ω we have dimLω ≤ n − k. Because ω 6= 0, we
have that for fixed x2, . . . , xk, ω(v, x2, . . . , xk) is a nonzero linear function of v, hence, has
kernel dimension n− 1. I claim that if x′2 is linearly independent from then x2, . . . , xk, then
kerω(−, x′2, . . . , xk) is independent from kerω(−, x2, . . . , xk). Indeed this is true because
ω(v, x2, . . . , xk) and ω(v, x′2, . . . , xk) are linearly independent as linear functions of v. Then
we have that

dim{v ∈ V |ω(v, x2, . . . , xk) = 0 ∀x2, . . . , xk ∈ V } ≤ n− 2.

Repeat this process for each entry to find that in fact the dimension is ≤ n− k.
On the other hand, {v ∈ V |`1(v) = · · · = `k(v) = 0} is clearly n− k dimensional because

the `1, . . . , `k are linearly independent, and

{v ∈ V |`1(v) = · · · = `k(v) = 0} ⊂ Lω,

hence dimLω ≥ n− k and the two sets are in fact equal.

We have that by assumption

A∗`1 ∧ · · · ∧ A∗`k = A∗(`1 ∧ · · · ∧ `k) = c`1 ∧ · · · ∧ `k,

so that by the lemma we have

{v ∈ V |`1(v) = · · · = `k(v) = 0} = L`1∧···∧`k = LA∗`1∧···∧A∗`k = {v ∈ V |A∗`1(v) = · · · = A∗`k(v) = 0}.

Suppose now that for some i, A∗`i 6∈ span(`1, . . . , `k). For any nonzero λ 6∈ span(`1, . . . , `k),
we have that {v ∈ V |`1(v) = · · · = `k(v) = 0} 6⊂ {v ∈ V |λ(v) = 0}. On the other hand, we
also have that {v ∈ V |A∗`1(v) = · · · = A∗`k(v) = 0} ⊂ {v ∈ V |A∗`i(v) = 0}. Thus we have
reached a contradiction, and we must have A∗`i ∈ span(`1, . . . , `k) for all i = 1, . . . , k.

3. I claim that
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Lemma 2. For every 2-form η on V there exists a basis v1, . . . , vn so that η can be written
as

x1 ∧ x2 + x3 ∧ x4 + · · ·+ xk−1 ∧ xk
for some k ≤ n even.

Proof. Let L be the subspace of V given by the kernel of η, i.e. let

L := {v ∈ V |η(v, x) = 0 ∀x ∈ V }.

Pick basis vectors vk+1, . . . vn for this space, and take vectors ṽ1, . . . , ṽk which extend these
to a basis of V . We will change the tilde vectors later. Then the matrix for η in the basis
we are constructing has all 0s in the last k + 1, . . . , n rows and columns. Let M be the
k-dimensional subspace of V generated by the ṽ1, . . . , ṽk. Then pick some nonzero vk ∈ M .
Then because M ∩ L = {0}, we have that there exists vk−1 ∈ M such that η(vk, vk−1) = 1.
Now, replacing ˜vk−1 and ṽk by vk−1 and vk, we have that the matrix of η with respect to this

basis has a

(
0 1
−1 0

)
block on the diagonal.

We now show that it is 0 in the two columns above this block. Take

M1 := {v ∈ V |η(x, v) = 0 ∀x ∈ span(vk−1, vk)}.

I claim that that M1 had dimension n − 2. Indeed, η(−, vk1) is a linear function on V ,
and because vk−1 6∈ L, we have that this function is nonzero. Thus (by, say, the rank-
nullity theorem) it has kernel of dimension n− 1. Then Uvk−1

:= {v ∈ V |η(v, w) = 0 ∀w ∈
span(vk−1)} has dimension n− 1. By the same argument, we have that

{v ∈ Uvk−1
|η(v, w) = 0 ∀w ∈ span(vk)} = M1

has dimension n−2. Thus all the other entries in the two columns above and below the 2×2
block are zero. Now the matrix is as-yet-undetermined in the upper left (k − 2) × (k − 2)

block, has

(
0 1
−1 0

)
on the diagonal k − 1, k place, and 0 elsewhere. Repeat this process.

The process must terminate because V is finite-dimensional. In the last step, we must be
left with an undetermined 0 dimensional space and not a 1-dimensional space. Indeed, if
the last undetermined entry in the matrix is a 1× 1 in the upper-left, then it must be 0 by
skew-symmetry, and hence it was in L to begin with. Thus k was even to begin with, and
we have produced a basis with the desired property.

Now, observe that, in fact, the condition η ∧ η actually forces k = 2. Indeed, this can be
seen by squaring-out the 2-form η explicitly in these coordinates. Thus η = x1 ∧ x2.
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4. First, we check that

df =
∂f

∂y1
dy1 +

∂f

∂y2
dy2.

Indeed, dyf ∈ V ∗y is a linear function on the tangent space, so for any h = h1v1 + h2v2 ∈ Vy,
we have

dyf(h) = h1dyf(v1) + h2dyf(v2) =
∂f

∂y1
(y)h1 +

∂f

∂y2
(y)h2

by the second displayed equation of page 46 of the notes, §5.1. Also, if y1, y2 are the standard
coordinate functions on V , which we now think of as smooth functions on V , then we have
by linearity

dyi = lim
t→0

yi(y + th)− yi(y)

t
= yi(h) = hi,

so we get the formula for the differential we wanted.
Now we find the formula for the gradient. We have ∇f(y) = D−1(dyf). Hence for any

h = h1v1 + h2v2 ∈ Vy

h1
∂f

∂y1
(y) + h2

∂f

∂y2
(y) = 〈∇f(y), h〉 = 〈g1(y)v1 + g2(y)v2, h1v1 + h2v2〉,

or using symmetry and linearity of inner products,[
∂f

∂y1
(y),

∂f

∂y2
(y)

] [
h1
h2

]
= [g1(y), g2(y)]

[
〈v1, v1〉 〈v2, v1〉
〈v1, v2〉 〈v2, v2〉

] [
h1
h2

]
,

so, since h was arbitrary,

[g1(y), g2(y)] =

[
∂f

∂y1
(y),

∂f

∂y2
(y)

] [
1 1
1 2

]−1
=

[
2
∂f

∂y1
(y)− ∂f

∂y2
(y),− ∂f

∂y1
(y) +

∂f

∂y2
(y)

]
,

so we have

∇f(y) =

(
2
∂f

∂y1
(y)− ∂f

∂y2
(y)

)
∂

∂y1
+

(
− ∂f
∂y1

(y) +
∂f

∂y2
(y)

)
∂

∂y2
.
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