Math 52H Homework 2 Solutions

January 26, 2012

1. (a). We can check this straight from the definitions. Let $\alpha \in \Lambda^k(V^*)$ be a k-form on V. Let U_1, \ldots, U_{n-k} be any vectors. First, assume that they are linearly dependent. Then clearly $(\mathcal{A}^* \circ \star) \alpha(U_1, \ldots, U_{n-k}) = 0$ because $\star \alpha(U_1, \ldots, U_{n-k}) = 0$. But if we call $\omega = \mathcal{A}^* \alpha$, then $\star \circ \mathcal{A}^* \alpha(U_1, \ldots, U_{n-k}) = \star \omega(U_1, \ldots, U_{n-k}) = 0$ by definition of the Hodge- \star operator. So we have shown the identity in the case that the vectors are linearly dependent.

Now assume U_1, \ldots, U_{n-k} are linearly independent. Let Z_1, \ldots, Z_k be the complementary vectors in the sense of Definition 4.1 in the notes. Then $\mathcal{A}^* \circ \star \alpha(U_1, \ldots, U_{n-k}) = \star \alpha(\mathcal{A}U_1, \ldots, \mathcal{A}U_{n-k})$. Now, because \mathcal{A} is special orthogonal, we have that $\mathcal{A}Z_1, \ldots, \mathcal{A}Z_k$ is a basis of span $(\mathcal{A}U_1, \ldots, \mathcal{A}U_{n-k})^{\perp}$ with the same volume and the same orientation. Thus

$$\mathcal{A}^* \circ \star \alpha(U_1, \dots, U_{n-k}) = \star \alpha(\mathcal{A}U_1, \dots, \mathcal{A}U_{n-k}) = \alpha(\mathcal{A}Z_1, \dots, \mathcal{A}Z_k)$$

On the other hand, if we call $\omega := \mathcal{A}^* \alpha$, then

$$\star \circ \mathcal{A}^* \alpha(U_1, \dots, U_{n-k}) = \star \omega(U_1, \dots, U_{n-k}) = \omega(Z_1, \dots, Z_k) = \alpha(\mathcal{A}Z_1, \dots, \mathcal{A}Z_k).$$

(b). Choose an orthonormal basis e_1, \ldots, e_n and apply the previous to the k-form $x_{i_1} \wedge \cdots \wedge x_{i_k}$. Let j_1, \ldots, j_{n-k} be some choice of n-k indices, and let $\hat{j}_1, \ldots, \hat{j}_k$ be the complementary k indices. Likewise, let $\hat{i}_1, \ldots, \hat{i}_{n-k}$ be the complementary indices to the *i*s. Then by the previous part,

$$(\mathcal{A}^* \circ \star) x_{i_1} \wedge \dots \wedge x_{i_k} (e_{j_1}, \dots e_{j_{n-k}}) = x_{i_1} \wedge \dots \wedge x_{i_k} (Ae_{\hat{j}_1}, \dots, Ae_{\hat{j}_k}),$$

which by, say, Prop 2.17 from the course notes is the minor of A given by the i_1, \ldots, i_k and the $\hat{j}_1, \ldots, \hat{j}_k$. On the other hand, this is equal to

$$(\star \circ \mathcal{A}^*) x_{i_1} \wedge \dots \wedge x_{i_k} (e_{j_1}, \dots, e_{j_{n-k}}) = \star x_{i_1} \wedge \dots \wedge x_{i_k} (Ae_{j_1}, \dots, Ae_{j_{n-k}})$$
$$= (-1)^{\operatorname{inv}(i_1, \dots, i_k, \hat{i}_1, \dots, \hat{i}_{n-k})} x_{\hat{i}_1} \wedge \dots \wedge x_{\hat{i}_{n-k}} (Ae_{j_1}, \dots, Ae_{j_{n-k}}),$$

which is up to a ± 1 the minor of A given by the $\hat{i}_1, \ldots, \hat{i}_k$, and the j_1, \ldots, j_{n-k} . So the two minors are the same in absolute value.

2.

b. Let e_1, \ldots, e_{2n} be basis vectors for \mathbb{R}^{2n} , where e_{2k-1} corresponds to x_k and e_{2k} corresponds to y_k for $1 \leq k \leq n$. We first find the matrix corresponding to the skew-symmetric bilinear form ω . Say that $i \leq j$. Then, we have that $\omega(e_i, e_j) = 0$ unless i = 2k - 1 and j = 2k for some k in which case $\omega(e_i, e_j) = 1$. By skew-symmetry of ω , the matrix corresponding to ω is -J. Now $\mathcal{A}^*\omega = \omega$ implies that for $u, v \in \mathbb{R}^{2n}$ that

$$u^t(-J)v = u^t A^t(-J)Av,$$

which immediately gives $J = A^t J A$, as desired.

c. Let \mathcal{U} be an orthogonal operator with matrix U. Then \mathcal{U} is unitary $\Leftrightarrow UJ = JU \Leftrightarrow J = U^{-1}JU = U^tJU \Leftrightarrow \mathcal{U}$ is symplectic.

d. L is Lagrangian is equivalent to $0 = \omega(u, v) = -u^t J v$ for all $u, v \in L \Leftrightarrow u$ is orthogonal to Jv for all $u, v \in L \Leftrightarrow J(L) = L^{\perp}$. The last part follows since J is one to one, and L is dimension n so J(L) is a dimension n subspace orthogonal to L.

3. Consider the linear operator $L = \frac{1}{2}(\star + I) : \Lambda^2((\mathbb{R}^4)^*) \to \Lambda^2((\mathbb{R}^4)^*)$; the two-form β is self-dual if and only if $L\beta = \beta$.

Since $\star^2 = I$ is the identity, $L^2 = \frac{1}{4}(\star^2 + 2 \star + I) = \frac{1}{2}(\star + I) = L$ so L is a projection, that is,

$$\{v: Lv = v\} = \operatorname{im}(L).$$

We have

$$L(x_1 \wedge x_2) = \frac{1}{2}(x_1 \wedge x_2 + x_3 \wedge x_4) = L(x_3 \wedge x_4), \quad L(x_1 \wedge x_3) = \frac{1}{2}(x_1 \wedge x_3 - x_2 \wedge x_4) = -L(x_2 \wedge x_4)$$
$$L(x_1 \wedge x_4) = \frac{1}{2}(x_1 \wedge x_4 + x_2 \wedge x_3) = L(x_2 \wedge x_3),$$

so the space of self-dual forms is 3-dimensional, with basis

$$\left\{\frac{1}{2}(x_1 \wedge x_2 + x_3 \wedge x_4), \frac{1}{2}(x_1 \wedge x_3 - x_2 \wedge x_4), \frac{1}{2}(x_1 \wedge x_4 + x_2 \wedge x_3)\right\}$$

4. Let $Y = \alpha X + \beta Z$ where $\langle X, Z \rangle = 0$. Then $X \times Y = \beta X \times Z$, since $X \times X = 0$ whereas $\mathcal{D}^{-1}(\star(\mathcal{D}(X) \wedge \mathcal{D}(Y))) = \beta \mathcal{D}^{-1}(\star(\mathcal{D}(X) \wedge \mathcal{D}(Z)))$ since $\mathcal{D}(X) \wedge \mathcal{D}(X) = 0$. It thus suffices to check that

$$X \times Z = \mathcal{D}^{-1}(\star(\mathcal{D}(X) \wedge \mathcal{D}(Z))).$$

We may assume that $X, Z \neq 0$, and by dividing the above by ||X||||Z||, we may further assume that X and Z are orthonormal. Let X, Z, W be an orthonormal basis for \mathbb{R}^3 , where $W = X \times Z$, so that the basis defines the standard orientation for \mathbb{R}^3 . Note that $\mathcal{D}(X), \mathcal{D}(Z), \mathcal{D}(W)$ forms the dual basis. By Lemma 4.3 in the notes, we have that $\star(\mathcal{D}(X) \wedge \mathcal{D}(Z)) = \mathcal{D}(W)$, and so $\mathcal{D}^{-1}(\star(\mathcal{D}(X) \wedge \mathcal{D}(Z))) = W = X \times Z$ as desired.

5. We first prove the following lemma.

Lemma 1. For any two $n \times n$ matrices A and B such that AB = BA, we have that

$$\exp(A+B) = \exp(A)\exp(B).$$

Proof.

$$\exp(A+B) = \sum_{k\geq 0} \frac{(A+B)^k}{k!}$$
$$= \sum_{j\geq 0} \sum_{m=0}^k \frac{A^m B^{j-m}}{m!(j-m)!}$$
$$= \sum_{m,n} \frac{A^m}{m!} \frac{B^n}{n!},$$

as desired. In the above, we have used that AB = BA in our binomial expansion.

Next note that for any $n \times n$ matrix M that $\exp(M)^T = \left(\sum_{k\geq 0} \frac{M^k}{k!}\right)^T = \sum_{k\geq 0} \frac{(M^T)^k}{k!} = \exp(M^T)$. Now let A be skew-symmetric so $A^T = -A$. Then $A^T A = AA^T$ so applying the above and the Lemma gives

$$\exp(A)\exp(A)^{T} = \exp(A)\exp(A^{T}) = \exp(A + A^{T}) = \exp(0) = I,$$

so $\exp(A)$ is orthogonal.

Conversely, say that $\exp(tA)$ is orthogonal for all t. Then

$$I = \exp(tA) \exp(tA^{T})$$

= $\left(\sum_{k\geq 0} \frac{t^{k}A^{k}}{k!}\right) \left(\sum_{k\geq 0} \frac{t^{k}(A^{T})^{k}}{k!}\right)$
= $I + t(A + A^{T}) + \frac{t^{2}}{2}(2AA^{T} + A^{2} + (A^{T})^{2}) + ...$

Apply $\frac{d}{dt}\Big|_{t=0}$ to the equation above. The left hand side is 0, whereas the right hand side is $(A + A^T + 2t(2AA^T + A^2 + (A^T)^2) + ...)\Big|_{t=0} = A + A^T$. Hence $A = -A^T$, as desired.