Math 52H Homework 2 Solutions

January 26, 2012

1. (a). We can check this straight from the definitions. Let $\alpha \in \Lambda^{k}\left(V^{*}\right)$ be a k-form on V. Let U_{1}, \ldots, U_{n-k} be any vectors. First, assume that they are linearly dependent. Then clearly $\left(\mathcal{A}^{*} \circ \star\right) \alpha\left(U_{1}, \ldots, U_{n-k}\right)=0$ because $\star \alpha\left(U_{1}, \ldots, U_{n-k}\right)=0$. But if we call $\omega=\mathcal{A}^{*} \alpha$, then $\star \circ \mathcal{A}^{*} \alpha\left(U_{1}, \ldots, U_{n-k}\right)=\star \omega\left(U_{1}, \ldots, U_{n-k}\right)=0$ by definition of the Hodge- \star operator. So we have shown the identity in the case that the vectors are linearly dependent.

Now assume U_{1}, \ldots, U_{n-k} are linearly independent. Let Z_{1}, \ldots, Z_{k} be the complementary vectors in the sense of Definition 4.1 in the notes. Then $\mathcal{A}^{*} \circ \star \alpha\left(U_{1}, \ldots, U_{n-k}\right)=$ $\star \alpha\left(\mathcal{A} U_{1}, \ldots, \mathcal{A} U_{n-k}\right)$. Now, because \mathcal{A} is special orthogonal, we have that $\mathcal{A} Z_{1}, \ldots, \mathcal{A} Z_{k}$ is a basis of $\operatorname{span}\left(\mathcal{A} U_{1}, \ldots, \mathcal{A} U_{n-k}\right)^{\perp}$ with the same volume and the same orientation. Thus

$$
\mathcal{A}^{*} \circ \star \alpha\left(U_{1}, \ldots, U_{n-k}\right)=\star \alpha\left(\mathcal{A} U_{1}, \ldots, \mathcal{A} U_{n-k}\right)=\alpha\left(\mathcal{A} Z_{1}, \ldots, \mathcal{A} Z_{k}\right)
$$

On the other hand, if we call $\omega:=\mathcal{A}^{*} \alpha$, then

$$
\star \circ \mathcal{A}^{*} \alpha\left(U_{1}, \ldots, U_{n-k}\right)=\star \omega\left(U_{1}, \ldots, U_{n-k}\right)=\omega\left(Z_{1}, \ldots, Z_{k}\right)=\alpha\left(\mathcal{A} Z_{1}, \ldots, \mathcal{A} Z_{k}\right)
$$

(b). Choose an orthonormal basis e_{1}, \ldots, e_{n} and apply the previous to the k-form $x_{i_{1}} \wedge \cdots \wedge$ $x_{i_{k}}$. Let $j_{1}, \ldots j_{n-k}$ be some choice of $n-k$ indices, and let $\widehat{j}_{1}, \ldots, \widehat{j}_{k}$ be the complementary k indices. Likewise, let $\widehat{i}_{1}, \ldots, \widehat{i}_{n-k}$ be the complementary indices to the i s. Then by the previous part,

$$
\left(\mathcal{A}^{*} \circ \star\right) x_{i_{1}} \wedge \cdots \wedge x_{i_{k}}\left(e_{j_{1}}, \ldots e_{j_{n-k}}\right)=x_{i_{1}} \wedge \cdots \wedge x_{i_{k}}\left(A e_{\widehat{j}_{1}}, \ldots, A e_{\widehat{j}_{k}}\right)
$$

which by, say, Prop 2.17 from the course notes is the minor of A given by the i_{1}, \ldots, i_{k} and the $\widehat{j}_{1}, \ldots, \widehat{j}_{k}$. On the other hand, this is equal to

$$
\begin{aligned}
\left(\star \circ \mathcal{A}^{*}\right) x_{i_{1}} \wedge \cdots \wedge x_{i_{k}}\left(e_{j_{1}}, \ldots, e_{j_{n-k}}\right) & =\star x_{i_{1}} \wedge \cdots \wedge x_{i_{k}}\left(A e_{j_{1}}, \ldots, A e_{j_{n-k}}\right) \\
& =(-1)^{\operatorname{inv}\left(i_{1}, \ldots, i_{k}, \hat{i}_{1}, \ldots, \hat{i}_{n-k}\right)} x_{\widehat{i_{1}}} \wedge \cdots \wedge x_{\widehat{i}_{n-k}}\left(A e_{j_{1}}, \ldots, A e_{j_{n-k}}\right)
\end{aligned}
$$

which is up to a ± 1 the minor of A given by the $\widehat{i}_{1}, \ldots, \widehat{i}_{k}$, and the j_{1}, \ldots, j_{n-k}. So the two minors are the same in absolute value.
b. Let $e_{1}, \ldots, e_{2 n}$ be basis vectors for $\mathbb{R}^{2 n}$, where $e_{2 k-1}$ corresponds to x_{k} and $e_{2 k}$ corresponds to y_{k} for $1 \leq k \leq n$. We first find the matrix corresponding to the skew-symmetric bilinear form ω. Say that $i \leq j$. Then, we have that $\omega\left(e_{i}, e_{j}\right)=0$ unless $i=2 k-1$ and $j=2 k$ for some k in which case $\omega\left(e_{i}, e_{j}\right)=1$. By skew-symmetry of ω, the matrix corresponding to ω is $-J$. Now $\mathcal{A}^{*} \omega=\omega$ implies that for $u, v \in \mathbb{R}^{2 n}$ that

$$
u^{t}(-J) v=u^{t} A^{t}(-J) A v,
$$

which immediately gives $J=A^{t} J A$, as desired.
c. Let \mathcal{U} be an orthogonal operator with matrix U. Then \mathcal{U} is unitary $\Leftrightarrow U J=J U \Leftrightarrow J=$ $U^{-1} J U=U^{t} J U \Leftrightarrow \mathcal{U}$ is symplectic.
d. L is Lagrangian is equivalent to $0=\omega(u, v)=-u^{t} J v$ for all $u, v \in L \Leftrightarrow u$ is orthogonal to $J v$ for all $u, v \in L \Leftrightarrow J(L)=L^{\perp}$. The last part follows since J is one to one, and L is dimension n so $J(L)$ is a dimension n subspace orthogonal to L.
3. Consider the linear operator $L=\frac{1}{2}(\star+I): \Lambda^{2}\left(\left(\mathbb{R}^{4}\right)^{*}\right) \rightarrow \Lambda^{2}\left(\left(\mathbb{R}^{4}\right)^{*}\right)$; the two-form β is self-dual if and only if $L \beta=\beta$.

Since $\star^{2}=I$ is the identity, $L^{2}=\frac{1}{4}\left(\star^{2}+2 \star+I\right)=\frac{1}{2}(\star+I)=L$ so L is a projection, that is,

$$
\{v: L v=v\}=\operatorname{im}(L)
$$

We have

$$
\begin{gathered}
L\left(x_{1} \wedge x_{2}\right)=\frac{1}{2}\left(x_{1} \wedge x_{2}+x_{3} \wedge x_{4}\right)=L\left(x_{3} \wedge x_{4}\right), \quad L\left(x_{1} \wedge x_{3}\right)=\frac{1}{2}\left(x_{1} \wedge x_{3}-x_{2} \wedge x_{4}\right)=-L\left(x_{2} \wedge x_{4}\right) \\
L\left(x_{1} \wedge x_{4}\right)=\frac{1}{2}\left(x_{1} \wedge x_{4}+x_{2} \wedge x_{3}\right)=L\left(x_{2} \wedge x_{3}\right)
\end{gathered}
$$

so the space of self-dual forms is 3 -dimensional, with basis

$$
\left\{\frac{1}{2}\left(x_{1} \wedge x_{2}+x_{3} \wedge x_{4}\right), \frac{1}{2}\left(x_{1} \wedge x_{3}-x_{2} \wedge x_{4}\right), \frac{1}{2}\left(x_{1} \wedge x_{4}+x_{2} \wedge x_{3}\right)\right\}
$$

4. Let $Y=\alpha X+\beta Z$ where $\langle X, Z\rangle=0$. Then $X \times Y=\beta X \times Z$, since $X \times X=0$ whereas $\mathcal{D}^{-1}(\star(\mathcal{D}(X) \wedge \mathcal{D}(Y)))=\beta \mathcal{D}^{-1}(\star(\mathcal{D}(X) \wedge \mathcal{D}(Z)))$ since $\mathcal{D}(X) \wedge \mathcal{D}(X)=0$. It thus suffices to check that

$$
X \times Z=\mathcal{D}^{-1}(\star(\mathcal{D}(X) \wedge \mathcal{D}(Z)))
$$

We may assume that $X, Z \neq 0$, and by dividing the above by $\|X\|\|Z\|$, we may further assume that X and Z are orthonormal. Let X, Z, W be an orthonormal basis for \mathbb{R}^{3}, where $W=X \times Z$, so that the basis defines the standard orientation for \mathbb{R}^{3}. Note that $\mathcal{D}(X), \mathcal{D}(Z), \mathcal{D}(W)$ forms the dual basis. By Lemma 4.3 in the notes, we have that $\star(\mathcal{D}(X) \wedge \mathcal{D}(Z))=\mathcal{D}(W)$, and so $\mathcal{D}^{-1}(\star(\mathcal{D}(X) \wedge \mathcal{D}(Z)))=W=X \times Z$ as desired.
5. We first prove the following lemma.

Lemma 1. For any two $n \times n$ matrices A and B such that $A B=B A$, we have that

$$
\exp (A+B)=\exp (A) \exp (B)
$$

Proof.

$$
\begin{aligned}
\exp (A+B) & =\sum_{k \geq 0} \frac{(A+B)^{k}}{k!} \\
& =\sum_{j \geq 0} \sum_{m=0}^{k} \frac{A^{m} B^{j-m}}{m!(j-m)!} \\
& =\sum_{m, n} \frac{A^{m}}{m!} \frac{B^{n}}{n!}
\end{aligned}
$$

as desired. In the above, we have used that $A B=B A$ in our binomial expansion.
Next note that for any $n \times n$ matrix M that $\exp (M)^{T}=\left(\sum_{k \geq 0} \frac{M^{k}}{k!}\right)^{T}=\sum_{k \geq 0} \frac{\left(M^{T}\right)^{k}}{k!}=$ $\exp \left(M^{T}\right)$. Now let A be skew-symmetric so $A^{T}=-A$. Then $A^{T} A=A A^{T}$ so applying the above and the Lemma gives

$$
\exp (A) \exp (A)^{T}=\exp (A) \exp \left(A^{T}\right)=\exp \left(A+A^{T}\right)=\exp (0)=I
$$

so $\exp (A)$ is orthogonal.
Conversely, say that $\exp (t A)$ is orthogonal for all t. Then

$$
\begin{aligned}
I & =\exp (t A) \exp \left(t A^{T}\right) \\
& =\left(\sum_{k \geq 0} \frac{t^{k} A^{k}}{k!}\right)\left(\sum_{k \geq 0} \frac{t^{k}\left(A^{T}\right)^{k}}{k!}\right) \\
& =I+t\left(A+A^{T}\right)+\frac{t^{2}}{2}\left(2 A A^{T}+A^{2}+\left(A^{T}\right)^{2}\right)+\ldots
\end{aligned}
$$

Apply $\left.\frac{d}{d t}\right|_{t=0}$ to the equation above. The left hand side is 0 , whereas the right hand side is $\left.\left(A+A^{T}+2 t\left(2 A A^{T}+A^{2}+\left(A^{T}\right)^{2}\right)+\ldots\right)\right|_{t=0}=A+A^{T}$. Hence $A=-A^{T}$, as desired.

