
Math 52H Homework 2 Solutions

January 26, 2012

1. (a). We can check this straight from the definitions. Let α ∈ Λk(V ∗) be a k-form on
V . Let U1, . . . , Un−k be any vectors. First, assume that they are linearly dependent. Then
clearly (A∗ ◦ ?)α(U1, . . . , Un−k) = 0 because ?α(U1, . . . , Un−k) = 0. But if we call ω = A∗α,
then ? ◦ A∗α(U1, . . . , Un−k) = ?ω(U1, . . . , Un−k) = 0 by definition of the Hodge-? operator.
So we have shown the identity in the case that the vectors are linearly dependent.

Now assume U1, . . . , Un−k are linearly independent. Let Z1, . . . , Zk be the complemen-
tary vectors in the sense of Definition 4.1 in the notes. Then A∗ ◦ ?α(U1, . . . , Un−k) =
?α(AU1, . . . ,AUn−k). Now, because A is special orthogonal, we have that AZ1, . . . ,AZk is
a basis of span(AU1, . . . ,AUn−k)⊥ with the same volume and the same orientation. Thus

A∗ ◦ ?α(U1, . . . , Un−k) = ?α(AU1, . . . ,AUn−k) = α(AZ1, . . . ,AZk).

On the other hand, if we call ω := A∗α, then

? ◦ A∗α(U1, . . . , Un−k) = ?ω(U1, . . . , Un−k) = ω(Z1, . . . , Zk) = α(AZ1, . . . ,AZk).

(b). Choose an orthonormal basis e1, . . . , en and apply the previous to the k-form xi1∧· · ·∧
xik . Let j1, . . . jn−k be some choice of n− k indices, and let ĵ1, . . . , ĵk be the complementary

k indices. Likewise, let î1, . . . , în−k be the complementary indices to the is. Then by the
previous part,

(A∗ ◦ ?)xi1 ∧ · · · ∧ xik(ej1 , . . . ejn−k
) = xi1 ∧ · · · ∧ xik(Aeĵ1 , . . . , Aeĵk),

which by, say, Prop 2.17 from the course notes is the minor of A given by the i1, . . . , ik and
the ĵ1, . . . , ĵk. On the other hand, this is equal to

(? ◦ A∗)xi1 ∧ · · · ∧ xik(ej1 , . . . , ejn−k
) = ?xi1 ∧ · · · ∧ xik(Aej1 , . . . , Aejn−k

)

= (−1)inv(i1,...,ik ,̂i1,...,̂in−k)xî1 ∧ · · · ∧ xîn−k
(Aej1 , . . . , Aejn−k

),

which is up to a ±1 the minor of A given by the î1, . . . , îk, and the j1, . . . , jn−k. So the two
minors are the same in absolute value.
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b. Let e1, ..., e2n be basis vectors for R2n, where e2k−1 corresponds to xk and e2k corresponds
to yk for 1 ≤ k ≤ n. We first find the matrix corresponding to the skew-symmetric bilinear
form ω. Say that i ≤ j. Then, we have that ω(ei, ej) = 0 unless i = 2k − 1 and j = 2k for
some k in which case ω(ei, ej) = 1. By skew-symmetry of ω, the matrix corresponding to ω
is −J . Now A∗ω = ω implies that for u, v ∈ R2n that

ut(−J)v = utAt(−J)Av,

which immediately gives J = AtJA, as desired.

c. Let U be an orthogonal operator with matrix U . Then U is unitary ⇔ UJ = JU ⇔ J =
U−1JU = U tJU ⇔ U is symplectic.

d. L is Lagrangian is equivalent to 0 = ω(u, v) = −utJv for all u, v ∈ L ⇔ u is orthogonal
to Jv for all u, v ∈ L ⇔ J(L) = L⊥. The last part follows since J is one to one, and L is
dimension n so J(L) is a dimension n subspace orthogonal to L.

3. Consider the linear operator L = 1
2
(?+ I) : Λ2((R4)∗)→ Λ2((R4)∗); the two-form β is

self-dual if and only if Lβ = β.
Since ?2 = I is the identity, L2 = 1

4
(?2 + 2 ?+I) = 1

2
(?+ I) = L so L is a projection, that

is,
{v : Lv = v} = im(L).

We have

L(x1∧x2) =
1

2
(x1∧x2+x3∧x4) = L(x3∧x4), L(x1∧x3) =

1

2
(x1∧x3−x2∧x4) = −L(x2∧x4)

L(x1 ∧ x4) =
1

2
(x1 ∧ x4 + x2 ∧ x3) = L(x2 ∧ x3),

so the space of self-dual forms is 3-dimensional, with basis

{1

2
(x1 ∧ x2 + x3 ∧ x4),

1

2
(x1 ∧ x3 − x2 ∧ x4),

1

2
(x1 ∧ x4 + x2 ∧ x3)}.

4. Let Y = αX + βZ where 〈X,Z〉 = 0. Then X × Y = βX × Z, since X × X = 0
whereas D−1(?(D(X) ∧ D(Y ))) = βD−1(?(D(X) ∧ D(Z))) since D(X) ∧ D(X) = 0. It thus
suffices to check that

X × Z = D−1(?(D(X) ∧ D(Z))).
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We may assume that X,Z 6= 0, and by dividing the above by ||X||||Z||, we may fur-
ther assume that X and Z are orthonormal. Let X,Z,W be an orthonormal basis for
R3, where W = X × Z, so that the basis defines the standard orientation for R3. Note
that D(X),D(Z),D(W ) forms the dual basis. By Lemma 4.3 in the notes, we have that
?(D(X) ∧ D(Z)) = D(W ), and so D−1(?(D(X) ∧ D(Z))) = W = X × Z as desired.

5. We first prove the following lemma.

Lemma 1. For any two n× n matrices A and B such that AB = BA, we have that

exp(A+B) = exp(A) exp(B).

Proof.

exp(A+B) =
∑
k≥0

(A+B)k

k!

=
∑
j≥0

k∑
m=0

AmBj−m

m!(j −m)!

=
∑
m,n

Am

m!

Bn

n!
,

as desired. In the above, we have used that AB = BA in our binomial expansion.

Next note that for any n × n matrix M that exp(M)T =
(∑

k≥0
Mk

k!

)T
=
∑

k≥0
(MT )k

k!
=

exp(MT ). Now let A be skew-symmetric so AT = −A. Then ATA = AAT so applying the
above and the Lemma gives

exp(A) exp(A)T = exp(A) exp(AT ) = exp(A+ AT ) = exp(0) = I,

so exp(A) is orthogonal.
Conversely, say that exp(tA) is orthogonal for all t. Then

I = exp(tA) exp(tAT )

=

(∑
k≥0

tkAk

k!

)(∑
k≥0

tk(AT )k

k!

)

= I + t(A+ AT ) +
t2

2
(2AAT + A2 + (AT )2) + ...

Apply d
dt

∣∣
t=0

to the equation above. The left hand side is 0, whereas the right hand side is

(A+ AT + 2t(2AAT + A2 + (AT )2) + ...)
∣∣
t=0

= A+ AT . Hence A = −AT , as desired.
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