## Math 52H Homework 1 Solutions

## January 19, 2012

1. To verify that  $\langle \cdot, \cdot \rangle$  is an inner product we check the axioms. First,  $\langle X, Y \rangle = \text{Tr}(XY) = \text{Tr}(YX) = \langle Y, X \rangle$ . Also  $\langle \alpha X + Y, Z \rangle = \text{Tr}((\alpha X + Y)Z) = \alpha \text{Tr}(XZ) + \text{Tr}(YZ) = \alpha \langle X, Z \rangle + \langle Y, Z \rangle$ . Finally, for X symmetric, recall that the trace is invariant under change of basis. Because X is symmetric, X is diagonalizable over  $\mathbb{R}$  with real eigenvalues  $\lambda_1$  and  $\lambda_2$ . Thus  $\langle X, X \rangle = \text{Tr}\langle X^2 \rangle = \lambda_1^2 + \lambda_2^2 \ge 0$ . Equality holds if and only if  $\lambda_1 = \lambda_2 = 0$  which is equivalent to X = 0.

Let  $A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ ,  $A_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ , and  $A_3 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ . It is easy to check that  $A_i A_j$  has zeros on the diagonal unless i = j. Moreover  $\operatorname{Tr}(A_i^2) = 1$  if i = 1, 3 and  $\operatorname{Tr}(A_2^2) = 2$ . Thus the matrix for the biliear form is  $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ .

2. Pick the standard basis  $\{e_1, \ldots, e_n\}$  for  $V = \mathbb{R}^n$ . The basis of  $V^*$  is then given by the coordinate functions  $x_1, \ldots, x_n$ . The columns of the matrix of  $\mathcal{D}$  are then given by expanding  $\mathcal{D}e_i$  in the basis  $x_1, \ldots, x_n$ . We have as a function of x,  $\mathcal{D}e_i(x) = \langle e_i, x \rangle$ . Expanded in the basis for V,  $e_i = (0, \ldots, 1, \ldots, 0)$ , with the 1 appearing in the *i* place, and in the basis for  $V^*$ ,  $x = (x_1, \ldots, x_n)$ . Then

$$\mathcal{D}e_i(x) = \langle e_i, x \rangle = i \cdot 1 \cdot x_i.$$

So the *i*-th column of the matrix of  $\mathcal{D}$  with respect to these bases is 0 everywhere, except for an *i* in the *i*-th place. Hence the matrix is

$$\left(\begin{array}{ccccc} 1 & 0 & \cdots & 0 \\ 0 & 2 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & n \end{array}\right).$$

3. Let  $\{e_1, ..., e_n\}$  be the usual basis for  $\mathbb{R}^n$ , dual to  $x_1, ..., x_n$ . We have

$$f \otimes g = \sum_{1 \le i_1, i_2, i_3, i_4 \le n} f \otimes g(e_{i_1}, e_{i_2}, e_{i_3}, e_{i_4}) x_{i_1} \otimes x_{i_2} \otimes x_{i_3} \otimes x_{i_4}$$

[Proof: Let

$$H = \sum_{1 \le i_1, i_2, i_3, i_4 \le n} f \otimes g(e_{i_1}, e_{i_2}, e_{i_3}, e_{i_4}) x_{i_1} \otimes x_{i_2} \otimes x_{i_3} \otimes x_{i_4}$$

Then  $H(e_{j_1}, e_{j_2}, e_{j_3}, e_{j_4}) = f \otimes g(e_{j_1}, e_{j_2}, e_{j_3}, e_{j_4})$ . Equality at general  $v_1, v_2, v_3, v_4$  then follows by multilinearity of both H and  $f \otimes g$ .]

But

$$f \otimes g(e_{i_1}, e_{i_2}, e_{i_3}, e_{i_4}) = f(e_{i_1}, e_{i_2})g(e_{i_3}, e_{i_4}) = a_{i_1i_2}b_{i_3i_4}$$

 $\mathbf{SO}$ 

$$f \otimes g = \sum_{1 \le i_1, i_2, i_3, i_4 \le n} a_{i_1 i_2} b_{i_3 i_4} x_{i_1} \otimes x_{i_2} \otimes x_{i_3} \otimes x_{i_4}.$$

4. (Assume  $\beta \neq 0$ .) Let  $\alpha = a_1 x_2 \wedge x_3 + a_2 x_3 \wedge x_1 + a_3 x_1 \wedge x_2$  and  $\beta = b_1 x_1 + b_2 x_2 + b_3 x_3$ . Then  $\alpha \wedge \beta = (a_1 b_1 + a_2 b_2 + a_3 b_3) x_1 \wedge x_2 \wedge x_3$  so

$$\alpha \wedge \beta = 0 \quad \Leftrightarrow \quad \langle a, b \rangle = 0,$$

where we consider a, b as elements of  $\mathbb{R}^3$ , and  $\langle , \rangle$  is the standard dot product. This is to say that a and b are orthogonal vectors in  $\mathbb{R}^3$ , so we can use the standard cross product to construct a c so that  $a = b \times c$  for some  $c \in \mathbb{R}^3$ . Calling  $c = (c_1, c_2, c_3)$ , and writing out the formulae for the cross product, we have

$$a_1 = b_2c_3 - b_3c_2, \quad a_2 = b_3c_1 - b_1c_3, \quad a_3 = b_1c_2 - b_2c_1$$

which says exactly that if  $\gamma := c_1 x_1 + c_2 x_2 + c_3 x_3$  then

$$\alpha = (b_1 x_1 + b_2 x_2 + b_3 x_3) \land (c_1 x_1 + c_2 x_2 + c_3 x_3) = \beta \land \gamma.$$

5. We have  $\theta = \sum_{i=1}^{n-1} x_i \otimes x_{i+1} - \sum_{i=1}^{n-1} x_{i+1} \otimes x_i$  so  $\theta(A, B) = \sum_{i=1}^{n-1} A_i B_{i+1} - \sum_{i=1}^{n-1} A_{i+1} B_i$  $= \sum_{i=1}^{n-1} (-1)^{i+1} - \sum_{i=1}^{n-1} (-1)^i = \begin{cases} 2 & \text{if } n \text{ even} \\ 0 & \text{if } n \text{ odd} \end{cases}$ .

6. a. First think about what  $\omega$  is: if  $\alpha, \beta \in \mathbb{R}^{2n}$ , then  $\omega$  is the function of two vector inputs given by

$$\omega(\alpha,\beta) = \sum_{i=1} x_i(\alpha) y_i(\beta) - y_i(\alpha) x_i(\beta).$$

Now, note that  $(L_A)^* : \Lambda^2((\mathbb{R}^{2n})^*) \to \Lambda^2((\mathbb{R}^n)^*)$ , so that for any two  $v = (v_1, \ldots, v_n)$  and  $w = (w_1, \ldots, w_n) \in \mathbb{R}^n$ ,

$$(L_A)^* \omega(v, w) = \omega(L_A v, L_A w) = \omega((v, Av), (w, Aw))$$
  
=  $\sum_{i=1}^n x_i((v, Av))y_i((w, Aw)) - y_i((v, Av))x_i((w, Aw))$   
=  $\sum_{i=1}^n v_i \sum_{j=1}^n a_{ij}w_j - w_i \sum_{j=1}^n a_{ij}v_j.$ 

Basically, this says that if we call the bilinear form associated to A by  $f_A(v, w)$ , then  $(L_A)^*\omega(v, w) = f_A(v, w) - f_A(w, v)$ . This is 0 iff  $f_A(v, w) = f_A(w, v)$  for all v, w, i.e. iff A is a symmetric matrix.

b. Call the standard basis for V by  $\{e_1, \ldots, e_n, f_1, \ldots, f_n\}$  and the dual basis for  $V^*$  by  $\{x_1, \ldots, x_n, y_1, \ldots, y_n\}$  as in part a. The first n columns of the matrix of  $\mathcal{C}_{\omega}$  are given by expanding  $\mathcal{C}_{\omega}(e_k)$  in the basis  $x_1, \ldots, y_n$ , and the second n columns are given by expanding  $\mathcal{C}_{\omega}(f_k)$ . If  $Z = (z_1, \ldots, z_{2n})$  is an arbitrary element of V, we have

$$\mathcal{C}_{\omega}(e_k)(Z) = \omega(e_k, Z) = \sum_{i=1}^n x_i(e_k)y_i(Z) - y_i(e_k)x_i(Z) = y_k(Z) = z_{n+k}$$

Meanwhile,

$$\mathcal{C}_{\omega}(f_k)(Z) = \omega(f_k, Z) = \sum_{i=1}^n x_i(f_k)y_i(Z) - y_i(f_k)x_i(Z) = -x_k(Z) = -z_k$$

So  $C_{\omega}(e_k) \in V^*$  is the linear function that returns the n+k-th coordinate of Z, i.e. expanded in the dual basis,  $C_{\omega}(e_k) = (0, \ldots, 0, 1, 0, \ldots, 0)$ , with the 1 appearing in the n + k-th place. Likewise,  $C_{\omega}(f_k) = (0, \ldots, 0, -1, 0, \ldots, 0)$ , with a -1 in the k-th place. Thus, the  $2n \times 2n$ matrix for  $C_{\omega}$  is  $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ , where each of A, B, C, D represents the  $n \times n$  block given by A = 0, B = -I, C = I and D = 0.

c. The determinant is the only skew-symmetric 2n-form on  $\mathbb{R}^{2n}$  up to scaling. So this motivates us to take the *n*-fold wedge product of  $\omega$  with itself. We compute that it is given by

$$(\omega)^{\wedge n} = \underbrace{\omega \wedge \dots \wedge \omega}_{n \text{ times}} = n! (x_1 \wedge y_1) \wedge (x_2 \wedge y_2) \wedge \dots \wedge (x_n \wedge y_n)$$

Lemma:

$$F^*(\omega^{\wedge n}) = (F^*\omega)^{\wedge n}.$$

Proof. This follows by repeatedly applying (i.e. with induction) the identity

$$F^*(\omega_1 \wedge \omega_2) = (F^*\omega_1) \wedge (F^*\omega_2)$$

valid for any  $\omega_1 \in \Lambda^k(V^*)$ ,  $\omega_2 \in \Lambda^l(V^*)$ . To prove the identity, write

$$\begin{aligned} F^*(\omega_1 \wedge \omega_2)(v_1, \dots, v_k, v_{k+1}, \dots, v_{k+l}) \\ &= \omega_1 \wedge \omega_2(Fv_1, \dots, Fv_k, Fv_{k+1}, \dots, Fv_{k+l}) \\ &= \sum_{i_1 < \dots < i_k, i_{k+1} < \dots < i_{k+l}} (-1)^{inv(i_1, \dots, i_{k+l})} \omega_1(Fv_{i_1}, \dots, Fv_{i_k}) \omega_2(Fv_{i_{k+1}}, \dots, Fv_{i_{k+l}}) \\ &= \sum_{i_1 < \dots < i_k, i_{k+1} < \dots < i_{k+l}} (-1)^{inv(i_1, \dots, i_{k+l})} F^* \omega_1(v_{i_1}, \dots, v_{i_k}) F^* \omega_2(v_{i_{k+1}}, \dots, v_{i_{k+l}}) \\ &= (F^*\omega_1) \wedge (F^*\omega_2)(v_1, \dots, v_k, v_{k+1}, \dots, v_{k+l}). \end{aligned}$$

So the lemma and the assumption  $F^*\omega = \omega$  give us that

$$n!F^*((x_1 \wedge y_1) \wedge \ldots \wedge (x_n \wedge y_n)) = n!(x_1 \wedge y_1) \wedge \ldots \wedge (x_n \wedge y_n).$$

On the other hand, since the space of skew-symmetric 2n forms on  $\mathbb{R}^{2n}$  is 1-dimensional, we must have

 $F^*((x_1 \wedge y_1) \wedge \ldots \wedge (x_n \wedge y_n)) = c(x_1 \wedge y_1) \wedge \ldots \wedge (x_n \wedge y_n)$ 

for some constant c. We can compute c by evaluating on the standard basis  $\{e_1, \ldots, e_{2n}\}$ ,

$$c = F^*((x_1 \land y_1) \land \dots \land (x_n \land y_n))(e_1, \dots, e_{2n})$$
  
=  $((x_1 \land y_1) \land \dots \land (x_n \land y_n))(Fe_1, \dots, Fe_{2n})$   
=  $\det \begin{pmatrix} | & | \\ Fe_1 & \dots & Fe_{2n} \\ | & | \end{pmatrix}$   
=  $\det F.$ 

Thus we are forced to have det F = 1. Note: The third equality above can be checked by induction starting with the case of a  $2 \times 2$  determinant.