Math 52H Homework 1 Solutions

January 19, 2012

1. To verify that $\langle\cdot, \cdot\rangle$ is an inner product we check the axioms. First, $\langle X, Y\rangle=\operatorname{Tr}(X Y)=$ $\operatorname{Tr}(Y X)=\langle Y, X\rangle$. Also $\langle\alpha X+Y, Z\rangle=\operatorname{Tr}((\alpha X+Y) Z)=\alpha \operatorname{Tr}(X Z)+\operatorname{Tr}(Y Z)=\alpha\langle X, Z\rangle+$ $\langle Y, Z\rangle$. Finally, for X symmetric, recall that the trace is invariant under change of basis. Because X is symmetric, X is diagonalizable over \mathbb{R} with real eigenvalues λ_{1} and λ_{2}. Thus $\langle X, X\rangle=\operatorname{Tr}\left\langle X^{2}\right\rangle=\lambda_{1}^{2}+\lambda_{2}^{2} \geq 0$. Equality holds if and only if $\lambda_{1}=\lambda_{2}=0$ which is equivalent to $X=0$.

Let $A_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), A_{2}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, and $A_{3}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$. It is easy to check that $A_{i} A_{j}$ has zeros on the diagonal unless $i=j$. Moreover $\operatorname{Tr}\left(A_{i}^{2}\right)=1$ if $i=1,3$ and $\operatorname{Tr}\left(A_{2}^{2}\right)=2$. Thus the matrix for the biliear form is $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$.
2. Pick the standard basis $\left\{e_{1}, \ldots, e_{n}\right\}$ for $V=\mathbb{R}^{n}$. The basis of V^{*} is then given by the coordinate functions x_{1}, \ldots, x_{n}. The columns of the matrix of \mathcal{D} are then given by expanding $\mathcal{D} e_{i}$ in the basis x_{1}, \ldots, x_{n}. We have as a function of $x, \mathcal{D} e_{i}(x)=\left\langle e_{i}, x\right\rangle$. Expanded in the basis for $V, e_{i}=(0, \ldots, 1, \ldots, 0)$, with the 1 appearing in the i place, and in the basis for $V^{*}, x=\left(x_{1}, \ldots, x_{n}\right)$. Then

$$
\mathcal{D} e_{i}(x)=\left\langle e_{i}, x\right\rangle=i \cdot 1 \cdot x_{i} .
$$

So the i-th column of the matrix of \mathcal{D} with respect to these bases is 0 everywhere, except for an i in the i-th place. Hence the matrix is

$$
\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 2 & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & 0 & n
\end{array}\right)
$$

3. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the usual basis for \mathbb{R}^{n}, dual to x_{1}, \ldots, x_{n}. We have

$$
f \otimes g=\sum_{1 \leq i_{1}, i_{2}, i_{3}, i_{4} \leq n} f \otimes g\left(e_{i_{1}}, e_{i_{2}}, e_{i_{3}}, e_{i_{4}}\right) x_{i_{1}} \otimes x_{i_{2}} \otimes x_{i_{3}} \otimes x_{i_{4}}
$$

[Proof: Let

$$
H=\sum_{1 \leq i_{1}, i_{2}, i_{3}, i_{4} \leq n} f \otimes g\left(e_{i_{1}}, e_{i_{2}}, e_{i_{3}}, e_{i_{4}}\right) x_{i_{1}} \otimes x_{i_{2}} \otimes x_{i_{3}} \otimes x_{i_{4}}
$$

Then $H\left(e_{j_{1}}, e_{j_{2}}, e_{j_{3}}, e_{j_{4}}\right)=f \otimes g\left(e_{j_{1}}, e_{j_{2}}, e_{j_{3}}, e_{j_{4}}\right)$. Equality at general $v_{1}, v_{2}, v_{3}, v_{4}$ then follows by multilinearity of both H and $f \otimes g$.]

But

$$
f \otimes g\left(e_{i_{1}}, e_{i_{2}}, e_{i_{3}}, e_{i_{4}}\right)=f\left(e_{i_{1}}, e_{i_{2}}\right) g\left(e_{i_{3}}, e_{i_{4}}\right)=a_{i_{1} i_{2}} b_{i_{3} i_{4}}
$$

so

$$
f \otimes g=\sum_{1 \leq i_{1}, i_{2}, i_{3}, i_{4} \leq n} a_{i_{1} i_{2}} b_{i_{3} i_{4}} x_{i_{1}} \otimes x_{i_{2}} \otimes x_{i_{3}} \otimes x_{i_{4}} .
$$

4. (Assume $\beta \neq 0$.) Let $\alpha=a_{1} x_{2} \wedge x_{3}+a_{2} x_{3} \wedge x_{1}+a_{3} x_{1} \wedge x_{2}$ and $\beta=b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}$. Then $\alpha \wedge \beta=\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right) x_{1} \wedge x_{2} \wedge x_{3}$ so

$$
\alpha \wedge \beta=0 \quad \Leftrightarrow \quad\langle a, b\rangle=0
$$

where we consider a, b as elements of \mathbb{R}^{3}, and \langle,$\rangle is the standard dot product. This is to$ say that a and b are orthogonal vectors in \mathbb{R}^{3}, so we can use the standard cross product to construct a c so that $a=b \times c$ for some $c \in \mathbb{R}^{3}$. Calling $c=\left(c_{1}, c_{2}, c_{3}\right)$, and writing out the formulae for the cross product, we have

$$
a_{1}=b_{2} c_{3}-b_{3} c_{2}, \quad a_{2}=b_{3} c_{1}-b_{1} c_{3}, \quad a_{3}=b_{1} c_{2}-b_{2} c_{1}
$$

which says exactly that if $\gamma:=c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}$ then

$$
\alpha=\left(b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}\right) \wedge\left(c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}\right)=\beta \wedge \gamma .
$$

5. We have $\theta=\sum_{i=1}^{n-1} x_{i} \otimes x_{i+1}-\sum_{i=1}^{n-1} x_{i+1} \otimes x_{i}$ so

$$
\begin{aligned}
\theta(A, B) & =\sum_{i=1}^{n-1} A_{i} B_{i+1}-\sum_{i=1}^{n-1} A_{i+1} B_{i} \\
& =\sum_{i=1}^{n-1}(-1)^{i+1}-\sum_{i=1}^{n-1}(-1)^{i}= \begin{cases}2 & \text { if } n \text { even } \\
0 & \text { if } n \text { odd }\end{cases}
\end{aligned}
$$

6. a. First think about what ω is: if $\alpha, \beta \in \mathbb{R}^{2 n}$, then ω is the function of two vector inputs given by

$$
\omega(\alpha, \beta)=\sum_{i=1}^{n} x_{i}(\alpha) y_{i}(\beta)-y_{i}(\alpha) x_{i}(\beta) .
$$

Now, note that $\left(L_{A}\right)^{*}: \Lambda^{2}\left(\left(\mathbb{R}^{2 n}\right)^{*}\right) \rightarrow \Lambda^{2}\left(\left(\mathbb{R}^{n}\right)^{*}\right)$, so that for any two $v=\left(v_{1}, \ldots, v_{n}\right)$ and $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{R}^{n}$,

$$
\begin{aligned}
\left(L_{A}\right)^{*} \omega(v, w) & =\omega\left(L_{A} v, L_{A} w\right)=\omega((v, A v),(w, A w)) \\
& =\sum_{i=1}^{n} x_{i}((v, A v)) y_{i}((w, A w))-y_{i}((v, A v)) x_{i}((w, A w)) \\
& =\sum_{i=1}^{n} v_{i} \sum_{j=1}^{n} a_{i j} w_{j}-w_{i} \sum_{j=1}^{n} a_{i j} v_{j}
\end{aligned}
$$

Basically, this says that if we call the bilinear form associated to A by $f_{A}(v, w)$, then $\left(L_{A}\right)^{*} \omega(v, w)=f_{A}(v, w)-f_{A}(w, v)$. This is 0 iff $f_{A}(v, w)=f_{A}(w, v)$ for all v, w, i.e. iff A is a symmetric matrix.
b. Call the standard basis for V by $\left\{e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n}\right\}$ and the dual basis for V^{*} by $\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\}$ as in part a. The first n columns of the matrix of \mathcal{C}_{ω} are given by expanding $\mathcal{C}_{\omega}\left(e_{k}\right)$ in the basis x_{1}, \ldots, y_{n}, and the second n columns are given by expanding $\mathcal{C}_{\omega}\left(f_{k}\right)$. If $Z=\left(z_{1}, \ldots, z_{2 n}\right)$ is an arbitrary element of V, we have

$$
\mathcal{C}_{\omega}\left(e_{k}\right)(Z)=\omega\left(e_{k}, Z\right)=\sum_{i=1}^{n} x_{i}\left(e_{k}\right) y_{i}(Z)-y_{i}\left(e_{k}\right) x_{i}(Z)=y_{k}(Z)=z_{n+k}
$$

Meanwhile,

$$
\mathcal{C}_{\omega}\left(f_{k}\right)(Z)=\omega\left(f_{k}, Z\right)=\sum_{i=1}^{n} x_{i}\left(f_{k}\right) y_{i}(Z)-y_{i}\left(f_{k}\right) x_{i}(Z)=-x_{k}(Z)=-z_{k}
$$

So $\mathcal{C}_{\omega}\left(e_{k}\right) \in V^{*}$ is the linear function that returns the $n+k$-th coordinate of Z, i.e. expanded in the dual basis, $\mathcal{C}_{\omega}\left(e_{k}\right)=(0, \ldots, 0,1,0, \ldots, 0)$, with the 1 appearing in the $n+k$-th place. Likewise, $\mathcal{C}_{\omega}\left(f_{k}\right)=(0, \ldots, 0,-1,0, \ldots, 0)$, with a -1 in the k-th place. Thus, the $2 n \times 2 n$ matrix for \mathcal{C}_{ω} is $\left(\begin{array}{c}A \\ C\end{array} \underset{D}{B}\right)$, where each of A, B, C, D represents the $n \times n$ block given by $A=$ $0, B=-I, C=I$ and $D=0$.
c. The determinant is the only skew-symmetric $2 n$-form on $\mathbb{R}^{2 n}$ up to scaling. So this motivates us to take the n-fold wedge product of ω with itself. We compute that it is given by

$$
(\omega)^{\wedge n}=\underbrace{\omega \wedge \ldots \wedge \omega}_{n \text { times }}=n!\left(x_{1} \wedge y_{1}\right) \wedge\left(x_{2} \wedge y_{2}\right) \wedge \ldots \wedge\left(x_{n} \wedge y_{n}\right) .
$$

Lemma:

$$
F^{*}\left(\omega^{\wedge n}\right)=\left(F^{*} \omega\right)^{\wedge n}
$$

Proof. This follows by repeatedly applying (i.e. with induction) the identity

$$
F^{*}\left(\omega_{1} \wedge \omega_{2}\right)=\left(F^{*} \omega_{1}\right) \wedge\left(F^{*} \omega_{2}\right)
$$

valid for any $\omega_{1} \in \Lambda^{k}\left(V^{*}\right), \omega_{2} \in \Lambda^{l}\left(V^{*}\right)$. To prove the identity, write

$$
\begin{aligned}
F^{*}\left(\omega_{1} \wedge \omega_{2}\right) & \left(v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{k+l}\right) \\
& =\omega_{1} \wedge \omega_{2}\left(F v_{1}, \ldots, F v_{k}, F v_{k+1}, \ldots, F v_{k+l}\right) \\
& =\sum_{i_{1}<\ldots<i_{k}, i_{k+1}<\ldots<i_{k+l}}(-1)^{i n v\left(i_{1}, \ldots, i_{k+l}\right)} \omega_{1}\left(F v_{i_{1}}, \ldots, F v_{i_{k}}\right) \omega_{2}\left(F v_{i_{k+1}}, \ldots, F v_{i_{k+l}}\right) \\
& =\sum_{i_{1}<\ldots<i_{k}, i_{k+1}<\ldots<i_{k+l}}(-1)^{i n v\left(i_{1}, \ldots, i_{k+l}\right)} F^{*} \omega_{1}\left(v_{i_{1}}, \ldots, v_{i_{k}}\right) F^{*} \omega_{2}\left(v_{i_{k+1}}, \ldots, v_{i_{k+l}}\right) \\
& =\left(F^{*} \omega_{1}\right) \wedge\left(F^{*} \omega_{2}\right)\left(v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{k+l}\right) .
\end{aligned}
$$

So the lemma and the assumption $F^{*} \omega=\omega$ give us that

$$
n!F^{*}\left(\left(x_{1} \wedge y_{1}\right) \wedge \ldots \wedge\left(x_{n} \wedge y_{n}\right)\right)=n!\left(x_{1} \wedge y_{1}\right) \wedge \ldots \wedge\left(x_{n} \wedge y_{n}\right)
$$

On the other hand, since the space of skew-symmetric $2 n$ forms on $\mathbb{R}^{2 n}$ is 1-dimensional, we must have

$$
F^{*}\left(\left(x_{1} \wedge y_{1}\right) \wedge \ldots \wedge\left(x_{n} \wedge y_{n}\right)\right)=c\left(x_{1} \wedge y_{1}\right) \wedge \ldots \wedge\left(x_{n} \wedge y_{n}\right)
$$

for some constant c. We can compute c by evaluating on the standard basis $\left\{e_{1}, \ldots, e_{2 n}\right\}$,

$$
\begin{aligned}
c & =F^{*}\left(\left(x_{1} \wedge y_{1}\right) \wedge \ldots \wedge\left(x_{n} \wedge y_{n}\right)\right)\left(e_{1}, \ldots, e_{2 n}\right) \\
& =\left(\left(x_{1} \wedge y_{1}\right) \wedge \ldots \wedge\left(x_{n} \wedge y_{n}\right)\right)\left(F e_{1}, \ldots, F e_{2 n}\right) \\
& =\operatorname{det}\left(\begin{array}{ccc}
\mid & \mid \\
F e_{1} & \ldots & F e_{2 n} \\
\mid & \mid
\end{array}\right) \\
& =\operatorname{det} F .
\end{aligned}
$$

Thus we are forced to have $\operatorname{det} F=1$. Note: The third equality above can be checked by induction starting with the case of a 2×2 determinant.

