Math 52H: Solutions to Midterm Exam

February 2, 2011

1. In $\mathbb{R}^{2 n}$ with coordinates $x_{1}, x_{2}, \ldots, x_{2 n}$ consider an exterior 2-form

$$
\eta=\sum_{k=1}^{n} x_{2 k-1} \wedge x_{2 k}
$$

Given a 1 -form $\alpha=\sum_{1}^{2 n} a_{i} x_{i}$ find the 1 -form

$$
\beta=\star(\alpha \wedge \underbrace{\eta \wedge \cdots \wedge \eta}_{n-1}) .
$$

We have

$$
\eta^{n-1}=(n-1)!\sum_{1}^{n} x_{1} \wedge^{2 j _1} \ldots \stackrel{2 j}{\ldots} \wedge x_{2 n} \quad\left(x_{2 j-1} \wedge x_{2 j} \text { is missing }\right) .
$$

Then

$$
x_{2 j-1} \wedge \eta^{n-1}=(n-1)!\sum_{1}^{n} x_{1} \wedge \stackrel{2 j}{\wedge} \wedge x_{2 n} \quad\left(x_{2 j} \text { is missing }\right)
$$

and

$$
x_{2 j} \wedge \eta^{n-1}=(n-1)!\sum_{1}^{n} x_{1} \wedge \stackrel{2 j-1}{\ldots} \wedge x_{2 n} \quad\left(x_{2 j-1} \text { is missing }\right) .
$$

Hence, $\star\left(x_{2 j-1} \wedge \eta^{n-1}\right)=(n-1)!x_{2 j}$ and $\star\left(x_{2 j} \wedge \eta^{n-1}\right)=-(n-1)!x_{2 j-1}$.

Therefore

$$
\begin{aligned}
\beta & =\star\left(\alpha \wedge \eta^{n-1}\right)=\sum_{1}^{n}\left(a_{2 j-1} \star\left(x_{2 j-1} \wedge \eta^{n-1}\right)+a_{2 j} \star\left(x_{2 j} \wedge \eta^{n-1}\right)\right) \\
& =(n-1)!\sum_{1}^{n}\left(-a_{2 j} x_{2 j-1}+a_{2 j-1} x_{2 j}\right)
\end{aligned}
$$

Note that these formulas also holds for $n=1$. In this case, $\star\left(a_{1} x_{1}+a_{2} x_{2}\right)=a_{1} x_{2}-a_{2} x_{1}$. 2. Consider a differential 1-form β which in cylindrical coordinates (r, ϕ, z) has the form

$$
\beta=f(r) d z+g(r) d \phi, \quad \text { where } g^{\prime}(0)=0
$$

Find a condition when $\beta \wedge d \beta$ is a volume form, i.e. it does not vanish anywhere. Interpret this condition geometrically in terms of the properties of the curve given in \mathbb{R}^{2} with Cartesian coordinates (u, v) by parametric equations

$$
u=f(r), v=g(r) \text { for } r \in[0, \infty)
$$

We have

$$
d \beta=f^{\prime}(r) d r \wedge d z+g^{\prime}(r) d r \wedge d \theta
$$

and

$$
\beta \wedge d \beta=\left(f^{\prime} g-g^{\prime} f\right) d r \wedge d z \wedge d \theta
$$

Hence the required condition reads

$$
f^{\prime}(r) g(r)-g^{\prime}(r) f(r) \neq 0
$$

for all $r \neq 0$.
Remark. Note that if $r=0$ we cannot make computations in cylindrical coordinates. The condition $g^{\prime}(0)=g(0)=0$ together with the condition $f^{\prime}(0)=0$ allows us to extend the form smoothly to $r=0$. The condition that $\beta \wedge d \beta \neq 0$ along z-axis then reads: $f(0) \neq 0$, $g^{\prime \prime}(0) \neq 0$.

The condition $f^{\prime} g-g f^{\prime} \neq 0$ means that the velocity vector $\left(f^{\prime}, g^{\prime}\right)$ of the curve

$$
u=f(r), v=g(r) \text { for } r \in[0, \infty)
$$

is never collinear with the radius-vector (f, g) of the curve. If we re-express this condition in polar coordinates (ρ, ϕ) in the (u, v)-plane, it then reads that $\phi^{\prime} \neq 0$, i.e. when $r \rightarrow \infty$ the point $(f(r), g(r))$ keeps rotating around the origin in the same direction.
3. Consider a differential 1-form $\alpha=d x_{3}+x_{2} d x_{1}$ on \mathbb{R}^{3}. Let $f=\left(f_{1}, f_{2}, f_{3}\right): \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a map such that $f^{*} \alpha=h \alpha$ for some positive function $h: \mathbb{R}^{3} \rightarrow \mathbb{R}$. Find a function $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that the map $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ given by the formula

$$
F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(f_{1}\left(x_{1}, x_{2}, x_{3}\right), f_{2}\left(x_{1}, x_{2}, x_{3}\right), f_{3}\left(x_{1}, x_{2}, x_{3}\right), x_{4} g\left(x_{1}, x_{2}, x_{3}\right)\right)
$$

satisfies the equation $F^{*}\left(x_{4} \alpha\right)=x_{4} \alpha$.
We have

$$
F^{*}\left(x_{4} \alpha\right)=\left(x_{4} g\right) f^{*} \alpha=\left(x_{4} g h\right) \alpha .
$$

Hence, the equation $F^{*}\left(x_{4} \alpha\right)=x_{4} \alpha$ is equivalent to $g h=1$, i.e.

$$
g\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{h\left(x_{1}, x_{2}, x_{3}\right)} .
$$

4. Let $k \in \mathbb{R}$ be any real number. Consider on $\mathbb{R}^{n} \backslash 0$ a differential ($n-1$)-form

$$
\theta_{k}=\sum_{i=1}^{n}(-1)^{i-1} \frac{x_{i}}{r^{k}} d x_{1} \wedge \stackrel{i}{\therefore} \wedge d x_{n} \quad\left(d x_{i} \text { is missing }\right),
$$

where $r=\sqrt{\sum_{1}^{n} x_{j}^{2}}$. For which values of the parameter k the form θ_{k} is closed? (Recall that a form θ is called closed if $d \theta=0$.)

We have

$$
d\left(\frac{x_{i}}{r^{k}}\right)=\frac{d x_{i}}{r^{k}}-k x_{i} \frac{\sum_{1}^{n} x_{j} d x_{j}}{r^{k+2}} .
$$

Hence

$$
\begin{aligned}
d \theta_{k}= & \sum_{i=1}^{n}(-1)^{i-1} d\left(\frac{x_{i}}{r^{k}}\right) d x_{1} \wedge \stackrel{i}{\ldots} \wedge d x_{n}= \\
& \left(\frac{n}{r^{k}}-k \frac{\sum_{1}^{n} x_{i}^{2}}{r^{k+2}}\right) d x_{1} \wedge \cdots \wedge d x_{n} \\
& =\frac{n-k}{r^{k}} d x_{1} \wedge \cdots \wedge d x_{n} .
\end{aligned}
$$

Hence, θ_{k} is closed if (and only if) $k=n$.

