Math 52H: Practice problems for the midterm

1 Consider the Euclidean space $V = \mathbb{R}^{2n}$ with coordinates $(x_1, y_1, \dots, x_n, y_n)$ and the standard dot-product. The space $\Lambda(V^*)$ of all exterior k-forms for all $k = 0, \dots, 2n$ is also an Euclidean space with the scalar product of a k-form α and an l-form β defined by the formula

$$\langle \langle \alpha, \beta \rangle \rangle = \begin{cases} \star^{-1}(\alpha \wedge \star \beta), & \text{if } k = l, \\ 0, & \text{if } k \neq l. \end{cases}$$

Consider a linear operator $\Omega: \Lambda(V^*) \to \Lambda(V^*)$ defined by the formula $\Omega(\alpha) = \alpha \wedge \omega$, where $\omega = \sum_{i=1}^{n} x_i \wedge y_i$. Find the adjoint linear operator Ω^* , i.e. the operator $\Omega^*: \Lambda(V^*) \to \Lambda(V^*)$ such that

$$\langle\langle\Omega(\alpha),\beta\rangle\rangle = \langle\langle\alpha,\Omega^{\star}(\beta)\rangle\rangle$$

for any forms $\alpha, \beta \in \Lambda(V^*)$.

- 2. Let v_1, \ldots, v_k be a basis of V and x_1, \ldots, x_k be the dual basis of V^* . Let $l_i = \sum_{j=1}^n a_{ij} x_j \in V^*$, $i = 1, \ldots, k$, be any linear functions. Prove that $\sum_{j=1}^n x_j \wedge l_j = 0$ if and only if the matrix $A = (a_{ij})$ is symmetric.
- 3. Consider two differential 1-forms in \mathbb{R}^3 :

$$\alpha = dx + ydz$$
 and $\beta = xdy$.

Prove that there is no map $f: \mathbb{R}^3 \to \mathbb{R}^3$ such that $f^*(\beta) = \alpha$.

4. The cylindrical coordinates

$$r \in [0, \infty), \varphi \in [0, 2\pi), z \in \mathbb{R}$$

are introduced in \mathbb{R}^3 by the formulas

$$x = r\cos\varphi, y = r\sin\varphi,$$

where (x, y, z) are Cartesian coordinates. Consider a differential 1-form

$$\alpha = \cos r dz + \frac{r \sin r}{\pi} d\varphi.$$

Suppose that a curve $\Gamma \subset \mathbb{R}^3$ is given by the parametric equations

$$r = \frac{\pi}{4}, z = h(t), \varphi = 2t, t \in [0, \pi].$$

Find the function h such that $\alpha|_{\Gamma} = 0$ and h(0) = 1.

5. Consider a smooth function $f: \mathbb{R}^2 \to \mathbb{R}$. Let S_f be a surface in \mathbb{R}^4 given by equations

$$x_3 = \frac{\partial f}{\partial x_1}(x_1, x_2), \quad x_4 = \frac{\partial f}{\partial x_2}(x_1, x_2) \tag{1}$$

Suppose that this system of equations can is solved with respect to the coordinates x_2 and x_4 , i.e. there exist smooth functions $x_2 = g(x_1, x_3)$ and $x_4 = h(x_1, x_3)$ such that

$$x_3 \equiv \frac{\partial f}{\partial x_1}(x_1, g(x_1, x_3)),$$

$$h(x_1, x_3) \equiv \frac{\partial f}{\partial x_2}(x_1, g(x_1, x_3)).$$
(2)

Prove that the Jacobian of the map $(h,g):\mathbb{R}^2\to\mathbb{R}^2$ is equal to -1, i.e. that

$$\begin{vmatrix} \frac{\partial g}{\partial x_1} & \frac{\partial g}{\partial x_3} \\ \frac{\partial h}{\partial x_1} & \frac{\partial g}{\partial x_3} \end{vmatrix} = -1.$$

Hint: Examine the restriction of the form $\omega = dx_1 \wedge dx_3 + dx_2 \wedge dx_4$ to the surface S_f , and then consider the pull-back of the form ω by a map $\mathbb{R}^2 \to S_f \subset \mathbb{R}^4$ given by the formulas

$$(x_1, x_3) \mapsto (x_1, g(x_1, x_3), x_3, h(x_1, x_3)).$$

6. Consider a smooth differential k-form

$$\alpha = \sum_{1 \le i_1 < \dots < i_k \le n} f_{i_1 \dots i_k}(x) dx_{i_1} \wedge \dots dx_{i_k}$$

in \mathbb{R}^n such that $f_{i_1...i_k}(0) = 0$ (i.e. all coefficients of the form α are equal to 0 at the origin). Let $F : \mathbb{R}^n \to \mathbb{R}^n$ denote the dilatation $x \mapsto 2x$. Suppose that $F^*\alpha = \alpha$. Prove that $\alpha \equiv 0$.

7. Given a function $f: \mathbb{R}^n \to \mathbb{R}$, consider a map $F: \mathbb{R}^n \to \mathbb{R}^{2n+1}$ defined by the formula

$$F(x_1,\ldots,x_n) = \left(x_1,\ldots,x_n,\frac{\partial f}{\partial x_1}(x_1,\ldots,x_n),\ldots,\frac{\partial f}{\partial x_n}(x_1,\ldots,x_n),f(x_1,\ldots,x_n)\right).$$

Compute $F^*(\alpha)$, where

$$\alpha = dx_{2n+1} - \sum_{i=1}^{n} x_{i+n} dx_i.$$

The actual midterm will consist of four problems.