Math 52H: Solutions to practice problems for the midterm

1. Consider the Euclidean space $V=\mathbb{R}^{2 n}$ with coordinates $\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)$ and the standard dot-product. The space $\Lambda\left(V^{*}\right)$ of all exterior k-forms for all $k=0, \ldots, 2 n$ is also an Euclidean space with the scalar product of a k-form α and an l-form β defined by the formula

$$
\langle\langle\alpha, \beta\rangle\rangle= \begin{cases}\star^{-1}(\alpha \wedge \star \beta), & \text { if } k=l \\ 0, & \text { if } k \neq l\end{cases}
$$

Consider a linear operator $\Omega: \Lambda\left(V^{*}\right) \rightarrow \Lambda\left(V^{*}\right)$ defined by the formula $\Omega(\alpha)=\alpha \wedge \omega$, where $\omega=\sum_{1}^{n} x_{i} \wedge y_{1}$. Find the adjoint linear operator Ω^{*}, i.e. the operator $\Omega^{*}: \Lambda\left(V^{*}\right) \rightarrow \Lambda\left(V^{*}\right)$ such that

$$
\langle\langle\Omega(\alpha), \beta\rangle\rangle=\left\langle\left\langle\alpha, \Omega^{*}(\beta)\right\rangle\right\rangle
$$

for any forms $\alpha, \beta \in \Lambda\left(V^{*}\right)$.

We have

$$
\langle\langle\Omega(\alpha), \beta\rangle\rangle=\star^{-1}(\alpha \wedge \omega \wedge \star \beta)=\star^{-1}\left(\alpha \wedge \star\left(\star^{-1}(\omega \wedge \star \beta)\right)=\left\langle\left\langle\alpha, \star^{-1}(\omega \wedge \star \beta)\right\rangle\right\rangle .\right.
$$

Therefore,

$$
\left\langle\left\langle\alpha, \star^{-1}(\omega \wedge \star \beta)-\Omega^{*}(\beta)\right\rangle\right\rangle=0
$$

for any $k=$ forms α, β, which means that

$$
\Omega^{*}(\beta)=\star^{-1}(\omega \wedge \star \beta)
$$

2. Let $v_{1}, \ldots v_{k}$ be a basis of V and x_{1}, \ldots, x_{k} be the dual basis of V^{*}. Let $l_{i}=\sum_{j=1}^{n} a_{i j} x_{j} \in V^{*}$, $i=1, \ldots, k$, be any linear functions. Prove that $\sum_{1}^{k} x_{i} \wedge l_{i}=0$ if and only if the matrix $A=\left(a_{i j}\right)$ is symmetric.

We have

$$
\sum_{1}^{k} x_{i} \wedge l_{i}=\sum_{1}^{k} x_{i} \wedge \sum_{j=1}^{k} a_{i j} x_{j}=\sum_{1 \leq i<j \leq k}\left(a_{i j}-a_{j i}\right) x_{i} \wedge x_{j}
$$

The forms $x_{i} \wedge x_{j}, 1 \leq i<j \leq k$ form a basis of the space of 2-forms. Hence,

$$
\sum_{1}^{k} x_{i} \wedge l_{i}=0 \Longleftrightarrow a_{i j}=a_{j i}
$$

for all $i<j$.
3. Consider two differential 1-forms in \mathbb{R}^{3} :

$$
\alpha=d x+y d z \quad \text { and } \quad \beta=x d y .
$$

Prove that there is no map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $f^{*}(\beta)=\alpha$.
We have $d \alpha=d y \wedge d z$ and $d \beta=d x \wedge d y$. Thus, $\alpha \wedge \beta=d x \wedge d y \wedge d z$ and $\beta \wedge d \beta=0$.
If $f^{*}(\beta)=\alpha$ then

$$
f^{*}(\beta \wedge d \beta)=f^{*} \beta \wedge d f^{*} \beta=\alpha \wedge d \alpha
$$

But $\beta \wedge d \beta=0$, and this would imply that $\alpha \wedge d \alpha=0$, which is a contradiction.
4. The cylindrical coordinates

$$
r \in[0, \infty), \varphi \in[0,2 \pi), z \in \mathbb{R}
$$

are introduced in \mathbb{R}^{3} by the formulas

$$
x=r \cos \varphi, y=r \sin \varphi, z
$$

where (x, y, z) are Cartesian coordinates. Consider a differential 1-form

$$
\alpha=\cos r d z+\frac{r \sin r}{\pi} d \varphi
$$

Suppose that a curve $\Gamma \subset \mathbb{R}^{3}$ be given by the parametric equations

$$
r=\frac{\pi}{4}, z=h(t), \varphi=2 t, t \in[0, \pi]
$$

Find the function h such that $\left.\alpha\right|_{\Gamma}=0$ and $h(0)=1$.
The restriction of α to Γ is equal $\left(\frac{\sqrt{2}}{2} h^{\prime}+\frac{\sqrt{2}}{4}\right) d t$. Hence we get $h^{\prime}=-\frac{1}{2}$, and thus $h(t)=-\frac{t}{2}+C$. The constant C is equal to $h(0)=1$. Hence, $h(t)=-\frac{t}{2}+1$.
5. Consider a smooth function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Let S_{f} be a surface in \mathbb{R}^{4} given by equations

$$
\begin{equation*}
x_{3}=\frac{\partial f}{\partial x_{1}}\left(x_{1}, x_{2}\right), \quad x_{4}=\frac{\partial f}{\partial x_{2}}\left(x_{1}, x_{2}\right) \tag{1}
\end{equation*}
$$

Suppose that this system of equations can is solved with respect to the coordinates x_{2} and x_{4}, i.e. there exist smooth functions $x_{2}=g\left(x_{1}, x_{3}\right)$ and $x_{4}=h\left(x_{1}, x_{3}\right)$ such that

$$
\begin{align*}
x_{3} & \equiv \frac{\partial f}{\partial x_{1}}\left(x_{1}, g\left(x_{1}, x_{3}\right)\right), \\
h\left(x_{1}, x_{3}\right) & \equiv \frac{\partial f}{\partial x_{2}}\left(x_{1}, g\left(x_{1}, x_{3}\right)\right) . \tag{2}
\end{align*}
$$

Prove that the Jacobian of the map $(h, g): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is equal to -1 , i.e. that

$$
\left|\begin{array}{ll}
\frac{\partial g}{\partial x_{1}} & \frac{\partial g}{\partial x_{3}} \\
\frac{\partial h}{\partial x_{1}} & \frac{\partial h}{\partial x_{3}}
\end{array}\right|=-1 .
$$

One can check that $\left.\omega\right|_{S_{f}}=0$. Let F be the map described in the Hint. Then we have

$$
0=F^{*} \omega=d x_{1} \wedge d x_{3}+d g \wedge d h=(1+J) d x_{1} \wedge d x_{3}
$$

where $J=\left|\begin{array}{ll}\frac{\partial g}{\partial x_{1}} & \frac{\partial g}{\partial x_{3}} \\ \frac{\partial h}{\partial x_{1}} & \frac{\partial h}{\partial x_{3}}\end{array}\right|$. Hence, $J=-1$.
6. Consider a smooth differential k-form

$$
\alpha=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} f_{i_{1} \ldots i_{k}}(x) d x_{i_{1}} \wedge \ldots d x_{i_{k}}
$$

in \mathbb{R}^{n} such that $f_{i_{1} \ldots i_{k}}(0)=0$ (i.e. all coefficients of the form α are equal to 0 at the origin). Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ denote the dilatation $x \mapsto 2 x$. Suppose that $F^{*} \alpha=\alpha$. Prove that $\alpha \equiv 0$.

We have for any point $a \in \mathbb{R}^{n}$ and vectors $X_{1}, \ldots, X_{n} \in \mathbb{R}_{a}^{n}$

$$
\alpha_{a}\left(X_{1}, \ldots, X_{n}\right)=\left(F^{-1}\right)^{*} \alpha_{a}\left(X_{1}, \ldots, X_{k}\right)=\alpha_{\frac{a}{2}}\left(\frac{1}{2} X_{1}, \ldots, \frac{1}{2} X_{n}\right) .
$$

Iterating this formula, we get

$$
\alpha_{a}\left(X_{1}, \ldots, X_{n}\right)=\left(f^{-n}\right)^{*} \alpha_{a}\left(X_{1}, \ldots, X_{k}\right)=\alpha_{\frac{a}{2^{n}}}\left(\frac{1}{2^{n}} X_{1}, \ldots, \frac{1}{2^{n}} X_{n}\right) \underset{n \rightarrow \infty}{\rightarrow} 0
$$

7. Given a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, consider a map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{2 n+1}$ defined by the formula

$$
F\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n}, \frac{\partial f}{\partial x_{1}}\left(x_{1}, \ldots, x_{n}\right), \ldots, \frac{\partial f}{\partial x_{n}}\left(x_{1}, \ldots, x_{n}\right), f\left(x_{1}, \ldots, x_{n}\right)\right) .
$$

Compute $F^{*}(\alpha)$, where

$$
\alpha=d x_{2 n+1}-\sum_{i=1}^{n} x_{i+n} d x_{i} .
$$

We have

$$
F^{*} \alpha=d f-\sum_{1}^{n} \frac{\partial f}{\partial x_{i}} d x_{i}=0
$$

