Math 52H: Homework N8

Due to Friday, March 9

1. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a smooth function. Consider a graphical n-dimensional submanifold with boundary
$L_{f}=\left\{\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{2 n} ; \sum_{1}^{n} x_{j}^{2} \leq 1 ; y_{j}=\frac{\partial f}{\partial x_{j}}\left(x_{1}, \ldots, x_{n}\right), j=1, \ldots, n\right\} \subset \mathbb{R}^{2 n}$.
Suppose that L_{f} is oriented by the parameteriztion

$$
\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n}, \frac{\partial f}{\partial x_{1}}\left(x_{1}, \ldots, x_{n}\right), \frac{\partial f}{\partial x_{n}}\left(x_{1}, \ldots, x_{n}\right)\right) .
$$

Suppose that $n=2 k$. Compute

$$
\int_{L_{f}}\left(d x_{1} \wedge d y_{1}+\cdots+d x_{n} \wedge d y_{n}\right)^{\wedge k}
$$

2. Let $A \subset V$ be a closed n-dimensional, $n=k+l+1$, submanifold, ω a differential k-form and η a differential l-form defined on a neighborhood of A in V. Prove that

$$
\int_{A} \omega \wedge d \eta=C \int_{A} \eta \wedge d \omega
$$

for some constant C, and find C.
3. Consider the torus

$$
T=\left\{x_{1}^{2}+x_{2}^{2}=1, x_{3}^{2}+x_{4}^{2}=1\right\} \subset \mathbb{R}^{4}
$$

This is a 2-dimensional submanifold of \mathbb{R}^{4}. Orient T in such a way that the tangent plane at the point $a=(1,0,1,0)$ is oriented by the vectors $e=(0,1,0,0), f=(0,0,0,1) \in T_{a} T \subset \mathbb{R}_{a}^{4}$. Compute $\int_{T} \omega$ for the following differential 2-forms:
(i) $\omega=d x_{1} \wedge d x_{2}+d x_{3} \wedge d x_{4}$;
(ii) $\omega=d x_{1} \wedge d x_{3}+d x_{2} \wedge d x_{4} ;$
(iii) $\omega=x_{2} x_{4} d x_{1} \wedge d x_{3}$.
4. Let $S=\left\{x^{2}+y^{2}+z^{2}=1 ; z \geq 0\right\} \subset \mathbb{R}^{3}$. We co-orient the sphere by the upward pointing vector at the point $(0,0,1)$. Compute $\int_{S} d x \wedge d y+2 z d z \wedge d x$ directly and using Stokes' theorem.
6^{*}. Let α be a differential 1-form and ω a differential 2-form on \mathbb{R}^{5}. Suppose that

- ω is closed;
- The form $\alpha \wedge \omega \wedge \omega$ does not vanish, i.e. $(\alpha \wedge \omega \wedge \omega)_{a} \neq 0$ for any $a \in \mathbb{R}^{5}$;
- for any point $a \in \mathbb{R}^{5}$ and any two vectors $X, Y \in \mathbb{R}_{a}^{5}$ such that $\alpha_{a}(X)=\alpha_{a}(Y)=0$ we have $\omega_{a}(X, Y)=(d \alpha)_{a}(X, Y)$; in other words, the forms ω and $d \alpha$ coincide on the hyperplane field ξ defined by a Pfaffian equation $\alpha=0$.

Prove that $\omega=d \alpha$.
Problem 6 is an extra-credit. Each problem is 10 points.

