Math 52H: Homework N7

Due to Friday, March 2

1. a) Prove that any path connected subset of \mathbb{R}^{n} is connected.
b) Prove that for open subsets of \mathbb{R}^{n} the notions of connectedness and path-connectedness coincide, i.e. any open connected set $U \subset \mathbb{R}^{n}$ is path connected.
c) Prove that for any subsets of \mathbb{R} the notions of connectedness and path-connectedness coincide, i.e. any connected set $A \subset \mathbb{R}$ is path connected. Show that if $A \subset \mathbb{R}$ is open and connected then A coincides with the interval (a, b), where we allow $a=-\infty$ and $b=\infty$.
2.* Prove that any closed connected (Hausdorff) 1-dimensional manifold is diffeomorphic to the unit circle $S^{1}=\left\{x_{1}^{2}+x_{2}^{2}=1\right\} \subset \mathbb{R}^{2}$.
2. Prove that the submanifold $T=\left\{x_{1}^{2}+x_{2}^{2}=1, x_{3}^{2}+x_{4}^{2}=1\right\} \subset \mathbb{R}^{4}$ and the submanifold $U \subset \mathbb{R}^{3}$ given in cylindrical coordinates (r, ϕ, z) by the equation $(r-2)^{2}+z^{2}=1$, are diffeomorphic.
3. Compute the integral

$$
\iint_{D}\left|\frac{x+y}{2}-x^{2}-y^{2}\right| d x d y
$$

where D is the unit disc $\left\{x^{2}+y^{2} \leq 1\right\}$.
5. Compute the volume of the domain $U \subset \mathbb{R}^{3}$ defined by

$$
U=\{x \geq 0, y \geq 0,1 \leq x y \leq 2, x \leq y \leq 2 x, 0 \leq z \leq x+y\}
$$

Each (sub-)problem is 10 points. Problem 2 is more difficult and it is an extra-credit.

