Math 52H: Homework N6

Due to Friday, February 24

1. Use Fubini's theorem to compute the following multiple integrals:
a) $\int_{D}(x-y) d A$, where D is a triangle with vertices $(0,0),(1,0)$, and $(2,1)$.

In the following problems B is the domain in \mathbb{R}^{3} defined by

$$
B=\{0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq x y\}
$$

b) $\int_{B} x d V$,
c) $\int_{B} y d V$,
d) $\int_{B} z d V$
e) $\int_{B} x y d V$.
2. Use change of variables formula (together with Fubini's theorem) to compute the following integrals.
a) $\int_{S}\left(x^{2}+y^{2}\right) d V$, where $S=\left\{x^{2}+y^{2} \leq 2 x\right\}$.
b) $\int_{S} \sqrt{1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}} d V$, where $S=\left\{\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1\right\}$.
3. Find the area of a curvilinear quadrangle bounded by the arcs of the parabolas

$$
x^{2}=a y, x^{2}=b y, y^{2}=\alpha x, y^{2}=\beta x, \quad \text { where } \quad o<a<b, 0<\alpha<\beta .
$$

Hint: introduce new variables (u, v) such that $x^{2}=u y, y^{2}=v x$.
4. In what ratio does the hyperboloid $\left\{x^{2}+y^{2}-z^{2}=a^{2}\right\}$ divide the volume of the ball $\left\{x^{2}+y^{2}+z^{2} \leq 3 a^{2}\right\}$.
5. Solve Exercise 8.22.2 from the online text:

Prove that if A is nowhere dense then either $\operatorname{Vol} A=0$, or A is not measurable in the sense of Riemann. Find an example of a non-measurable nowhere dense set. (A set A is called nowhere dense if $\operatorname{Int} A=\varnothing$.)

Each subproblem of 1 is 5 points. All other problems and subproblems are 10 points each.

