Math 52H: Homework N4

Due to Friday, February 10

1. Spherical coordinates $\rho \in[0, \infty), \varphi \in[0, \pi], \theta \in[0,2 \pi)$, are introduced in \mathbb{R}^{3} by the formulas:

$$
x=\rho \sin \varphi \cos \theta, y=\rho \sin \varphi \sin \theta, z=\rho \cos \varphi
$$

Express the 1-form $d z+\frac{1}{2}(x d y-y d x)$ in spherical coordinates.
2. Consider a closed differential 1-form $\omega=F_{1} d x+F_{2} d y+F_{3} d z$ in \mathbb{R}^{3}. Suppose that each function $F_{k}, k=1,2,3$, satisfies the homogeneity equation

$$
F_{k}(t x, t y, t z)=t F_{k}(x, y, z),
$$

for any $t \in \mathbb{R}$. Prove that $\omega=d f$, where

$$
f(x, y, z)=\frac{1}{2}\left(x F_{1}(x, y, z)+y F_{2}(x, y, z)+z F_{3}(x, y, z)\right) .
$$

3. Consider in $\mathbb{R}^{2 n}$ differential forms

$$
\omega=d x_{1} \wedge d x_{2} \wedge \cdots \wedge d x_{n} \text { and } \theta=\sum_{n+1}^{2 n}(-1)^{j-1} x_{j} d x_{n+1} \wedge \cdots \wedge d x_{j-1} \wedge d x_{j+1} \wedge \cdots \wedge d x_{2 n}
$$

Prove that the $(2 n-1)$-form

$$
\Omega=\frac{\omega \wedge \theta}{\left(\sum_{1}^{n} x_{i} x_{i+n}\right)^{n}}
$$

is closed.
4. Consider an operator $\partial=(-1)^{k} \star^{-1} d \star: \Omega^{k}\left(\mathbb{R}^{n}\right) \rightarrow \Omega^{k-1}\left(\mathbb{R}^{n}\right)$. Note that we equivalently can write $\partial=(-1)^{n k+n+1} \star d \star$. Denote $\Delta:=(\partial+d)^{2}$ (this is Laplace-de Rham operator).
a) Verify that Δ is an operator $\Omega^{k}\left(\mathbb{R}^{n}\right) \rightarrow \Omega^{k}\left(\mathbb{R}^{n}\right)$.
b) Compute $\Delta(f \alpha)$ for a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and a differential 1-form α.
c) Find explicit formulas for $\Delta \alpha$ for the cases when $n=3$ and $k=0,1,2,3$.
d) For $n=2$ find explicit formulas for $\Delta \alpha$ in polar coordinates for $k=0,1,2$.

Each problem (including subproblems in Problem 10) is 10 points.

