Math 52H: Homework N3

Due to Friday, February 3

1. Given a parallelepiped $P\left(v_{1}, v_{2}, v_{3}, v_{4}\right) \subset \mathbb{R}^{4}$, compute the 3 -dimensional volume of each of its 3 -dimensional face. Here

$$
\begin{aligned}
& v_{1}=(1,1,1,1), \\
& v_{2}=(1-1,1,1), \\
& v_{3}=(1,1,-1,1), \\
& v_{4}=(1,1,1,-1) .
\end{aligned}
$$

Compare the orientation of \mathbb{R}^{4} given by the basis $v_{1}, v_{2}, v_{3}, v_{4}$ with the orientation given by its standard basis $e_{1}, e_{2}, e_{3}, e_{4}$.
2. A vector subspace $L \subset V$ of a vector space V is called invariant with respect to a linear operator $\mathcal{A}: V \rightarrow V$ if $\mathcal{A}(v) \in L$ for each vector $v \in L$.

Let $\mathcal{A}: V \rightarrow V$ be a linear operator, and $l_{1}, \ldots, l_{k} \in V^{*}$ be linear independent vectors from the dual space V^{*}. Suppose that

$$
\mathcal{A}^{*}\left(l_{1} \wedge \cdots \wedge l_{k}\right)=c l_{1} \wedge \cdots \wedge l_{k}
$$

for some real number $c \in \mathbb{R}$. Prove that the vector subspace $\operatorname{Span}\left(l_{1}, \ldots, l_{k}\right)$ is invariant with respect to the dual operator $\mathcal{A}^{*}: V^{*} \rightarrow V^{*}$.
3. Let η be an exterior 2-form on a vector space V. Suppose that $\eta \wedge \eta=0$. Prove that there exists two 1 -forms $\alpha, \beta \in V^{*}$ such that $\eta=\alpha \wedge \beta$.
4. In \mathbb{R}^{2} with the standard dot-product consider a basis $v_{1}=(1,0), v_{2}=(1,1)$. Let $\left(y_{1}, y_{2}\right)$ be coordinates dual to this basis. Given a function $f\left(y_{1}, y_{2}\right)$ compute its gradient in these coordinates, i.e. find functions $g_{1}\left(y_{1}, y_{2}\right), g_{2}\left(y_{1}, y_{2}\right)$ such that $\nabla f=g_{1} \frac{\partial}{\partial y_{1}}+g_{2} \frac{\partial}{\partial y_{2}}$. However, check that the differential of the function f has the form

$$
d f=\frac{\partial f}{\partial y_{1}} d y_{1}+\frac{\partial f}{\partial y_{2}} d y_{2}
$$

All problems and subproblems are 10 points.

