Math 52H: Homework N2

Due to Friday, January 27

1. Do Exercise 4.5 from the online text:
(a) For any special orthogonal operator $\mathcal{A}: V \rightarrow V$ the operators $\mathcal{A}^{*}: \Lambda^{k}\left(V^{*}\right) \rightarrow \Lambda^{k}\left(V^{*}\right)$ and \star commute, i.e.

$$
\mathcal{A}^{*} \circ \star=\star \circ \mathcal{A}^{*} .
$$

(b) Let A be an orthogonal matrix of order n with $\operatorname{det} A=1$. Prove that the absolute value of each k-minor M of A is equal to the absolute value of its complementary minor of order $(n-k)$. Here k is any integer between 1 and n. (Hint: Apply (a) to the form $\left.x_{i_{1}} \wedge \cdots \wedge x_{i_{k}}\right)$.
2. Denote coordinates in $\mathbb{R}^{2 n}$ by $x_{1}, y_{1}, \ldots, x_{n}, y_{n}$. Let ω denote the 2 -form $\sum_{1}^{n} x_{i} \wedge y_{i}$.

A linear operator $\mathcal{A}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ is called symplectic if $\mathcal{A}^{*} \omega=\omega$.
Denote

$$
J=\left(\begin{array}{ccccccc}
0 & -1 & 0 & 0 & \ldots & 0 & 0 \\
1 & 0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 0 & -1 & \ldots & 0 & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 & 0 \\
& & & & \ldots & & \\
0 & 0 & 0 & 0 & \ldots & 0 & -1 \\
0 & 0 & 0 & 0 & \ldots & 1 & 0
\end{array}\right) .
$$

Note that $J^{2}=-I$. Let $\mathcal{J}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ be the operator with the matrix J.
An operator $\mathcal{U}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ is called unitary if it is orthogonal and commutes with \mathcal{J}, i.e. $\mathcal{U} \circ \mathcal{J}=\mathcal{J} \circ \mathcal{U}$. Respectively, a matrix U is called unitary, if it is orthogonal and $U J=J U$.
(b) Prove that an operator \mathcal{A} is symplectic if and only if its matrix A (in the standard basis of $\mathbb{R}^{2 n}$) satisfies the equation $A^{T} J A=J$.
(c) Prove that an orthogonal operator $\mathcal{U}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ is unitary if and only if it is symplectic.
(d) An n-dimensional vector subspace $L \subset \mathbb{R}^{2 n}$ is called Lagrangian if $\left.\omega\right|_{L}=0$. Prove that L is Lagrangian if and only if $\mathcal{J}(L)=L^{\perp}$.
3. A 2 -form β on \mathbb{R}^{4} is called self-dual if $\star \beta=\beta$. What is the dimension of the space of self-dual 2-forms on \mathbb{R}^{4}. Find a basis of this space.
4. Consider $V=\mathbb{R}^{3}$ with the dot-product. Show that the formula

$$
X \times Y=\mathcal{D}^{-1}(\star(\mathcal{D}(X) \wedge \mathcal{D}(Y)))
$$

defines the cross-product on \mathbb{R}^{3}.
Recall that the cross-product $X \times Y$ is defined as the vector Z orthogonal to $\operatorname{Span}(X, Y)$ which has length equal to the area of the parallelogram $P(X, Y)$ and (assuming that X, Y are linearly independent) directed in such a way that the basis (X, Y, Z) defines the standard orientation of \mathbb{R}^{3}. We also recall that the isomorphism $\mathcal{D}: V \rightarrow V^{*}$ is defined by the formula $\mathcal{D}(v)(X)=$ $\langle v, X\rangle, v, X \in V$.
5. Define

$$
\exp (A)=I+A+\frac{1}{2} A^{2}+\frac{1}{3!} A^{3}+\ldots ; \text { here } I \text { denotes the unit matrix. }
$$

Let A be an skew-symmetric $n \times n$ matrix, i.e. $A^{T}=-A$. Prove that the matrix e^{A} is orthogonal. Conversely, if $\exp (t A)$ is orthogonal for all t then A is skew-symmetric.

All problems and their subproblems are 10 points each.

