Math 52H: Homework N1

Due on Friday, January 20

1. Recall that the trace $\operatorname{Tr} A$ of a square matrix A is the sum of its diagonal elements. Let M_{k} denote the vector space of symmetric $k \times k$ matrices with real entries. Show that the formula

$$
\langle X, Y\rangle=\operatorname{Tr}(X Y)
$$

defines an inner product on M_{k}. For the case $k=2$ find the matrix of this bilinear form in the basis

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

2. Suppose that the inner product on $V=\mathbb{R}^{n}$ is defined by the formula

$$
\langle X, Y\rangle=\sum_{k=1}^{n} k x_{k} y_{k}
$$

for $X=\left(x_{1}, \ldots, x_{n}\right), Y=\left(y_{1}, \ldots, y_{n}\right)$. Find the matrix of the map $\mathcal{D}: V \rightarrow V^{*}$ corresponding to this inner product with respect to the standard basis e_{1}, \ldots, e_{n} of $V=\mathbb{R}^{n}$ and the dual basis x_{1}, \ldots, x_{n} of V^{*}.
3. Let f and g be bilinear functions on \mathbb{R}^{n} with matrices $A=\left\{a_{i j}\right\}$ and $B=\left\{b_{i j}\right\}$, respectively. Find the expression of the 4 -tensor $f \otimes g$ in the basis

$$
x_{i_{1}} \otimes x_{i_{2}} \otimes x_{i_{3}} \otimes x_{i_{4}}, \quad 1 \leq i_{1}, i_{2}, i_{3}, i_{4} \leq n
$$

4. Let α be an exterior 2 -form, and $\beta \neq 0$ is a 1 -form on a 3 -dimensional space. Suppose that $\alpha \wedge \beta=0$. Prove that there exists a 1-form γ such that $\alpha=\beta \wedge \gamma$.
5. Let

$$
\theta=\sum_{i=1}^{n-1} x_{i} \wedge x_{i+1}
$$

be an exterior 2-form on \mathbb{R}^{n}, and $A, B \in \mathbb{R}^{n}$ are vectors

$$
A=(1,1,1, \ldots, 1), B=\left(-1,1,-1, \ldots,(-1)^{n}\right)
$$

Compute $\theta(A, B)$.
6. Denote coordinates in the space $V=\mathbb{R}^{2 n}$ by $\left(x_{1}, x_{2}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$. Consider a 2-form

$$
\omega=\sum_{i=1}^{n} x_{i} \wedge y_{i}
$$

a) Let A be a $n \times n$ matrix. Consider a map $L_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{2 n}$, given by the formula $L_{A}(x)=(x, A x)$, i.e. $L_{A}(x)=(x, y)$, where $y=A x$, where we view the vector $x \in \mathbb{R}^{n}$ as a column-matrix. Compute $\left(L_{A}\right)^{*} \omega$ and show that $\left(L_{A}\right)^{*} \omega=0$ if and only if the matrix A is symmetric.
b) Consider the map \mathcal{C}_{ω} of the space $V=\mathbb{R}^{2 n}$ to the dual space V^{*} given by the formula

$$
\mathcal{C}_{\omega}(v)(Z)=\omega(v, Z), \quad v, Z \in V .
$$

Find the matrix C of the map \mathcal{C}_{ω} with respect to the standard basis in $V=\mathbb{R}^{2 n}$ an its dual basis in V^{*}.
c) Let $F: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ be a linear map, such that $F^{*} \omega=\omega$. Prove that $\operatorname{det} F=1$.

Each problem (including subproblems 6a) 6b) and 6c)) is 10 points.

