Math 52H: Practice problems for the Final Exam

1. Prove that if S is a closed surface in $\mathbb{R}^{3}, \mathbf{n}$ its unit normal vector field and \mathbf{l} any fixed vector then

$$
\iint_{S}\langle\mathbf{n}, \mathbf{l}\rangle d S=0 .
$$

2. Given a function $u: U \rightarrow \mathbb{R}$, where U is an open domain in \mathbb{R}^{n} we denote by Δu the Laplace operator

$$
\Delta u=\sum_{1}^{n} \frac{\partial^{2} u}{\partial x_{j}^{2}}
$$

A function u is called harmonic in U if $\Delta u=0$. Suppose that $n=2$, i.e. U is a planar domain.
a) Prove that u is harmonic in U if and if for any closed 1-dimensional submanifold $\Gamma \subset U$ one has

$$
\oint_{\Gamma} \frac{\partial u}{\partial \mathbf{n}} d s=0
$$

where n is a unit normal vector field to Γ and $\frac{\partial u}{\partial \mathbf{n}}=d u(\mathbf{n})$ is the directional derivative.
b) Prove that for any C^{2}-smooth function $u: U \rightarrow \mathbb{R}$ one has

$$
\iint_{S}\left(\left(\frac{\partial u}{\partial x_{1}}\right)^{2}+\left(\frac{\partial u}{\partial x_{2}}\right)^{2}\right) d x_{1} d x_{2}=-\int_{S} u \Delta u d x_{1} d x_{2}+\oint_{\Gamma} u \frac{\partial u}{\partial \mathbf{n}} d s
$$

where $S \subset U$ is any compact domain with boundary Γ.
c) Let S and Γ be as in the previous problem. Prove that for any two C^{2}-functions $u, v: U \rightarrow \mathbb{R}$ one has the following identity:

$$
\iint_{S}\left|\begin{array}{cc}
\Delta u & \Delta v \\
u & v
\end{array}\right| d x_{1} d x_{2}=\oint_{\Gamma}\left|\begin{array}{cc}
\frac{\partial u}{\partial \mathbf{n}} & \frac{\partial v}{\partial \mathbf{n}} \\
u & v
\end{array}\right| d s
$$

3. Compute the integral

$$
\iint_{S}\left(x^{2}+y^{2}\right) d S
$$

where S is the boundary of the domain $\left\{\sqrt{x^{2}+y^{2}} \leq z \leq 1\right\}$.
4. Compute

$$
\int_{S} \frac{d y \wedge d z}{x}+\frac{d z \wedge d x}{y}+\frac{d x \wedge d u}{z}
$$

where S is the ellipsoid

$$
S=\left\{\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1\right\}
$$

co-oriented by the outward normal to the domain which it bounds. .
5. Consider a differential form $\omega=\sum_{1}^{n} d x_{i} \wedge d y_{i}$ on $\mathbb{R}^{2 n}$.
a) Find a vector field \mathbf{v} on $\mathbb{R}^{2 n}$ such that

$$
d(\mathbf{v}\lrcorner \omega)=\omega .
$$

(This problem has infinitely many solutions. Find any of them.)
b) Compute Flux $_{S} \mathbf{v}$, where S is an ellipsoid

$$
\left\{\sum_{1}^{n} \frac{x_{i}^{2}+y_{i}^{2}}{a_{i}^{2}}=1\right\}
$$

cooriented by the outward normal vector field. Explain why the answer is independent of the choice of \mathbf{v} in Part a).
6. Consider a 4-dimensional submanifold with boundary in \mathbb{R}^{8} :

$$
\begin{aligned}
\Gamma= & \left\{\left(x_{1}, \ldots, x_{8}\right) \in \mathbb{R}^{8} ; x_{5}=x_{1} \cos \alpha+x_{2} \sin \alpha, x_{6}=-x_{1} \sin \alpha+x_{2} \cos \alpha,\right. \\
& \left.x_{7}=2 x_{3}-x_{4}, x_{8}=-x_{3}+x_{4}, x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{4} \leq 1\right\} .
\end{aligned}
$$

Suppose that Γ is oriented by its parameterization by coordinates $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$. Compute

$$
\int_{\Gamma} d x_{5} \wedge d x_{6} \wedge d x_{7} \wedge d x_{8}
$$

7. Consider a vector field

$$
\mathbf{v}=\frac{1}{r^{3}}\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}\right)
$$

$r=\sqrt{x^{2}+y^{2}+z^{2}}$ in $\mathbb{R}^{3} \backslash 0$. Let us denote

$$
S:=\left\{(x, y, z) \in \mathbb{R}^{3} ; z=e^{x^{2}+y^{2}-\frac{1}{2}}, x^{2}+y^{2}+z^{2} \leq \frac{3}{2}\right\}
$$

and co-orient this surface by a normal vector field which is equal to $(0,0,1)$ at the point $\left(0,0, \frac{1}{\sqrt{e}}\right) \in S$. Compute Flux $_{S} \mathbf{v}$.
8. Suppose that a vector field \mathbf{v} in \mathbb{R}^{3} with coordinate functions (P, Q, R) satisfies curl $\mathbf{v}=0$. Find an explicit expression for a function F such that $\mathbf{v}=\nabla F$.
9. Let C be the intersection of the sphere $S=\left\{x^{2}+y^{2}+z^{2}=1\right\}$ and the plane $P=$ $\{x+y+z=0\}$. We orient C counter-clockwise when looking from the point $(0,0,100)$.

Compute $\int_{C} z^{3} d x$.
10. Let M be an oriented closed n-dimensional manifold, and ω be a differential ($n-1$)-form on M. Prove that there exists a point $a \in M$ such that $(d \omega)_{a}=0$.
11. Let us view the space \mathbb{R}^{4} with coordinates $\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$ as a complex vector space \mathbb{C}^{2} with coordinates $\left(z_{1}=x_{1}+i y_{1}, z_{2}=x_{2}+i y_{2}\right)$. Consider a surface

$$
S=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} ; z_{2}=z_{1}^{2},\left|z_{1}\right| \leq 1 .\right\}
$$

Compute $\operatorname{Area}(S)$.

