Math 52H: Solutions to Practice problems for the Final Exam

1. Prove that if S is a closed surface in $\mathbb{R}^{3}, \mathbf{n}$ its unit normal vector field and \mathbf{l} any fixed vector then

$$
\begin{gathered}
\iint_{S}\langle\mathbf{n}, \mathbf{l}\rangle d S=0 . \\
\iint_{S}\left\langle\mathbf{n}, \mathbf{l}=\operatorname{Flux}_{S}(\mathbf{l})=\int_{\mathbf{U}} \operatorname{div}(\mathbf{l})=\mathbf{0} .\right.
\end{gathered}
$$

Here U is the domain bounded bu S.
2. Given a function $u: U \rightarrow \mathbb{R}$, where U is an open domain in \mathbb{R}^{n} we denote by Δu the Laplace operator

$$
\Delta u=\sum_{1}^{n} \frac{\partial^{2} u}{\partial x_{j}^{2}}
$$

A function u is called harmonic in U if $\Delta u=0$. Suppose that $n=2$, i.e. U is a planar domain.
a) Prove that u is harmonic in U if and only if for any compact subdomain $\Omega \subset U$ with smooth boundary Γ one has

$$
\begin{equation*}
\oint_{\Gamma} \frac{\partial u}{\partial \mathbf{n}} d s=0 \tag{1}
\end{equation*}
$$

where n is a unit normal vector field to Γ and $\frac{\partial u}{\partial \mathbf{n}}=d u(\mathbf{n})$ is the directional derivative.
We have $\frac{\partial u}{\partial \mathbf{n}}=\langle\nabla u, \mathbf{n}\rangle$. We also note that $\operatorname{div} \nabla u=\Delta u$. Hence, harmonicity of u is equivalent to the fact that $\operatorname{div} \nabla u=0$. Hence, if u is harmonic then the divergence theorem implies that $\oint_{\Gamma} \frac{\partial u}{\partial \mathbf{n}} d s=0$, Conversely, applying (1) to circles $S_{\epsilon}(a)$ of radius ϵ centered at a point $a \in U$

$$
\Delta u(a)=\operatorname{div} \nabla u(a)=\lim _{\epsilon \rightarrow 0} \frac{1}{\pi \epsilon^{2}} \oint_{S_{\epsilon}(a)} \frac{\partial u}{\partial \mathbf{n}} d s=0 .
$$

b) Prove that for any C^{2}-smooth function $u: U \rightarrow \mathbb{R}$ one has

$$
\iint_{S}\left(\left(\frac{\partial u}{\partial x_{1}}\right)^{2}+\left(\frac{\partial u}{\partial x_{2}}\right)^{2}\right) d x_{1} d x_{2}=-\int_{S} u \Delta u d x_{1} d x_{2}+\oint_{\Gamma} u \frac{\partial u}{\partial \mathbf{n}} d s
$$

where $S \subset U$ is any compact domain with boundary Γ.

We have

$$
\oint_{\Gamma} u \frac{\partial u}{\partial \mathbf{n}} d s=\operatorname{Flux}_{\Gamma}(u \nabla u) .
$$

Furthermore,

$$
\operatorname{div}(u \nabla u)=u \Delta u+\left(\frac{\partial u}{\partial x_{1}}\right)^{2}+\left(\frac{\partial u}{\partial x_{2}}\right)^{2}
$$

Hence, the required formula is just the divergence theorem for $u \nabla u$.
c) Let S and Γ be as in the previous problem. Prove that for any two C^{2}-functions $u, v: U \rightarrow \mathbb{R}$ one has the following identity:

$$
\iint_{S}\left|\begin{array}{cc}
\Delta u & \Delta v \\
u & v
\end{array}\right| d x_{1} d x_{2}=\oint_{\Gamma}\left|\begin{array}{cc}
\frac{\partial u}{\partial \mathbf{n}} & \frac{\partial v}{\partial \mathbf{n}} \\
u & v
\end{array}\right| d s
$$

This is the divergence theorem for the vector field $v \nabla u-u \nabla v$.
3. Compute the integral

$$
\iint_{S}\left(x^{2}+y^{2}\right) d S
$$

where S is the boundary of the domain $\left\{\sqrt{x^{2}+y^{2}} \leq z \leq 1\right\}$.

The surface S is the union of the surface $P=\left\{z=\sqrt{x^{2}+y^{2}} ; x^{2}+y^{2} \leq 1\right\}$ and the disc $\Delta=\left\{z=1 ; x^{2}+y^{2} \leq 1\right\}$. Let us coordinatize both surfaces via the projection to the plane (x, y). Then the area form on Δ is just $\sigma_{\Delta}=d x \wedge d y$ and to compute σ_{P} we use the parametrization $\Phi(x, y)=x, y, r=\sqrt{x^{2}+y^{2}}$. Then $\Phi_{x}=\left(1,0, \frac{x}{r}\right), \Phi_{y}=\left(0,1, \frac{y}{r}\right)$. Thus $E=1+\frac{x^{2}}{r^{2}}, G=1+\frac{y^{2}}{r^{2}}$ and $F=\frac{x y}{r^{2}}$. Hence

$$
E G-F^{2}=\left(1+\frac{x^{2}}{r^{2}}\right)\left(1+\frac{y^{2}}{r^{2}}\right)-\frac{x^{2} y^{2}}{r^{4}}=2 .
$$

Thus $\sigma_{P}=\sqrt{2} d x \wedge d y$. Denote $D=\left\{x^{2}+y^{2} \leq 1\right\} \subset \mathbb{R}^{2}$. We need to compute two integrals

$$
I_{1}=\int_{D}\left(x^{2}+y^{2}\right) d x \wedge d y=\int_{0}^{2 \pi} \int_{0}^{1} r^{3} d r d \phi=\frac{\pi}{2}
$$

and

$$
I_{2}=\sqrt{2} \int_{D}\left(x^{2}+y^{2}\right) d x d y=\frac{\pi}{\sqrt{2}}
$$

Hence the answer is $\frac{\pi(1+\sqrt{2})}{2}$.
4. Compute

$$
\int_{S} \frac{d y \wedge d z}{x}+\frac{d z \wedge d x}{y}+\frac{d x \wedge d y}{z}
$$

where S is the ellipsoid

$$
S=\left\{\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1\right\}
$$

co-oriented by the outward normal to the domain which it bounds.

Denote $\eta:=\frac{d y \wedge d z}{x}+\frac{d z \wedge d x}{y}+\frac{d x \wedge d y}{z}$. Let us rescale variables:

$$
X=\frac{x}{a}, Y=\frac{y}{b}, Z=\frac{z}{c} .
$$

The S becomes the unit sphere $X^{2}+Y^{2}+Z^{2}=1$ and the form η can be written as $\frac{A}{X} d Y \wedge d Z+\frac{B}{Y} d Z \wedge d X+\frac{C}{Z} d X \wedge d Y$, where

$$
A=\frac{b c}{a}, B=\frac{c a}{b}, C=\frac{a b}{c} .
$$

We note that $\int_{S} \eta=$ Flux $_{S} \mathbf{v}$, where \mathbf{v} is the vector field with coordinate functions $\frac{A}{X}, \frac{B}{Y}, \frac{C}{Z}$. Hence,

$$
\int_{S} \eta=\int_{S}(A+B+C) d S=(A+B+C) \operatorname{Area}(S)=4 \pi \frac{(a b)^{2}+(b c)^{2}+(c a)^{2}}{a b c}
$$

5. Consider a differential form $\omega=\sum_{1}^{n} d x_{i} \wedge d y_{i}$ on $\mathbb{R}^{2 n}$.
a) Find a vector field \mathbf{v} on $\mathbb{R}^{2 n}$ such that

$$
d(\mathbf{v}\lrcorner \omega)=\omega .
$$

(This problem has infinitely many solutions. Find any of them.)
b) Compute Flux ${ }_{S} \mathbf{v}$, where S is an ellipsoid

$$
\left\{\sum_{1}^{n} \frac{x_{i}^{2}+y_{i}^{2}}{a_{i}^{2}}=1\right\}
$$

cooriented by the outward normal vector field. Explain why the answer is independent of the choice of \mathbf{v} in Part a).
a) One of the solutions is $\mathbf{v}=\sum_{1}^{n} y_{i} \frac{\partial}{\partial y_{i}}$. Indeed, $\left.\mathbf{v}\right\lrcorner \omega=-\sum_{1}^{n} y_{i} d x_{i}$ and $\left.d(\mathbf{v}\lrcorner \omega\right)=\omega$. Recall that the volume form $\Omega=d x_{1} \wedge d y_{1} \wedge \cdots \wedge d x_{n} \wedge d y_{n}$ is equal to $\frac{1}{n!} \omega^{n}$. Hence, we have

$$
\left.\left.\mathbf{v}\lrcorner \Omega=\frac{1}{n!} \mathbf{v}\right\lrcorner \omega^{n}=\frac{1}{(n-1)!} \mathbf{v}\right\lrcorner \omega \wedge \omega^{n-1}
$$

In particular,

$$
d(\mathbf{v}\lrcorner \Omega)=\frac{1}{(n-1)!} \omega^{n}=n \Omega
$$

b) By Stokes theorem we have

$$
\left.\left.\operatorname{Flux}_{S} \mathbf{v}=\int_{S} \mathbf{v}\right\lrcorner \Omega=\int_{U} d(\mathbf{v}\lrcorner \Omega\right)=n \int_{U} \Omega=n \operatorname{Vol} U
$$

where we denote by U the solid ellipsoid bounded by S.
Note, that $\operatorname{Vol} U=a_{1}^{2} \ldots a_{n}^{2} \operatorname{Vol} B_{1}$ where B_{1} is the unit ball in $\mathbb{R}^{2 n}$. We recall that $\operatorname{Vol} B_{1}=\frac{\pi^{n}}{n!}$
6. Consider a 4-dimensional submanifold with boundary in \mathbb{R}^{8} :

$$
\begin{aligned}
\Gamma= & \left\{\left(x_{1}, \ldots, x_{8}\right) \in \mathbb{R}^{8} ; x_{5}=x_{1} \cos \alpha+x_{2} \sin \alpha, x_{6}=-x_{1} \sin \alpha+x_{2} \cos \alpha,\right. \\
& \left.x_{7}=2 x_{3}-x_{4}, x_{8}=-x_{3}+x_{4}, x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} \leq 1\right\} .
\end{aligned}
$$

Suppose that Γ is oriented by its parameterization by coordinates $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$. Compute

$$
\int_{\Gamma} d x_{5} \wedge d x_{6} \wedge d x_{7} \wedge d x_{8}
$$

Parameterizing Γ by coordinates $x_{1}, x_{2}, x_{3}, x_{4}$ and expressing $d x_{5} \wedge d x_{6} \wedge d x_{7} \wedge d x_{8}$ in these coordinates we get

$$
d x_{5} \wedge d x_{6} \wedge d x_{7} \wedge d x_{8}=d x_{1} \wedge d x_{2} \text { wedged } x_{3} \wedge d x_{4}
$$

Hence, the integral is equal to the volume of the init 4-ball, i.e. $\frac{\pi^{2}}{2}$.
7. Consider a vector field

$$
\mathbf{v}=\frac{1}{r^{3}}\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}\right)
$$

$r=\sqrt{x^{2}+y^{2}+z^{2}}$ in $\mathbb{R}^{3} \backslash 0$. Let us denote

$$
S:=\left\{(x, y, z) \in \mathbb{R}^{3} ; z=e^{x^{2}+y^{2}-\frac{1}{2}}, x^{2}+y^{2}+z^{2} \leq \frac{3}{2}\right\}
$$

and co-orient this surface by a normal vector field which is equal to $(0,0,1)$ at the point $\left(0,0, \frac{1}{\sqrt{e}}\right) \in S$. Compute Flux ${ }_{S} \mathbf{v}$.

The equation $e^{2 r^{2}-1}+r^{2}=\frac{3}{2}$ has a solution $r^{2}=\frac{1}{2}$, and hence the surface S is bounded by the circle $\Gamma=\left\{x^{2}+y^{2}=\frac{1}{2}, z=1\right\}$. The normal component of the vector field \mathbf{v} to the unit sphere has the length $\sqrt{3} 2$ (equal to the radius of the sphere). Hence, the question amonts to a computation of the area of the spherical cap bounded by Γ. Let us compute the area form. The surface given by a parameterizing map $\Phi(x, y)=\left(x, y, S=\sqrt{\frac{3}{2}-x^{2}-y^{2}}\right.$. We have $\Phi_{x}=\left(1,0,-\frac{x}{S}\right), \Phi_{y}=\left(0,1, \frac{y}{S}\right)$. Thus,

$$
E=1+\frac{x^{2}}{S^{2}}, G=1+\frac{y^{2}}{S^{2}}, F=\frac{x y}{S^{2}} .
$$

Hence,

$$
E G-F^{2}=1+\frac{x^{2}}{S^{2}}+\frac{y^{2}}{S^{2}}=\frac{3}{3-2 x^{2}-2 y^{2}},
$$

and
$\operatorname{Area}(S)=3 \int_{x^{2}+y^{2} \leq 12} \frac{d x d y}{\sqrt{3-2 x^{2}-2 y^{2}}}=3 \int_{0}^{2 \pi} \int_{0}^{\frac{1}{\sqrt{2}}} \frac{r d r d \phi}{\sqrt{3-2 r^{2}}}=3 \pi \int_{0}^{\frac{1}{2}} \frac{d u}{\sqrt{3-2 u}}=3 \pi(\sqrt{3}-\sqrt{2})$.
Finally to get the flux we need to multiply the area by $\sqrt{32}$.
8. Suppose that a vector field \mathbf{v} in \mathbb{R}^{3} with coordinate functions (P, Q, R) satisfies curl $\mathbf{v}=0$. Find an explicit expression for a function F such that $\mathbf{v}=\nabla F$.

The equation curlv $=0$ is equivalent to $d \alpha=0$, where We have $\alpha:=\mathcal{D}(\mathbf{v})=P d x+$ $Q d y+R d z$. In \mathbb{R}^{3} the closed form α is exact and its primitive F (i.e. $d F=\alpha$) can be computed by the formula

$$
F(u)=\int_{0}^{1}(x P(t u)+y P(t u)+z P(t u)) d t
$$

where $u=(x, y, z)$. The equation $d F=\alpha$ is equivalent to $\nabla F=\mathbf{v}$.
9. Let C be the intersection of the sphere $S=\left\{x^{2}+y^{2}+z^{2}=1\right\}$ and the plane $P=$ $\{x+y+z=0\}$. We orient C counter-clockwise when looking from the point $(0,0,100)$. Compute $\int_{C} z^{3} d x$.

Let us use Stokes' theorem applied to the disc Δ bounded by the circle C in the plane $\{x+y+z=0\}$. The corresponding orientation of Δ coincides with its orientation by coordinates (x, y) via the orthogonal projection. We have

$$
I:=\int_{C} z^{3} d x=\int_{\Delta} 3 z^{2} d z \wedge d x .
$$

Expressing in coordinates x, y we get $z=-(x+y)$ and

$$
3 z^{2} d z \wedge d x=3(x+y)^{2} d x \wedge d y
$$

Disc D projects to the plane (x, y) as a (solid) ellipse $E=\left\{x^{2}+y^{2}+(x+y)^{2} \leq 1\right\}$. By rotating the axes by $\pi / 4, u=\frac{\sqrt{2}}{2}(x-y), v=\frac{\sqrt{2}}{2}(x+y)$ we can rewrite the equation of the solid ellipse as $u^{2}+3 v^{2} \leq 1$. Note that in the new coordinates $d x \wedge d y=d u \wedge d v$ and $(x+y)^{2}=2 v^{2}$.

$$
I=\int_{\Delta} 3 z^{2} d x \wedge d y=3 \int_{E}(x+y)^{2} d x \wedge d y=6 \iint_{u^{2}+3 v^{2} \leq 1} v^{2} d u d v=6 \int_{-1}^{1} \int_{-S}^{S} v^{2} d v d u
$$

where we denoted $S:=\frac{1}{\sqrt{3}} \sqrt{1-u^{2}}$. We further have

$$
I:=6 \int_{-1}^{1} \int_{-S}^{S} v^{2} d v d u=4 \int_{-1}^{1} S^{3} d u=\frac{4}{3 \sqrt{3}} \int_{-1}^{1}\left(1-u^{2}\right)^{\frac{3}{2}} d u
$$

Substituting $u=\sin t$ we get

$$
I=\frac{4}{3 \sqrt{3}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos ^{4} t d t=\frac{1}{6 \sqrt{3}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(3+\cos 2 t+4 \cos 4 t) d t=\frac{\pi}{2 \sqrt{3}}
$$

10. Let M be an oriented closed n-dimensional manifold, and ω be a differential $(n-1)$ form on M. Prove that there exists a point $a \in M$ such that $(d \omega)_{a}=0$.

By Stokes theorem we have $\int_{M} \omega=0$. The n-form ω is proportional to the volume for σ_{M}, $\omega=f \sigma_{M}$ and we have $\int_{M} \omega=\int f d V$. Hence, the function f should change sign and thus by continuity at some point $f(a)=0$, and hence $\omega_{a}=f(a)\left(\sigma_{M}\right)=0$.
11. Let us view the space \mathbb{R}^{4} with coordinates $\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$ as a complex vector space \mathbb{C}^{2} with coordinates $\left(z_{1}=x_{1}+i y_{1}, z_{2}=x_{2}+i y_{2}\right)$. Consider a surface

$$
S=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} ; z_{2}=z_{1}^{2},\left|z_{1}\right| \leq 1 .\right\}
$$

Compute $\operatorname{Area}(S)$.
Let us introduce polar coordinates on complex lines z_{1}, z_{2}, i.e. $z_{1}=r_{1} e^{i \phi_{1}}$ and $z_{2}=r_{2} e^{i \phi_{2}}$. The the surface S is given by the parameterization

$$
\left(r_{1} \phi_{1}\right) \mapsto F\left(r_{1}, \phi_{1}\right)=\left(r_{1}, \phi_{1}, r_{1}^{2}, 2 \phi_{1}\right) ; 0 \leq r_{1} \leq 1,0 \leq \phi_{1}<2 \pi .
$$

The tangent space to the surface is generated by vectors

$$
\begin{aligned}
A & :=\frac{\partial F}{\partial r_{1}}=\frac{\partial}{\partial r_{1}}+2 r_{1} \frac{\partial}{\partial r_{2}}, \\
B & :=\frac{\partial F}{\partial \phi_{1}}=\frac{\partial}{\partial \phi_{1}}+2 \frac{\partial}{\partial \phi_{2}} .
\end{aligned}
$$

The basis $\frac{\partial}{\partial r_{1}}, \frac{\partial}{\partial r_{2}}, \frac{\partial}{\partial \phi_{1}}, \frac{\partial}{\partial \phi_{1}}$ is orthogonal and we have

$$
\left\|\frac{\partial}{\partial r_{1}}\right\|=\left\|\frac{\partial}{\partial r_{2}}\right\|=1
$$

and

$$
\left\|\frac{\partial}{\partial \phi_{1}}\right\|=r_{1}, \quad\left\|\frac{\partial}{\partial \phi_{2}}\right\|=r_{2} .
$$

Hence,

$$
E=\langle A, A\rangle=1+4 r_{1}^{2}, \quad G=\langle B, B\rangle=r_{1}^{2}+4 r_{2}^{2}=r_{1}^{2}+4 r_{1}^{4}, \quad F=\langle A, B\rangle=0
$$

Thus,

$$
\sqrt{E G-F^{2}}=\sqrt{\left(1+4 r_{1}^{2}\right)\left(r_{1}^{2}+4 r_{1}^{4}\right)}=r_{1}\left(1+4 r_{1}^{2}\right)
$$

Thus, $\operatorname{Area}(S)=\int_{0}^{2 \pi} \int_{0}^{1} r_{1}\left(1+4 r_{1}^{2}\right) d r_{1} d \phi_{1}=2 \pi\left(\frac{1}{2}+\frac{4}{3}\right)=\frac{11 \pi}{3}$.

