Math 52H: Solutions to Practice problems for the Final Exam

1. Prove that if S is a closed surface in \mathbb{R}^3 , **n** its unit normal vector field and **l** any fixed vector then

$$\iint_{S} \langle \mathbf{n}, \mathbf{l} \rangle dS = 0.$$

$$\iint_{S} \langle \mathbf{n}, \mathbf{l} = \operatorname{Flux}_{S}(\mathbf{l}) = \int_{\mathbf{U}} \operatorname{div}(\mathbf{l}) = \mathbf{0}.$$

Here U is the domain bounded bu S.

2. Given a function $u: U \to \mathbb{R}$, where U is an open domain in \mathbb{R}^n we denote by Δu the

Laplace operator

$$\Delta u = \sum_{1}^{n} \frac{\partial^2 u}{\partial x_j^2}.$$

A function u is called *harmonic* in U if $\Delta u = 0$. Suppose that n = 2, i.e. U is a planar domain.

a) Prove that u is harmonic in U if and only if for any compact subdomain $\Omega \subset U$ with smooth boundary Γ one has

$$\oint_{\Gamma} \frac{\partial u}{\partial \mathbf{n}} ds = 0, \tag{1}$$

where n is a unit normal vector field to Γ and $\frac{\partial u}{\partial \mathbf{n}} = du(\mathbf{n})$ is the directional derivative.

We have $\frac{\partial u}{\partial \mathbf{n}} = \langle \nabla u, \mathbf{n} \rangle$. We also note that $\operatorname{div} \nabla u = \Delta u$. Hence, harmonicity of u is equivalent to the fact that $\operatorname{div} \nabla u = 0$. Hence, if u is harmonic then the divergence theorem implies that $\oint_{\Gamma} \frac{\partial u}{\partial \mathbf{n}} ds = 0$, Conversely, applying (1) to circles $S_{\epsilon}(a)$ of radius ϵ centered at a point $a \in U$

$$\Delta u(a) = \operatorname{div} \nabla u(a) = \lim_{\epsilon \to 0} \frac{1}{\pi \epsilon^2} \oint_{S_{\epsilon}(a)} \frac{\partial u}{\partial \mathbf{n}} ds = 0.$$

b) Prove that for any $C^2\text{-smooth function } u:U\to\mathbb{R}$ one has

$$\iint_{S} \left(\left(\frac{\partial u}{\partial x_1} \right)^2 + \left(\frac{\partial u}{\partial x_2} \right)^2 \right) dx_1 dx_2 = - \int_{S} u \Delta u dx_1 dx_2 + \oint_{\Gamma} u \frac{\partial u}{\partial \mathbf{n}} ds,$$

where $S \subset U$ is any compact domain with boundary Γ .

We have

$$\oint_{\Gamma} u \frac{\partial u}{\partial \mathbf{n}} ds = \operatorname{Flux}_{\Gamma}(u \nabla u)$$

Furthermore,

$$\operatorname{div}(u\nabla u) = u\Delta u + \left(\frac{\partial u}{\partial x_1}\right)^2 + \left(\frac{\partial u}{\partial x_2}\right)^2.$$

Hence, the required formula is just the divergence theorem for $u\nabla u$.

c) Let S and Γ be as in the previous problem. Prove that for any two C^2 -functions $u, v: U \to \mathbb{R}$ one has the following identity:

$$\iint_{S} \begin{vmatrix} \Delta u & \Delta v \\ u & v \end{vmatrix} dx_{1} dx_{2} = \oint_{\Gamma} \begin{vmatrix} \frac{\partial u}{\partial \mathbf{n}} & \frac{\partial v}{\partial \mathbf{n}} \\ u & v \end{vmatrix} ds \,.$$

This is the divergence theorem for the vector field $v\nabla u - u\nabla v$.

3. Compute the integral

$$\iint\limits_{S} (x^2 + y^2) dS,$$

where S is the boundary of the domain $\{\sqrt{x^2 + y^2} \le z \le 1\}$.

The surface S is the union of the surface $P = \{z = \sqrt{x^2 + y^2}; x^2 + y^2 \leq 1\}$ and the disc $\Delta = \{z = 1; x^2 + y^2 \leq 1\}$. Let us coordinatize both surfaces via the projection to the plane (x, y). Then the area form on Δ is just $\sigma_{\Delta} = dx \wedge dy$ and to compute σ_P we use the parametrization $\Phi(x, y) = x, y, r = \sqrt{x^2 + y^2}$. Then $\Phi_x = (1, 0, \frac{x}{r}), \ \Phi_y = (0, 1, \frac{y}{r})$. Thus $E = 1 + \frac{x^2}{r^2}, G = 1 + \frac{y^2}{r^2}$ and $F = \frac{xy}{r^2}$. Hence

$$EG - F^2 = (1 + \frac{x^2}{r^2})(1 + \frac{y^2}{r^2}) - \frac{x^2y^2}{r^4} = 2.$$

Thus $\sigma_P = \sqrt{2}dx \wedge dy$. Denote $D = \{x^2 + y^2 \leq 1\} \subset \mathbb{R}^2$. We need to compute two integrals

$$I_1 = \int_D (x^2 + y^2) dx \wedge dy = \int_0^{2\pi} \int_0^1 r^3 dr d\phi = \frac{\pi}{2}$$

and

$$I_2 = \sqrt{2} \int_D (x^2 + y^2) dx dy = \frac{\pi}{\sqrt{2}}.$$

Hence the answer is $\frac{\pi(1+\sqrt{2})}{2}$.

4. Compute

$$\int_{S} \frac{dy \wedge dz}{x} + \frac{dz \wedge dx}{y} + \frac{dx \wedge dy}{z},$$

where S is the ellipsoid

$$S = \left\{ \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \right\}$$

co-oriented by the outward normal to the domain which it bounds.

Denote $\eta := \frac{dy \wedge dz}{x} + \frac{dz \wedge dx}{y} + \frac{dx \wedge dy}{z}$. Let us rescale variables:

$$X = \frac{x}{a}, Y = \frac{y}{b}, Z = \frac{z}{c}.$$

The S becomes the unit sphere $X^2 + Y^2 + Z^2 = 1$ and the form η can be written as $\frac{A}{X}dY \wedge dZ + \frac{B}{Y}dZ \wedge dX + \frac{C}{Z}dX \wedge dY$, where

$$A = \frac{bc}{a}, B = \frac{ca}{b}, C = \frac{ab}{c}$$

We note that $\int_S \eta = \operatorname{Flux}_S \mathbf{v}$, where \mathbf{v} is the vector field with coordinate functions $\frac{A}{X}, \frac{B}{Y}, \frac{C}{Z}$. Hence,

$$\int_{S} \eta = \int_{S} (A + B + C)dS = (A + B + C)\operatorname{Area}(S) = 4\pi \frac{(ab)^2 + (bc)^2 + (ca)^2}{abc}.$$

- 5. Consider a differential form $\omega = \sum_{1}^{n} dx_i \wedge dy_i$ on \mathbb{R}^{2n} .
- a) Find a vector field \mathbf{v} on \mathbb{R}^{2n} such that

$$d(\mathbf{v} \,\lrcorner\, \omega) = \omega.$$

(This problem has infinitely many solutions. Find any of them.)

b) Compute $\operatorname{Flux}_{S} \mathbf{v}$, where S is an ellipsoid

$$\left\{\sum_{1}^{n}\frac{x_i^2+y_i^2}{a_i^2}=1\right\}$$

cooriented by the outward normal vector field. Explain why the answer is independent of the choice of \mathbf{v} in Part a).

a) One of the solutions is $\mathbf{v} = \sum_{1}^{n} y_i \frac{\partial}{\partial y_i}$. Indeed, $\mathbf{v} \,\lrcorner\, \omega = -\sum_{1}^{n} y_i dx_i$ and $d(\mathbf{v} \,\lrcorner\, \omega) = \omega$. Recall that the volume form $\Omega = dx_1 \wedge dy_1 \wedge \cdots \wedge dx_n \wedge dy_n$ is equal to $\frac{1}{n!} \omega^n$. Hence, we have

$$\mathbf{v} \,\lrcorner\, \Omega = \frac{1}{n!} \,\mathbf{v} \,\lrcorner\, \omega^n = \frac{1}{(n-1)!} \,\mathbf{v} \,\lrcorner\, \omega \wedge \omega^{n-1}.$$

In particular,

$$d(\mathbf{v} \,\lrcorner\, \Omega) = \frac{1}{(n-1)!} \omega^n = n\Omega.$$

b) By Stokes theorem we have

Flux_S
$$\mathbf{v} = \int_{S} \mathbf{v} \, \lrcorner \, \Omega = \int_{U} d(\mathbf{v} \, \lrcorner \, \Omega) = n \int_{U} \Omega = n \text{Vol}U,$$

where we denote by U the solid ellipsoid bounded by S.

Note, that $\operatorname{Vol} U = a_1^2 \dots a_n^2 \operatorname{Vol} B_1$ where B_1 is the unit ball in \mathbb{R}^{2n} . We recall that $\operatorname{Vol} B_1 = \frac{\pi^n}{n!}$

6. Consider a 4-dimensional submanifold with boundary in \mathbb{R}^8 :

$$\Gamma = \{ (x_1, \dots, x_8) \in \mathbb{R}^8; \ x_5 = x_1 \cos \alpha + x_2 \sin \alpha, x_6 = -x_1 \sin \alpha + x_2 \cos \alpha, \\ x_7 = 2x_3 - x_4, x_8 = -x_3 + x_4, \ x_1^2 + x_2^2 + x_3^2 + x_4^2 \le 1 \}.$$

Suppose that Γ is oriented by its parameterization by coordinates (x_1, x_2, x_3, x_4) . Compute

$$\int_{\Gamma} dx_5 \wedge dx_6 \wedge dx_7 \wedge dx_8.$$

Parameterizing Γ by coordinates x_1, x_2, x_3, x_4 and expressing $dx_5 \wedge dx_6 \wedge dx_7 \wedge dx_8$ in these coordinates we get

$$dx_5 \wedge dx_6 \wedge dx_7 \wedge dx_8 = dx_1 \wedge dx_2 wedgedx_3 \wedge dx_4$$

Hence, the integral is equal to the volume of the init 4-ball, i.e. $\frac{\pi^2}{2}$.

7. Consider a vector field

$$\mathbf{v} = \frac{1}{r^3} \left(x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z} \right),$$

 $r = \sqrt{x^2 + y^2 + z^2}$ in $\mathbb{R}^3 \setminus 0$. Let us denote

$$S := \left\{ (x, y, z) \in \mathbb{R}^3; \ z = e^{x^2 + y^2 - \frac{1}{2}}, \ x^2 + y^2 + z^2 \le \frac{3}{2} \right\}$$

and co-orient this surface by a normal vector field which is equal to (0, 0, 1) at the point $(0, 0, \frac{1}{\sqrt{e}}) \in S$. Compute Flux_S **v**.

The equation $e^{2r^2-1} + r^2 = \frac{3}{2}$ has a solution $r^2 = \frac{1}{2}$, and hence the surface S is bounded by the circle $\Gamma = \{x^2 + y^2 = \frac{1}{2}, z = 1\}$. The normal component of the vector field \mathbf{v} to the unit sphere has the length $\sqrt{32}$ (equal to the radius of the sphere). Hence, the question amonts to a computation of the area of the spherical cap bounded by Γ . Let us compute the area form. The surface given by a parameterizing map $\Phi(x,y) = (x,y,S = \sqrt{\frac{3}{2} - x^2 - y^2}$. We have $\Phi_x = (1,0,-\frac{x}{S}), \Phi_y = (0,1,\frac{y}{S})$. Thus,

$$E = 1 + \frac{x^2}{S^2}, \ G = 1 + \frac{y^2}{S^2}, \ F = \frac{xy}{S^2}.$$

Hence,

$$EG - F^2 = 1 + \frac{x^2}{S^2} + \frac{y^2}{S^2} = \frac{3}{3 - 2x^2 - 2y^2},$$

and

$$\operatorname{Area}(S) = 3 \int_{x^2 + y^2 \le 12} \frac{dxdy}{\sqrt{3 - 2x^2 - 2y^2}} = 3 \int_{0}^{2\pi} \int_{0}^{\frac{1}{\sqrt{2}}} \frac{rdrd\phi}{\sqrt{3 - 2r^2}} = 3\pi \int_{0}^{\frac{1}{2}} \frac{du}{\sqrt{3 - 2u}} = 3\pi(\sqrt{3} - \sqrt{2}).$$

Finally to get the flux we need to multiply the area by $\sqrt{32}$.

8. Suppose that a vector field \mathbf{v} in \mathbb{R}^3 with coordinate functions (P, Q, R) satisfies curl $\mathbf{v} = 0$. Find an explicit expression for a function F such that $\mathbf{v} = \nabla F$.

The equation $\operatorname{curl} \mathbf{v} = 0$ is equivalent to $d\alpha = 0$, where We have $\alpha := \mathcal{D}(\mathbf{v}) = Pdx + Qdy + Rdz$. In \mathbb{R}^3 the closed form α is exact and its primitive F (i.e. $dF = \alpha$) can be computed by the formula

$$F(u) = \int_{0}^{1} (xP(tu) + yP(tu) + zP(tu)) dt.$$

where u = (x, y, z). The equation $dF = \alpha$ is equivalent to $\nabla F = \mathbf{v}$. 9. Let C be the intersection of the sphere $S = \{x^2 + y^2 + z^2 = 1\}$ and the plane $P = \{x + y + z = 0\}$. We orient C counter-clockwise when looking from the point (0, 0, 100). Compute $\int_C z^3 dx$. Let us use Stokes' theorem applied to the disc Δ bounded by the circle C in the plane $\{x + y + z = 0\}$. The corresponding orientation of Δ coincides with its orientation by coordinates (x, y) via the orthogonal projection. We have

$$I := \int_{C} z^{3} dx = \int_{\Delta} 3z^{2} dz \wedge dx.$$

Expressing in coordinates x, y we get z = -(x + y) and

$$3z^2dz \wedge dx = 3(x+y)^2dx \wedge dy.$$

Disc *D* projects to the plane (x, y) as a (solid) ellipse $E = \{x^2 + y^2 + (x + y)^2 \le 1\}$. By rotating the axes by $\pi/4$, $u = \frac{\sqrt{2}}{2}(x - y)$, $v = \frac{\sqrt{2}}{2}(x + y)$ we can rewrite the equation of the solid ellipse as $u^2 + 3v^2 \le 1$. Note that in the new coordinates $dx \wedge dy = du \wedge dv$ and $(x + y)^2 = 2v^2$.

$$I = \int_{\Delta} 3z^2 dx \wedge dy = 3 \int_{E} (x+y)^2 dx \wedge dy = 6 \iint_{u^2+3v^2 \le 1} v^2 du dv = 6 \int_{-1}^{1} \int_{-S}^{S} v^2 dv du,$$

where we denoted $S := \frac{1}{\sqrt{3}}\sqrt{1-u^2}$. We further have

$$I := 6 \int_{-1}^{1} \int_{-S}^{S} v^2 dv du = 4 \int_{-1}^{1} S^3 du = \frac{4}{3\sqrt{3}} \int_{-1}^{1} (1 - u^2)^{\frac{3}{2}} du.$$

Substituting $u = \sin t$ we get

$$I = \frac{4}{3\sqrt{3}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^4 t dt = \frac{1}{6\sqrt{3}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (3 + \cos 2t + 4\cos 4t) dt = \frac{\pi}{2\sqrt{3}}.$$

10. Let M be an oriented closed n-dimensional manifold, and ω be a differential (n-1)form on M. Prove that there exists a point $a \in M$ such that $(d\omega)_a = 0$.

By Stokes theorem we have $\int_{M} \omega = 0$. The *n*-form ω is proportional to the volume for σ_M , $\omega = f\sigma_M$ and we have $\int_{M} \omega = \int f dV$. Hence, the function f should change sign and thus by continuity at some point f(a) = 0, and hence $\omega_a = f(a)(\sigma_M) = 0$.

11. Let us view the space \mathbb{R}^4 with coordinates (x_1, y_1, x_2, y_2) as a complex vector space \mathbb{C}^2 with coordinates $(z_1 = x_1 + iy_1, z_2 = x_2 + iy_2)$. Consider a surface

$$S = \{(z_1, z_2) \in \mathbb{C}^2; \ z_2 = z_1^2, |z_1| \le 1.\}$$

Compute Area(S).

Let us introduce polar coordinates on complex lines z_1, z_2 , i.e. $z_1 = r_1 e^{i\phi_1}$ and $z_2 = r_2 e^{i\phi_2}$. The the surface S is given by the parameterization

$$(r_1\phi_1) \mapsto F(r_1,\phi_1) = (r_1,\phi_1,r_1^2,2\phi_1); \ 0 \le r_1 \le 1, 0 \le \phi_1 < 2\pi.$$

The tangent space to the surface is generated by vectors

$$A := \frac{\partial F}{\partial r_1} = \frac{\partial}{\partial r_1} + 2r_1 \frac{\partial}{\partial r_2},$$
$$B := \frac{\partial F}{\partial \phi_1} = \frac{\partial}{\partial \phi_1} + 2\frac{\partial}{\partial \phi_2}.$$

The basis $\frac{\partial}{\partial r_1}, \frac{\partial}{\partial r_2}, \frac{\partial}{\partial \phi_1}, \frac{\partial}{\partial \phi_1}$ is orthogonal and we have

$$\left|\left|\frac{\partial}{\partial r_1}\right|\right| = \left|\left|\frac{\partial}{\partial r_2}\right|\right| = 1$$

and

$$\left|\left|\frac{\partial}{\partial\phi_1}\right|\right| = r_1, \quad \left|\left|\frac{\partial}{\partial\phi_2}\right|\right| = r_2.$$

Hence,

$$E = \langle A, A \rangle = 1 + 4r_1^2, \quad G = \langle B, B \rangle = r_1^2 + 4r_2^2 = r_1^2 + 4r_1^4, \quad F = \langle A, B \rangle = 0.$$

Thus,

$$\sqrt{EG - F^2} = \sqrt{(1 + 4r_1^2)(r_1^2 + 4r_1^4)} = r_1(1 + 4r_1^2)$$

Thus, Area(S) = $\int_{0}^{2\pi} \int_{0}^{1} r_1(1+4r_1^2) dr_1 d\phi_1 = 2\pi(\frac{1}{2}+\frac{4}{3}) = \frac{11\pi}{3}.$