
Math 52H: Solutions to Practice problems for the Final

Exam

1. Prove that if S is a closed surface in R3, n its unit normal vector field and l any fixed

vector then ∫∫
S

〈n, l〉dS = 0.

∫∫
S

〈n, l = FluxS(l) =

∫
U

div(l) = 0.

Here U is the domain bounded bu S.

2. Given a function u : U → R, where U is an open domain in Rn we denote by ∆u the

Laplace operator

∆u =
n∑
1

∂2u

∂x2
j

.

A function u is called harmonic in U if ∆u = 0. Suppose that n = 2, i.e. U is a planar

domain.

a) Prove that u is harmonic in U if and only if for any compact subdomain Ω ⊂ U with

smooth boundary Γ one has ∮
Γ

∂u

∂n
ds = 0, (1)
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where n is a unit normal vector field to Γ and ∂u
∂n

= du(n) is the directional derivative.

We have ∂u
∂n

= 〈∇u,n〉. We also note that div∇u = ∆u. Hence, harmonicity of u is

equivalent to the fact that div∇u = 0. Hence, if u is harmonic then the divergence theorem

implies that
∮
Γ

∂u
∂n
ds = 0, Conversely, applying (1) to circles Sε(a) of radius ε centered at a

point a ∈ U

∆u(a) = div∇u(a) = lim
ε→0

1

πε2

∮
Sε(a)

∂u

∂n
ds = 0.

b) Prove that for any C2-smooth function u : U → R one has∫∫
S

((
∂u

∂x1

)2

+

(
∂u

∂x2

)2
)
dx1dx2 = −

∫
S

u∆udx1dx2 +

∮
Γ

u
∂u

∂n
ds,

where S ⊂ U is any compact domain with boundary Γ.

We have ∮
Γ

u
∂u

∂n
ds = FluxΓ(u∇u).

Furthermore,

div(u∇u) = u∆u+

(
∂u

∂x1

)2

+

(
∂u

∂x2

)2

.

Hence, the required formula is just the divergence theorem for u∇u.

c) Let S and Γ be as in the previous problem. Prove that for any two C2-functions

u, v : U → R one has the following identity:

∫∫
S

∣∣∣∣∣∣∆u ∆v

u v

∣∣∣∣∣∣ dx1dx2 =

∮
Γ

∣∣∣∣∣∣
∂u
∂n

∂v
∂n

u v

∣∣∣∣∣∣ ds .

This is the divergence theorem for the vector field v∇u− u∇v.

3. Compute the integral
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∫∫
S

(x2 + y2)dS,

where S is the boundary of the domain {
√
x2 + y2 ≤ z ≤ 1}.

The surface S is the union of the surface P = {z =
√
x2 + y2;x2 + y2 ≤ 1} and the

disc ∆ = {z = 1;x2 + y2 ≤ 1}. Let us coordinatize both surfaces via the projection to the

plane (x, y). Then the area form on ∆ is just σ∆ = dx ∧ dy and to compute σP we use the

parametrization Φ(x, y) = x, y, r =
√
x2 + y2. Then Φx = (1, 0, x

r
), Φy = (0, 1, y

r
). Thus

E = 1 + x2

r2
, G = 1 + y2

r2
and F = xy

r2
. Hence

EG− F 2 = (1 +
x2

r2
)(1 +

y2

r2
)− x2y2

r4
= 2.

Thus σP =
√

2dx ∧ dy. Denote D = {x2 + y2 ≤ 1} ⊂ R2. We need to compute two integrals

I1 =

∫
D

(x2 + y2)dx ∧ dy =

2π∫
0

1∫
0

r3drdφ =
π

2

and

I2 =
√

2

∫
D

(x2 + y2)dxdy =
π√
2
.

Hence the answer is π(1+
√

2)
2

.

4. Compute ∫
S

dy ∧ dz
x

+
dz ∧ dx

y
+
dx ∧ dy

z
,

where S is the ellipsoid

S =

{
x2

a2
+
y2

b2
+
z2

c2
= 1

}
co-oriented by the outward normal to the domain which it bounds.

Denote η := dy∧dz
x

+ dz∧dx
y

+ dx∧dy
z

. Let us rescale variables:

X =
x

a
, Y =

y

b
, Z =

z

c
.
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The S becomes the unit sphere X2 + Y 2 + Z2 = 1 and the form η can be written as

A
X
dY ∧ dZ + B

Y
dZ ∧ dX + C

Z
dX ∧ dY , where

A =
bc

a
, B =

ca

b
, C =

ab

c
.

We note that
∫
S
η = FluxS v, where v is the vector field with coordinate functions

A
X
, B
Y
, C
Z

. Hence,∫
S

η =

∫
S

(A+B + C)dS = (A+B + C)Area(S) = 4π
(ab)2 + (bc)2 + (ca)2

abc
.

5. Consider a differential form ω =
n∑
1

dxi ∧ dyi on R2n.

a) Find a vector field v on R2n such that

d( v ω) = ω.

(This problem has infinitely many solutions. Find any of them.)

b) Compute FluxS v, where S is an ellipsoid{
n∑
1

x2
i + y2

i

a2
i

= 1

}

cooriented by the outward normal vector field. Explain why the answer is independent

of the choice of v in Part a).

a) One of the solutions is v =
n∑
1

yi
∂
∂yi

. Indeed, v ω = −
n∑
1

yidxi and d( v ω) = ω.

Recall that the volume form Ω = dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn is equal to 1
n!
ωn. Hence, we have

v Ω =
1

n!
v ωn =

1

(n− 1)!
v ω ∧ ωn−1.

In particular,

d( v Ω) =
1

(n− 1)!
ωn = nΩ.
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b) By Stokes theorem we have

FluxS v =

∫
S

v Ω =

∫
U

d( v Ω) = n

∫
U

Ω = nVolU,

where we denote by U the solid ellipsoid bounded by S.

Note, that VolU = a2
1 . . . a

2
nVolB1 where B1 is the unit ball in R2n. We recall that

VolB1 = πn

n!

6. Consider a 4-dimensional submanifold with boundary in R8:

Γ =
{

(x1, . . . , x8) ∈ R8; x5 = x1 cosα + x2 sinα, x6 = −x1 sinα + x2 cosα,

x7 = 2x3 − x4, x8 = −x3 + x4, x
2
1 + x2

2 + x2
3 + x2

4 ≤ 1
}
.

Suppose that Γ is oriented by its parameterization by coordinates (x1, x2, x3, x4). Compute∫
Γ

dx5 ∧ dx6 ∧ dx7 ∧ dx8.

Parameterizing Γ by coordinates x1, x2, x3, x4 and expressing dx5 ∧ dx6 ∧ dx7 ∧ dx8 in

these coordinates we get

dx5 ∧ dx6 ∧ dx7 ∧ dx8 = dx1 ∧ dx2wedgedx3 ∧ dx4.

Hence, the integral is equal to the volume of the init 4-ball, i.e. π2

2
.

7. Consider a vector field

v =
1

r3

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
,

r =
√
x2 + y2 + z2 in R3 \ 0. Let us denote

S :=

{
(x, y, z) ∈ R3; z = ex

2+y2− 1
2 , x2 + y2 + z2 ≤ 3

2

}
and co-orient this surface by a normal vector field which is equal to (0, 0, 1) at the point

(0, 0, 1√
e
) ∈ S. Compute FluxS v.

5



The equation e2r2−1 + r2 = 3
2

has a solution r2 = 1
2
, and hence the surface S is bounded

by the circle Γ = {x2 + y2 = 1
2
, z = 1}. The normal component of the vector field v to

the unit sphere has the length
√

32 (equal to the radius of the sphere). Hence, the question

amonts to a computation of the area of the spherical cap bounded by Γ. Let us compute the

area form. The surface given by a parameterizing map Φ(x, y) = (x, y, S =
√

3
2
− x2 − y2.

We have Φx = (1, 0,− x
S

),Φy = (0, 1, y
S

). Thus,

E = 1 +
x2

S2
, G = 1 +

y2

S2
, F =

xy

S2
.

Hence,

EG− F 2 = 1 +
x2

S2
+
y2

S2
=

3

3− 2x2 − 2y2
,

and

Area(S) = 3

∫
x2+y2≤12

dxdy√
3− 2x2 − 2y2

= 3

2π∫
0

1√
2∫

0

rdrdφ√
3− 2r2

= 3π

1
2∫

0

du√
3− 2u

= 3π(
√

3−
√

2).

Finally to get the flux we need to multiply the area by
√

32.

8. Suppose that a vector field v in R3 with coordinate functions (P,Q,R) satisfies curl v = 0.

Find an explicit expression for a function F such that v = ∇F .

The equation curl v = 0 is equivalent to dα = 0, where We have α := D( v) = Pdx +

Qdy + Rdz. In R3 the closed form α is exact and its primitive F (i.e. dF = α) can be

computed by the formula

F (u) =

1∫
0

(xP (tu) + yP (tu) + zP (tu)) dt.

where u = (x, y, z). The equation dF = α is equivalent to ∇F = v.

9. Let C be the intersection of the sphere S = {x2 + y2 + z2 = 1} and the plane P =

{x + y + z = 0}. We orient C counter-clockwise when looking from the point (0, 0, 100).

Compute
∫
C

z3dx.
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Let us use Stokes’ theorem applied to the disc ∆ bounded by the circle C in the plane

{x + y + z = 0}. The corresponding orientation of ∆ coincides with its orientation by

coordinates (x, y) via the orthogonal projection. We have

I :=

∫
C

z3dx =

∫
∆

3z2dz ∧ dx.

Expressing in coordinates x, y we get z = −(x+ y) and

3z2dz ∧ dx = 3(x+ y)2dx ∧ dy.

Disc D projects to the plane (x, y) as a (solid) ellipse E = {x2 + y2 + (x + y)2 ≤ 1}.

By rotating the axes by π/4, u =
√

2
2

(x − y), v =
√

2
2

(x + y) we can rewrite the equation of

the solid ellipse as u2 + 3v2 ≤ 1. Note that in the new coordinates dx ∧ dy = du ∧ dv and

(x+ y)2 = 2v2.

I =

∫
∆

3z2dx ∧ dy = 3

∫
E

(x+ y)2dx ∧ dy = 6

∫∫
u2+3v2≤1

v2dudv = 6

1∫
−1

S∫
−S

v2dvdu,

where we denoted S := 1√
3

√
1− u2. We further have

I := 6

1∫
−1

S∫
−S

v2dvdu = 4

1∫
−1

S3du =
4

3
√

3

1∫
−1

(1− u2)
3
2du.

Substituting u = sin t we get

I =
4

3
√

3

π
2∫

−π
2

cos4 tdt =
1

6
√

3

π
2∫

−π
2

(3 + cos 2t+ 4 cos 4t)dt =
π

2
√

3
.

10. Let M be an oriented closed n-dimensional manifold, and ω be a differential (n− 1)-

form on M . Prove that there exists a point a ∈M such that (dω)a = 0.
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By Stokes theorem we have
∫
M

ω = 0. The n-form ω is proportional to the volume for σM ,

ω = fσM and we have
∫
M

ω =
∫
fdV . Hence, the function f should change sign and thus by

continuity at some point f(a) = 0, and hence ωa = f(a)(σM) = 0.

11. Let us view the space R4 with coordinates (x1, y1, x2, y2) as a complex vector space

C2 with coordinates (z1 = x1 + iy1, z2 = x2 + iy2). Consider a surface

S = {(z1, z2) ∈ C2; z2 = z2
1 , |z1| ≤ 1.}

Compute Area(S).

Let us introduce polar coordinates on complex lines z1, z2, i.e. z1 = r1e
iφ1 and z2 = r2e

iφ2 .

The the surface S is given by the parameterization

(r1φ1) 7→ F (r1, φ1) = (r1, φ1, r
2
1, 2φ1); 0 ≤ r1 ≤ 1, 0 ≤ φ1 < 2π.

The tangent space to the surface is generated by vectors

A :=
∂F

∂r1

=
∂

∂r1

+ 2r1
∂

∂r2

,

B :=
∂F

∂φ1

=
∂

∂φ1

+ 2
∂

∂φ2

.

The basis ∂
∂r1
, ∂
∂r2
, ∂
∂φ1

, ∂
∂φ1

is orthogonal and we have∣∣∣∣ ∂
∂r1

∣∣∣∣ =
∣∣∣∣ ∂
∂r2

∣∣∣∣ = 1

and ∣∣∣∣ ∂
∂φ1

∣∣∣∣ = r1,
∣∣∣∣ ∂
∂φ2

∣∣∣∣ = r2.

Hence,

E = 〈A,A〉 = 1 + 4r2
1, G = 〈B,B〉 = r2

1 + 4r2
2 = r2

1 + 4r4
1, F = 〈A,B〉 = 0.

Thus,
√
EG− F 2 =

√
(1 + 4r2

1)(r2
1 + 4r4

1) = r1(1 + 4r2
1).

Thus, Area(S) =
2π∫
0

1∫
0

r1(1 + 4r2
1)dr1dφ1 = 2π(1

2
+ 4

3
) = 11π

3
.
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