(2) Find an area-preserving transformation $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(P, Q)=f(p, q)$, if its graph is given by the generating function $F(q, P)=\left(q+q^{3}\right) P$.

That is, the graph of the area-preserving map $f$ in $\left(\mathbb{R}^{4}=\mathbb{R}^{2} \times \mathbb{R}^{2}, d p \wedge d q-d P \wedge d Q\right)$ is given by the generating function $F$ with respect to the polarization of $\mathbb{R}^{4}$ by the coordinate planes $(q, P)$ and $(p, Q)$.

Solution: Equip $\mathbb{R}^{4}$ with the symplectic form $\omega=d p \wedge d q-d P \wedge d Q$. Note that $\omega=d \alpha$, where $\alpha=p d q+Q d P$.

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be an area-preserving map such that $\operatorname{Graph}(f) \subset \mathbb{R}^{4}$ has generating function $F(q, P)=\left(q+q^{3}\right) P$. Since $f$ is area-preserving, so $\left.\alpha\right|_{\operatorname{Graph}(f)}$ is exact (why?). Saying that $F$ is a generating function for $\operatorname{Graph}(f)$ means that

$$
\left.\alpha\right|_{\operatorname{Graph}(f)}=d F .
$$

Thus,

$$
p d q+Q d P=\frac{\partial F}{\partial q} d q+\frac{\partial F}{\partial P} d P
$$

Since $\{d q, d P\}$ are assumed linearly independent on $\operatorname{Graph}(f)$, this forces

$$
\begin{aligned}
& \frac{\partial F}{\partial q}=p \\
& \frac{\partial F}{\partial P}=Q
\end{aligned}
$$

Since $F(q, P)=q P+q^{3} P$, we thereby obtain

$$
\left.\begin{array}{rlrl}
\left(1+3 q^{2}\right) P & =p & \Longrightarrow & P
\end{array}\right)=\frac{p}{1+3 q^{2}} .
$$

Thus, the desired map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is

$$
f(p, q)=\left(\frac{p}{1+3 q^{2}}, q+q^{3}\right) .
$$

Remark: We note that $f$ is area-preserving by construction. (And in fact, one can verify directly that our choice of $f$ does satisfy $f^{*} \omega=\omega$.)
(3) Verify the following properties of the Poisson bracket: (i) Skew-symmetry; (ii) Leibniz rule; (iii) Jacobi Identity.

Solution: Let $(M, \omega)$ be a symplectic manifold. The Poisson bracket $\{f, g\}$ of two functions $f, g: M \rightarrow \mathbb{R}$ is defined by

$$
\{f, g\}=d g\left(X_{f}\right)=-d f\left(X_{g}\right)=\omega\left(X_{f}, X_{g}\right)=X_{f} g=-X_{g} f
$$

Here, $X_{f}$ is the Hamiltonian vector field of the function $f$, i.e.: $\left.X_{f}\right\lrcorner \omega=-d f$.
(i) Skew-symmetry. This follows from $\{f, g\}=\omega\left(X_{f}, X_{g}\right)=-\omega\left(X_{g}, X_{f}\right)=\{g, f\}$.
(ii) Leibniz rule. This follows from

$$
\begin{aligned}
\{f, g h\}=d(g h)\left(X_{f}\right)=(h d g+g d g)\left(X_{f}\right) & =h d g\left(X_{f}\right)+g d h\left(X_{f}\right) \\
& =\{f, g\} h+\{f, h\} g
\end{aligned}
$$

(iii) Jacobi identity. First, note that for any 2 -form $\beta$, and any vector fields $X, Y, Z$ :

$$
\begin{aligned}
d \beta(X, Y, Z)= & X \beta(Y, Z)-Y \beta(X, Z)+Z \beta(X, Y) \\
& -\beta([X, Y], Z)+\beta([X, Z], Y)-\beta([Y, Z], X)
\end{aligned}
$$

Since $\omega$ is a closed 2-form, we have

$$
\begin{align*}
0= & X_{f} \omega\left(X_{g}, X_{h}\right)-X_{g} \omega\left(X_{f}, X_{h}\right)+X_{h} \omega\left(X_{f}, X_{g}\right) \\
& -\omega\left(\left[X_{f}, X_{g}\right], X_{h}\right)+\omega\left(\left[X_{f}, X_{h}\right], X_{g}\right)-\omega\left(\left[X_{g}, X_{h}\right], X_{f}\right) .
\end{align*}
$$

Now, note that

$$
\begin{align*}
& \{\{f, g\}, h\}=-X_{h}\{f, g\}=-X_{h} \omega\left(X_{f}, X_{g}\right) \\
& \{\{g, h\}, f\}=-X_{f}\{g, h\}=-X_{f} \omega\left(X_{g}, X_{h}\right)  \tag{1}\\
& \{\{h, f\}, g\}=-X_{g}\{h, f\}=-X_{g} \omega\left(X_{h}, X_{f}\right)
\end{align*}
$$

and

$$
\begin{gather*}
\omega\left(\left[X_{f}, X_{g}\right], X_{h}\right)=X_{f} X_{g} h-X_{g} X_{f} h \\
\omega\left(\left[X_{f}, X_{h}\right], X_{g}\right)=X_{f} X_{h} g-X_{h} X_{f} g  \tag{2}\\
\omega\left(\left[X_{g}, X_{h}\right], X_{f}\right)=X_{g} X_{h} f-X_{h} X_{g} f .
\end{gather*}
$$

Inserting (1) and (2) into ( $\star$ ), we obtain

$$
\begin{aligned}
0= & -\{\{f, g\}, h\}-\{\{g, h\}, f\}-\{\{h, f\}, g\} \\
& +\left(X_{g} X_{f} h-X_{f} X_{g} h\right)+\left(X_{f} X_{h} g-X_{h} X_{f} g\right)+\left(X_{h} X_{g} f-X_{g} X_{h} f\right) \\
= & -\{\{f, g\}, h\}-\{\{g, h\}, f\}-\{\{h, f\}, g\} \\
& +2\left(X_{h} X_{g} f+X_{f} X_{h} g+X_{g} X_{f} h\right) \\
= & \{\{f, g\}, h\}+\{\{g, h\}, f\}+\{\{h, f\}, g\},
\end{aligned}
$$

as desired. $\diamond$
(4) Suppose that $\mathbb{R}^{2}$ is endowed with an area form $\omega=d p \wedge d q$. Let $H_{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}, t \in[0,1]$, be a family of smooth functions equal to 0 outside the unit disk $D$. Let $X_{t}:=X_{H_{t}}$ be the Hamiltonian vector field generated by $H_{t}$, i.e.: $\left.X_{t}\right\lrcorner \omega=-d H_{t}$. Let $f_{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the flow of area-preserving transformations generated by $X_{t}$, i.e: $\frac{d f_{t}}{d t}(x)=\left.X_{t}\right|_{f_{t}(x)}$.

Let $z_{0} \in \operatorname{Int}(D)$ be a fixed point of $f_{1}$, i.e: $f_{1}\left(z_{0}\right)=z_{0}$. Let $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ denote the loop defined by $\gamma(t)=f_{t}\left(z_{0}\right), t \in[0,1]$. Then the integral $S\left(z_{0}\right):=\int_{\gamma} p d q-H_{t} d t$ is called the action of the fixed point $z_{0}$.

Prove that for any path $\delta:[0,1] \rightarrow \mathbb{R}^{2}$ such that $\delta(0) \in \mathbb{R}^{2}-D$ and $\delta(1)=z_{0}$, one has

$$
\int_{f_{1}(\delta)} p d q-\int_{\delta} p d q=S\left(z_{0}\right)
$$

In particular, the integral on the left-hand side of the equation is independent of the choice of the path $\delta$, so that the action depends only on $f_{1}$, and not on the choice of the Hamiltonian $H_{t}$ which generates it.

Solution: Let $G(t):=\int_{f_{t}(\delta)} p d q$. Then

$$
\begin{aligned}
\int_{f_{1}(\delta)} p d q-\int_{\delta} p d q=G(1)-G(0)=\int_{0}^{1} G^{\prime}(t) d t & =\int_{0}^{1} \frac{d}{d t} \int_{f_{t}(\delta)} p d q d t \\
& =\int_{0}^{1} \frac{d}{d t} \int_{\delta} f_{t}^{*}(p d q) d t \\
& =\int_{0}^{1} \int_{\delta} \frac{\partial}{\partial t} f_{t}^{*}(p d q) d t
\end{aligned}
$$

We calculate

$$
\begin{aligned}
\frac{\partial}{\partial t} f_{t}^{*}(p d q)=f_{t}^{*} \mathcal{L}_{X_{t}}(p d q) & \left.\left.=f_{t}^{*}\left[d\left(X_{t}\right\lrcorner p d q\right)+X_{t}\right\lrcorner \omega\right] \\
& \left.=f_{t}^{*}\left[d\left(X_{t}\right\lrcorner p d q\right)-d H_{t}\right] \\
& \left.=d\left[f_{t}^{*}\left(X_{t}\right\lrcorner p d q-H_{t}\right)\right] .
\end{aligned}
$$

So,

$$
\begin{aligned}
\left.\int_{\delta} \frac{\partial}{\partial t} f_{t}^{*}(p d q)=\int_{\delta} d\left[f_{t}^{*}\left(X_{t}\right\lrcorner p d q-H_{t}\right)\right] & \left.=f_{t}^{*}\left(X_{t}\right\lrcorner p d q-H_{t}\right)\left.\right|_{\delta(0)} ^{\delta(1)} \\
& \left.=f_{t}^{*}\left(X_{t}\right\lrcorner p d q-H_{t}\right)\left(z_{0}\right) \\
& \left.=\left(X_{t}\right\lrcorner p d q-H_{t}\right)(\gamma(t)) \\
& \left.=\gamma^{*}\left(X_{t}\right\lrcorner p d q-H_{t}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\int_{f_{1}(\delta)} p d q-\int_{\delta} p d q & \left.=\int_{0}^{1} \gamma^{*}\left(X_{t}\right\lrcorner p d q-H_{t}\right) \\
& \left.=\int_{\gamma}\left(X_{t}\right\lrcorner(p d q)\right) d t-\int_{\gamma} H_{t} d t
\end{aligned}
$$

We now note that

$$
\begin{aligned}
\left.\left(X_{t}\right\lrcorner(p d q)\right) d t & \left.=\left(\frac{d f_{t}}{d t}\right\lrcorner(p d q)\right) d t \\
& \left.=\left(\frac{\partial}{\partial t}\right\lrcorner f_{t}^{*}(p d q)\right) d t \\
& \left.=\frac{\partial}{\partial t}\right\lrcorner\left(f_{t}^{*}(p d q) \wedge d t\right)+f_{t}^{*}(p d q) .
\end{aligned}
$$

But for any 2-form $\beta$ and any tangent vector $Y$ to the curve $\gamma$, we have $(Y\lrcorner \beta)\left.\right|_{\gamma}=0$. In particular, $\left.\frac{\partial}{\partial t}\right\lrcorner\left.\left(f_{t}^{*}(p d q) \wedge d t\right)\right|_{\gamma}=0$. Therefore, we conclude that

$$
\begin{aligned}
\int_{f_{1}(\delta)} p d q-\int_{\delta} p d q & \left.=\int_{\gamma}\left(X_{t}\right\lrcorner(p d q)\right) d t-\int_{\gamma} H_{t} d t \\
& =\int_{\gamma} f_{t}^{*}(p d q)-\int_{\gamma} H_{t} d t \\
& =\int_{\gamma} p d q-\int_{\gamma} H d t \\
& =S\left(z_{0}\right)
\end{aligned}
$$

where the equality $\int_{\gamma} f_{t}^{*}(p d q)=\int_{\gamma} p d q$ follows from the fact that $f_{t}$ is area-preserving. $\diamond$

