
(2) Find an area-preserving transformation f : R2 ! R2, (P, Q) = f(p, q), if its graph is
given by the generating function F (q, P ) = (q + q3)P .

That is, the graph of the area-preserving map f in (R4 = R2⇥R2, dp^ dq� dP ^ dQ) is
given by the generating function F with respect to the polarization of R4 by the coordinate
planes (q, P ) and (p, Q).

Solution: Equip R4 with the symplectic form ! = dp ^ dq � dP ^ dQ. Note that ! = d↵,
where ↵ = p dq + QdP .

Let f : R2 ! R2 be an area-preserving map such that Graph(f) ⇢ R4 has generating
function F (q, P ) = (q + q3)P . Since f is area-preserving, so ↵|Graph(f) is exact (why?).
Saying that F is a generating function for Graph(f) means that

↵|Graph(f) = dF.

Thus,

p dq + Q dP =
@F

@q
dq +

@F

@P
dP.

Since {dq, dP} are assumed linearly independent on Graph(f), this forces

@F

@q
= p

@F

@P
= Q.

Since F (q, P ) = qP + q3P , we thereby obtain

(1 + 3q2)P = p =) P =
p

1 + 3q2

q + q3 = Q =) Q = q + q3.

Thus, the desired map f : R2 ! R2 is

f(p, q) =

✓
p

1 + 3q2
, q + q3

◆
. ⌃

Remark: We note that f is area-preserving by construction. (And in fact, one can verify
directly that our choice of f does satisfy f ⇤! = !.)



(3) Verify the following properties of the Poisson bracket: (i) Skew-symmetry; (ii) Leibniz
rule; (iii) Jacobi Identity.

Solution: Let (M, !) be a symplectic manifold. The Poisson bracket {f, g} of two functions
f, g : M ! R is defined by

{f, g} = dg(Xf ) = �df(Xg) = !(Xf , Xg) = Xfg = �Xgf.

Here, Xf is the Hamiltonian vector field of the function f , i.e.: Xf y ! = �df .

(i) Skew-symmetry. This follows from {f, g} = !(Xf , Xg) = �!(Xg, Xf ) = {g, f}.

(ii) Leibniz rule. This follows from

{f, gh} = d(gh)(Xf ) = (h dg + g dg)(Xf ) = h dg(Xf ) + g dh(Xf )

= {f, g}h + {f, h}g.

(iii) Jacobi identity. First, note that for any 2-form �, and any vector fields X, Y, Z:

d�(X, Y, Z) = X�(Y, Z)� Y �(X, Z) + Z�(X, Y )

� �([X, Y ], Z) + �([X, Z], Y )� �([Y, Z], X).

Since ! is a closed 2-form, we have

0 = Xf!(Xg, Xh)�Xg!(Xf , Xh) + Xh!(Xf , Xg)

� !([Xf , Xg], Xh) + !([Xf , Xh], Xg)� !([Xg, Xh], Xf ). (?)

Now, note that

{{f, g}, h} = �Xh{f, g} = �Xh!(Xf , Xg)

{{g, h}, f} = �Xf{g, h} = �Xf!(Xg, Xh) (1)

{{h, f}, g} = �Xg{h, f} = �Xg!(Xh, Xf )

and

!([Xf , Xg], Xh) = XfXgh�XgXfh

!([Xf , Xh], Xg) = XfXhg �XhXfg (2)

!([Xg, Xh], Xf ) = XgXhf �XhXgf.

Inserting (1) and (2) into (?), we obtain

0 = �{{f, g}, h}� {{g, h}, f}� {{h, f}, g}
+ (XgXfh�XfXgh) + (XfXhg �XhXfg) + (XhXgf �XgXhf)

= �{{f, g}, h}� {{g, h}, f}� {{h, f}, g}
+ 2(XhXgf + XfXhg + XgXfh)

= {{f, g}, h} + {{g, h}, f} + {{h, f}, g},

as desired. ⌃



(4) Suppose that R2 is endowed with an area form ! = dp ^ dq. Let Ht : R2 ! R, t 2 [0, 1],
be a family of smooth functions equal to 0 outside the unit disk D. Let Xt := XHt be the
Hamiltonian vector field generated by Ht, i.e.: Xt y ! = �dHt. Let ft : R2 ! R2 be the flow
of area-preserving transformations generated by Xt, i.e: dft

dt
(x) = Xt|ft(x).

Let z0 2 Int(D) be a fixed point of f1, i.e: f1(z0) = z0. Let � : [0, 1] ! R2 denote the
loop defined by �(t) = ft(z0), t 2 [0, 1]. Then the integral S(z0) :=

R
�
p dq �Ht dt is called

the action of the fixed point z0.
Prove that for any path � : [0, 1]! R2 such that �(0) 2 R2 �D and �(1) = z0, one has

Z

f1(�)

p dq �
Z

�

p dq = S(z0).

In particular, the integral on the left-hand side of the equation is independent of the choice of
the path �, so that the action depends only on f1, and not on the choice of the Hamiltonian
Ht which generates it.

Solution: Let G(t) :=
R

ft(�)
p dq. Then

Z

f1(�)

p dq �
Z

�

p dq = G(1)�G(0) =

Z 1

0

G0(t) dt =

Z 1

0

d

dt

Z

ft(�)

p dq dt

=

Z 1

0

d

dt

Z

�

f ⇤
t (p dq) dt

=

Z 1

0

Z

�

@

@t
f ⇤

t (p dq) dt.

We calculate

@

@t
f ⇤

t (p dq) = f ⇤
t LXt(p dq) = f ⇤

t [d(Xt y p dq) + Xt y !]

= f ⇤
t [d(Xt y p dq)� dHt]

= d[f ⇤
t (Xt y p dq �Ht)].

So,
Z

�

@

@t
f ⇤

t (p dq) =

Z

�

d[f ⇤
t (Xt y p dq �Ht)] = f ⇤

t (Xt y p dq �Ht)|�(1)
�(0)

= f ⇤
t (Xt y p dq �Ht)(z0)

= (Xt y p dq �Ht)(�(t))

= �⇤(Xt y p dq �Ht).

Therefore,

Z

f1(�)

p dq �
Z

�

p dq =

Z 1

0

�⇤(Xt y p dq �Ht)

=

Z

�

(Xt y (p dq)) dt�
Z

�

Ht dt.



We now note that

(Xt y (p dq)) dt =

✓
dft

dt
y (p dq)

◆
dt

=

✓
@

@t
y f ⇤

t (p dq)

◆
dt

=
@

@t
y (f ⇤

t (p dq) ^ dt) + f ⇤
t (p dq).

But for any 2-form � and any tangent vector Y to the curve �, we have (Y y �)|� = 0. In
particular, @

@t
y (f ⇤

t (p dq) ^ dt) |� = 0. Therefore, we conclude that

Z

f1(�)

p dq �
Z

�

p dq =

Z

�

(Xt y (p dq)) dt�
Z

�

Ht dt

=

Z

�

f ⇤
t (p dq)�

Z

�

Ht dt

=

Z

�

p dq �
Z

�

H dt

= S(z0),

where the equality
R

�
f ⇤

t (p dq) =
R

�
p dq follows from the fact that ft is area-preserving. ⌃


