(1) Consider the differential equation

$$
2 x y^{\prime}-y=\ln y^{\prime}
$$

Find all solutions and the discriminant.
Solution: Let $F(x, y, p)=2 x p-y-\ln p$, where $p=y^{\prime}$. Let us consider the surface $M=\{(x, y, p): F(x, y, p)=0\}$ in the space of 1 -jets. Solutions of the differential equation correspond to curves in M whose tangent vectors lie on the contact planes $d y-p d x=0$.

So, we need to find the integral curves of the following system:

$$
\begin{aligned}
F(x, y, p) & =0 & \Longrightarrow & 2 x p-y-\ln p=0 \\
d F & =0 & \Longrightarrow & 2 p d x-d y-\left(2 x-\frac{1}{p}\right) d p=0 \\
d y-p d x & =0 & \Longrightarrow & d y-p d x=0 .
\end{aligned}
$$

Using $d y=p d x$, the second equation becomes $p d x+\left(2 x-\frac{1}{p}\right) d x=0$. Multiplying by p gives

$$
p^{2} d x+(2 x p-1) d x=0
$$

That is,

$$
d\left(p^{2} x-p\right)=0
$$

Thus, $p^{2} x-p \equiv \frac{1}{4} C$, where C is a constant. Solving for p gives

$$
p=\frac{1 \pm \sqrt{1+C x}}{2 x}
$$

Using the first equation, $y=2 x p-\ln p$, we find

$$
y=1 \pm \sqrt{1+C x}-\ln \left(\frac{1 \pm \sqrt{1+C x}}{2 x}\right)
$$

The criminant is the set of points in the surface $M=\{(x, y, p): F(x, y, p)=0\}$ such that $\frac{\partial F}{\partial p}=0$. That is, the set of points in the 1 -jet space such that

$$
\begin{aligned}
2 x p-y & =\ln p \\
2 x-\frac{1}{p} & =0
\end{aligned}
$$

The second equation gives $x=\frac{1}{2 p}$. Plugging this into the first equation gives $y=1-\ln p$. Thus, the criminant can be described by the parametric curve in the 1 -jet space given by

$$
\begin{aligned}
& x(t)=\frac{1}{2 t} \\
& y(t)=1-\ln t \\
& z(t)=t .
\end{aligned}
$$

The discriminant is the projection of the criminant onto the $x y$-plane via $(x, y, p) \mapsto$ (x, y). This results in the parametric curve in the $x y$-plane given by

$$
\begin{aligned}
& x(t)=\frac{1}{2 t} \\
& y(t)=1-\ln t .
\end{aligned}
$$

One can also describe this curve as the graph of $y=1+\ln (2 x) . \diamond$
(2) Find a curve on the plane whose tangent lines form with the coordinate axis triangles of area $2 a^{2}$.

Remark: The following two solutions are ultimately equivalent.
Solution 1: The area of the triangle formed by the coordinate axes and the line $Y=m X+b$ is $A=\frac{1}{2}\left|\frac{b^{2}}{m}\right|$. The tangent line to a curve $Y=f(X)$ at a point (x, y) is given by $Y=$ $f^{\prime}(x) X+\left(f(x)-x f^{\prime}(x)\right)$. Thus, we require that

$$
\frac{1}{2}\left|\frac{\left(f(x)-x f^{\prime}(x)\right)^{2}}{f^{\prime}(x)}\right|=2 a^{2}
$$

or equivalently,

$$
\left(f(x)-x f^{\prime}(x)\right)^{2}=(2 a)^{2}\left|f^{\prime}(x)\right| .
$$

Letting $y=f(x)$ and $p=f^{\prime}(x)$, we have $(y-p x)^{2}=(2 a)^{2}|p|$, and hence

$$
y-p x= \pm 2 a \sqrt{|p|} .
$$

Let $F(x, y, p):=y-p x \pm 2 a \sqrt{|p|}$. Solutions to the differential equation correspond to curves in $M=\{(x, y, p): F(x, y, p)=0\}$ whose tangent vectors lie on the contact planes $d y-p d x=0$. Thus, we have

$$
\begin{aligned}
0=d F & =-p d x+d y+\left(-x \pm \frac{a}{\sqrt{|p|}} \operatorname{sgn}(p)\right) d x . \\
& =\left(-x \pm \frac{a}{\sqrt{|p|}} \operatorname{sgn}(p)\right) d x .
\end{aligned}
$$

This implies that $x= \pm \frac{a}{\sqrt{|p|}} \operatorname{sgn}(p)$, so that $x^{2}=\frac{a^{2}}{|p|}$, so $|p|=\frac{a^{2}}{x^{2}}$. In other words, $f^{\prime}(x)= \pm \frac{a^{2}}{x^{2}}$, so that

$$
f(x)= \pm \frac{a^{2}}{x} . \diamond
$$

Solution 2: We will use the fact that every curve $y=f(x)$ is the envelope of its family of tangent lines.

Note first (cf Arnold: page 20) that the envelope of a family of lines $\{y=p x-g(p)\}_{p \in \mathbb{R}}$ is the curve $y=f(x)$, where f is the Legendre transform of g. Second, note that the family of lines $\{y=p x \pm 2 a \sqrt{|p|}\}_{p \in \mathbb{R}}$ form triangles of area $2 a^{2}$ with the coordinate axes. Thus, the required curve is the Legendre transform of $g(p)= \pm 2 a \sqrt{|p|}$.

To calculate the Legendre transform of g, we set $\frac{\partial}{\partial p}(p x \pm 2 a \sqrt{|p|})=0$, which yields $x=\mp \frac{a}{\sqrt{|p|}}$, so $|p|=\frac{a^{2}}{x^{2}}$, so $p= \pm \frac{a^{2}}{x^{2}}$. Thus,

$$
f(x)=p x \pm 2 a \sqrt{|p|}= \pm \frac{a^{2}}{x} \mp \frac{2 a^{2}}{x}=\mp \frac{a^{2}}{x} . \diamond
$$

(3) Prove that the rank of any skew-symmetric bilinear form is even.

Solution 1 (Sketch): Show that the eigenvalues of any skew-symmetric bilinear form are either zero or pure imaginary, and that the eigenvalues come in complex-conjugate pairs. Thus, the number of non-zero eigenvalues - i.e., the rank of the bilinear form - is even. \diamond

Solution 2: Let ω be a skew-symmetric bilinear form on a finite-dimensional vector space V. The result will follow from the following structure theorem.

Theorem: There exists a basis for V, denoted $\left\{u_{1}, \ldots, u_{k}, e_{1}, \ldots, e_{m}, f_{1}, \ldots, f_{m}\right\}$, for which

$$
\begin{aligned}
& \omega\left(u_{i}, v\right)=0, \quad \forall v \in V \\
& \omega\left(e_{i}, e_{j}\right)=0 \\
& \omega\left(f_{i}, f_{j}\right)=0 \\
& \omega\left(e_{i}, f_{j}\right)=\delta_{i j} .
\end{aligned}
$$

Such a basis is called a symplectic basis.

Proof of Theorem: Let $U:=\{u \in V: \omega(u, v)=0, \forall v \in V\}$ denote the nullspace of ω. Let $\left\{u_{1}, \ldots, u_{k}\right\}$ be a basis of U. Write

$$
V=U \oplus W
$$

We will (inductively) decompose W into a direct sum of 2-dimensional subspaces. If $W=0$, we're done, so assume $W \neq 0$.

Let $e_{1} \in W, e_{1} \neq 0$. Since $e_{1} \in W$, there exists $f_{1} \in W$ with $\omega\left(e_{1}, f_{1}\right) \neq 0$. By rescaling, we may assume that $\omega\left(e_{1}, f_{1}\right)=1$.

Let $W_{1}:=\operatorname{span}\left\{e_{1}, f_{1}\right\}$. Let $W_{1}^{\omega}:=\left\{w \in W: \omega(w, v)=0, \forall v \in W_{1}\right\}$ denote the symplectic complement to W_{1} in W, so that

$$
W=W_{1} \oplus W_{1}^{\omega}
$$

Let $e_{2} \in W_{1}^{\omega}, e_{2} \neq 0$. Then there exists $f_{2} \in W_{1}^{\omega}$ with $\omega\left(e_{2}, f_{2}\right) \neq 0$. By rescaling, we may assume that $\omega\left(e_{2}, f_{2}\right)=1$.

Repeat this process. This process eventually terminates because $\operatorname{dim} V<\infty$. Thus, we have a direct sum decomposition

$$
V=U \oplus \operatorname{span}\left\{e_{1}, f_{1}\right\} \oplus \cdots \oplus \operatorname{span}\left\{e_{m}, f_{m}\right\} . \quad \diamond
$$

With respect to a symplectic basis for ω, the skew-symmetric bilinear form ω can be written as

$$
\omega(u, v)=u^{T}\left(\begin{array}{ccc}
0_{k} & & \\
& 0 & \mathrm{Id}_{m} \\
& -\mathrm{Id}_{m} & 0
\end{array}\right) v .
$$

That is, with respect to a symplectic basis, the form ω is represented by the matrix

$$
\left(\begin{array}{ccc}
0_{k} & & \\
& 0 & \mathrm{Id}_{m} \\
& -\mathrm{Id}_{m} & 0
\end{array}\right)
$$

which has rank $2 m$. In other words, $\operatorname{rank}(\omega)=2 m$ is even. \diamond
(4) Let us view \mathbb{C}^{n} as $\mathbb{R}^{2 n}$ with the operation of multiplication by i. Prove that

$$
\mathrm{SO}(2 n) \cap \mathrm{Sp}(2 n ; \mathbb{R})=\mathrm{GL}(n ; \mathbb{C}) \cap \mathrm{SO}(2 n)=\mathrm{GL}(n ; \mathbb{C}) \cap \operatorname{Sp}(2 n ; \mathbb{R})=\mathrm{U}(n)
$$

Notation: Let g denote the standard inner product, let ω denote the standard symplectic form, and let h denote the standard Hermitian form.

We let $z, w \in \mathbb{C}^{n}$ denote

$$
\begin{aligned}
z & =\left(x^{1}, \ldots, x^{n}, y^{1}, \ldots, y^{n}\right) \\
w & =\sum x^{k}+i y^{k} \\
w & \left.u^{1}, \ldots, u^{n}, v^{1}, \ldots, v^{n}\right)
\end{aligned}=\sum u^{k}+i v^{k} .
$$

Solution 1 (Sketch): Recall from basic linear algebra that

$$
\begin{aligned}
\mathrm{SO}(2 n) & =\left\{A \in \mathrm{GL}(2 n ; \mathbb{R}): A^{T} A=\mathrm{Id} \text { and } \operatorname{det}_{\mathbb{R}}(A)=1\right\} \\
\mathrm{U}(n) & =\left\{A \in \mathrm{GL}(n ; \mathbb{C}): A^{*} A=\mathrm{Id}\right\}
\end{aligned}
$$

Let J denote the matrix

$$
J=\left(\begin{array}{cc}
0 & -\mathrm{Id}_{n} \\
\operatorname{Id}_{n} & 0
\end{array}\right)
$$

We observe that the matrix J corresponds to multiplication by i. That is,

$$
J z=J\left(\begin{array}{c}
x^{1} \\
\vdots \\
x^{n} \\
y^{1} \\
\vdots \\
y^{n}
\end{array}\right)=\left(\begin{array}{cc}
0 & -\operatorname{Id}_{n} \\
\operatorname{Id}_{n} & 0
\end{array}\right)\left(\begin{array}{c}
x^{1} \\
\vdots \\
x^{n} \\
y^{1} \\
\vdots \\
y^{n}
\end{array}\right)=\left(\begin{array}{c}
-y_{1} \\
\vdots \\
-y^{n} \\
x_{1} \\
\vdots \\
x^{n}
\end{array}\right)=i \sum x^{k}+i y^{k}=i z .
$$

We observe also that $J^{T}=-J$ is the matrix representation of ω in the standard basis. That is,

$$
\omega(z, w)=z^{T} J^{T} w
$$

From these facts, it follows that

$$
\begin{aligned}
\mathrm{GL}(n ; \mathbb{C}) & =\{A \in \mathrm{GL}(2 n ; \mathbb{R}): A J=J A\} \\
\mathrm{Sp}(2 n ; \mathbb{R}) & =\left\{A \in \mathrm{GL}(2 n ; \mathbb{R}): A^{T} J A=J\right\}
\end{aligned}
$$

Using these four descriptions of the matrix groups $\mathrm{SO}(2 n), \mathrm{U}(n), \mathrm{GL}(n ; \mathbb{C}), \operatorname{Sp}(2 n ; \mathbb{R})$, the first three desired intersections are now fairly immediate. For example:

If $A \in \mathrm{GL}(n ; \mathbb{C}) \cap \mathrm{O}(2 n)$, then $J A=A J$ and $A^{T} A=\mathrm{Id}$, so $A^{T} J A=A^{T} A J=J$, so $A \in \mathrm{Sp}(2 n ; \mathbb{R})$. Thus, $\mathrm{O}(2 n) \cap \mathrm{GL}(2 n ; \mathbb{C}) \subset \mathrm{Sp}(n ; \mathbb{R})$. Analogous arguments hold for the other two.

If $A \in \mathrm{U}(n)$, then $A \in \mathrm{GL}(n ; \mathbb{C})$ and $g(A z, A z)=h(A z, A z)=h(z, z)=g(z, z)$, so $g \in \mathrm{O}(2 n)$, so $A \in \mathrm{Sp}(2 n ; \mathbb{R})$ by the preceding paragraph, and so A lies in any of these pairwise intersections.

Conversely, if $A \in \mathrm{GL}(n ; \mathbb{C}) \cap \mathrm{SO}(2 n)$, then $h(A z, A z)=g(A z, A z)=g(z, z)=h(z, z)$, hence (by polarization) $h(A z, A w)=h(z, w)$, so $A \in \mathrm{U}(n)$. \diamond
(4) Let us view \mathbb{C}^{n} as $\mathbb{R}^{2 n}$ with the operation of multiplication by i. Prove that

$$
\mathrm{SO}(2 n) \cap \mathrm{Sp}(2 n ; \mathbb{R})=\mathrm{GL}(n ; \mathbb{C}) \cap \mathrm{SO}(2 n)=\operatorname{GL}(n ; \mathbb{C}) \cap \operatorname{Sp}(2 n ; \mathbb{R})=\mathrm{U}(n)
$$

Notation: Let g denote the standard inner product, let ω denote the standard symplectic form, and let h denote the standard Hermitian form.

We let $z, w \in \mathbb{C}^{n}$ denote

$$
\begin{aligned}
& z=\left(x^{1}, \ldots, x^{n}, y^{1}, \ldots, y^{n}\right)=\sum x^{k}+i y^{k} \\
& w=\left(u^{1}, \ldots, u^{n}, v^{1}, \ldots, v^{n}\right)=\sum u^{k}+i v^{k} .
\end{aligned}
$$

Solution 2 (Sketch): Let us observe first that

$$
\begin{align*}
h(z, w)=\sum z_{k} \bar{w}_{k} & =\sum\left(x_{k}+i y_{k}\right)\left(u_{k}-i v_{k}\right) \\
& =\sum\left(x_{k} u_{k}+y_{k} v_{k}\right)+i\left(y_{k} v_{k}-x_{k} u_{k}\right) \\
& =g(z, w)-i \omega(z, w) . \tag{1}
\end{align*}
$$

From this, we observe secondly that

$$
\omega(z, w)+i g(z, w)=i h(z, w)=h(i z, w)=g(i z, w)-i \omega(i z, w)
$$

and so by equating real parts, we obtain

$$
\begin{equation*}
g(i z, w)=\omega(z, w) \tag{2}
\end{equation*}
$$

Using equations (1) and (2), the result is now straightforward to check. \diamond
If $A \in \mathrm{SO}(2 n) \cap \mathrm{Sp}(2 n ; \mathbb{R})$, then $h(A z, A w)=g(A z, A w)-i \omega(A z, A w)=g(z, w)-$ $i \omega(z, w)=h(z, w)$, so $A \in \mathrm{U}(n)$. Thus, $\mathrm{SO}(2 n) \cap \mathrm{Sp}(2 n ; \mathbb{R}) \subset \mathrm{U}(n)$.

If $A \in \mathrm{U}(n)$, then $g(A z, A w)-i \omega(A z, A w)=h(A z, A w)=h(z, w)=g(z, w)-i \omega(z, w)$, so equating real and imaginary parts shows that $A \in \operatorname{SO}(2 n) \cap \operatorname{Sp}(2 n ; \mathbb{R})$. Thus, $U(n) \subset$ $\mathrm{SO}(2 n) \cap \mathrm{Sp}(2 n ; \mathbb{R})$.

This shows that $\mathrm{U}(n)=\mathrm{SO}(2 n) \cap \operatorname{Sp}(2 n ; \mathbb{R})$.
If $A \in \mathrm{GL}(n ; \mathbb{C}) \cap \mathrm{SO}(2 n)$, then $\omega(A z, A w)=g(i A z, A w)=g(A(i z), A w)=g(i z, w)=$ $\omega(z, w)$, so $\omega \in \operatorname{Sp}(2 n ; \mathbb{R})$. Thus, $\mathrm{GL}(n ; \mathbb{C}) \cap \mathrm{SO}(2 n) \subset \mathrm{U}(n)$.

If $A \in \operatorname{GL}(n ; \mathbb{C}) \cap \operatorname{Sp}(2 n ; \mathbb{R})$, then $g(A z, A w)=-\omega(i A z, A w)=-\omega(A(i z), A w)=$ $-\omega(i z, w)=g(z, w)$, so $A \in \operatorname{SO}(2 n)$. Thus, $\operatorname{GL}(n ; \mathbb{C}) \cap \operatorname{Sp}(2 n ; \mathbb{R}) \subset \mathrm{U}(n)$.

Finally, if $A \in \mathrm{U}(n)=\mathrm{SO}(2 n) \cap \mathrm{Sp}(2 n ; \mathbb{R})$, then

$$
g(i A z, A w)=\omega(A z, A w)=\omega(z, w)=g(i z, w)=g(A(i z), A w)
$$

so $g(i A z-A i z, A w)=0$. Since g is non-degenerate, this forces $A(i z)=i(A z)$, so $A \in$ $\operatorname{GL}(n ; \mathbb{C}) . \diamond$
(5) Prove that the plane fields given by equations $d z-y d x=0$ and $d z-\frac{1}{2}(x d y-y d x)=0$ are diffeomorphic, but the plane fields $d z-\frac{1}{2}(x d y-y d x)=0$ and $d z-\frac{1}{2}(x d y+y d x)=0$ are not.

Solution: Let $\alpha=d z-y d x$ and $\beta=d z-\frac{1}{2}(x d y-y d x)$. Consider the normal vector fields

$$
\begin{aligned}
\alpha^{\#} & =-y \frac{\partial}{\partial x}+\frac{\partial}{\partial z} \\
\beta^{\#} & =-\frac{1}{2} y \frac{\partial}{\partial x}+\frac{1}{2} x \frac{\partial}{\partial y}+\frac{\partial}{\partial z} .
\end{aligned}
$$

Let $\Phi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a diffeomorphism. Note that $\Phi^{*} \alpha=\beta$ if and only if $\left(\Phi_{*}\right)^{T}\left(\alpha^{\#}\right)=\beta^{\#}$. This fact suggests a way of finding Φ. Namely, by observing that

$$
\left(\begin{array}{ccc}
1 & 0 & \frac{1}{2} y \\
0 & 1 & \frac{1}{2} x \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
-y \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
-\frac{1}{2} y \\
\frac{1}{2} x \\
1
\end{array}\right)
$$

we are led to search for bijections $\Phi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with

$$
\Phi_{*}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
\frac{1}{2} y & \frac{1}{2} x & 1
\end{array}\right)
$$

One possibility is $\Phi(x, y, z)=\left(x, y, z+\frac{1}{2} x y\right)$.
It is easy to check that Φ is bijective and Φ_{*} is invertible, so that Φ is indeed a diffeomorphism. One can also verify that $\Phi^{*} \alpha=\beta$.

To see that the plane fields $d z-\frac{1}{2}(x d y-y d x)=0$ and $d z-\frac{1}{2}(x d y+y d x)=0$ are not diffemorphic, observe that the first is not integrable, whereas the second one is. \diamond
(6) Consider the PDE

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=u-x y
$$

Solve the Cauchy problem for the initial data $u(2, y)=1+y^{2}$.
Solution 1: Let A denote the vector field in \mathbb{R}^{2} given by

$$
A=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y} .
$$

If $\gamma(t)=(x(t), y(t))$ is an integral curve of A, then $\gamma^{\prime}(t)=\left.A\right|_{\gamma(t)}$, so that

$$
\begin{aligned}
x^{\prime}(t) & =x(t) & \Longrightarrow & x(t)
\end{aligned}=x_{0} e^{t} .
$$

Thus, the flow of A is given by $\theta_{t}(x, y)=\left(x e^{t}, y e^{t}\right)$.
Let $S=\{(2, s): s \in \mathbb{R}\}$ denote the initial hypersurface in \mathbb{R}^{2}. The flowout of A along the line $S \subset \mathbb{R}^{2}$ is defined by

$$
\Psi(t, s):=\theta_{t}(2, s)=\left(2 e^{t}, s e^{t}\right)
$$

One can check the following properties of Ψ (which are generally true of flowouts):

$$
\begin{aligned}
& \Psi(0, s)=(2, s) \\
& \Psi_{*}\left(\frac{\partial}{\partial t}\right)=A
\end{aligned}
$$

We remark that $\Psi^{-1}(x, y)=(\ln (x / 2), 2 y / x)$.
Pulling back our Cauchy problem to the (t, s)-plane via Ψ results in the new problem

$$
\begin{aligned}
\frac{\partial \widehat{u}}{\partial t} & =\widehat{u}-2 s e^{2 t} \\
\widehat{u}(0, s) & =1+s^{2}
\end{aligned}
$$

where $\widehat{u}:=\Psi^{*} u=u \circ \Psi$. Regarding s as fixed, we may view this problem as an ODE for $\widehat{u}(\cdot, s)$, namely $\widehat{u}^{\prime}=\widehat{u}-2 s e^{2 t}$. Multiplying by the integrating factor e^{-t} gives

$$
\frac{\partial}{\partial t}\left(e^{-t} \widehat{u}\right)=-2 s e^{t}
$$

Integrating yields $e^{-t} \widehat{u}=-2 s e^{t}+h(s)$ for some function $h(s)$. Invoking the initial condition $\widehat{u}(0, s)=1+s^{2}$ shows that

$$
\widehat{u}(t, s)=-2 s e^{2 t}+(s+1)^{2} e^{t}
$$

Pulling back to the (x, y)-plane via Ψ^{-1}, we find

$$
u(x, y)=\widehat{u}\left(\ln \left(\frac{x}{2}\right), \frac{2 y}{x}\right)=\frac{1}{2} x+2 y-2 x y+\frac{2 y^{2}}{x} .
$$

(6) Consider the PDE

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=u-x y .
$$

Solve the Cauchy problem for the initial data $u(2, y)=1+y^{2}$.
Solution 2: Let $\mathbb{R}^{3}=\mathbb{R}^{2} \times \mathbb{R}$ have coordinates $(x, y ; z)$. Let ξ be the characteristic vector field in \mathbb{R}^{3}, i.e.:

$$
\xi:=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+(z-x y) \frac{\partial}{\partial z} .
$$

If $\gamma(t)=(x(t), y(t), z(t))$ is an integral curve of ξ, then $\gamma^{\prime}(t)=\left.\xi\right|_{\gamma(t)}$, so that

$$
\begin{array}{lll}
x^{\prime}(t)=x(t) & \Longrightarrow & x(t)=x_{0} e^{t} \\
y^{\prime}(t)=y(t) & \Longrightarrow & y(t)=y_{0} e^{t} \\
z^{\prime}(t)=z(t)-x(t) y(t) & \Longrightarrow & z(t)=-x_{0} y_{0} e^{2 t}+\left(z_{0}+x_{0} y_{0}\right) e^{t} .
\end{array}
$$

Thus, the flow of ξ is given by $\theta_{t}(x, y, z)=\left(x e^{t}, y e^{t},-x y e^{2 t}+(z+x y) e^{t}\right)$.
Let $S=\{(2, s): s \in \mathbb{R}\}$ be denote the initial hypersurface in \mathbb{R}^{2}. Let $\varphi: S \rightarrow \mathbb{R}$ denote $\varphi(2, s)=1+s^{2}$. Then $\operatorname{Graph}(\varphi)$ can be parametrized as $((2, s), \varphi(2, s))=\left(2, s ; 1+s^{2}\right)$.

The flowout of ξ along the curve $\operatorname{Graph}(\varphi) \subset \mathbb{R}^{3}$ is defined by

$$
\Psi(t, s):=\theta_{t}\left(2, s, 1+s^{2}\right)=\left(2 e^{t}, s e^{t},-2 s e^{2 t}+(s+1)^{2} e^{2 t}\right)
$$

A solution to our Cauchy problem is the function u whose graph is the flowout above i.e.: $\operatorname{Image}(\Psi)=\operatorname{Graph}(u)$. Thus, setting

$$
\left(2 e^{t}, s e^{t},-2 s e^{2 t}+(s+1)^{2} e^{2 t}\right)=(x, y, u(x, y))
$$

we find that

$$
\begin{array}{rlrl}
x & =2 e^{t} & t & =\ln (x / 2) \\
y & =s e^{t}, & s & =2 y / x,
\end{array}
$$

so that

$$
u(x, y)=\widehat{u}\left(\ln \left(\frac{x}{2}\right), \frac{2 y}{x}\right)=\frac{1}{2} x+2 y-2 x y+\frac{2 y^{2}}{x} .
$$

\diamond

