
(1) Consider the di↵erential equation

2xy

0 � y = ln y

0
.

Find all solutions and the discriminant.

Solution: Let F (x, y, p) = 2xp � y � ln p, where p = y

0. Let us consider the surface
M = {(x, y, p) : F (x, y, p) = 0} in the space of 1-jets. Solutions of the di↵erential equation
correspond to curves in M whose tangent vectors lie on the contact planes dy � p dx = 0.

So, we need to find the integral curves of the following system:

F (x, y, p) = 0 =) 2xp� y � ln p = 0

dF = 0 =) 2p dx� dy � (2x� 1
p

) dp = 0

dy � p dx = 0 =) dy � p dx = 0.

Using dy = p dx, the second equation becomes p dx+(2x� 1
p

) dx = 0. Multiplying by p gives

p

2
dx + (2xp� 1) dx = 0.

That is,
d(p2

x� p) = 0.

Thus, p

2
x� p ⌘ 1

4C, where C is a constant. Solving for p gives

p =
1 ±

p
1 + Cx

2x
.

Using the first equation, y = 2xp� ln p, we find

y = 1 ±
p

1 + Cx� ln

✓
1 ±

p
1 + Cx

2x

◆
.

The criminant is the set of points in the surface M = {(x, y, p) : F (x, y, p) = 0} such
that @F

@p

= 0. That is, the set of points in the 1-jet space such that

2xp� y = ln p

2x� 1
p

= 0.

The second equation gives x = 1
2p

. Plugging this into the first equation gives y = 1 � ln p.
Thus, the criminant can be described by the parametric curve in the 1-jet space given by

x(t) = 1
2t

y(t) = 1� ln t

z(t) = t.

The discriminant is the projection of the criminant onto the xy-plane via (x, y, p) 7!
(x, y). This results in the parametric curve in the xy-plane given by

x(t) = 1
2t

y(t) = 1� ln t.

One can also describe this curve as the graph of y = 1 + ln(2x). ⌃



(2) Find a curve on the plane whose tangent lines form with the coordinate axis triangles of
area 2a2.

Remark: The following two solutions are ultimately equivalent.

Solution 1: The area of the triangle formed by the coordinate axes and the line Y = mX + b

is A = 1
2

��� b

2

m

���. The tangent line to a curve Y = f(X) at a point (x, y) is given by Y =

f

0(x)X + (f(x)� xf

0(x)). Thus, we require that

1

2

����
(f(x)� xf

0(x))2

f

0(x)

���� = 2a2
,

or equivalently,
(f(x)� xf

0(x))2 = (2a)2|f 0(x)|.
Letting y = f(x) and p = f

0(x), we have (y � px)2 = (2a)2|p|, and hence

y � px = ±2a
p

|p|.

Let F (x, y, p) := y � px ± 2a
p

|p|. Solutions to the di↵erential equation correspond to
curves in M = {(x, y, p) : F (x, y, p) = 0} whose tangent vectors lie on the contact planes
dy � p dx = 0. Thus, we have

0 = dF = �p dx + dy + (�x ± ap
|p|

sgn(p)) dx.

= (�x ± ap
|p|

sgn(p)) dx.

This implies that x = ± ap
|p|

sgn(p), so that x

2 = a

2

|p| , so |p| = a

2

x

2 . In other words, f

0(x) = ±a

2

x

2 ,

so that

f(x) = ±a

2

x

. ⌃

Solution 2: We will use the fact that every curve y = f(x) is the envelope of its family of
tangent lines.

Note first (cf Arnold: page 20) that the envelope of a family of lines {y = px� g(p)}
p2R

is the curve y = f(x), where f is the Legendre transform of g. Second, note that the family
of lines {y = px ± 2a

p
|p|}

p2R form triangles of area 2a2 with the coordinate axes. Thus,
the required curve is the Legendre transform of g(p) = ±2a

p
|p|.

To calculate the Legendre transform of g, we set @

@p

(px ± 2a
p

|p|) = 0, which yields

x = ⌥ ap
|p|

, so |p| = a

2

x

2 , so p = ±a

2

x

2 . Thus,

f(x) = px ± 2a
p

|p| = ±a

2

x

⌥ 2a2

x

= ⌥a

2

x

. ⌃



(3) Prove that the rank of any skew-symmetric bilinear form is even.

Solution 1 (Sketch): Show that the eigenvalues of any skew-symmetric bilinear form are
either zero or pure imaginary, and that the eigenvalues come in complex-conjugate pairs.
Thus, the number of non-zero eigenvalues – i.e., the rank of the bilinear form – is even. ⌃

Solution 2: Let ! be a skew-symmetric bilinear form on a finite-dimensional vector space V .
The result will follow from the following structure theorem.

Theorem: There exists a basis for V , denoted {u1, . . . , uk

, e1, . . . , em

, f1, . . . , fm

}, for which

!(u
i

, v) = 0, 8v 2 V

!(e
i

, e

j

) = 0

!(f
i

, f

j

) = 0

!(e
i

, f

j

) = �

ij

.

Such a basis is called a symplectic basis.

Proof of Theorem: Let U := {u 2 V : !(u, v) = 0, 8v 2 V } denote the nullspace of !. Let
{u1, . . . , uk

} be a basis of U . Write

V = U �W.

We will (inductively) decompose W into a direct sum of 2-dimensional subspaces. If W = 0,
we’re done, so assume W 6= 0.

Let e1 2 W , e1 6= 0. Since e1 2 W , there exists f1 2 W with !(e1, f1) 6= 0. By rescaling,
we may assume that !(e1, f1) = 1.

Let W1 := span{e1, f1}. Let W

!

1 := {w 2 W : !(w, v) = 0,8v 2 W1} denote the
symplectic complement to W1 in W , so that

W = W1 �W

!

1 .

Let e2 2 W

!

1 , e2 6= 0. Then there exists f2 2 W

!

1 with !(e2, f2) 6= 0. By rescaling, we
may assume that !(e2, f2) = 1.

Repeat this process. This process eventually terminates because dim V < 1. Thus, we
have a direct sum decomposition

V = U � span{e1, f1}� · · ·� span{e
m

, f

m

}. ⌃
With respect to a symplectic basis for !, the skew-symmetric bilinear form ! can be

written as

!(u, v) = u

T

0

@
0

k

0 Id
m

�Id
m

0

1

A
v.

That is, with respect to a symplectic basis, the form ! is represented by the matrix
0

@
0

k

0 Id
m

�Id
m

0

1

A
,

which has rank 2m. In other words, rank(!) = 2m is even. ⌃



(4) Let us view Cn as R2n with the operation of multiplication by i. Prove that

SO(2n) \ Sp(2n; R) = GL(n; C) \ SO(2n) = GL(n; C) \ Sp(2n; R) = U(n).

Notation: Let g denote the standard inner product, let ! denote the standard symplectic
form, and let h denote the standard Hermitian form.

We let z, w 2 Cn denote

z = (x1
, . . . , x

n

, y

1
, . . . , y

n) =
X

x

k + iy

k

w = (u1
, . . . , u

n

, v

1
, . . . , v

n) =
X

u

k + iv

k

.

Solution 1 (Sketch): Recall from basic linear algebra that

SO(2n) = {A 2 GL(2n; R) : A

T

A = Id and detR(A) = 1}
U(n) = {A 2 GL(n; C) : A

⇤
A = Id}.

Let J denote the matrix

J =

✓
0 �Id

n

Id
n

0

◆
.

We observe that the matrix J corresponds to multiplication by i. That is,

Jz = J

0

BBBBBBB@

x

1

...
x

n

y

1

...
y

n

1

CCCCCCCA

=

✓
0 �Id

n

Id
n

0

◆

0

BBBBBBB@

x

1

...
x

n

y

1

...
y

n

1

CCCCCCCA

=

0

BBBBBBB@

�y1
...
�y

n

x1
...

x

n

1

CCCCCCCA

= i

X
x

k + iy

k = iz.

We observe also that J

T = �J is the matrix representation of ! in the standard basis. That
is,

!(z, w) = z

T

J

T

w.

From these facts, it follows that

GL(n; C) = {A 2 GL(2n; R) : AJ = JA}
Sp(2n; R) = {A 2 GL(2n; R) : A

T

JA = J}.
Using these four descriptions of the matrix groups SO(2n), U(n), GL(n; C), Sp(2n; R),

the first three desired intersections are now fairly immediate. For example:
If A 2 GL(n; C) \ O(2n), then JA = AJ and A

T

A = Id, so A

T

JA = A

T

AJ = J , so
A 2 Sp(2n; R). Thus, O(2n) \ GL(2n; C) ⇢ Sp(n; R). Analogous arguments hold for the
other two.

If A 2 U(n), then A 2 GL(n; C) and g(Az,Az) = h(Az, Az) = h(z, z) = g(z, z), so
g 2 O(2n), so A 2 Sp(2n; R) by the preceding paragraph, and so A lies in any of these
pairwise intersections.

Conversely, if A 2 GL(n; C) \ SO(2n), then h(Az,Az) = g(Az,Az) = g(z, z) = h(z, z),
hence (by polarization) h(Az,Aw) = h(z, w), so A 2 U(n). ⌃



(4) Let us view Cn as R2n with the operation of multiplication by i. Prove that

SO(2n) \ Sp(2n; R) = GL(n; C) \ SO(2n) = GL(n; C) \ Sp(2n; R) = U(n).

Notation: Let g denote the standard inner product, let ! denote the standard symplectic
form, and let h denote the standard Hermitian form.

We let z, w 2 Cn denote

z = (x1
, . . . , x

n

, y

1
, . . . , y

n) =
X

x

k + iy

k

w = (u1
, . . . , u

n

, v

1
, . . . , v

n) =
X

u

k + iv

k

.

Solution 2 (Sketch): Let us observe first that

h(z, w) =
X

z

k

w

k

=
X

(x
k

+ iy

k

)(u
k

� iv

k

)

=
X

(x
k

u

k

+ y

k

v

k

) + i(y
k

v

k

� x

k

u

k

)

= g(z, w)� i!(z, w). (1)

From this, we observe secondly that

!(z, w) + ig(z, w) = ih(z, w) = h(iz, w) = g(iz, w)� i!(iz, w),

and so by equating real parts, we obtain

g(iz, w) = !(z, w) (2)

Using equations (1) and (2), the result is now straightforward to check. ⌃

If A 2 SO(2n) \ Sp(2n; R), then h(Az,Aw) = g(Az, Aw) � i!(Az,Aw) = g(z, w) �
i!(z, w) = h(z, w), so A 2 U(n). Thus, SO(2n) \ Sp(2n; R) ⇢ U(n).

If A 2 U(n), then g(Az,Aw)� i!(Az,Aw) = h(Az,Aw) = h(z, w) = g(z, w)� i!(z, w),
so equating real and imaginary parts shows that A 2 SO(2n) \ Sp(2n; R). Thus, U(n) ⇢
SO(2n) \ Sp(2n; R).

This shows that U(n) = SO(2n) \ Sp(2n; R).

If A 2 GL(n; C) \ SO(2n), then !(Az,Aw) = g(iAz,Aw) = g(A(iz), Aw) = g(iz, w) =
!(z, w), so ! 2 Sp(2n; R). Thus, GL(n; C) \ SO(2n) ⇢ U(n).

If A 2 GL(n; C) \ Sp(2n; R), then g(Az,Aw) = �!(iAz,Aw) = �!(A(iz), Aw) =
�!(iz, w) = g(z, w), so A 2 SO(2n). Thus, GL(n; C) \ Sp(2n; R) ⇢ U(n).

Finally, if A 2 U(n) = SO(2n) \ Sp(2n; R), then

g(iAz,Aw) = !(Az, Aw) = !(z, w) = g(iz, w) = g(A(iz), Aw),

so g(iAz � Aiz,Aw) = 0. Since g is non-degenerate, this forces A(iz) = i(Az), so A 2
GL(n; C). ⌃



(5) Prove that the plane fields given by equations dz�y dx = 0 and dz� 1
2(x dy�y dx) = 0 are

di↵eomorphic, but the plane fields dz� 1
2(x dy�y dx) = 0 and dz� 1

2(x dy+y dx) = 0 are not.

Solution: Let ↵ = dz � y dx and � = dz � 1
2(x dy � y dx). Consider the normal vector fields

↵

# = �y

@

@x

+
@

@z

�

# = �1

2
y

@

@x

+
1

2
x

@

@y

+
@

@z

.

Let � : R3 ! R3 be a di↵eomorphism. Note that �⇤
↵ = � if and only if (�⇤)T (↵#) = �

#.
This fact suggests a way of finding �. Namely, by observing that

0

@
1 0 1

2y

0 1 1
2x

0 0 1

1

A

0

@
�y

0
1

1

A =

0

@
�1

2y
1
2x

1

1

A
,

we are led to search for bijections � : R3 ! R3 with

�⇤ =

0

@
1 0 0
0 1 0
1
2y

1
2x 1

1

A
.

One possibility is �(x, y, z) = (x, y, z + 1
2xy).

It is easy to check that � is bijective and �⇤ is invertible, so that � is indeed a di↵eo-
morphism. One can also verify that �⇤

↵ = �.

To see that the plane fields dz � 1
2(x dy � y dx) = 0 and dz � 1

2(x dy + y dx) = 0 are not
di↵emorphic, observe that the first is not integrable, whereas the second one is. ⌃



(6) Consider the PDE

x

@u

@x

+ y

@u

@y

= u� xy.

Solve the Cauchy problem for the initial data u(2, y) = 1 + y

2.

Solution 1: Let A denote the vector field in R2 given by

A = x

@

@x

+ y

@

@y

.

If �(t) = (x(t), y(t)) is an integral curve of A, then �

0(t) = A|
�(t), so that

x

0(t) = x(t) =) x(t) = x0e
t

y

0(t) = y(t) =) y(t) = y0e
t

.

Thus, the flow of A is given by ✓

t

(x, y) = (xe

t

, ye

t).

Let S = {(2, s) : s 2 R} denote the initial hypersurface in R2. The flowout of A along

the line S ⇢ R2 is defined by

 (t, s) := ✓

t

(2, s) = (2et

, se

t).

One can check the following properties of  (which are generally true of flowouts):

 (0, s) = (2, s)

 ⇤(
@

@t

) = A.

We remark that  �1(x, y) = (ln(x/2), 2y/x).

Pulling back our Cauchy problem to the (t, s)-plane via  results in the new problem

@bu
@t

= bu� 2se2t

,

bu(0, s) = 1 + s

2
,

where bu :=  ⇤
u = u �  . Regarding s as fixed, we may view this problem as an ODE for

bu(·, s), namely bu0 = bu� 2se2t. Multiplying by the integrating factor e

�t gives

@

@t

(e�tbu) = �2set

.

Integrating yields e

�tbu = �2set +h(s) for some function h(s). Invoking the initial condition
bu(0, s) = 1 + s

2 shows that

bu(t, s) = �2se2t + (s + 1)2
e

t

.

Pulling back to the (x, y)-plane via  �1, we find

u(x, y) = bu
✓

ln
⇣

x

2

⌘
,

2y

x

◆
=

1

2
x + 2y � 2xy +

2y2

x

.

⌃



(6) Consider the PDE

x

@u

@x

+ y

@u

@y

= u� xy.

Solve the Cauchy problem for the initial data u(2, y) = 1 + y

2.

Solution 2: Let R3 = R2 ⇥ R have coordinates (x, y; z). Let ⇠ be the characteristic vector
field in R3, i.e.:

⇠ := x

@

@x

+ y

@

@y

+ (z � xy)
@

@z

.

If �(t) = (x(t), y(t), z(t)) is an integral curve of ⇠, then �

0(t) = ⇠|
�(t), so that

x

0(t) = x(t) =) x(t) = x0e
t

y

0(t) = y(t) =) y(t) = y0e
t

z

0(t) = z(t)� x(t)y(t) =) z(t) = �x0y0e
2t + (z0 + x0y0)e

t

.

Thus, the flow of ⇠ is given by ✓

t

(x, y, z) = (xe

t

, ye

t

,�xye

2t + (z + xy)et).

Let S = {(2, s) : s 2 R} be denote the initial hypersurface in R2. Let ' : S ! R denote
'(2, s) = 1 + s

2. Then Graph(') can be parametrized as ((2, s), '(2, s)) = (2, s; 1 + s

2).
The flowout of ⇠ along the curve Graph(') ⇢ R3 is defined by

 (t, s) := ✓

t

(2, s, 1 + s

2) = (2et

, se

t

,�2se2t + (s + 1)2
e

2t).

A solution to our Cauchy problem is the function u whose graph is the flowout above –
i.e.: Image( ) = Graph(u). Thus, setting

(2et

, se

t

,�2se2t + (s + 1)2
e

2t) = (x, y, u(x, y)),

we find that

x = 2et

t = ln(x/2)

y = se

t

, s = 2y/x,

so that

u(x, y) = bu
✓

ln
⇣

x

2

⌘
,

2y

x

◆
=

1

2
x + 2y � 2xy +

2y2

x

.

⌃


