(1) Consider the differential equation
2zy —y = Iny/.
Find all solutions and the discriminant.

Solution: Let F(x,y,p) = 2xp —y — Inp, where p = y'. Let us consider the surface
M = {(x,y,p): F(z,y,p) = 0} in the space of 1-jets. Solutions of the differential equation
correspond to curves in M whose tangent vectors lie on the contact planes dy — pdx = 0.

So, we need to find the integral curves of the following system:

F(z,y,p) =0 — 2ep—y —Inp =10
dFF =0 = 2pd:c—dy—(2x—%)dp20
dy —pdr =0 — dy —pdxr = 0.

Using dy = p dx, the second equation becomes p dz + (2x — %) dxr = 0. Multiplying by p gives
p*dr + (2zp — 1) dx = 0.

That is,
d(p*r —p) = 0.
C, where C' is a constant. Solving for p gives

1+v1+Cx
p=—7p
2z

1

Thus, p’zr —p = i

Using the first equation, y = 2xp — Inp, we find

yzl:i:\/l—l—C:c—ln(H:zLCI).
x

The criminant is the set of points in the surface M = {(z,y,p): F(x,y,p) = 0} such
that %—5 = 0. That is, the set of points in the 1-jet space such that

2ecp—y =1Inp
2z — 1 = 0.
p

The second equation gives x = 2ip' Plugging this into the first equation gives y =1 — Inp.
Thus, the criminant can be described by the parametric curve in the 1-jet space given by

(t) = 5
y(t)=1—Int
2(t) = t.
The discriminant is the projection of the criminant onto the xy-plane via (x,y,p) —
(x,y). This results in the parametric curve in the xy-plane given by

ot) = 3
y(t) =1—Int.

One can also describe this curve as the graph of y = 1 + In(2z). ¢



(2) Find a curve on the plane whose tangent lines form with the coordinate axis triangles of
area 2a’.

Remark: The following two solutions are ultimately equivalent.

Solution 1: The area of the triangle formed by the coordinate axes and the line Y = mX +b

is A = ‘E‘ The tangent line to a curve Y = f(X) at a point (z,y) is given by Y =
f'(z)X + (f(x) — xf'(x)). Thus, we require that

L) =2 @[
2 ) |

or equivalently,
(f(z) = 2f'(2))* = (2a)*|f'(2)].
Letting y = f(z) and p = f’(z), we have (y — pz)? = (2a)?|p|, and hence

y — pr = £2a/|p|.

Let F(x,y,p) :== y — px &+ 2a+/|p|. Solutions to the differential equation correspond to
curves in M = {(x,y,p): F(z,y,p) = 0} whose tangent vectors lie on the contact planes
dy — pdx = 0. Thus, we have

0=dF = —pdz+dy + (—z £ —=sgn(p)) dz.

Vvl
=(—z+ ﬁ sgn(p)) dz.

This implies that = +—% sgn(p), so that 2% = —“2, so |p| = 2 In other words, f'(x) = £%,
1l Ip| x
P
so that

fla)=+=.] ¢

T

Solution 2: We will use the fact that every curve y = f(z) is the envelope of its family of
tangent lines.

Note first (¢f Arnold: page 20) that the envelope of a family of lines {y = px — g(p) }per
is the curve y = f(x), where f is the Legendre transform of g. Second, note that the family
of lines {y = pxr + 2a\/m }per form triangles of area 2a® with the coordinate axes. Thus,
the required curve is the Legendre transform of g(p) = £2a+/|p|-

To calculate the Legendre transform of g, we set %(pa: + ZQM) = 0, which yields

a _ a? — a?
T = :FW, so |p| = 5,80 p==+%. Thus,

a’>  2a® a’




(3) Prove that the rank of any skew-symmetric bilinear form is even.

Solution 1 (Sketch): Show that the eigenvalues of any skew-symmetric bilinear form are
either zero or pure imaginary, and that the eigenvalues come in complex-conjugate pairs.
Thus, the number of non-zero eigenvalues — i.e., the rank of the bilinear form — is even. ¢

Solution 2: Let w be a skew-symmetric bilinear form on a finite-dimensional vector space V.
The result will follow from the following structure theorem.

Theorem: There exists a basis for V', denoted {uy,...,ug, €1,...,€m, f1,-.., fm}, for which
w(u;, ):O YoeV
w(es e;) =
w(fi, f;) =
w(es, fi) =

Such a basis is called a symplectic basis.

Proof of Theorem: Let U := {u € V: w(u,v) = 0, Yv € V} denote the nullspace of w. Let
{u,...,u;} be a basis of U. Write

V=UaW.

We will (inductively) decompose W into a direct sum of 2-dimensional subspaces. If W = 0,
we're done, so assume W # 0.

Let e; € W, e; # 0. Since e; € W, there exists f; € W with w(ey, f1) # 0. By rescaling,
we may assume that w(eq, f1) = 1.

Let Wy := span{ey, fi}. Let Wi = {w € W: w(w,v) = 0,Yv € Wi} denote the
symplectic complement to Wy in W, so that

W =W, & Wy,

Let eo € W}, es # 0. Then there exists fo € W}’ with w(es, fo) # 0. By rescaling, we
may assume that w(ey, fo) = 1.

Repeat this process. This process eventually terminates because dim V' < oo. Thus, we
have a direct sum decomposition

V =U @ span{ey, f1} ® -+ - @ span{en, f} ¢

With respect to a symplectic basis for w, the skew-symmetric bilinear form w can be
written as

Ok
w(u,v) = u’ 0 Id, | v
—Id,, O
That is, with respect to a symplectic basis, the form w is represented by the matrix
Ok
0 Id,, |,
—Id,, O

which has rank 2m. In other words, rank(w) = 2m is even. ¢



(4) Let us view C" as R*" with the operation of multiplication by i. Prove that
SO(2n) N Sp(2n;R) = GL(n; C) N SO(2n) = GL(n; C) N Sp(2n; R) = U(n).

Notation: Let g denote the standard inner product, let w denote the standard symplectic
form, and let h denote the standard Hermitian form.
We let z,w € C™ denote

1 n 1 n k -k
z:(x,...,x,y,...,y):g ¥ + 1y
w=(u,... u" .. 0" = E uk + ",

Solution 1 (Sketch): Recall from basic linear algebra that
SO(2n) = {4 € GL(2n;R): ATA =1d and detg(A) =1}
U(n) = {A € GL(n;C): A*A =1d}.

Let J denote the matrix
J— 0o -Id,
-~ \Id, 0 '

We observe that the matrix J corresponds to multiplication by 7. That is,
1 1

x x -1
- 21 (0 -—Id, AL I B VA I koo ok
Jz=1J )l _(Idn 0 ) o —sz + iy =1z,
We observe also that J7 = —.J is the matrix representation of w in the standard basis. That
is,
w(z,w) = 27 J w.

From these facts, it follows that
GL(n;C) = {A € GL(2m;R): AJ = JA}
Sp(2n;R) = {A € GL(2n;R): ATJA = J}.
Using these four descriptions of the matrix groups SO(2n), U(n), GL(n;C), Sp(2n;R),
the first three desired intersections are now fairly immediate. For example:
If A€ GL(n;C) N O(2n), then JA = AJ and ATA = 1d, so ATJA = ATAJ = J, so
A € Sp(2n;R). Thus, O(2n) N GL(2n;C) C Sp(n;R). Analogous arguments hold for the
other two.

If A € U(n), then A € GL(n;C) and g(Az, Az) = h(Az, Az) = h(z,2) = g(z,2), so
g € O(2n), so A € Sp(2n;R) by the preceding paragraph, and so A lies in any of these
pairwise intersections.

Conversely, if A € GL(n;C) N SO(2n), then h(Az, Az) = g(Az, Az) = g(z,2) = h(z,2),
hence (by polarization) h(Az, Aw) = h(z,w), so A € U(n). ¢



(4) Let us view C" as R*" with the operation of multiplication by i. Prove that
SO(2n) N'Sp(2n; R) = GL(n; C) N SO(2n) = GL(n; C) N Sp(2n;R) = U(n).

Notation: Let g denote the standard inner product, let w denote the standard symplectic
form, and let h denote the standard Hermitian form.
We let z,w € C™ denote

_ no,1 ny _ k| ok
z_(x,...,x,y,...,y)—g ¥+ 1y
w:(ul,...,u”,vl,...,v”):E uk + ",

Solution 2 (Sketch): Let us observe first that

h(z,w) = Z 2 Wy = Z(xk + iyx ) (ug — ivyg)
= ) (wktk + yrow) + i(yso — i)
=g(z,w) —iw(z,w). (1)
From this, we observe secondly that
w(z,w) +ig(z,w) = ih(z,w) = h(iz,w) = g(iz,w) — iw(iz, w),
and so by equating real parts, we obtain
gliz, w) = w(z,w) ©)

Using equations (1) and (2), the result is now straightforward to check. ¢

If A € SO(2n) N Sp(2n;R), then h(Az, Aw) = g(Az, Aw) — iw(Az, Aw) = g(z,w) —
iw(z,w) = h(z,w), so A € U(n). Thus, SO(2n) N Sp(2n;R) C U(n).

If A€ U(n), then g(Az, Aw) —iw(Az, Aw) = h(Az, Aw) = h(z,w) = g(z,w) — iw(z,w),
so equating real and imaginary parts shows that A € SO(2n) N Sp(2n;R). Thus, U(n) C
SO(2n) N Sp(2n; R).

This shows that U(n) = SO(2n) N Sp(2n; R).

If A € GL(n;C) N SO(2n), then w(Az, Aw) = g(iAz, Aw) = g(A(iz), Aw) = g(iz,w) =
w(z,w), so w € Sp(2n; R). Thus, GL(n; C) N SO(2n) C U(n).

If A € GL(n;C) N Sp(2n;R), then g(Az, Aw) = —w(idz, Aw) = —w(A(iz), Aw) =
—w(iz,w) = g(z,w), so A € SO(2n). Thus, GL(n;C) N Sp(2n;R) C U(n).

Finally, if A € U(n) = SO(2n) N Sp(2n;R), then
g(iAz, Aw) = w(Az, Aw) = (= w) = gliz w) = g(A(iz), Au),

so g(iAz — Aiz, Aw) = 0. Since g is non-degenerate, this forces A(iz) = i(Az), so A €
GL(n; C). ¢



(5) Prove that the plane fields given by equations dz—y dx = 0 and dz— %(m dy—ydx) = 0 are
diffeomorphic, but the plane fields dz — %(SB dy—ydz) =0and dz— %(x dy+ydz) = 0 are not.

Solution: Let « = dz —ydx and = dz — %(:c dy — ydx). Consider the normal vector fields

1 0 1 0 0
#_ 2 4.
b 2y8x+2x0y+8z'

Let ®: R?* — R? be a diffeomorphism. Note that ®*a = 3 if and only if (®,)? (a¥) = 3%.
This fact suggests a way of finding ®. Namely, by observing that

10 39\ [~y —3Y
01 3z 0]=1 3= |,
00 1 1 1

we are led to search for bijections ®: R?® — R? with

1 0 0
d.=10 1 0
%y %m 1

One possibility is ®(x,y, 2) = (z,y,z + %:Ey)
It is easy to check that ® is bijective and ®, is invertible, so that ® is indeed a diffeo-
morphism. One can also verify that ®*a = f3.

To see that the plane fields dz — $(zdy — ydz) = 0 and dz — §(z dy + y dz) = 0 are not
diffemorphic, observe that the first is not integrable, whereas the second one is. ¢



(6) Consider the PDE

Solve the Cauchy problem for the initial data u(2,y) = 1 + .

Solution 1: Let A denote the vector field in R? given by

0 9,
A= T + ya—y.
If v(t) = (x(t),y(t)) is an integral curve of A, then +'(t) = A|,«), so that
Z'(t) = x(t) = x(t) = xg€’
y'(t) =y(t) — y(t) = yoe'.

Thus, the flow of A is given by 0;(x,y) = (xe', ye').

Let S = {(2,s): s € R} denote the initial hypersurface in R?. The flowout of A along
the line S C R? is defined by
U(t,s) = 0,(2,5) = (2, se").

One can check the following properties of ¥ (which are generally true of flowouts):

U (0,s) =(2,s)
W.(2) = A

We remark that U='(z,y) = (In(x/2), 2y/x).

Pulling back our Cauchy problem to the (¢, s)-plane via ¥ results in the new problem
ou
8—1; =1 — 2se*,
u(0,5) =1+ 52,
where 7 := U*u = u o V. Regarding s as fixed, we may view this problem as an ODE for
u(-, s), namely 0’ = U — 2se?*. Multiplying by the integrating factor e~ gives

0, i
a(e’tu) = —2se’.
Integrating yields e " = —2se’ + h(s) for some function A(s). Invoking the initial condition

1(0,s) = 1+ s® shows that
u(t,s) = —2se* + (s + 1)%e".

Pulling back to the (z,y)-plane via =1 we find

2 1 29/
u(z,y) =u 1n<£> ,—y = —x+2y—2xy+i.
2/ x 2 x




(6) Consider the PDE

Solve the Cauchy problem for the initial data u(2,y) = 1 + y>.

Solution 2: Let R* = R? x R have coordinates (z,y;2). Let £ be the characteristic vector
field in R3, i.e.:

Oz
If v(t) = (x(t),y(t), 2(t)) is an integral curve of &, then 7/(t) = |, so that

{'—x£+ ﬁ—k(z—x )2
o y(‘?y Yoz

2 (t) = x(t) = z(t) = zoe'
y'(t) = y(t) — y(t) = yoe'
2'(t) = 2(t) — z(t)y(t) = 2(t) = —woyoe® + (20 + 2oyo)e'.

Thus, the flow of £ is given by 0;(z,y, z) = (ze!, ye!, —xye® + (2 + xy)el).

Let S = {(2,5): s € R} be denote the initial hypersurface in R?. Let p: S — R denote
©(2,5) =1+ s% Then Graph(y) can be parametrized as ((2,5), (2, 5)) = (2, s;1 + s?).
The flowout of & along the curve Graph(p) C R? is defined by

U(t,s) :=0,(2,51+s%) = (2, se’, —2se* + (s + 1)%e*).
A solution to our Cauchy problem is the function v whose graph is the flowout above —
i.e.: Image(V) = Graph(u). Thus, setting
we find that

T = 2¢ t =In(z/2)
Yy = se’, 3:23//3;’

so that

2

2 1 2
u(z,y) =1 (hl(E) ,—y) = §x + 2y — 2zy + Y )
x




