(1) Consider a system of two quasi-homogeneous equations

$$
\begin{aligned}
x y \frac{d y}{d x} & =z^{2} \\
z \frac{d z}{d x} & =x y, \quad x, y, z>0 .
\end{aligned}
$$

Find a change of variables which reduces it to a first order system.
Solution: We first determine the weights for which the system is quasi-homogeneous. There are a couple of (ultimately equivalent) ways of doing this.

Method 1. Let $g^{s}(x, y, z)=\left(e^{\alpha s} x, e^{\beta s} y, e^{\gamma s} z\right)$. Write the system of equations as

$$
\begin{aligned}
d y & =\frac{z^{2}}{x y} d x \\
d z & =\frac{x y}{z} d x .
\end{aligned}
$$

If g^{s} is a symmetry of the system, then $\left(g^{s}\right)^{*}(d y)=\left(g^{s}\right)^{*}\left(\frac{z^{2}}{x y} d x\right)$ and $\left(g^{s}\right)^{*}(d z)=\left(g^{s}\right)^{*}\left(\frac{x y}{z} d x\right)$. Expanding these equations ultimately yields $\beta=\gamma$ and $2 \alpha+\beta=2 \gamma$, respectively, which together give $2 \alpha=\beta=\gamma$.

Alternatively, one may prefer to use $G^{t}(x, y, z)=\left(t^{\alpha} x, t^{\beta} y, t^{\gamma} z\right)$ instead of g^{s}.
Method 2. Let $g^{s}(x, y, z)=\left(e^{\alpha s} x, e^{\beta s} y, e^{\gamma s} z\right)$. Let λ denote the line field in \mathbb{R}^{3} given by

$$
\left.\lambda\right|_{(x, y, z)}=\operatorname{span}\left\{\left(1, \frac{z^{2}}{x y}, \frac{x y}{z}\right)\right\} .
$$

For the system to be quasi-homogeneous, we must have $\left.\left(g^{s}\right)_{*} \lambda\right|_{(x, y, z)}=\left.\lambda\right|_{g^{s}(x, y, z)}$. One can calculate that

$$
\begin{aligned}
\left.\left(g^{s}\right)_{*} \lambda\right|_{(x, y, z)} & =\operatorname{span}\left\{\left(1, e^{(2 \gamma-\alpha-\beta) s} \frac{z^{2}}{x y}, e^{(\alpha+\beta-\gamma) s} \frac{x y}{z}\right)\right\} \\
\left.\lambda\right|_{g^{s}(x, y, z)} & =\operatorname{span}\left\{\left(1, e^{(\beta-\alpha) s} \frac{z^{2}}{x y}, e^{(\gamma-\alpha) x} \frac{x y}{z}\right)\right\},
\end{aligned}
$$

which forces $2 \gamma-\alpha-\beta=\beta-\alpha$ and $\alpha+\beta-\gamma=\gamma-\alpha$. This implies $2 \alpha=\beta=\gamma$, as above.

At any rate, we may take $\alpha=1$ and $\beta=\gamma=2$. Take the plane $\Sigma=\{(x, y, z): x=1\} \subset$ \mathbb{R}^{3} as the transverse surface. Then our coordinate change amounts to

$$
\begin{array}{llr}
x=e^{s} & \Longleftrightarrow & s=\log (x) \\
y=e^{2 s} u_{1} & \Longleftrightarrow & u_{1}=y x^{-2} \\
z=e^{2 s} u_{2} & \Longleftrightarrow & u_{2}=z x^{-2} .
\end{array}
$$

In these coordinates - that is, via pullback - our equations take the form

$$
\frac{d u_{1}}{d s}=\frac{u_{2}-2 u_{1}^{2}}{u_{1}}, \quad \quad \frac{d u_{2}}{d s}=\frac{u_{1}-2 u_{2}^{2}}{u_{2}}
$$

which together yield a first-order equation $\frac{d u_{2}}{d u_{1}}=\frac{u_{1}-2 u_{2}^{2}}{u_{2}-2 u_{1}^{2}} \cdot \frac{u_{1}}{u_{2}} . \diamond$
(3) Consider a pendulum $\ddot{x}=-\sin x$. Find the limit of its period when the amplitude goes to zero.

Solution: Defining $y=\dot{x}$, we can rewrite our second-order equation as a first-order system:

$$
\begin{aligned}
& \dot{x}=y \\
& \dot{y}=-\sin x .
\end{aligned}
$$

Note that $(0,0)$ is an equilibrium point of the system. We will assume without proof that the phase curves in a deleted neighborhood of $(0,0)$ are all closed.

It is a theorem (cf. Arnold §2D: pages 13-14) that as the amplitude approaches zero, the period of oscillation in a neighborhood of $(0,0)$ tends to the period of oscillation of the linearized system. So, we have to find the period of the linearized system.

Linearizing at the point $(0,0)$ gives the linearized system

$$
\begin{aligned}
\dot{x} & =y \\
\dot{y} & =-x .
\end{aligned}
$$

In this linearized system, we have $\ddot{x}=-x$, whose general solution is $x(t)=A \cos t+B \sin t$, for any $A, B \in \mathbb{R}$. For $(A, B) \neq(0,0)$, the period of $x(t)$ is 2π. \diamond
(4) Find the solutions, the criminant, and the discriminant of the equation

$$
\left(y^{\prime}\right)^{3}+3 x y^{\prime}-3 y=0
$$

Solution: Let $F(x, y, p)=p^{3}+3 x p-3 y$, where $p=y^{\prime}$. Let us consider the surface $M=\{(x, y, p): F(x, y, p)=0\}$ in the space of 1 -jets. Solutions of the differential equation correspond to curves in M whose tangent vectors lie on the contact planes $d y-p d x=0$.

So, we need to find the integral curves of the following system

$$
\begin{array}{rlrr}
F(x, y, p)=0 & \Longrightarrow & p^{3}+3 x p-3 y=0 & \text { (belonging to } M \text {) } \\
d F=0 & \Longrightarrow & 3\left(p^{2}+x\right) d p+3 p d x-3 d y=0 & \text { (tangent to } M \text {) } \\
d y-p d x=0 & \Longrightarrow & d y-p d x=0 & \text { (tangent to contact planes) }
\end{array}
$$

Using $d y=p d x$, the second equation becomes

$$
\left(p^{2}+x\right) d p=0
$$

This gives two cases.
Case One: $d p=0$. Then $p=C$, a constant. Plugging this into $p^{3}+3 x p-3 y=0$ gives the solutions

$$
y=C x+\frac{1}{3} C^{3}
$$

Case Two: $p^{2}+x=0$. Then $x=-p^{2}$. Plugging this into $p^{3}+3 x p-3 y$ gives $y=-\frac{2}{3} p^{3}$, hence $y= \pm \frac{2}{3}\left(p^{2}\right)^{3 / 2}$, and we obtain the solutions

$$
y= \pm \frac{2}{3}(-x)^{3 / 2}
$$

The criminant is the set of points in the surface $M=\{(x, y, p): F(x, y, p)=0\}$ such that $\frac{\partial F}{\partial p}=0$. That is, the set of points in the 1 -jet space for which

$$
\begin{array}{r}
p^{3}+3 x p-3 y=0 \\
3 p^{2}+3 x=0 .
\end{array}
$$

The second equation gives $x=-p^{2}$. Plugging this into the first equation gives $y=-\frac{2}{3} p^{3}$. Thus, the criminant can be described by the parametric curve in the 1 -jet space given by

$$
\begin{aligned}
& x(t)=-t^{2} \\
& y(t)=-\frac{2}{3} t^{3} \\
& p(t)=t .
\end{aligned}
$$

The discriminant is the projection of the criminant onto the $x y$-plane via $(x, y, p) \mapsto$ (x, y). This results in the parametric curve in the $x y$-plane given by

$$
\begin{aligned}
& x(t)=-t^{2} \\
& y(t)=-\frac{2}{3} t^{3} .
\end{aligned}
$$

One can also describe this curve as the graphs $y= \pm \frac{2}{3}(-x)^{3 / 2} . \diamond$
(5) Let $f=\sum_{1}^{n} a_{i j} x_{i} x_{j}$ be a quadratic form on \mathbb{R}^{n}. Show that its Legendre transform $g(p)$ is again a quadratic form $g(p)=\sum_{1}^{n} b_{i j} p_{i} p_{j}$, and the value of these forms and the points corresponding to each other under the Legendre map coincide.

Solution: Let $A=\left(a_{i j}\right)$. Since f is a quadratic form, the matrix A is symmetric. We will assume for this problem that A is positive-definite, hence invertible.

We let $\delta_{i j}$ denote the Kronecker delta symbol. That is, $\delta_{i i}=1$ and $\delta_{i j}=0$ if $i \neq j$. Said another way, we can write the identity matrix as $I=\left(\delta_{i j}\right)$.

By definition, the Legendre transform $g(p)$ is given by

$$
g(p)=\sup _{x}\left(\sum_{i} p_{i} x_{i}-\sum_{i} \sum_{j} a_{i j} x_{i} x_{j}\right) .
$$

Fix $p \in \mathbb{R}^{n}$. For a point $x \in \mathbb{R}^{n}$ at which the supremum is attained, we have

$$
\begin{aligned}
0 & =\frac{\partial}{\partial x_{k}}\left(\sum_{i} p_{i} x_{i}-\sum_{i} \sum_{j} a_{i j} x_{i} x_{j}\right) \\
& =p_{k}-\sum_{i} \sum_{j} a_{i j} \frac{\partial}{\partial x_{k}}\left(x_{i} x_{j}\right) \\
& =p_{k}-\sum_{i} \sum_{j} a_{i j} x_{i} \delta_{j k}-\sum_{i} \sum_{j} a_{i j} \delta_{i k} x_{j} \\
& =p_{k}-\sum_{i} a_{i k} x_{i}-\sum_{j} a_{k j} x_{j} \\
& =p_{k}-\sum_{i} 2 a_{i k} x_{i},
\end{aligned}
$$

where in the last line we used that A is a symmetric matrix. In coordinate-free notation, we have determined that $p=2 A x$, and so $x=\frac{1}{2} A^{-1} p$.

Let $B=\left(b_{i j}\right)$ denote the inverse matrix $B=A^{-1}$. Then $x_{i}=\sum \frac{1}{2} b_{i j} p_{j}$, so that (for this specific choice of x)

$$
\begin{aligned}
g(p) & =\sum_{i} p_{i} x_{i}-\sum_{i} \sum_{j} a_{i j} x_{i} x_{j} \\
& =\sum_{i} p_{i} x_{i}-\sum_{j} \frac{1}{2} p_{j} x_{j} \\
& =\frac{1}{2} \sum_{i} p_{i} x_{i} \\
& =\frac{1}{4} \sum_{i} \sum_{j} b_{i j} p_{i} p_{j},
\end{aligned}
$$

which shows that g is a quadratic form.

Thus, our Legendre map is $L(x)=2 A x$, and its inverse is $L^{-1}(p)=\frac{1}{2} B p$. That our quadratic forms f and g coincide on corresponding points follows from

$$
\begin{aligned}
g(L(x)) & =\frac{1}{4} \sum_{i} \sum_{j} b_{i j}\left(\sum_{k} 2 a_{k i} x_{k}\right)\left(\sum_{\ell} 2 a_{\ell j} x_{\ell}\right) \\
& =\sum_{i} \sum_{j} \sum_{k} \sum_{\ell} b_{i j} a_{k i} a_{\ell j} x_{k} x_{\ell} \\
& =\sum_{j} \sum_{k} \sum_{\ell} \delta_{j k} a_{\ell j} x_{k} x_{\ell} \\
& =\sum_{k} \sum_{\ell} a_{\ell k} x_{k} x_{\ell} \\
& =f(x),
\end{aligned}
$$

where in the last line we used that A is symmetric. \diamond
Remark: It is, of course, possible to do all of the above calculations in a coordinate-free manner as well.

