(1) Consider a system of two quasi-homogeneous equations

z— =y, z,Y,z>0.
dr Y Y

Find a change of variables which reduces it to a first order system.

Solution: We first determine the weights for which the system is quasi-homogeneous. There
are a couple of (ultimately equivalent) ways of doing this.

Method 1. Let ¢*(z,y, z) = (e**z, ey, e7*2). Write the system of equations as
2

dy = Zde
Ty

dz = @dx.
z

If ¢° is a symmetry of the system, then (¢°)*(dy) = (gs)*(g dz) and (g°)*(dz) = (9°)* (% dzx).
Expanding these equations ultimately yields § = v and 2a 4+ 3 = 2+, respectively, which
together give 2a = (3 = 7.

Alternatively, one may prefer to use G*(z,y, z) = (t%z,t’y,t"2) instead of g°.

Method 2. Let ¢*(z,y, 2) = (e**z, ey, e7*2). Let A denote the line field in R? given by

A (z,2) = span { (1, ﬁ’ %>} '

For the system to be quasi-homogeneous, we must have (9°).A|ay2) = Algs(zy,2)- One can
calculate that

(gs)*M(;v,y,z) = span { (17 6(27_0‘_6)5;—2, €(a+6—v)s%> }

which forces 2y —a— (3 =3 —a and a+ 8 —y = v — a. This implies 2o = = 7, as above.

A

At any rate, we may take o = 1 and f = v = 2. Take the plane ¥ = {(z,y,2): 2 =1} C
R3 as the transverse surface. Then our coordinate change amounts to

r=e’ = s = log(x)
y = e*uy — Uy = yr 2
z = e®uy <— Uy = 2z 2.

In these coordinates — that is, via pullback — our equations take the form

2 2
duy  up — 2uj duy  uy — 2u;

ds U ’ ds u ’
1 2

du up — 2u3  u
which together yield a first-order equation —2 = 1—3 iy
duy  ug —2uij U

O



(3) Consider a pendulum & = —sinz. Find the limit of its period when the amplitude goes
to zero.

Solution: Defining y = &, we can rewrite our second-order equation as a first-order system:

T=1y
y = —sinx.

Note that (0,0) is an equilibrium point of the system. We will assume without proof that
the phase curves in a deleted neighborhood of (0,0) are all closed.

It is a theorem (c¢f. Arnold §2D: pages 13-14) that as the amplitude approaches zero,
the period of oscillation in a neighborhood of (0,0) tends to the period of oscillation of the
linearized system. So, we have to find the period of the linearized system.

Linearizing at the point (0,0) gives the linearized system

T=1y
y=—x.

In this linearized system, we have # = —x, whose general solution is z(t) = Acost + Bsint,
for any A, B € R. For (A, B) # (0,0), the period of z(t) is [27]. ¢



(4) Find the solutions, the criminant, and the discriminant of the equation

(/) + 32y — 3y = 0.

/

Solution: Let F(x,y,p) = p> + 3xp — 3y, where p = y'. Let us consider the surface

M = {(x,y,p): F(z,y,p) = 0} in the space of 1-jets. Solutions of the differential equation

correspond to curves in M whose tangent vectors lie on the contact planes dy — pdxz = 0.
So, we need to find the integral curves of the following system

F(z,y,p)=0 — pP+3xp—3y=0 (belonging to M)
dF =0 = 3(p*+z)dp+3pdr—3dy=0 (tangent to M)
dy —pder=0 — dy —pdx =0 (tangent to contact planes)

Using dy = pdx, the second equation becomes
(p* +2)dp = 0.

This gives two cases.
Case One: dp = 0. Then p = C, a constant. Plugging this into p3 + 3zp — 3y = 0 gives
the solutions

1
y=Cx+ §03'

Case Two: p® + 2 = 0. Then x = —p®. Plugging this into p* + 3zp — 3y gives y = —2p?,
hence y = +£2(p*)*?, and we obtain the solutions

The criminant is the set of points in the surface M = {(z,y,p): F(x,y,p) = 0} such
that %—i = 0. That is, the set of points in the 1-jet space for which
P’ +3xp—3y =0
3p° + 3z = 0.

The second equation gives x = —p?. Plugging this into the first equation gives y = —%p?’.
Thus, the criminant can be described by the parametric curve in the 1-jet space given by

x(t) = —t?
y(t) = —3¢°
p(t) =t.

The discriminant is the projection of the criminant onto the xy-plane via (x,y,p) —
(x,y). This results in the parametric curve in the xy-plane given by

x(t) = —t?
y(t) = —3t%

One can also describe this curve as the graphs y = ﬂ:%(—x)g‘/ 2.0



(5) Let f =] a;jx;x; be a quadratic form on R™. Show that its Legendre transform g(p)
is again a quadratic form g(p) = >} b;;pip;, and the value of these forms and the points
corresponding to each other under the Legendre map coincide.

Solution: Let A = (a;;). Since f is a quadratic form, the matrix A is symmetric. We will
assume for this problem that A is positive-definite, hence invertible.
We let d;; denote the Kronecker delta symbol. That is, 6;; = 1 and 9;; = 0 if ¢ # j. Said

another way, we can write the identity matrix as I = (d;;).
By definition, the Legendre transform ¢(p) is given by

9(p) = sup (Z piti — Z Z aijxixj) .

Fix p € R™. For a point x € R™ at which the supremum is attained, we have

0
0= a_xk (Z}pzl’l - Z Zj:%ﬂ%%)

= pr — Z Z aijﬁ%k(:cixj)
= pr — Z Zj: ;055 — Z Z 3,00,
= P — Z 2074, ]

where in the last line we used that A is a symmetric matrix. In coordinate-free notation, we
have determined that p = 2Ax, and so x = %Ailp.

Let B = (b;;) denote the inverse matrix B = A~'. Then z; = > 1b;;p;, so that (for this
specific choice of x)

g0) = _piwi— > Y aymix
1
= Zpi%' - Z 5])3'%'
( J
= %szmz
1
=1 Z Z bijpipj,
i

which shows that ¢ is a quadratic form.



Thus, our Legendre map is L(x) = 2Ax, and its inverse is L™!(p) = 1Bp. That our

-2
quadratic forms f and g coincide on corresponding points follows from

g(L(x)) = }1 Z Z by (zk: 2a;ﬂ~x;€) (zg: z%w>
- ZZ]%: EZ: by Qi TR
= Z z; 2} Ok TRy

= f(x),

where in the last line we used that A is symmetric. ¢

Remark: 1t is, of course, possible to do all of the above calculations in a coordinate-free
manner as well.



