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Chapter 1

What is a differential equation?

1.1 Preliminaries

Differential equations and system of equations are equations or system of equations involving deriva-

tives of unknown functions. If all the unknown functions are of the same one variable then the

differential equations are called ordinary. In the case of functions of more than one variable one

speaks of partial differential equations.

Thus any system of ordinary differential equations can be written as

F (t, u(t), u′(t), u′′(t), . . . , u(k)(t)) = 0, (1.1.1)

t ∈ [a, b], where u : [a, b] → Rm is a vector-valued function, and F is a map of a domain U in the

space RN , N = km+ 2 to Rl for some integer l.

An important observation is that it is always possible to equivalently rewrite the system (1.1.1)

to involve only the first derivatives of the unknown functions.
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Indeed, the system

F (t, u(t), v1(t), v2(t), . . . , vk−1(t), v′k−1(t)) = 0,

u′(t) = v1(t),

v′1(t) = v2(t),

. . .

v′k−2(t) = vk−1(t),

t ∈ [a, b], u, v1, . . . , vk−1 : [a, b]→ Rm, is equivalent to the system (1.1.1).

Let us stress the point that when dealing with concrete equations this transformation is not

always the best way of action. However, in many cases it is, and also for theoretical purposes

considering the systems of first order differential equations is sufficient and we will usually do that

. In other words, we will be studying the systems

F (t, u(t), u′(t)) = 0, (1.1.2)

t ∈ [a, b], u : [a, b]→ Rm, F : U → Rl, where U is a domain in R2k+1.

1.2 Differential equations as vector fields

If m = l, i.e. the number of equations is equal to the number of unknown functions the system is

called determined. If l > m it is called over-dertermined and if l < m under-determined. We will be

dealing in this class exclusively with determined systems.

More precisely, for determined system one usually imposes an additional condition, that the

minor of the Jacobi matrix of the map F : U → Rl corresponding to the last m coordinates does

not vanish at every points (t, u, y) ∈ U ⊂ R2m+1 = R × Rm × Rm for which F (t, u, y) = 0. Then

according to the implicit functions locally near each such point the system (1.1.2) can be solved

with respect to the derivatives, i.e. written in the form

u′(t) = v(t, u(t)), (1.2.1)

t ∈ [a, b], u : Rm → R, v : R× Rm → R.
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Let us consider first the case when v is independent of t, i.e. the system has the form

u′(t) = v(u(t)), (1.2.2)

t ∈ [a, b], u, v : Rm → R. A system of this type is called autonomous. It is useful to think about v

as a vector field on Rm, or on a domain Ω ⊂ Rm. In other word, if coordinates in Rm are denoted

by (u1, . . . , um) and the coordinate functions of v are (v1, . . . vm) then we can think of v as a vector

field v =
m∑
1
vi(u) ∂

∂ui
. Then the problem of solving the ODE (1.2.2) can be interpreted as finding a

path

u : [a, b]→ Rm (1.2.3)

such that its velocity vector u′(t) at each point t ∈ [a, b] coincides with the vector field v at the

point u(t), i.e. with the vector v(u(t)). Usually one also impose an initial condition on the solution:

u(a) = A ∈ Rm.

The space Rm on which the vector field v lives is called the phase space of the system (1.2.2), and

the solutions (1.2.3) are called phase curves or integral curves of the system (1.2.2). The dimension

of the phase space is called the order of the system.

If one thinks about the vector field v as a velocity vector field of a motion of some fluid then

phase curves are trajectories of the individual particles. In the mechanical context when we think

about the parameter t as the time, it is customary to denote the derivative by the dot, i.e. to write

u̇ instead of u′.

Let us point out, however, that usually for problems arising from Mechanics the phase space is

not the space in which the motion takes place. Indeed, consider, for instance, the so-called, 3-body

problem when, three bodies (say, the Sun, the Earth and the Moon) move in the 3-space according

to the law of gravity, The motion of this system can be described by Newton equations of the form

ü1 = f1(u1, u2, u3),

ü2 = f2(u1, u2, u3),

ü3 = f3(u1, u2, u3),

where u1, u2, u3 ∈ R3 are positions of (the centers of mass) of the bodies. After transforming this into

a system of first order equations we get a vector field in R18. This is the phase space of our system.
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Thus a motion of a the 3-body system corresponds to a phase trajectory of the corresponding point

in its 18-dimensional phase space.

A non-autonomous system (1.2.1) can be viewed as a time-dependent vector field vt(u) = v(t, u).

For instance, one encounters this situation when studying a non-steady flow of a fluid. Note that

any non-autonomous system of order m can be viewed as an autonomous system of order m+ 1:

u̇ = v(τ(t), u(t)),

τ̇ = 1.

The space Rm+1 = Rm × R of variables (u, τ) is called the extended phase space of the original

non-autonomous system (1.2.1). In the extended phase space we can write the system as

˙̂u = v̂(û(t)), (1.2.4)

where û = (u, τ) ∈ Rm+1,

v̂ =
∑

vi(û)
∂

∂ui
+

∂

∂τ
.

1.3 Line (direction) fields and Pfaffian equations

Let us denote by λ the line field λ := Span(v̂) generated by the vector field v̂. We note that the

vector field v̂ can be uniquely reconstructed from λ, and hence the system (1.2.4) can be equivalently

viewed as the line field λ. 1

More generally, given any line field λ in a domain U ⊂ Rn one can consider the problem of its

integration as finding integral curves for this line field, i.e. paths u : [a, b]→ U such that u̇(t) ∈ λu(t)

for any t ∈ [a, b]. Note that in this case while the direction of the velocity vector is prescribed at any

point, its length is not. Hence, one can reparameterize γ by composing it with a diffeomorphism

φ : [c, d] → [a, b] and get a different integral path which corresponds to the same integral curve

viewed as a submanifold of U .

Note that in our original example of the line field λ generated by the vector field when the line

field λ has a non-singular projection to one of the coordinates lines (namely, τ). Hence, any integral

curve is graphical with respect to this projection, and therefore we can choose τ as the parameter

1In Arnold’s book is used the term direction field for the line field λ.
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on them. In fact any line field, in a neighborhood of each point projects non-singularly to one of

coordinate axis, and hence the corresponding coordinate can be chosen as a parameter for integral

curves near that point.

Consider now the case when n = 2, i.e. when λ is a line field on a domain U ⊂ R2. Then, if the

line field λ is co-orientable it can be defined by a Pfaffian equation

α = 0

for a 1-form α = Pdx+Qdy on U .

A solution of this equation, or which is the same, an integral curve of the line field λ = {α = 0}.

Hence, if it is given parametrically by x = x(t), y = y(t), t ∈ [a, b], then we get

(P (x(t), y(t))ẋ(t) +Q(x(t), y(t))ẏ(t)) dt = 0

or

P (x(t), y(t))ẋ(t) +Q(x(t), y(t))ẏ(t) = 0.

Near a point where (x0, y0) ∈ U where Q(x0, y0) 6= 0 (i.e. near a point where the projection of the

line field λ to the x-axis is non-singular, we can equivalently write the equation Pdx+Qdy = 0 as

dy = −P
Qdx, and hence look for solutions y = f(x) of the equation

f ′(x) = −P (x, f(x))

Q(x, f(x)
,

and similarly if P (x0, y0) 6= 0 we can write the equation in the form dx = −Q
P dy and look for

solutions x = g(y) of the equation

g′(y) = −Q(g(y), y)

P (g(y), y)
.

Example 1.1. Vector field on the line. Consider a vector field v(x) = f(x) ∂
∂x on R where

f(x) 6= 0 for all x ∈ R. Consider the corresponding differential equation

ẋ = v(x).

Passing to the extended phase space R2 with coordinates (x, t) this equivalent to a Pafaffian equation

dx = f(x)dt,
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which in turn can be rewritten as

dt =
dx

f(x)
,

because by our assumption f(x) 6= 0. Suppose we are looking for an integral curve passing through

a point (t0, x0). Then integrating this equation we get

t− t0 =

x∫
x0

dx

f(x)
.
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Chapter 2

Phase flow

In this chapter we denote by U, V domains in Rn. However, everything can be generalized to the

case when U and V are any two n-dimensional manifolds.

2.1 Action of a diffeomorphism on a vector field

Let f : U → V be a diffeomorphism. Let us denote by Vect(U) and Vect(V ) the spaces of vector

fields on U and V , respectively.

Given a diffeomorphism f : U → V one can define the push-forward map f∗ : Vect(U) →

Vect(V ) as follows. Let X ∈ Vect(U) be a vector field on U . Then we define the vector field

Y = f∗X by the formula

Y (v) = dxf(X(u)), where u = f−1(v).

Let us point out that unlike the pull-back operator f∗ on differential forms which defined for any

smooth maps and not, necessarily for diffeomorphisms, the push-forward operator f∗ on vector

fields is defined only for diffeomorphisms (why?).

We can similarly define the push-forward operator on line fields. If X is a vector field and

λ = Span(X) the line field which it generates then f∗λ = Span(f∗v).

Exercise 2.1. 1. Suppose n = 2 and a line field λ on U is defined by a Pfaffian equation α = 0,

where α is a 1-form on U . Show that given a diffeomorphism f : U → V the line field f∗λ on

V can be defined by a Pfaffian equation β = 0, where β :=
(
f−1

)∗
α = (f∗)−1 α).
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2. Let P : U → V be the map introducing polar coordinates. In other word U = {0 < r <∞, 0 <

φ < 2π} be a domain in R2 with Cartesian coordinates (r, φ), V = R2 \ {y = 0, x ≥ 0} in R2

with Cartesian coordinates (x, y) and P is defined by the formula

P (r, φ) = (r cosφ, r sinφ).

Let X = a ∂
∂r + b ∂∂φ be a vector field on U . Find Y := P∗X = A ∂

∂x + B p
∂y . This can also

be equivalently formulated as relating the expressions of a given vector field Y on R2 in two

different bases, the basis
(
∂
∂x ,

∂
∂y

)
and

(
∂
∂r ,

∂
∂φ

)
.

2.2 Isotopy and diffeotopy

Let us denote by ∆ ⊂ R an interval in R. This interval can be closed, open, semi-open, and even

concides with the whole R or the rays (a,∞) or (−∞, a).

Let us recall that a homotopy ft : U → V , t ∈ ∆, is just a continuous family of continuous

maps U → V , which depends continuously on the parameter ∆. Equivalently, one can think of a

homotopy as a continuous map F : U ×∆→ V . The relation to the first definition is given by the

formula

F (x, t) = ft(x), for x ∈ U, t ∈ ∆.

In this class we will always assume all homotopies to be smooth, i.e. F : U ×∆ → V is at least a

C1-smooth map.

We will also need two special cases of a homotopy, called an isotopy and a diffeotopy.

A homotopy ft : U → V , t ∈ ∆, is called a diffeotopy if ft : U → V is a diffeomorphism for each

t ∈ U . A homotopy ft : U → V , t ∈ ∆, is called a isotopy if for each t ∈ U the map ft : U → V

is an embedding, i.e. a diffeomorphism onto its image ft(U). Thus, an embedding need not to be

onto, and the image ft(U) can move during an isotopy. Of course, a diffeotopy is a special case of

an isotopy.

Let ft : U → U (note that the source and the target are the same!) be a diffeotopy. Then we

can define a family of vector fields Xt on U by the formula

Xt(x) =
dft
dt

(f−1
t (x)), x ∈ U, t ∈ ∆. (2.2.1)
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Equivalently, one can write

Xt(ft(x)) =
dft
dt

(x), x ∈ U, t ∈ ∆,

which means that for every x0 ∈ U the path t 7→ ft(x0), t ∈ ∆, is a solution of the equation

ẋ = Xt(x) (2.2.2)

For any t0 ∈ ∆ this solution satisfies the initial condition x(t0) = ft(x0).

2.3 Rectification theorems

Theorem 2.2. Let X be a C1-smooth vector field in a domain Ω ⊂ Rn. Then for any point x0 ∈ Ω

there exists ε > 0 and a neighborhood U 3 x0, U ⊂ Ω, such that there exists an isotopy ft : U → Ω,

t ∈ (−ε, ε) such that

• f0(x) = x for all x ∈ U ;

• dft(x)
dt = X(ft(x)).

We will prove this theorem later on.

The isotopy ft is called the local phase flow. If ft defined globally, i.e. it is a diffeotopy U → U ,

even defined for small interval of time (−ε, ε) then it is automatically defined for all t ∈ R, see the

next section.

Theorem 2.2 have several corollaries, most of which are essentially equivalent to the theorem

itself.

First, we note that by the standard trick of reducing the non-autonomous case to an autonomous

one in a space of a bigger dimension, Theorem 2.2 implies its own generalization:

Theorem 2.3. Let Xt, t ∈ ∆ be a C1-smooth family of vector fields in a domain Ω ⊂ Rn. Then

for any points x0 ∈ Ω and t0 ∈ ∆ there exists ε > 0 and a neighborhood U 3 x0, U ⊂ Ω, such that

there exists an isotopy ft : U → Ω, t ∈ (t0 − ε, t0 + ε) which satisfies

• ft0(x) = x for all x ∈ U ;
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• dft(x)
dt = Xt(ft(x)), x ∈ U, t ∈ (t0 − ε, t0 + ε)

The next theorem shows that two non-vanishing smooth vector fields are locally diffeomorphic.

More precisely,

Theorem 2.4. Let X be a C1-smooth vector field in a domain Ω ⊂ Rn. Suppose that that X(a) 6= 0

for some point a ∈ Ω. Then there exists a local coordinate system (y1, . . . , yn) on a neighborhood

U 3 a, U ⊂ Ω, centered at the point a such that the vector field X on U is equal to ∂
∂y1

.

In particular,

Theorem 2.5. Let λ be a C1-smooth line field in a domain Ω ⊂ Rn. Then for any point a ∈ Ω

there exists a neighborhood U 3 a, U ⊂ Ω and a local coordinate system (y1, . . . , yn) on U , centered

at the point a such that the line field Y on U is spanned by the vector field ∂
∂y1

.

Proof of Theorem 2.4. We can assume without loss of generality that a is the origin of the

Cartesian coordinate system, and the vector X(a) coincides with the vector ∂
∂x1

at the point a.

This could be achieved by rotating and scaling the original Cartesian system of coordinates. Let

Dn−1
δ := {x1 = 0;

n∑
2

x2
j ≤ δ2}.

Suppose that ε is chosen so small that Dn−1
δ ⊂ U , where U is the neighborhood provided by

Theorem 2.2. Let ft : U → Ω, t ∈ (−ε, ε) be the local phase flow constructed in Theorem 2.2.

Denote

H := {|x1| ≤ ε,
n∑
2

x2
j ≤ δ2}

and define a map F : H → Ω given by the formula F (x1, x2, . . . , xn) = fx1(0, x2, . . . , xn)).

The map F is an embedding, provided that ε, δ are small enough. Indeed, the differential of

F at the origin is the identity map (why?), and hence by the implicit function theorem it is an

embedding in a sufficiently small neighborhood of 0. But F∗(
∂
∂x1

) = X, and hence, assuming that

ε, δ are small enough, the coordinate system introduced on the neighborhood U ′ = F (H) by the

diffeomorphism F−1 : U ′ → H is the required one. �

This theorem, in particular implies existence of the solution of a system ẋ = X(x) for any initial

data x(t0) = x0 on an interval (t− ε, t+ ε), provided that the vector field X is C1-smooth. It also
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implies the uniqueness of solution with given initial data and its smooth dependence on the initial

data.

2.4 Phase flow

Let X be a smooth vector field in a domain Ω ⊂ Rn. Choose a ∈ Ω. Recall that according to

Theorem 2.3 there exists a neighborhood U 3 a in Ω and ε > 0 such that there exists a local phase

flow for the equation

ẋ = X(x), x ∈ Ω, (2.4.1)

i.e. an isotopy ft : U → Ω, t ∈ (−ε, ε), such that

• f0(x) = x for all x ∈ U ;

• dft(x)
dt = Xt(ft(x)), x ∈ U, t ∈ (−ε, ε).

Let us observe that that the interval (−ε, ε) depends on the choice of an initial point a ∈ Ω and

its neighborhood U . However, if the flow is defined on the whole Ω, i.e. it is a diffeotopy ft : Ω→ Ω

then the flow is defined for all t ∈ R.

Indeed, let E = sup ε such that the flow is defined on (−ε, ε). Suppose that E < ∞. Then

the flow is defined on (−E + δ, E + δ) for δ < ε0
2 but then we can define it on (−E′, E′), where

E′ = E−δ+ 3ε0
4 > E by the formula ft := f 3ε0

4

◦f
t− 3ε0

4

for t ∈ (E−δ, E′). This contradiction shows

that E = ∞, i.e. the flow is defined for all t ∈ R. The following lemma follows from the definition

of the flow.

Lemma 2.6. Suppose the flow ft : Ω→ Ω for a vector field X is defined for all t ∈ R. Then

1. ft ◦ fu = ft+u for all t, u ∈ R;

2. f0 = Id;

3. f−t = f−1
t .

One may express this lemma by saying that the flow of an autonomous system which is defined

for all t ∈ R forms a 1-parametric group of diffeomorphisms.
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Often for the flow ft generated by a vector field X we will use the notation Xt instead of ft.

Conversely, any 1-parametric group of diffeomorphisms ft : Ω→ Ω corresponds to a vector field

X on Ω. Indeed, according to the formula (2.2.1) the isotopy ft defines a family of vector fields

Xt(x) = dft
dt (f−1

t (x)), x ∈ Ω, t ∈ R. But in this case, denoting y = f−1
t (x)

Xt(x) =
dft
dt

(y) = lim
u→0

ft+u(y)− ft(y)

u
= lim

u→0

fu(x)− ft(x)

u
= X0(x),

i.e. Xt is independent of t.

Proposition 2.7. Suppose that a vector field X on Ω integrates to a flow Xt : Ω→ Ω, t ∈ R, and

f : Ω → Ω̃ a diffeomorphism. Denote X̃ := f∗X. Then the vector field X̃ integrates to a flow X̃t,

t ∈ R, on Ω̃ and

X̃t = f ◦Xt ◦ f−1, t ∈ R.

Proof. For any point y = f(x) ∈ Ω̃ we have

d

dt
(X̃t(y))

∣∣
t=0

=
d

dt
(f ◦Xt ◦ f−1(y))

∣∣
t=0

=
d

dt
(f ◦Xt(x))

∣∣
t=0

= dxf(
d

dt
(Xt(x)

∣∣
t=0

) = dxf(X(x))

= f∗X(y) = X̃(y).

�

2.5 Symmetries

Let λ be a line field in Ω ⊂ Rn. A diffeomorphism f : Ω→ Ω is called a symmetry of the line field

λ if f∗λ = λ.

Lemma 2.8. All symmetries of the line field λ form a group.

Indeed, Id is a symmetry, if f, g are symmetries then f ◦g is a symmetry and if f is a symmetry

then f−1 is a symmetry.

Consider a differential equation

ẋ = Xt(x), x ∈ Ω, t ∈ ∆. (2.5.1)
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with the phase space Ω ⊂ Rn. Let λ be the corresponding line field on its extended phase space

Ω ×∆. Then any symmetry f : Ω ×∆ → Ω ×∆ of the line field λ is called the symmetry of the

equation (2.5.1).

Let us stress the point that a symmetry is a diffeomorphism of an extended phase space, i.e. it

acts on space-time domain, even in the case of an autonomous system. Of course, in the case of an

autonomous system ẋ = X(x), x ∈ Ω, one can consider also more restricted class of symmetries,

namely diffeomorphisms h : Ω→ Ω preserving the vector field X, i.e. h∗X = X, as for instance, in

the following

Proposition 2.9. Consider an autonomous system ẋ = X(x) on Ω ⊂ Rn. Suppose that it integrates

to a phase flow Xt : Ω → Ω. Then for each s ∈ R the diffeomorphism Xs is a symmetry of the

equation.

Proof. Let us compute Y := Xs
∗(X). By definition of the phase flow,

X(x) =
d

dt
Xt(x)

∣∣
t=0

.

On the other hand, by the chain rule for any path γ : (−ε, ε) → Ω such that γ(0) = x and

γ′(0) = X(x) we have d
dtf(γ(t))

∣∣
t=0

= dfx(X(x)) = f∗X(f(x)). Denote f := Xs. Then

f∗X(f(x)) =
d

dt
f ◦Xt(x)

∣∣
t=0

=
d

dt
Xs+t(x)

∣∣
t=0

= X(Xs(x)).

In other words, f∗X(f(x)) = X(f(X)), i.e. f∗X = X. �

Theorem 2.10. Let Y and λ be a vector field and a line field in Ω.

• Y integrates to a flow Y s : Ω→ Ω;

• Y admits a transverse hypersurface Σ such that
⋃
s∈R

Y s(Σ) = Ω and either

(a) Y s(Σ) 6= Y s′(Σ) for s 6= s′, or

(b) the flow Y s is periodic with period T , i.e. Y s+T = Y s for all s ∈ R and Y s(Σ) 6= Y s′(Σ)

if |s− s′| < T .

Suppose that Y s is a symmetry of λ for all s ∈ R. Then the order of the differential equation

corresponding to λ can be reduced by 1. In particular, if dim Ω = 2 then the Pfaffian equation
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corresponding to λ can be reduced to an equation with separable variables, and hence solved in

quadratures.

Proof. We consider below only the case n = 2. The proof in the general case follows a similar

scheme. In this case Σ is a 1-dimensional manifold, and hence it is diffeomorphic either to R or to

S1. We will concentrate below on the case of R. Consider a parameterization φ : R → Σ. Define a

map Φ : R2 → Ω by the formula

Φ(u, v) = Y v(φ(u)).

We can think about (u, v) as curvilinear coordinates in Ω. The flow Y s in these coordinates look

like translation along the v-direction:

(u, v) 7→ (u, v + s).

The line field λ in these coordinates can be defined by a 1-form α = P (u, v)du + Q(u, v)dv. Let

us assume that P 6= 0. In fact, at every point (u, v) either P (u, v) 6= 0 or Q(u, v) 6= 0. The case

when Q 6= 0 can be considered similarly. Then we can define the line field λ by a Pfaffian equation

du+R(u, v)dv = 0, where R = Q
P .

The fact that the line field λ is preserved by the flow Y s means that

(Y s)∗(du+R(u, v)dv) = fs(u, v)(du+R(u, v)dv).

But (Y s)∗(du+R(u, v)dv) = du+R(u, v+ s)dv. Hence, fs(u, v) ≡ 1 and R(u, v+ s) = R(u, v), i.e.

the function R is independent of V , so we will just write R(u).

Thus in coordinates (u, v) the equation takes the form

du+R(u)dv = 0

which is an equation with separable variables. �

Let us notice that if we change the variables (u, v) to (u, V ) where v = h(V ) then the variables

will separate anyway. Indeed, the form du + R(u)dv in coordinates (u, V ) takes the form du +

R(u)h′(V )dV . And thus the variables in the equation du+R(u)h′(V )dV = 0 separate as well.

Hence, it is not so important that the coordinate v along trajectories of Y coincides with the

time-parameter, but what is crucial is that v is constant on translates of Σ under the flow Y s.
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2.6 Quasi-homogeneous equations

Consider in Rn the vector field

Y =
∑

αixi
∂

∂xi
,

where α1, . . . , αn. It is called an Euler field with weights α1, . . . , αn, or just an Euler field, if all

weights are equal to 1.

The vector field Y integrates to a 1-parametric group of linear transformations Y s : Rn → Rn

given by the formula

Y s(x1, . . . , xn) = (eα1sx1, . . . , e
αnsxn).

A function f : Rn → R is called quasi-homogeneous of degree d with weights α1, . . . , αn if

f(Y s(x)) = edsF (x) for all x ∈ Rn, s ∈ R.

A line field λ in a domain Ω is called quasi-homogeneous of degree d with weights α1, . . . , αn) if

Y s
∗ λ = λ for all s, i.e. transformations Y s are symmetries of λ.1

A differential equation is called quasi-homogeneous if the corresponding line field in the extended

phase space is quasi-homogeneous.

Exercise 2.11. 1. Consider a system of equations ẋ = f(x), x ∈ Rn. Suppose that the coor-

dinate functions fi are quasi-homogeneous of degrees di with the same weights α1, . . . , αn. The

corresponding line field λ in the extended phase space (x, t) is given by the system of Pfaffian

equations

dx1 = f1(x1, . . . , xn)dt;

. . .

dxn = fn(x1, . . . , xn)dt.

Suppose d1 − α1 = · · · = dn − αn. Prove that the line field λ is quasi-homogeneous and find the

weights. Let Y s be the quasi-homogeneous flow Y s(x1, . . . , xn) = (eα1sx1, . . . , e
αnsxn). Compute

the push-forward by Y s of the vector field X =
n∑
1
fi

∂
∂xi

.

1 Note that the above definition implies, among other things that domain Ω itself is invariant with respect to Y s,

i.e. Y s(Ω) = Ω for all s ∈ R.
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2. Consider equation of k-th order with respect to 1 unknown function:

dky

dxk
= f(x, y).

Suppose that f(x, y) is a quasi-homogeneous function of degree d with weights α, β. Find a relation

between α, β and d which ensures that the line field representing the system in its extended (k+1)-

dimensional phase space is quasi-homogeneous (and find weights).

2.7 Directional derivative revisited

Let X be a smooth vector field defined on a domain U ⊂ Rn (more generally we can assume that U

is any n-dimensional manifold). Given a function f : U → R we can define the directional derivative

LXf of f along X:

LXf = lim
s→0

f(x+ tX)− f(x)

t
. (2.7.1)

The directional derivative has many other notation: DX(f), ∂f∂X , df(X), . . . .

Let us denote by Xt : U ′ → U , t ∈ (−ε, ε), the local phase flow of Xt defined on a neighborhood

U ′ ⊂ U of a point a ∈ U .

Let us observe that the directional derivative can be also defined by the formula

LXf(a) =
d

ds
f ◦Xs

∣∣∣
s=0

(a). (2.7.2)

It turns out that formula (2.7.2) can be generalized to define an analog of directional derivatives

for differential forms and vector fields, which is the Lie derivative.

2.8 Lie derivative of a differential form

Let ω be a differential k-form. We define the Lie derivative LXω of ω along a vector field X as

LX ω =
d

ds
(Xs)∗ω

∣∣∣
s=0

. (2.8.1)

Note that if ω is a 0-form, i.e. a function f , then (Xs)∗f = f ◦Xs, and hence, in this case definitions

(2.7.2) and (2.8.1) coincide, i.e. for functions the Lie derivative is the same as the directional

derivative.
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Proposition 2.12. The following identities hold

1. LX(ω1 ∧ ω2) = (LXω1) ∧ ω2 + ω1 ∧ LXω2.

2. LX(dω) = d(LXω).

Proof.

1. LX(ω1 ∧ ω2) =
d

ds
(Xs)∗(ω1 ∧ ω2)

∣∣∣
s=0

=
d

ds

(
(Xs)∗ω1 ∧ (Xs)∗ω2

)∣∣∣
s=0

=
d

ds

(
(Xs)∗ω1

)∣∣∣
s=0
∧ ω2 + ω1 ∧

d

ds

(
(Xs)∗ω2

)∣∣∣
s=0

= (LXω1) ∧ ω2 + ω1 ∧ LXω2.

2. LX(dω) =
d

ds

(
(Xs)∗dω

)∣∣∣
s=0

=
d

ds

(
d(Xs)∗ω

)∣∣∣
s=0

= d
( d
ds

(Xs)∗ω
∣∣∣
s=0

)
= LX(dω).

�

The following formula of Élie Cartan provides an effective way for computing the Lie derivative

of a differential form.

Theorem 2.13. Let X be a vector field and ω a differential k-form. Then

LXω = d(X ω) +X dω. (2.8.2)

Proof. Suppose first that ω = f is a 0-form. Then LXf = df(X) = X df , which is equivalent

to formula (2.8.2), because in this case the first term in the formula is equal to 0. Then, using

Proposition 2.122) we get

LXdf = dLXf = d(df(X)) = d(X df),

which is again equivalent to (2.8.2) because in this case ddf = 0. Next we note that if the formula
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(3.8.1) holds for ω1 and ω2 then it holds also for ω1 ∧ ω2. Indeed, we have

(?) LX(ω1 ∧ ω2) = (LXω1) ∧ ω2 + ω1 ∧ LXω2

= (X dω1 + d(X ω1)) ∧ ω2 + ω1 ∧ (X dω2 + d(X ω2))

= (X dω1) ∧ ω2 + ω1 ∧ (X dω2) + d(X ω1) ∧ ω2 + ω1 ∧ d(X ω2)

On the other hand, denoting by d1 and d2 the degrees of ω1 and ω2, we get

(??) X d(ω1 ∧ ω2) + d(X (ω1 ∧ ω2))

= X (dω1 ∧ ω2 + (−1)d1ω1 ∧ dω2) + d((X ω1) ∧ ω2 + (−1)d1ω1 ∧ (X ω2))

= (X dω1) ∧ ω2 + (−1)d1+1dω1 ∧ (X ω2) + (−1)d1(X ω1) ∧ dω2 + ω1 ∧ (X dω2)

+ d(X ω1) ∧ ω2 + (−1)d1+1X ω1 ∧ dω2 + (−1)d1dω1 ∧ (X ω2) + ω1 ∧ (d(X ω2))

= (X dω1) ∧ ω2 + ω1 ∧ (X dω2) + d(X ω1) ∧ ω2 + ω1 ∧ d(X ω2) .

Comparing the computation in (?) and (??) we conclude that

LX(ω1 ∧ ω2) = X d(ω1 ∧ ω2) + d(X (ω1 ∧ ω2)).

By induction we can prove a similar formulas for an exterior product of any number of forms.

Finally we observe that any differential k-form ω can be written in coordinates as∑
1≤i1<···<ik≤n

fi1...ik(x)dxi1 ∧ · · · ∧ dxik ,

i.e. ω is a sum of exterior products of functions (0-forms) and exact 1-forms, and hence Cartan’s

formula follows. �

Proposition 2.14. We have

LXω = 0 ⇐⇒ (Xs)∗ ω = ω for all s ∈ R.

Proof. If (Xs)∗ ω ≡ ω then LXω = d
ds(X

s)∗ω
∣∣∣
s=0

= 0. To prove the converse we note that

d

ds
(Xs)∗ω

∣∣∣
s=s0

= lim
t→0

(Xs0+t)∗ω − (Xs0)∗ω

t
= (Xs0)∗

(
lim
t→0

(Xt)∗ω − ω
t

)
= (Xs0)∗ (LXω) ,

and hence if LXω = 0 then (Xs)∗ ω = ω. �
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2.9 Lie bracket of vector fields

Let A,B ∈ Vect(U) be two vector fields on a domain U ⊂ Rn. As it was shown in 52H, there is

a vector field C ∈ Vect(V ), called the Lie bracket of the vector fields A and B and denoted by

C = [A,B], which is characterized by the following property: for any smooth function φ : U → R

one has

LCφ = (LALB − LBLA)φ.

A surprising fact here is that though the right-hand side of this equation seems to be the second

order differential operator, the left-hand side is the first order operator, so the second derivatives

on the right side cancel each other.

Recall that the bracket [A,B] has the following properties

• Lie bracket is a bilinear operation;

• [A,B] = −[B,A] (skew-symmetricity);

• [[A,B]C] + [[B,C], A] + [[C,A], B] = 0 (Jacobi identity);

• If A =
n∑
1
aj

∂
∂xj

and B =
n∑
1
bj

∂
∂xj

then

[A,B] =

n∑
i=1

 n∑
j=1

aj
∂bi
∂xj
− bj

∂ai
∂xj

 ∂

∂xi
. (2.9.1)

In this section we will give a new interpretation of the Lie bracket [A,B].

Recall that given a diffeomorphism f : U → V we can define the push-forward map

f∗ : Vect(U)→ Vect(V ).

We can also define the pull back map

f∗ : Vect(V )→ Vect(U)

by the formula f∗ := f−1
∗ . Note that we also have f∗ = f−1

∗ .

We define the Lie derivative LAB of the vector field B along the vector field A in a similar way

as we defined in Section 2.8 the Lie derivative of a differential form. Namely,

LAB =
d (As)∗B

ds

∣∣∣
s=0

. (2.9.2)
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More explicitly,

LAB(x) = lim
s→0

dAs(x) (A−s) (B(As(x))−B(x)

s
.

Similarly, to Proposition 2.14 we have

Proposition 2.15.

LAB = 0 ⇐⇒ (As)∗B ≡ B for all s ∈ R.

Proof. We have

d (As)∗B

ds

∣∣∣
s=s0

= lim
s→0

(As+s0)
∗
B − (As0)∗B

s

= lim
s→0

(As0)∗
(

(As)∗B −B
s

)
= (As0)∗

(
lim
s→0

(As)∗B −B
s

)
= (As0)∗ (LAB) .

Hence, if LAB = 0 then d(As)∗B
ds for all s and hence (As)∗B =

(
A0
)∗
B = B. The converse is

obvious. �

Theorem 2.16. For any two vector fields A,B ∈ Vect(U)

LAB = [A,B].

Proof. Note that As(x) = x+ sA(x) + o(s). Hence, we can write

dyA
−s = Id− sdyA+ o(s),

where we view here A as a map Rn → Rn. Furthermore, plugging y = As(x) we get

dAs(x)A
−s = Id− sdxA+ o(s).

Indeed, dAs(x)A− dxA →
s→0

0 and hence s(dyA− dxA) = o(s). We also have

B(As(x)) = B(x+ sA(x) + o(x)) = B(x) + sdxB(A(x)) + o(s).

Thus, ignoring o(s)-terms we get
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LAB = lim
s→0

1

s

(
dAs(x)

(
A−s

)
(B(As(x)))−B(x)

)
= lim

s→0

1

s
((Id− sdxA)) (B(x) + sdxB(A(x)))−B(x))

= lim
s→0

1

s
(B(x)− sdxA(B) + sdxB(A)−B(x)) = dxB(A)− dxA(B).

But the right-hand-side expression written in coordinates has the form

dxB(A)− dxA(B) =
n∑
i=1

 n∑
j=1

aj
∂bi
∂xj
− bj

∂ai
∂xj

 ∂

∂xi

which coincides with the expression (2.9.1) for the Lie bracket. �

Exercise 2.17. Prove that for any smooth function φ one has

L[A,B]φ =
∂2(φ ◦As ◦Bt)

∂s∂t
.

If [A,B] = 0 then one says that the vector field A and B commute.

Lemma 2.18. Suppose two commuting vector fields A,B on Ω can be integrated into phase flows

At, Bs. Then

At ◦Bs = Bs ◦At,

t, s ∈ R, i.e. the flows of commuting vector fields. Conversely, if two flows At, Bs commute for all

t, s ∈ R then [A,B] = 0.

Proof. We have [A,B] = LAB. Then according to Proposition 2.15 we have

(As)∗B = B. (2.9.3)

Recall from Proposition 2.7 that for any diffeomorphism f : Ω→ Ω if f∗B = C then

Ct = f−1 ◦Bt ◦ f, t ∈ R.

Applying this to f = As and using (2.9.3) we conclude

Bt = A−s ◦Bt ◦As,

or

As ◦Bt = Bt ◦As, s, t ∈ R.

�
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2.10 First integrals

Suppose we are given a differential equation

ẋ = A(x), (2.10.1)

where A is a vector field on the domain U ⊂ Rn A function φ : U → R is called a first integral, or

simply an integral of equation (2.10.1) if it is constant on solutions of this equation, or equivalently

on integral curves of the vector field A.

Clearly, a necessary and sufficient condition for φ to be an integral is to satisfy the equation

LAφ = 0. Here LAφ denotes the directional derivative of φ along A.

If φ is an integral of (2.9.2) then the solutions are contained in the level sets of the function φ,

and hence, this allows us to reduce the order of equation by 1. If (2.9.2) has two integrals φ1, φ2,

then the solutions lie in the intersection of level sets {φ1 = c1} and {φ2 = c2}, c1, c2 ∈ R. Hence, if

these level sets transverse to each other (which means that the differential dφ1 and dφ2 are linearly

independent at every point of the intersection), then the solutions lie in {φ1 = c1} ∩ {φ2 = c2},

which allows to further reduce the order of the system. If the order is reduced to 1 then the equation

can be explicitly integrated in quadratures. Such systems are called completely intregrable.

Some important examples of integrals which come from Mechanics are discussed in the next

section.

2.11 Hamiltonian vector fields

Consider the vector space R2n with coordinates (p1, . . . , pn, q1, . . . , qn) and a closed differential 2-

form ω =
n∑
1
dpi ∧ dqi. Note that this form is non-degenerate, i.e. its matrix is non-degenerate at

every point. Therefore, the map J : Vect(R2n) → Ω1(R2n) given by the formula X 7→ X ω is

an isomorphism between the space Vect(R2n) of vector fields and the space Ω1(R2n) of differential

1-forms on Rn. In coordinates the map J associates with a vector field
n∑
1
Pi

∂
∂Pi

+
n∑
1
Qi

∂
∂Qi

the

differential form
n∑
1
Pidqi −Qidpi.

Lemma 2.19. Given a vector field A on R2n the differential 1-form J(A) = A ω is closed if and

only if LAω = 0.
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Proof. Indeed, according to Cartan’s formula (2.8.2) we have LAω = d(A ω) = dJ(A) because ω

is closed. �

Given a function H : R2n → R we denote by XH the vector field −J−1(dH). Vector fields

obtained by this construction are called Hamiltonian.

To find a coordinate expression for XH we write XH =
n∑
1
ai

∂
∂pi

+ bi
∂
∂qi

. Then

XH ω =

(
n∑
1

ai
∂

∂pi
+ bi

∂

∂qi

)
n∑
1

dpi ∧ dqi =

n∑
1

−bidpi + aidqi.

Hence, the equation

XH ω = −dH = −
n∑
1

∂H

∂pi
dpi +

∂H

∂qi
dqi

implies ai = −∂H
∂qi
, bi = ∂H

∂pi
, i = 1, . . . , n. Thus,

XH =

n∑
1

−∂H
∂qi

∂

∂pi
+
∂H

∂pi

∂

∂qi
.

In a shorter form, omitting indices we will write

XH = −∂H
∂q

∂

∂p
+
∂H

∂p

∂

∂q
.

Thus the system of differential equations corresponding to the vector field XH has the form

ṗ = −∂H
∂q

q̇ =
∂H

∂p
.

(2.11.1)

These equations play an important role in Mechanics, and called Hamilton canonical equations.

They describe the phase flow of a mechanical system. Here the coordinates q = (q1, . . . , qn) de-

termine a position of the system, or a point in the configuration space of the mechanical system.

The coordinates p = (p1, . . . , pn) are called momenta and can be viewed as vectors of the cotan-

gent bundle to the configuration space. The function H is the full energy of the system expressed

through coordinates and momenta.

Lemma 2.20. The function H is a first integral of the equation (2.11.1), i.e. LXHH = 0.
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Proof.

LXHH = dH(XH) = −∂H
∂p

∂H

∂q
+
∂H

∂q

∂H

∂p
= 0.

�

Example 2.21. Consider Newton equations

q̈i = −∂U
∂qi

, i = 1, . . . , n,

or in shorter notation

q̈ = −∂U
∂q

= −∇U.

Reducing it to a system of first order equation we get

ṗ = −∂U
∂q

(2.11.2)

q̇ = p. (2.11.3)

Consider the full energy H(p, q) =
n∑
1

p2i
2 + U(q) = 1

2p
2 + U(q). Then ∂H

∂q = ∂U
∂q and ∂H

∂p = p, and

hence equation (2.11.2) takes the form (2.11.1) with this Hamiltonian function H. Lemma 2.20 is

the law of conservation law of energy.

Lemma 2.22. Let XH be a Hamiltonian vector field and Xs
H the phase flow it generates. Then

(Xs
H)∗ ω = ω for all s ∈ R. In other words, the flow of a Hamiltonian vector field preserves the

form ω.

Proof. It is sufficient to prove that LXHω = 0. Using Theorem 2.13 we get

LXHω = d(XH ω) +XH dω.

But ω is closed, and hence dω = 0, while XH ω = dH. Thus, LXHω = ddH = 0. �

2.12 Canonical transformations

The equations (2.11.1) are called canonical because they are invariant with respect to a large group

of transformation of the phase space. Let us call a diffeomorphism f : R2n → R2n a symplectomor-

phism (or alternatively a canonical transformation) if it preserves the form ω. Then it preserves also
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the form of the equations (2.11.1). Indeed, suppose f(p, q) = (p̃, q̃). Then f∗(ω) = f∗(dp ∧ dq) =

dp̃ ∧ dq̃ = ω = dp ∧ dq. Thus if we express the function H(p, q) through the coordinates p̃, q̃,

H(p, q) = H̃(p̃, q̃) then the equation (2.11.1) will take the same form in coordinates (p̃, q̃):

˙̃p = −∂H̃
∂q̃

˙̃q =
∂H̃

∂p̃
.

(2.12.1)

The following proposition provides an important class of canonical transformations,

Proposition 2.23. Consider any diffeomorphism f : U → V between two domains U, V ⊂ Rn. Let

Df be the Jacobi matrix of the map U . Then the map

(p, q) 7→
(

(Df)−1
)T

p, f(q))

is a symplectomorphism f̂ of the domain Û = {p ∈ Rn, q ∈ U} to the domain V̂ = {p ∈ Rn, q ∈ V }.

Here
(

(Df)−1
)T

is the matrix transpose to inverse of the Jacobi matrix Df .

In other words, any change of q-coordinates extends to a canonical change of the (p, q)-coordinates.

Proof. Let us denote the elements of the matrix (Df)−1 by gij , i, j = 1, . . . , n. Thus,
n∑
i
gji

∂fi
∂qk

=

δjk, δjk = 1 if j = k and δjk = 0 if j 6= k.

Let us compute f̂∗(pdq) = f̂∗
(

n∑
1
pidqi

)
. We have

f̂(p1, . . . , pn, q1, . . . , qn) =

(
n∑
1

gj1pj , . . . ,
n∑
1

gjnpj , f1(q), . . . , fn(q)

)
.

Hence,

f̂∗(pdq) = f̂∗

(
n∑
1

pidqi

)
=

n∑
i=1

n∑
j=1

gjipjdfi

=

n∑
i,j,k=1

gji
∂fi
∂qk

pjdqk =
n∑

j,k=1

δjkpjdqk

=

n∑
1

pkdqk = pdq.

Hence,

f̂∗ω = f̂∗dp ∧ dq = d(f̂∗(pdq)) = d(pdq) = dp ∧ dq = ω.

�
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Corollary 2.24. . Suppose that there exists a change of coordinates q̃ = f(q) such that in new

coordinates the Hamiltonian function H is independent of the coordinate q̃1. Then p̃1 =
n∑
1
gj1pj is

a first integral of the system (2.11.1). Here the notation gij stands for the elements of the matrix

(Df)−1.

Proof. Let us extend the coordinate change q 7→ q̃ = f(q) to a canonical change of coordinates

(p, q) 7→ (p̃, q̃) = f̃(p, q) as in Proposition 2.23. Then the equation in the new coordinates (p̃, q̃)

also has the canonical Hamiltonian form (2.12.1). Then ˙̃p1 = ∂H
∂q̃1

= 0 because by assumption the

Hamiltonian is independent of the coordinate q̃1. Hence p̃1 =
n∑
1
gj1pj is constant along trajectories,

i.e. it is a first integral. �

2.13 Example: angular momentum

Consider a Newton equation

q̈ = −∇U(q), q ∈ R3, (2.13.1)

which describes the motion of a particle of mass 1 in a field with a potential energy function U(q).

Suppose there exists an axis l in R3 such that the function U(q) remains invariant with respect to

rotations around l.

The system (2.13.1) can be rewritten in the Hamiltonian form (2.11.1) with the Hamiltonian

function H = p2

2 +U(q) =
p21
2 +

p22
2 +

p23
2 +U(q1, q2, q3). Let us assume for simplicity that the q3-axis

coincides with the axis l.

Let us change coordinates (q1, q2, q3) to cylindrical coordinates (φ, r, z):

q1 = r cosφ, q2 = r sinφ, q3 = z.

Equivalently,

φ = arctan
q2

q1
, r =

√
q2

1 + q2
2, z = q3.

Computing the Jacobi matrix D(φ,r,z)
D(q1,q2,q3) we get

∂φ
∂q1

∂φ
∂q2

∂φ
∂q3

∂r
∂q1

∂r
∂q2

∂r
∂q3

∂z
∂q1

∂z
∂q2

∂z
∂q3

 =


− q2
q21+q22

q1
q21+q22

0

q1√
q21+q22

q2√
q21+q22

0

0 0 1


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Then the inverse matrix is equal to
−q2

q1√
q21+q22

0

q1
q2√
q21+q22

0

0 0 1


Let us extend the coordinate change (q1, q2, q3) 7→ (r, φ, z) to a canonical coordinate change

(q1, q2, q3, p1, p2, p3) 7→ (φ, r, z, pφ, pr, pz),

where we denoted by pr, pφ, pz momenta variables corresponding to new coordinates (r, φ, z). In

fact, we need only the coordinate pφ which is given by pφ = −p1q2 + q1p2. Thus, the function

−p1q2 + p2q1 is the first integral. It is called the angular momentum around the q3-axis.

Recall that along trajectories we have pi = q̇i, i = 1, 2, 3. Hence, q1q̇2 − q̇1q2 is constant along

the trajectories. But this is exactly the projection M3 of the cross-product M = q× q̇ to the q3-axis

which is the axis of rotational symmetry. Introducing cylindrical coordinates (r, φ, z)with the axis

q3 as z, then we get M3 = r2φ̇.

In particular, if U(q) is invariant under all rotations, i.e. it depends only on the distance r = ||q||

from the origin, then all components of the angular momentum vector M = q × q̇, and hence, the

angular momentum vector M is constant along trajectories. Note that qṀ = 0, and hence the

motion happens in the plane orthogonal to the vector M . In the cylindrical coordinates with M at

its axis, the absolute value of the angular momentum,

||M || = r2φ̇

is preserved.
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Chapter 3

Simplification of the matrix of a linear

operator

3.1 Linear operators and their matrices

Let A : V1 → V2 be a linear operator between n1-dimensional vector space V1 and n2-dimensional

manifold V2. Given bases B1 = (v1
1, . . . , v

1
n1

) in V1 and B2 = (v2
1, . . . , v

2
n2

) in V2 one can associate with

it an n1 × n2-matrix MB2B1 (A) = A whose columns are coordinates of the vectors A(v1
1), . . . ,A(v1

n1
)

in the basis B2. Given a third space V3 with a basis B3 = (v3
1, . . . , v

3
n3

) and a map B : V2 → V3 one

can associate with it a matrix B = MB2B1 (A). Then the composition C = B ◦ A has a matrix

C = MB3B1 (C) = MB3B2 (B)MB2B1 (A) = BA. (3.1.1)

Let us apply this formula to the following situation. Suppose we are given two different bases

B̃1 = (ṽ1
1, . . . , ṽ

1
n1

) in V1 and B̃2 = (ṽ2
1, . . . , ṽ

2
n1

) in V2. In order to relate the matrices A = MB
2

B1 (A)

and Ã = M B̃2
B̃1

(A) let us consider the following diagram

V1
B̃1

Id−→V1
B1

A−→V2
B2

Id−→V2
B̃2
.

Then, using (3.1.1) we get

M B̃
2

B̃2 (A) = MB
2

B̃2 (Id)MB2B1 (A)M B̃1B1 (Id). (3.1.2)
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The matrix M B̃
1

B1 (Id) is called the transition matrix from the basis B1 to B̃1. Its columns are

coordinates of the vectors of the basis B̃1 in the basis B1. Note that the formula (3.1.1) also implies

that

M B̃
1

B1 =
(
MB

1

B̃1

)−1
.

We will mostly consider below operators A : V → V which map an n-dimensional space V into

itself. Given a basis B in V we will write MB(A) instead of MBB (A).

Suppose we are given another basis B̃. Let us denote by C the transition matrix M B̃B from B to

B̃. Then, using (3.1.2) we get

Ã := MB̃(A) = C−1AC, (3.1.3)

where we denoted A := MB(A).

3.2 Characteristic polynomial, eigenvectors and eigenvevalues

Let us assume that V is a complex vector space and A : V → V is a complex linear operator.

A complex number λ ∈ C is called an eigenvalue of the operator A if there exists a non-zero

vector v ∈ V such that A(v) = λv. The vector v is called an eigenvector corresponding to the

eigenvalue λ. The set of all eigenvectors corresponding to the eigenvalue λ (including the 0-vector)

form a linear subspace of V , which is called the eigenspace corresponding to the eigenvalue λ and

is denoted by Eλ.

Let us observe that if A is the matrix of A in a basis B then the determinant det(A − λI) is

independent of a choice of B. Indeed,

det(C−1AC − λI) = det(C−1AC − C−1λIC)

= det(C−1A− λI)C) = detC−1 det(A− λI) detC = det(A− λI).

This determinant, which is a polynomial of degree n is called the characteristic polynomial of the

operator A, or the matrix A. We will denote it either by χA(λ) or χA(λ).

Lemma 3.1. λ is an eigenvalue of an operator A if and only if it is a root of its characteristic

polynomial, i.e. χA(λ) = 0.
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Indeed, if λ is an eigenvalue, then Ker (A − λId) 6= 0, and hence the rank of the operator is

< n. This is in turn equivalent to the vanishing of its determinant, i.e. χA(λ) = det(A− λId) = 0.

Conversely, det(A− λId) = 0 implies that Ker (A− λId) 6= 0, i.e. λ is an eigenvalue.

Consider an expansion of the characteristic polynomial of a matrix A = (aij) :

χA(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

a11 − λ a12 . . . a1(n−1) a1n

. . . . . . . . .

a(n−1)1 a(n−1)2 . . . a(n−1)n − λ a(n−1)n

an1 an2 . . . a(n−1)n ann − λ

∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)nλn + (−1)n−1TrAλn−1 + · · ·+ detA

= (−1)n(λ− λ1)k1 . . . (λ− λs)ks .

Here we denote by TrA the trace
n∑
1
aii of the matrix A, i.e. the sum of its diagonal elements.

Note that TrA (as well as detA and all other coefficients of the characteristic polynomial) depends

only on the operator A and not on its matrix A. Hence, we can also use the notation TrA instead

of TrA.

Exercise 3.2. Prove that

det eA = eTrA.

Hint: Replace A by At and differentiate both parts with respect to t.

Note that the decomposition χA(λ) = (−1)n(λ− λ1)k1 . . . (λ− λs)ks into the product of linear

terms is possible only because we consider the complex case.

The set of all eigenvalues of an operator A is called its spectrum.

3.3 Diagonalization of the matrix of a linear operator

The matrix of an operator A is diagonal in a basis B if and only if this basis consists of eigenvectors

of A. In this case the diagonal elements are eigenvalues of A.

Lemma 3.3. If v1, . . . , vk are non-zero eigenvectors which correspond to pairwise distinct eigen-

values of an operator A then they are linearly independent.
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Proof. We argue by induction. Suppose the claim is already proven for the eigenvectors v1, . . . , vk−1.

Suppose that we have

c1v1 + · · ·+ ck−1vk−1 + ckvk = 0. (3.3.1)

Then applying to both parts the operator A we get

λ1c1v1 + · · ·+ λk−1ck−1vk−1 + λkckvk = 0.

Subtracting from the second equality the first one multiplied by λk, we get

(λ1 − λk)c1v1 + · · ·+ (λk−1 − λk)ck−1vk−1 = 0.

But λj − λk 6= 0 for all j = 1, . . . , k − 1. Hence, c1 = · · · = ck−1 = 0. But then from (3.3.1)

follows that ck = 0 as well, and therefore, the vectors v1, . . . , vk are linearly independent. �

Corollary 3.4. Suppose that A has n distinct eigenvalues (i.e. its characteristic polynomial does

not have multiple roots). Then there is a basis of its eigenvalues, i.e. the matrix of A is diagonal-

izable.

The next lemma shows that a generic matrix has distinct eigenvalues, and hence diagonalizable.

Lemma 3.5. The set of diagonalizable matrices is everywhere dense in the space Mn of all n× n

complex matrices.

Exercise 3.6. Prove that the set of diagonalizable matrices is also open in the space Mn.

To prove Lemma 3.5 we need the following

Lemma 3.7. For any operator A : V → V there exists a basis in which its matrix has an upper

triangular (or a lower triangular) form.

Proof. We prove it by induction over the dimension of the vector space V . For 1-dimensional spaces,

the claim is obviously true. Suppose we already proved it for operators on spaces of dimension < n.

Suppose now that dimV = n. Operator A has at least one eigenvalue λ1. Let v1 6= 0 be the

corresponding eigenvector. Let us complete it to a basis v1, v2 . . . , vn of V . The matrix A of A in
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this basis has the form

A =


λ1 a12 a13 . . . a1n

0 a22 a23 . . . a2n

. . . . . . . . .

0 an2 an3 . . . ann


�

Denote V ′ := Span(v2, . . . , vn) and consider an operator A′ : V ′ → V ′ which is given in the

basis v2, . . . , vn of V ′ by the matrix

A′ =


a22 . . . a2n

. . . . . .

an2 . . . ann


By the inductional hypothesis, there exists a basis ṽ2, . . . , ṽn of the space V ′ such that the matrix

of A′ in this basis has an upper triangular form. Then the vectors v1, ṽ2, . . . , ṽn form a basis of V ,

and the matrix of A in this basis has an upper triangular form, because for each j = 2, . . . , n we

have A(ṽj) = A′(ṽ) + cjv1 for some cj . �

Proof of Lemma 3.5 According to Lemma 3.7 any matrix can be written as A = C−1TC, where

T is a triangular matrix. But for a triangular matrix its eigenvalue concides with the diagonal

elements. Hence, there exists an arbitrarily close matrix T ′ with all distinct eigenvalues. Then the

matrix A′ = C−1T ′C is the required approximation of A. �

Let us remark that matrix can be diagonalizable even when it has multiple eigenvalues, though

in general in that case one can only get a more complicated Jordan normal form of the matrix

which we discuss below.

Let us also point out that there several important classes of diagonalizable matrices. For in-

stance, any real symmetric matrix is diagonalizable (specrtral theorem). More generally any complex

Hermitian matrix A, i.e. a matrix which satisfies AT = A is diagonalizable.
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3.4 Hamilton-Cayley theorem

We consider in this section polynomial functions of linear operators, or which is equivalent, of their

matrices. Given a polynomial f(λ) = c0λ
n+c1λ

n−1+· · ·+cn we have f(A) = c0A
n+c1A

n−1+· · ·+cnI

for a square matrix A.

Note that for any two polynomials f(λ) and g(λ) the matrices f(A) and g(A) always commute:

f(A)g(A) = g(A)f(A),

because two powers Ak and Al of the same matrix commute.

The following is the main result of this section

Theorem 3.8. For any matrix A we have

χA(A) = 0,

i.e. the matrix A is annihilated by its own characteristic polynomial.

We begin the proof this theorem of Hamilton-Cayley with its special case:

Lemma 3.9. Theorem 3.8 holds for diagonal matrices.

Proof.

χA(λ) = (−1)n(λ− λ1)k1 . . . (λ− λs)ks .

Hence,

χA(A) = (−1)n(A− λ1I)k1 . . . (A− λsI)ks

=


0 0 . . . 0

0 λ2 . . . 0

. . . . . .

0 0 . . . λn

 . . .


λ1 0 . . . 0

0 λ2 . . . 0

. . . . . .

0 0 . . . 0

 = 0

�

Proof of Theorem 3.8. The function χA(A) on the space Mn of complex n×n matrices depends

continuously on A. According to Lemma 3.9 the function vanishes on the set of diagonalizable

matrices D ⊂ Mn. But according to Lemma 3.5 the set D is everywhere dense in Mn. Hence, by

continuity the function χA(A) is identically 0. �
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3.5 The structure of nilpotent operators

An operator B : V → V is called nilpotent if there exists k such that Bk = 0.

Consider an operator Jm : Cm → Cm with the matrix

Jm =



0 1 0 . . . 0 0

0 0 1 . . . 0 0

. . . . . . . . . . . .

0 0 0 . . . 0 1

0 0 0 . . . 0 0


This operator is nilpotent: Jmm = 0. On the standard basis in Cm it acts as the shift Jm(em) =

em−1,Jm(em−1) = em−2, . . . ,Jm(e2) = e1, Jm(e1) = 0.

Theorem 3.10. For any nilpotent operator B there exists a basis in which its matrix has a block-

diagonal form with matrices Jm1 , Jm2 , . . . , Jmk along the diagonal.

Proof. Let v1, . . . , vn be a basis of V . Take the first vector v1. Let h1 be the maximal power such

that Bh1(v1) 6= 0. We claim that the vectors w0
1 = v1, w

1
1 = B(v1), . . . wh11 = Bh1(v1) are linearly

independent. We prove this by induction. We assume that the vectors wh1−i+1
1 , . . . , wh11 are linearly

independent for some i = 1, . . . , h1 and then show that wh1−i1 , . . . , wh11 are independent (the base of

the induction i = 1 holds by our assumption). If we have
h1∑
h1−i

cjw
j
1 = 0 the applying the operator

Bi to both parts we get ch1−iw
h1
1 = 0 which means that ch1−i = 0. But then by the inductional

hypothesis we have cj = 0 for all j ≥ h1 − i, i.e. the vectors wh1−i1 , . . . , wh11 are independent.

If vectors w0
1, . . . w

h1
1 form a basis of V , i.e. if h1 = m−1 then we are done: in the basis w0

1, . . . w
h1
1

the operator B has the matrix Jm.

If this is not the case, we continue the process. Take the first of the remaining basic vectors

which is not in V1. We can assume that this is the vector v2: the vectors always can be reordered to

achieve this, and denote by h2 the largest power such that Bh2v2 6= 0. We can assume that h2 ≤ h1.

If this is not the case we rename the vectors v1 into v2 and v2 into v1.

As above, form the sequence w0
2 := v2, . . . , w

1
2 := B(v2), . . . , wh22 := Bh2(v2). Consider two cases:

a) vectors wh22 and wh11 are linearly independent;

b) wh22 = cwh11 for some c ∈ R.
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In case a) the vectors w0
1, . . . , w

h1
1 , w0

2, . . . , w
h2
2 are linearly independent. Indeed, suppose that

h1∑
0

ciw
i
1 +

h2∑
0

djw
j
2 = 0, (3.5.1)

where not all coefficients dj are equal to 0. Let us denote k := min{j; dj 6= 0}. Thus k ∈ {0, . . . , h2}.

If all coefficients ci, i = 0, . . . , h1 are 0 then we get a contradiction similar to the previous step of

the inductional process. Denote l := min{j; cj 6= 0}. Thus l ∈ {0, . . . , h1}. If h1 − l > h2 − k, then

applying to both parts of (3.5.1) operator Bh2−k+1 we get

h1−h2+k−1∑
0

ciw
i+h2−k+1
1 = 0.

But we already proved that the vectors w0
1, . . . w

h1
1 are linearly independent, and hence all coeffi-

cients ci for i < h1 − h2 + k are equal to 0. Similarly, we get a contradiction if h1 − l < h2 − k.

Thus, h1 − l = h2 − k and hence, by applying to both parts of (3.5.1) operator Bh2−k we get

clw
h1
1 + dkw

h2
2 = 0.

Hence dk 6= 0 contradicts assumption a).

If the vectors w0
1, . . . w

h1
1 , w0

2, . . . , w
h2
2 form a basis of V , i.e. if h1 +h+ 2 = m then we are done:

in the basis w0
1, . . . w

h1
1 , w0

2, . . . , w
h2
2 the operator B has the Jordan form with the blocks matrix Jh1

and Jh2 along the diagonal. If h1 +h+ 2 < m we continue the process, building asimilar tower over

v3 etc.

In the case b) we can replace in the basis v1, . . . , vn the vector v2 with the vector v′2 := v2 −

cBh1−h2v1. Then Bh2v′1 = wh22 − cw
h1
1 = 0, i.e. the vector v′2 has a height h′2 < h2. We repeat the

above procedure again considering two cases a) and b) as above, and in both cases we proceed

exactly as before. The process will terminate after a finite number of steps.

�

3.6 Root vectors and root spaces

Let χA(λ) = (−1)n(λ−λ1)k1 . . . (λ−λs)ks be the characteristic polynomial of an operatorA : V → V .

The root space Rλi , i = 1, . . . , s, corresponding to an eigenvalue λi is the set of all vectors v ∈ V

such that (A− λiId)kv = 0 for some integer k. Thus, eigenvectors are root vectors of height 1

40



If v is the root vector for an eigenvalue λi then its height is defined as

height(v) = (min(k; (A− λiId)kv = 0).

Thus, eigenvectors are root vectors of height 1. As we will see below, if v is the root vector for

an eigenvalue λi then height(v) ≤ ki, i.e. the height of a root vector is bounded above by by the

multiplicity of the corresponding eigenvalue in the characteristic polynomial. Let us begin with the

following

Lemma 3.11. The root space Rλi is an invariant subspace of the operator A, i.e. if v ∈ Rλi then

A(v) ∈ Rλi.

Indeed, if (A− λiId)kv = 0 then

(A− λiId)kAv = A((A− λiId)kv) = 0.

The goal of this section is to prove the following

Proposition 3.12. Suppose that the characteristic polynomial χA(λ) of an operator A : V → V is

equal to (−1)n(λ− λ1)k1 . . . λ− λs)ks. Then V decomposes as the direct sum of its root spaces:

V = Rλ1 ⊕ · · · ⊕Rλs =
s
⊕
1
Rλi .

In other words, if one chooses a basis in each root space, then they together form a basis of V ,

and in this basis the matrix of A has a block-diagonal form.

We will need several lemmas. The first one is a general fact concerning the divisibility of poly-

nomials.

Let f , g be two polynomial of one variable (let us call it λ) with complex coefficients. We say

that g is a divisor of f if there exists a polynomial h such that f = gh. Suppose that deg(f) =

n,deg(g) = k and k ≥ n. Then one can always divide f by g with a remainder term, i.e. present f

in the form f = hg + r, where r is a polynomial of degree < k.

The greatest common divisor of two polynomials f, g is a polynomial h of maximal degree which

divides simultaneously f and g.

Exercise 3.13. Show that the greatest common divisor is unique up to multiplication by a constant.
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The greatest common divisor of f and g is denoted by (f, g). If (f, g) = 1 then f and g are called

mutually prime. Equivalently this means that the polynomials f and g have no common roots.

Lemma 3.14. If (f, g) = 1 then there exist polynomials p and q such that

pf + qg = 1.

Proof. Let m be the minimal degree of a non-zero polynomial r which can be presented in the

form r = pf + qg for some polynomials p, q. We need to show that m = 0. Indeed, suppose that

m > 0. Divide f by r with a remainder term: f = ar + s, where deg s < m. Then ar = f − s and

a(pf + qg) = f − s, or (ap− 1)f + qg = −s. But this means that s = 0, because by our assumption

m is a minimal degree of a non-zero polynomial which can be presented as a combination of f and

g. Hence, f = ar, i.e. f is divisible by r. A similar argument shows that g is also divisible by r, but

this contradicts to our assumption that f and g are mutually prime. �

Lemma 3.15. Let f and g are mutually prime polynomials and A : V → V a linear operator.

Suppose that f(A)g(A) = 0. Then

V = Ker f(A)⊕Ker g(A).

Proof. We need to show that every vector x ∈ V can be uniquely presented as a sum x = y + z,

where y ∈ Ker g(A) and z ∈ Ker f(A). According to Lemma 3.14 there exist polynomials p and q

such that pf + qg = 1. Then

p(A) ◦ f(A) + q(A) ◦ g(A) = Id.

Hence, for any vector x ∈ V we have

x = p(A) ◦ f(A)(x)︸ ︷︷ ︸
y

+ q(A) ◦ g(A)(x)︸ ︷︷ ︸
z

= y + z.

But then

g(A)(y) = g(A) ◦ p(A) ◦ f(A)(x) = g(A) ◦ f(A) ◦ p(A)(x) = 0,

and

f(A)(z) = f(A) ◦ q(A) ◦ g(A)(x) = f(A) ◦ g(A) ◦ q(A)(x) = 0,
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i.e. y ∈ Ker g(A) and z ∈ Ker f(A).

Suppose that there exists a different presentation x = y′ + z′, where y′ ∈ Ker g(A) and z′ ∈

Ker f(A). Then

Ker g(A) 3 y − y′ = z − z′ ∈ Ker f(A).

Then g(A)(y − y′) = 0 and f(A)(y − y′) = 0, and hence

y − y′ = p(A) ◦ f(A)(y − y′) + q(A) ◦ g(A)(y − y′) = 0.

Thus y = y′ and z = z′, i.e. every vector x ∈ V can be uniquely presented as a sum x = y + z,

where y ∈ Ker g(A) and z ∈ Ker f(A). �

By induction, we can deduce from Lemma 3.15 its generalization for the case of several factors:

Lemma 3.16. Let f1, . . . fs are pairwise mutually prime polynomials and A : V → V a linear

operator. Suppose that f1(A) ◦ · · · ◦ fs(A) = 0. Then

V =
s
⊕
i=1

Ker fi(A).

Proof of Proposition 3.12. Polynomials f1(λ) := (λ−λ1)k1 , . . . , fs(λ) := (λ−λs)ks are pairwise

mutually prime. On the other hand, by the Hamilton-Cayley Theorem, see 3.8,

f1(A) ◦ . . . fs(A) = χA(A) = 0.

Hence, by Lemma 3.16 we have

V =
s
⊕
i=1

Ker fi(A) =
s
⊕
i=1

Ker (A− λiId)ki =
s
⊕
i=1

Rλi .

�

3.7 Jordan normal formal

A Jordan block of order m is a matrix of of the form

Jm + λI =



λ 1 0 . . . 0 0

0 λ 1 . . . 0 0

. . . . . . . . . . . .

0 0 0 . . . λ 1

0 0 0 . . . 0 λ


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One say that a matrix A is in a Jordan normal form if it is a block-diagonal matrix with Jordan

blocks along the diagonal.

Theorem 3.17 (Jordan Normal Form). For any linear operator A : V → V on a complex vector

space V there exists a basis in which its matrix has a Jordan normal form.

Proof. Let χA(λ) = (−1)n(λ−λ1)k1 . . . (λ−λs)ks be the characteristic polynomial of the operator

A. Then the space V can be decomposed in the direct sum

V =
s
⊕
i=1

Rλi

of its root spaces, which according to Lemma 3.11 are invariant subspaces of the operator A.

Denote Bi := (A − λi)|Rλi , i = 1, . . . , s. Then Bkii = 0, i.e. Bi is a nilpotent operator of height

ki. Hence, by Proposition 3.12 there exists a basis vi1, . . . , v
i
ki

of Rλi such that in this basis the

operator Bi has a block-diagonal form with matrices Jli1
, . . . Jlimi

along the diagonal for some integers

li1, . . . , l
i
mi with li1 + · · · + limi = ki. Hence the matrix of A|Rλi = Bi + λiId has a a block-diagonal

form whose diagonal blocks are Jordan blocks of sizes li1, . . . , l
i
mi with λi on the diagonal.

Together the bases vi1, . . . , v
i
ki

for i = 1, dots, s form a basis of V in which the matrix of the

operator A has a Jordan normal form. �

3.8 Algorithm

In this section we present a practical algorithm which follows the theory described in the previous

section for computing the Jordan normal form of a matrix.

Consider an operator A : Cn → Cn with the matrix A.

Step 1 Find the characteristic polynomial χ(λ) = det(A − λI) and decompose as a product of

linear factors:

χ(λ) = (λ1 − λ)r1 . . . (λk − λ)rk .

Step 2 Find the root spaces V1, . . . , Vk for each eigenvalue:

Vj := Ker (A− λjId)rj .
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To find a basis of Vj one needs to find a fundamental system of solutions (i.e. a basis of the

space of solutions) of the linear system

(A− λj)rj = 0. (3.8.1)

According to the general theory dimVj = rj , so one needs to find rj linear independent

solutions of the system (3.8.1).

Step 3 Now we need to construct the canonical basis of each root space Vj . To simplify the

notation we drop the index j and will write denote this root space by V and its basis found

in Step 2 by v1, . . . , vr. We will also write λ instead of λj and denote N := A− λI.

The algorithm which we describe below attempts to organize a basis as a table of the form

w1 Nw1 . . . . . . . . . Nk1w1

w2 Nw2 . . . . . . Nk2w1

. . . . . .

wm Nwm . . . Nkmwm

where we have Nk1+1w1 = . . . Nkm+1wm = 0. If these vectors form a basis of V , i.e. if they

are linearly independent and the total number of vectors in this table is equal dimV = r,

then if we order these vectors counting first the vectors of the first row from the right to the

left, then similarly, the second row, etc. then in this basis the matrix of N will consists of m

nilpotent blocks 

0 1 0 . . . 0 0

0 0 1 . . . 0 0

. . . . . .

0 0 0 . . . 0 1

0 0 0 . . . 0 0


of sizes k1, . . . , km, and hence the matrix of A will have Jordam blocks of the same sizes with

λ on the diagonal.

We will construct the table by an inductive process.
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At the beginning we set w1 := v1 and write the first row of the matrix:

w1 Nw1 . . . . . . . . . Nk1w1 (3.8.2)

The general theory guarantees that these vectors are linearly independent. Hence, if the total

number of these vectors, k1 + 1 is equal to r that this terminates the process, If this is not

the case we continue and form in a similar way a row beginning with w2 = v2:

w2, Nw2, . . . , N
k2w2.

Next, we form a 2-row table writing the longer row first and aligning the rows to the right.

Let, for determinacy, k1 ≥ k2 (otherwise, swap the notation for w1 and w2). Thus, we get

w1 . . . Nk1−k2w1 . . . Nk1w1

w2 . . . Nk2w2

If the vectors Nk1w1 and Nk2w2 are linearly dependent, then

Nk2w2 = cNk1w1

for some c ∈ R.

We then subtract from the second row the portion of the first row which is above the elements

of the second row:

w1 . . . Nk1−k2w1 . . . Nk1−1w1 Nk1w1

w′2 = w2 − cNk1−k2w1 . . . Nk2−1w′2 0

Shift the new second row to the right:

w1 . . . Nk1−k2w1 Nk1−k3w1 . . . Nk1w1

w′2 . . . Nk2−1w′2

Now check again whether two vectors in the last column are linear dependent. If they are, i.e.

Nk2−1w′2 = c′Nk1w1, then we repeat the process again, i.e. subtract from the second raw the

part of the first row which is directly above. We continue till either the second row completely

annihilated, or if the vectors in the last column become linearly independent. In this case the

general theory guarantees that all the vectors in the table are linearly independent.
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At this moment we check again whether the total number of vectors in the table less or equal

dimV = r. If we got enough vectors we go to Step 4.

Otherwise, we take a new vector from the original basis, which did not yet use, and again

form a row as in (3.8.2).

We add this row to the previously constructed table, ordering the rows in such a way that

longer raws take higher positions.

Thus, we get a table with 3 rows (to simplify the notation we renamed vectors on the left

side back to w1, w2, w3 and their heights to k1, k2, k3):

w1 . . . Nk1−k2w1 . . . Nk1−k3+1w1 . . . Nk1w1

w2 . . . Nk2−k3w2 . . . Nk2w2

w3 . . . Nk3w3

Now we again repeat the procedure beginning from the top two rows and check if the two

top vectors in the right column are linearly dependent. If they are then we use the previous

algorithm to shorten the second row. If after some iterations the second row becomes shorter

than the 3rd one, we reorder the rows again.

After making top two vectors in the right column independent, we check if the 3rd vector of

this column is a linear combination of the top two. If it is , i.e.

Nk3w3 = c1N
k1w1 + c2N

k2w2

then we subtract from the 3rd row the corresponding portions of the first and the second

ones, multiplied by the coefficients c1 and c2.

Eventually this process stops when the number of elements in the table reaches r and all

vectors in the right column become independent. After that we pass to Step 4.

Step 4 The Jordan basis for the root space is formed by vectors in the table numbered from the

right to the left and from the top to the bottom, i.e. we first enumerate the elements of the

first row from the right to the left, then similarly the elements of the second row etc. If we

terminated with a table of l rows with m1,m2, . . . ,ml elements in each row, then the matrix

of the operator A on V in this basis will consists of l Jordan blocks of sizes m1, . . . ,ml.
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Chapter 4

Systems of linear differential

equations with constant coefficients

4.1 The phase flow of a linear system

In this chapter we study the system

ẋ = Ax, x ∈ Cn. (4.1.1)

Our main interest is when A is a real matrix, and solutions themselves are real. However, the

consistent theory in the real case requires us to look at the complex picture at the same time.

We denote by A the linear operator Cn → Cn given by the matrix A in the standard basis.

When A is a real basis we can consider both, operators Rn → Rn and Cn → Cn with this matrix.

When we need to distinguish them we will use the notation AR : Rn → Rn and AC : Cn → Cn.

Proposition 4.1. The space S(A) of solutions of the system (4.1.1) is an n-dimensional vector

space. The map x(t) 7→ x(0) which associates to a solution x(t) its initial value x(0) is an isomor-

phism S(A)→ Cn. The inverse map is given by the formula

x(t) = eAtx(0),

and hence the phase flow of the equation (4.1.1) consists of the linear operators eAt, t ∈ R.
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4.2 General form of a solution of a homogeneous linear system

with constant coefficients

Let us first consider the case of a diagonalizable matrix A.

Corollary 4.2. Suppose the operator A is diagonalizable and let λ1, . . . , λn and v1, . . . , vn be its

eigenvalues and the corresponding basis of eigenvectors (some of eigenvalues may coincide). Then

a general solution of (4.1.1) has the form

x(t) =
∑

cie
λitvi. (4.2.1)

Equivalently the solution which correspond to the initial data x(0) = x0 can be written as

x(t) = C


eλ1t 0 . . . 0

0 eλ2t . . . 0

. . . . . .

0 0 . . . eλnt

C−1x0 , (4.2.2)

where C is the matrix of transition to the basis v1, . . . , vn, i.e. the matrix whose columns are

coordinates of the vectors v1, . . . , vn in the standard basis of Cn.

When the matrixA is real then its spectrum (i.e. the set of eigenvalues) has the form λ1, λ̄1, . . . , λk, λ̄k,

µ1, . . . , µl, where 2k + l = n, µj ∈ R, j = 1, . . . , k, and Imλm 6= 0,m = 1, . . . , l. The eigenvectors

corresponding to conjugated eigenvalues can be chosen themselves conjugated, i.e. v1, v1, . . . , vk, vk,

w1, . . . , wl, where wm ∈ Rn, m = 1, . . . , l, and vj = Xj + iYj , Xj , Yj ∈ Rn, Yj 6= 0, j = 1, . . . , k.

Next, we consider the case of a real diagonalizable matrix (with possibly complex eigenvalues)

Corollary 4.3. Suppose the matrix A is diagonalizable and real. Let λ1 = α1 + iω1, λ̄1α1 −

iω1, . . . , λk = ak+iωk, λ̄k = αk−iωk, µ1, . . . , µl, 2k+l = n and v1 = X1+iY1, v1 = X1−iY1, . . . , vk =

Xk + iYk, vk = Xk − iYk, w1, . . . , wl, be its eigenvalues and the corresponding basis of eigenvectors,

where Xj , Yj , wl ∈ Rn, j = 1, . . . , k,m = 1, . . . , l. Then a general real solution of (4.1.1) has the
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form

x(t) = Re

(
k∑
1

rje
iθjeαjt+iωjt(Xj + iYj)

)
+

l∑
1

dme
µmtwm

= Re

(
k∑
1

rje
αjtei(θj+ωjt)(Xj + iYj)

)
+

l∑
1

dme
µmtwm

=
k∑
1

rje
αjt (cos(θj + ωjt)Xj − sin(θj + ωjt)Yj) +

l∑
1

dme
µmtwm,

where rj > 0, θj , dj ∈ R are arbitrary constants.

Next, we consider the case of a non-diagonalizable A.

Lemma 4.4. Suppose that A is a Jordan block

A =



λ 1 0 . . . 0

0 λ 1 . . . 0

. . . . . . . . .

0 0 0 . . . 1

0 0 0 . . . λ


of order n. Then the phase flow eAt has the form

eAt =


eλt eλtt eλtt2

2 . . . eλttn−1

(n−1)!

0 eλt eλtt . . . eλttn−2

(n−2)!

. . . . . . . . .

0 0 0 . . . eλt



solution with the initial data x(0) = x0 =


x0

1

x0
2

·

x0
n

 has the form

x(t) =



eλt
n∑
1

tj−1x0j
(j−1)!

eλt
n∑
2

tj−2x0j
(j−2)!

·

eλtx0
n


.
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.

Corollary 4.5. Suppose that the matrix A of the system (4.1.1) has eigenvalues λ1, . . . , λs of muti-

plicities k1, . . . , ks, respectively. Then each coordinate function xl(t), l = 1, . . . , n (in any coordinate

system) of any solution has a form

xl(t) =
s∑
j=1

pl,j(t)e
λjt,

where pl,j(t) are polynomials of degree < kj.

It is important to point out that not all vector functions whose coordinates have this form are

solutions. The space of solutions is always n-dimensional, while the total number of coefficients of

all polynomials pl,j is equal to n
s∑
1
kj = n2 > n. Thus if n > 1 then between the coefficients should

be a lot of dependences.

If A is a real matrix and we are interested only in real solutions then Corollary 4.5 takes the

following form:

Corollary 4.6. Suppose that the matrix A of the system (4.1.1) has eigenvalues λ1 = α1+iω1, λ̄1 =

α1 − iω1, . . . , λp = αp + iωp, λ̄p = αp − iωp, µ1, . . . , µq of multiplicities k1, . . . , kp and m1, . . . ,mq,

respectively. Then each coordinate function xl(t), l = 1, . . . , n (in any coordinate system) of any

solution has a form

xl(t) =

q∑
j=1

pl,j(t)e
µjt +

q∑
j=1

eαjt (rl,j(t) cosωjt+ sl,j(t) sinωj) ,

where pl,j(t) are polynomials of degree < kj and rl,j(t) and sl,j(t) are polynomials of degree < mj.

4.3 One linear equation of order n

Let us consider a special case of 1 equation of order n:

x(n) + a1x
(n−1) + · · ·+ anx = 0. (4.3.1)
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Rewriting (4.3.1) as a system of first order equations we get

ẋ = x1

ẋ1 = x2

. . .

ẋn−1 = −a1xn−1 − a2xn−2 − · · · − an−1x1 − anx.

(4.3.2)

The matrix of this system is equal to

A =



0 1 . . . 0

0 0 . . . 0

. . . . . .

0 0 . . . 1

−an −an−1 . . . −a1

.


(4.3.3)

Let us compute the characteristic polynomial

ξA(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 1 . . . 0

0 −λ . . . 0

. . . . . .

0 0 . . . 1

−an −an−1 . . . −a1 − λ

.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)n+1(λn + a1λ

n−1 + · · ·+ an−1λ+ an). (4.3.4)

We also note that the rank of the matrix

A− λI =



−λ 1 . . . 0

0 −λ . . . 0

. . . . . .

0 0 . . . 1

−an −an−1 . . . −a1 − λ


for an eigenvalue λ is equal to n− 1. This means that the eigenspace Eλ is 1-dimensional for each

eigenvalue λ. In turn, this implies that the Jordan normal form has blocks of maximal size for each

eigenvalue, i.e. if ξA(λ) = ±(λ− λ1)k1 . . . (λ− λs)ks then the Jordan form of A has 1 block of size

kj for each eigenvalue λj , j = 1, . . . , s. According to Corollary 4.5 this implies that
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Corollary 4.7. The general solution of equation (4.3.1) has a form

x(t) =

s∑
1

pj(t)e
λjt, (4.3.5)

where pj(t) are polynomials of degree < kj. Moreover, every function of this form is a solution of

(4.3.1).

We note that there is a short-cut to the fact the characteristic polynomial of (4.3.1) has the

form (4.3.4) as well as to the general form (4.3.5) of its solution.

Indeed, one can argue as following. For each eigenvalue λ of the matrix A from (4.3.3) there

exists at least one eigenvector v = (c1, . . . , cn) 6= 0. Then x(t) = eλtc1 is a solution of (4.3.1) and

(x(t), x1(t) := ẋ(t) = λeλtc1, . . . , xn−1(t) = x(n−1)(t) = λn−1eλtc1)

is a solution of the corresponding system (4.3.2) of first order equations, and hence c2 = λc1, . . . cn =

λn−1c1. It follows that c1 6= 0 and we can choose c1 = 1.

Plugging it to (4.3.1) we get

x(n) + a1x
(n−1) + · · ·+ anx = (λn + a1λ

n−1 + · · ·+ an−1λ+ an)eλt = 0,

and hence

λn + a1λ
n−1 + · · ·+ an−1λ+ an = 0,

i.e. each eigenvalue is a root of the polynomial (4.3.4). Conversely, for any root λ of (4.3.4) the

functionx(t) = eλt satisfies (4.3.1), and hence Corollary 4.7 implies that λ is one of eigenvalues of

the matrix A. Hence, the characteristic polynomial of A has the form (4.3.4) as claimed.

According to Corollary 4.5 any solution of (4.3.1) has the form (4.3.5). But the space of solu-

tions of equation (4.3.1) is n-dimensional, and the total number of coefficients in the polynomials

p1(t), ps(t) is equal to k1 + · · · + ks = n, and therefore any expression of the form (4.3.5) is a

solution of (4.3.1).

Finally we consider the form of a general real solution of equation (4.3.1) with real coefficients.

Corollary 4.8. Suppose that the characteristic polynomial (4.3.4) has roots λ1 = α1 + iω1, α1 −

iω1, . . . λa = αa + iωa, αa− iωa and µ1, . . . , µb of multiplicities k1, . . . , ka and l1, . . . , lb, respectively.
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A general solution of equation (4.3.1) has a form

x(t) =
a∑
1

eαjt (pj(t) cosωjt+ qi(t) sinωjt) +
b∑
1

eµmtrm(t), (4.3.6)

where pj(t), qj are polynomials of degree < kj and rm(t) are polynomials of degree < lm. Moreover,

every function of this form is a solution of (4.3.1).

4.4 Inhomogeneous linear systems with constant coefficients

Consider a system

ẋ−Ax = f(t), x ∈ Cn. (4.4.1)

Recall that according to Proposition 4.1 the space S(A) of solutions of the corresponding ho-

mogeneous system is an n-dimensional vector subspace of the space of all smooth vector-functions.

Correspondingly, the space of solution S(A) of the inhomogeneous system (4.4.1) is an affine sub-

space of this space, i.e. if x(t) is any particular solution of (4.4.1) then any other solution has the

form x(t) + y(t), where y(t) is a solution of the homogeneous system (4.1.1).

To find a particular solution x(t) which satisfies the initial condition x(0) = 0. we use the method

of variation of constants, i.e. will search for a solution in the form x(t) = eAtc(t), c(t) ∈ Cn. Plugging

into equation (4.1.1) we get

AeAtc(t) + eAtċ(t)−AeAtc(t) = eAtċ(t) = f(t), or

ċ(t) = e−Atf(t),

and hence

c(t) =

t∫
0

e−Asf(s)ds,

and

x(t) = eAt
t∫

0

e−Asf(s)ds =

t∫
0

eA(t−s)f(s)ds.

In practice, there usually are simpler methods for finding a particular solution of an inhomoge-

neous equation. Let us consider, for example, the case of one inhomogeneous equation of order n
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with the right-hand side a quasi-polynomial

x(n) + a1x
(n−1) + · · ·+ an = f(t), x ∈ C. (4.4.2)

Lemma 4.9. Suppose f(t) = q(t)eµt, where q(t) is a polynomial of degree ≤ k.

1. Suppose that ν is not a root of the characteristic equation

λn + a1λ
n−1 + · · ·+ an−1λ+ an = 0 (4.4.3)

Then there exists a particular solution of the form p(t)eνt, where p(t) is a polynomial of degree

≤ k.

2. Suppose that ν is a root of (4.4.3) of multiplicity m. Then there exists a particular solution

of the form p(t)eνt, where p(t) is a polynomial of degree ≤ k +m.
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Chapter 5

Stability

5.1 Asymptotic and Lyapunov stability

Consider a general ODE

ẋ = F (x), x ∈ U ⊂ Rn. (5.1.1)

Let a ∈ U be an equilibrium point, i.e. F (a) = 0.

The equilibrium point a is called

• asymptotically stable if there exists a neighborhood Ω 3 a, Ω ⊂ U , such that for any point

x0 ∈ Ω the solution x(t) with the initial condition x(0) = x0 exists for all t ≥ 0 and satisfies

the condition lim
t→+∞

x(t) = a;

• Lyapunov stable or stable in the sense of Lyapunov if for any neighborhood Ω 3 a, Ω ⊂ U

there exists a smaller neighborhood Ω̃ 3 a, Ω̃ ⊂ Ω, such that for any point x0 ∈ Ω̃ the solution

x(t) with the initial condition x(0) = x0 exists for all t ≥ 0 and satisfies the condition x(t) ∈ Ω

for all t ∈ [0,∞).

Asymptotic stability implies Lyapunov stability but not vice versa.

Exercise 5.1. a) Consider the equation ẋ = −x. Show that 0 is asymptotically stable.
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b) Consider the system

ẋ1 = −x2

ẋ2 = x1.

Show that that the origin is Lyapunov stable but not asymptotically stable.

5.2 Criterion of asymptotic stability

Let a ∈ U be an equilibrium point of system (5.1.1). Then we have

F (x) = A(x− a) + 0(||x− a||).

The linear system

ẏ = Ay, y ∈ Cn, (5.2.1)

is called the linearization of (5.1.1) at the equilibrium point a ∈ U .

Theorem 5.2. Let a ∈ U be an equilibrium point of system (5.1.1) and ẏ = Ay its linearization at

the point a. Suppose that SpecA ⊂ {z ∈ C; Rez < 0}, i.e. all eigenvalues of the matrix A lie in the

half-plane {z ∈ C; Rez < 0}. Then the equilibrium point a is asymptotically stable for the system

(5.1.1).

Remark 5.3. 1. If at least one of the eigenvalues of A has a positive real part, that the equilibrium

a is Lyapunov (and asymptotically) unstable.

This fact is more difficult to prove then Theorem 5.2, though we will discuss it later on.

2. If eigenvalues of A satisfy Reλ ≤ 0 then the linearized system (5.2.1) is Lyapunov stable.

However, if there is an eigenvalue with Reλ = 0 then one cannot draw any conclusion about stability

or instability of the original system (5.1.1) (why?).

The proof of Theorem 5.2 will require several lemmas.

Given a vector field X on U a smooth real-valued function φ : U → R is called a Lyapunov

function for X (and the vector field X is called gradient-like for φ if LXφ = dφ(X) ≥ c||X||2 for

some positive function c : U → R.

58



Exercise 5.4. Prove that for any function φ its gradient vector field is gradient-like.

Lemma 5.5. If φ : U → R is a Lyapunov function for a vector field X on U and f : U → Ũ a

diffeomorphism then the function φ̃ := φ ◦ f−1 : Ũ → R is a Lyapunov function for the vector field

X̃ := f∗X on Ũ . Moreover, if (φ,X) satisfy an inequality c||X||2 ≤ dφ(X) ≤ C||X||2, then so does

(φ̃, X̃).

Indeed, by chain rule

dφ̃(X̃) = dφ ◦ d(f−1)(df(X)) = dφ(X) ≥ c||X||2 ≥ c

||df ||2
||X̃||2 = c̃||X̃||2.

We also have

||X||2 ≤ 1

||df ||2
||X̃||2,

and hence if dφ(X) ≤ C||X||2, then

dφ̃(X̃) = dφ(X) ≤ C||X||2 ≤ C

||df ||2
||X̃||2.

We recall that the norm of a linear operator C : Cn → Cn is defined as

||C|| = max
x 6=0

||Ax||
||x||

= max
||x=1||

||Ax||.

A particular case of Lemma 5.5 is

Corollary 5.6. Consider a linear vector field Z(x) = Ax on Cn. Let φ be a Lyapunov function for

φ. The for any non-singular matrix C the function φ̃(x) = φ(C−1x) is a Lyapunov function for the

vector field Z̃(x) = CAC−1x.

Indeed, Z̃ = C∗Z, where C : Cn → Cn is a linear map with the matrix C.

Lemma 5.7. Suppose that SpecA ⊂ {z ∈ C; Rez > 0}. Then the vector field Z(z) = Az, z ∈ C

admits a Lyapunov function.

We divide the proof of Lemma 5.7 in a few step

Lemma 5.8. Lemma 5.7 holds when A is a diagonal matrix.
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Proof. Let λj = αj + iωj , j = 1, . . . , n be the eigenvalues of A. Then the vector field Z has

in complex coordinates the form Z(z) = (λ1z1, . . . , λnzn).1 To understand better its geometry

let us rewrite it in real coordinates. We identify the space Cn with R2n (as usual viewing each

complex coordinate zj = xj + iyj as a pair of real coordinates (xj , yj). Set λj = αj + iβj . Then

λjzj = αjxi − βjyj + i(αjyj + βixj), i.e. in real notation the vector field Z can be written as

Z =
n∑
1

(αjxi − βjyj)
∂

∂xj
+ (αjyj + βixj)

∂

∂yj
.

Define the function φ : Cn = R2n → R by the formula φ(z) = 1
2

n∑
1
|zj |2 = 1

2

n∑
1

(x2
j + y2

j ). Then φ is

a Lyapunov function for Z. Indeed,

LZφ(z) = dφ(Z) =
n∑
1

(αjxi − βjyj)
∂φ

∂xj
+ (αjyj + βixj)

∂φ

∂yj

=
n∑
1

(αjxi − βjyj)xj + (αjyj + βixj)yj =
n∑
1

αj(x
2
j + y2

j )

=

n∑
j

αj |zj |2.

Denote c := min
j∈{1,...,n}

αj , C = min
j∈{1,...,n}

|λj |. By assumption, c > 0. Then

||Z(z)||2 =
n∑
1

|λjzj |2 =
n∑
1

||λj |2|zj |2 ≤ C||z||2

and therefore

LZφ(z) ≥
n∑
j

αj |zj |2 ≥ c||z||2 ≥
c

C
||Z(z)||2.

�

Lemma 5.9. Let A be a triangular matrix. Then for any ε > 0 there exists a diagonal matrix C

such that C−1AC is an upper trangular matrix whose all elements aij above the diagonal (i.e. with

i < j) satisfy |aij | < ε.

1We switched the notation for coordinates in Cn from x1, . . . , xn to z1, . . . , zn and will use the letter x for the real

part of z.
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Proof. Take

C =



Nn−1 0 . . . 0 0

0 Nn−2 . . . 0 0

. . . . . . . . .

0 0 . . . N 0

0 0 . . . 0 1


.

Then for a sufficiently large N the matrix C−1AC has the required properties. �

Lemma 5.10. Lemma 5.7 holds when A is an upper triangular matrix.

Proof. According to Lemma 5.9 we can arrange that for any given ε > 0 the elements above the

diagonal are < ε. Let us denote by Ã the diagonal matrix with the same elements on the diagonal,

by Z̃ the vector field Z̃(z) = Ãz and set B = A− Ã, Y = Z − Z̃, so that Y (z) = Bz.

Then according to Lemma 5.8 the function φ(z) = 1
2 ||z||

2 is Lyapunov for Z̃, i.e.

C1||Z̃(z)||2 ≥ L
Z̃
φ(z) ≥ c1||Z̃(z)||2.

On the other hand, we have ||Y (z)|| ≤ c2ε||z|| for some constant c2 > 0 and similarly

LY (φ(z)) = 〈Y,∇φ〉 = 〈Bz, z〉 ≤ c3ε||z||2

for some constant c3 > 0. Thus,

C1||Z̃(z)||2 + c3ε||z||2 ≥ LZφ = L
Z̃
φ+ LY φ ≥ c1||Z̃(z)||2 − c3ε||z||2.

We also have

c4||Z||2 ≤ ||Z̃||2 ≤ C4|Z||2

and

c5||z||2 ≤ ||Z(z)||2 ≤ C5||z||2. (5.2.2)

Combining all the inequalities we get for a sufficiently small ε > 0

c||Z||2 ≤ LZφ ≤ C||Z||2.

�
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Proof of Lemma 5.7. Using Corollary 5.6 we can replace the matrix A by a similar matrix, and

thus may assume that it is in the Jordan normal form, and in particular, it is upper triangular.

Therefore, it remains to apply Lemma 5.10. �

Proof of Theorem 5.2. To simplify the notation we assume that the equilibrium point a is the

origin 0 ∈ Cn. Thus −F (z) = Az+ Y (z), where Y (z) = o(||z||). By assumption, the spectrum of A

lies in the right half-plane {Rez > 0} ⊂ C. Hence, applying Lemma 5.7 we find a Lyapunov function

for the vector field Z(z) = Az. Let us recall that the Lyapunov function which we constructed for

this vector field is equal to 1
2 ||z||

2 for some Euclidean structure on Cn.

Let us first check that the same function φ(z) = 1
2 ||z||

2 is also Lyapunov for the vector field −F

in a sufficiently small ball Bδ(0) = {||z|| < δ}. In fact, it will be more useful for us to prove the

following equivalent (why?) inequality:

2cφ(z) = c||z||2 ≤ −LF (z)φ ≤ C||z||2 = 2Cφ(z) (5.2.3)

if ||z|| is small enough. For any ε > 0 there exists a sufficiently small δ > 0 such that for any

z ∈ Bδ(0) we have ||Y (z)|| < ε||z||.

Hence,

|LY φ(z)| = |〈∇φ(z), Y (z)〉| = |〈z, Y (z)〉| ≤ ||z||||Y (z)|| ≤ ε||z||2 (5.2.4)

On the other hand, according to Lemma 5.7 and taking into account (5.2.2) we have

2c̃φ(z) = c̃||z||2 ≤ LZφ(z) ≤ C̃||z||2 = 2C̃φ(z). (5.2.5)

Combining the inequalities (5.2.4) and (5.2.5) we get (5.2.3).

Now we are ready to finish the proof of asymptotic stability.

Take a point x0 ∈ Bδ(0) where δ is chosen so small that the inequality (5.2.3) holds. Let x(t)

be the solution of the equation ẋ = F (x) with the initial condition x(0) = x0 Denote h(t) = φ(x(t).

Then
dh

dt
(t) = dx(t)φ

(
dx

dt
(x(t))

)
= dx(t)φ (F (x(t))) = LFφ(x(t)),

and combining with (5.2.3) we get

− 2Ch(t) = −2cφ(h(t)) ≤ ḣ(t) ≤ −2cφ(h(t)) = −2ch(t) (5.2.6)
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Let us solve the equation ġ(t) = −2cg(t) with the initial condition g(0) = h(0) = φ(x0). Then

g(t) = h(0)e−2ct. On the other hand, the function ψ(t) := g(t) − h(t) satisfies the conditions

φ̇(t) ≤ 0, φ(0) = 0, and hence φ(t) > 0 for t ≥ 0, i.e. we have

0 ≤ h(t) ≤ g(t) = h(0)e−2ct →
t→∞

0.

But h(t) = φ(x(t)) = ||x(t)||
2 , and therefore lim

t→∞
x(t) = 0. This concludes the proof of the asymptotic

stability. �

5.3 Smooth classification of linear systems

Consider two vector fields X on a domain U ⊂ Rn and X̃ on a domain X̃ ⊂ Rn. We say that that

the systems ẋ = X(x) and ẋ = X̃(x) are diffeomorphic, or smoothly equivalent if there exists a

diffeomorphism f : U → Ũ such that f∗X = X̃. If both can be integrated to flows Xt : U → U and

X̃t : Ũ → Ũ then their smooth equivalence can be equivalently defined by the equations

Xt = f−1 ◦ X̃t ◦ f, t ∈ R.

The two systems are called linearly equivalent if they are equivalent via a linear map C : Rn → Rn.

For two linear systems ẋ = Ax and ẋ = Bx to be linear equivalent via a linear map C just means

that A = C−1BC (here we denote by the same letter the linear map Rn → Rn and its matrix in the

standard basis). Indeed, the equation A = C−1BC is equivalent the equation eAt = C−1eBtC, t ∈ R.

Lemma 5.11. Consider two linear systems, ẋ = Ax and ẋ = Bx. Suppose that they are diffeo-

morphic. Then they are linearly equivalent.

Proof. Denote by Y the vector field Y (x) = Ax and by Z the vector field Z(x) = Bx. Suppose

that f∗Y = Z. Both vector fields have unique zeroes at the origin, and hence f(0) = 0. Thus

f(x) = df0(x) + G(x), where G(x) = o(||x||). In the computation below we identify the space Rnx
with Rn via the parallel transport, and thus think about the differential dxf as a malp Rn → Rn.

We have

dfx(Y (x)) = dfx(Ax) = Z(f(x)) = Bf(x).
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By continuity dfx = df0 + H(x), where H(x) is a linear map Rn → Rn such that ||H(x)|| →
||x||→0

0.

Hence,

df0(Ax) = Bf(x)−H(x)(Ax) = Bdf0(x) +B(G(x))−H(x)Ax.

Set x = εu. Then we get

df0 ◦A(u)−B ◦ df0(u) =
1

ε
(B(G(εu))− εH(εu) ◦A(u)) →

||ε||→0
0.

Hence, df0 ◦ A(u) − B ◦ df0(u) for all u ∈ Rn, i.e. A = df−1
0 ◦ B ◦ df0, i.e. A and B are equivalent

via the linear map df0 : Rn → Rn. �

Corollary 5.12. If the systems ẋ = Ax and ẋ = Bx are smoothly equivalent then A and B have

the same eigenvalues.

5.4 Topological classification of linear systems: generic case

Corollary 5.12 shows that smooth classification is to rigid: even a small modification of eigenvalues

lead to non-equivalent systems. The notion of topological classification which we discuss in this

section is a coarser notion which still catches some essntial characteristics of the systems.

Consider two vector fields X on a domain U ⊂ Rn and X̃ on a domain X̃ ⊂ Rn. Suppose

that the phase flows Xt and X̃t for X and X̃ are well defined for all t ∈ R. We say that that the

systems ẋ = X(x) and ẋ = X̃(x) are homeomorphic, or topologically equivalent if there exists a

homeomorphism f : U → Ũ such that

Xt = f−1 ◦ X̃t ◦ f, t ∈ R.

Theorem 5.13. Suppose that the matrix A has no eigenvalues λ with Reλ = 0. Then the system

ẋ = Ax is topologically equivalent to the system ẋ = Dx for a diagonal matrix D = (dij) such that

djj = −1 for j ≤ k and djj = 1 for j > k, where k is the number of eigenvalues of A with negative

real part. Two such systems with different k are not topologically equivalent.

Lemma 5.14. The first assertion of Theorem 5.13 holds for k = 0.
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Proof. According to Lemma 5.7 there exists a Euclidean structure on Rn for which the function

||x||2 is a Lyapunov function for the vector field Y (x) = Ax. The same function is also Lyapunov

for the radial vector field Z =
n∑
1
xi

∂
∂xi

which defines the system ẋ = x.

We construct a homeomorphism f which send the trajectory of the second system onto the

trajectories of the first one by the formula

f(x) = eA log ||x||(
x

||x||
), for x 6= 0.

By Theorem 5.2 we have lim
x→0

eA log ||x||( x
||x||) = 0, and hence we can extend the map f by continuity

to 0 by setting f(0) = 0. the constructed map is a diffeomorphism in the complement of the origin,

but it is never smooth at 0 if A 6= I (why?). Let us check that the map f is a topological equivalence

of the systems ẋ = x and ẋ = Ax. Indeed, for x 6= 0 denote u := x
||x|| , r := ||x||. Then we have

f(etx) = eA(t+log r)u = eAt(elog rAu) = eAtf(x).

�

Proof of Theorem 5.13. Lemma 5.14 settles the case when there are no eigenvalues with the

negative real part. The same lemma applied to −A implies the result for the case when there are

no eigenvalues with the positive real part. Let us now consider the general case. Suppose that the

matrix A has exactly k eigenvalues with the negative real part and (n − k) eigenvalues with the

positive one (counting their multiplicities). The the phase space V = Rn of the system splits in the

direct sum V = V−⊕V+, where V± are both invariant subspaces of the operator A, have dimension

k and n − k, respectively, and such that all eigenvalues of A− := A|V− lie in the left half-plane

{Rez < 0} and all eigenvalues of A+− := A|V+ lie in the right half-plane {Rez > 0}. Indeed, V− is

the direct sum of all root spaces corresponding to the eigenvalues with the negative real part, and

V+ is the direct sum of all root spaces corresponding to the eigenvalues with the positive real part.

Then if one chooses a basis in V which has its first k vectors in V− and the last (n− k) in V+ then

the matrix of the system will have the block form, and thus the system splits into the direct sum of

the systems ẋ = A−x and ẏ = A+y, x ∈ Rk and y ∈ Rn−k. According to Lemma 5.14 there exists

a homeomorphism f− : Rk → Rk of the system ẋ = −x on Rk and the system ẋ = A−x. The same

lemma also implies existence of a homeomorphism h+ : Rn−k → Rn−k between the systems ẏ = y

and ẏ = A+y on Rn−k. Then the homeomorphism h : Rn = Rk ⊕ Rn−k → Rk ⊕ Rn−k = Rn given
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by the formula h(x, y) = (h−(x), h+(y)), x ∈ Rk, y ∈ Rn−k is the required topological equivalence.

�
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Chapter 6

Solving one first order partial

differential equation

6.1 Jet spaces

When studying functions on Rn, or a domain in Rn it is useful to consider their graphs which live

in Rn × R = Rn+1, i.e. for u : Rn → R its graph

Γu := {z = u(x1, . . . , xn)} ⊂ Rn+1.

Similarly, when studying first order partial differential equations with respect to a function on

Rn it is useful to consider a simultaneous graph of a function and all its derivatives:

Λu = {z = u(x), p1 =
∂u

∂x1
(x), . . . pn =

∂u

∂xn
(x), x = (x1, . . . , xn) ∈ Rn} ⊂ R2n+1,

where we denoted coordinates in R2n+1 = Rn×Rn×R by (x, p, z), x, p ∈ Rn, z ∈ R. The coordinate

z is reserved for graphing the value of a function u and p1, . . . , pn for the corresponding first partial

derivatives.

The space R2n+1 in this context is called the 1-jet space of functions on Rn and usually denoted

by J1(Rn). We denote by π the projection J1(Rn)→ Rn → Rn given by the formula

π(x, p, z) = x, (x, y, z) ∈ J1(Rn) = Rn × Rn ×R.
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A map s : Rn → J1(Rn) is called a section if π ◦ s = Id : Rn × Rn. In other words, if s(x) =

(x, v(x), u(x)) ∈ Rn×Rn×R for x ∈ Rn. With every function u : Rn → R one can associate a very

special section. Namely,

x 7→
(
x,

∂u

∂x1
(x), . . . ,

∂u

∂xn
(x), u(x)

)
, x ∈ Rn,

which maps Rn onto the simultaneous graph of the function u and all its first partial derivatives.

Sections of this type are called holonomic. We note that most of the sections are not holonomic..

The following lemma gives a necessary and sufficient condition for a section s : Rn → R2n+1 to

be holonomic. Denote by λ the differential 1-form

λ := dz −
n∑
1

pidxi,

and by ξ the hyperplne field defined by the Pfaffian equation λ = 0. This hyperplane field is called

a contact structure.

Lemma 6.1. A section s : Rn → J1(Rn) is holonomic if and only if s∗λ = 0. In other words, s is

holonomic if its image is tangent to the contact structure ξ.

Proof. We have s(x) = (x, p = v(x), z = u(x)), and hence the equation

0 = s∗λ = s∗(dz − pdx) = du− vdx

is equivalent to

v1(x) =
∂u

∂x1
(x), . . . , vn(x) =

∂u

∂xn
(x)

which is the definition of a holonomic section.

Submanifolds of dimension n which are tangent to ξ are called Legendrian. We note that a

general Legendrian submanifold need not be necessarily graphical.

Exercise 6.2. Give an example of a non-graphical Legendrian submanifold Λ ⊂ J1(Rn).

6.2 The case n = 1

When n = 1 then the 1-jet space is 3-dimensional, J1(R) = R3. A holonomic section s : R→ J1(R)

is a simultaneous graph of a function and its derivative:

s(x) = (x, p = f ′(x), z = f(x)).
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The contact structure ξ is the 2-dimensional plane field given by a Pfaffian equation dz − pdx = 0.

Let Σ ⊂ J1(R) be a 2-dimensional submanifold. Suppose that for a ∈ Σ the tangent plane TaΣ

is transverse to the contact plane ξa. Then the line `a = TaΣ ∩ ξa is called the characteristic line.

If Σ is transverse to ξ everywhere, then ` = {`a}a∈Σ is a tangent line field to Σ (which is called the

characteristic line field). The integral curves of this line field are called characteristics.

Lemma 6.3. Characteristics are Legendrian submanifolds. In particular, if a characteristic Λ ⊂ R

is graphiical with respect to the projection J1(R) → R then it is a holonomic, i.e. there exists a

function h : (a, b)→ R such that s(x) = (c, h′(x), h(x)), x ∈ (a, b).

6.3 Characteristics in the n-dimensional case

Let Σ ⊂ J1(Rn) be a hypersurface. A point a ∈ Σ is called singular if TaΣ = ξa. Otherwise, i.e.

if TaΣ is transverse to ξa, it is called regular. At a regular point a ∈ Σ the intersection Πa = TaΣ∩ξa

is an (2n − 1)-dimensional subspace. Here are some conditions which guarantees transversality of

Σ ⊂ J1(Rn) and ξ = {λ = 0}, i.e. regularity of all points of Σ.

Example 6.4. 1. Suppose a Σ = {F = 0} where for every point a ∈ Σ there exists i = 1, . . . , n

such that ∂F
∂pi

(a) 6= 0. Then Σ is transverse to ξ.

2. Suppose the hypersurface Σ is tangent to the z-directions (e.g. the defining it function F is

independent of z. Then Σ is transverse to ξ.

Lemma 6.5. Suppose Σ is transverse to ξ. Then for any point a ∈ Σ there exists a unique line

`a ⊂ Πa = ξa ∩ Ta which is characterized by the following condition. Given any vectors v ∈ `a and

w ∈ Πa we have

dλ(v, w) = 0.

In other words, `a is the kernel of the form dλ|Πa.

Proof. The contact hyperplane field ξ − {dz − pdx = 0} is transverse to the z-axis, and hence

the form dλ = dp ∧ dx|ξ has the maximal rank 2n. Therefore the restriction of this form to the

codimension 1 subspace Πa ⊂ ξa has rank 2n − 1, because the rank cannot drop more than by 1,

but on the other hand the rank of a skew-symmetric form is always even. Hence, there exists a

1-dimensional kernel `a ⊂ Πa of the form dλ|Πa , i.e. dλ(v, w) = 0 for any vectors v ∈ `a, w ∈ Πa.

69



The line field ` = {`a}a∈Σ which is tangent to Σ is called the characteristic line field, and its

integral curves are called characteristics.

The next lemma gives an explicit expression for a vector field directing the line field `.

Lemma 6.6. Suppose Σ = {F (x, p, z) = 0} and a = (x, p, z) ∈ Σ a regular point. Then the line `a

is generated by the vector

v =
n∑
1

Fpi
∂

∂xi
−

n∑
1

(Fxi − piFz)
∂

∂pi
+

n∑
1

piFpi
∂

∂z
. (6.3.1)

Proof. Given any vector w = (X,Y, Z) ∈ Πa = ξa ∩ TaΣ its coordinates should satisfies the

following conditions. The equation dFa(w) = 0 takes the form

FxX + FpP + FzZ = 0. (6.3.2)

The equation λ(w) = 0 takes the form

Z − pX = 0. (6.3.3)

Hence, vectors in ξa have the form (X,P, pX), and the necessary and sufficient condition for a

vector w to be ξa ∩ TaΣ is that it satisfies the equation

(Fx + pFz)X + FpP = 0.

Let v = (X̃, Ỹ , Z̃) be a non-zero vector given by (6.3.1). We have Z̃ = pX̃ =
n∑
1
pxX̃i and

(Fx + pFz)X̃ + FpP̃ = (Fx + pFz)Fp − Fp(Fx + pFz) = 0, and hence v ∈ Πa. We also have

v dλ = v dp ∧ dx = P̃ dx− X̃dp,

and for any vector w = (X,P, pX) ∈ Πa, we have (Fx + pFz)X + FpP = 0 we have

PX̃ − P̃X = (Fx + pFz)X + FpP = 0. (6.3.4)

Lemma 6.7. Let Σ ⊂ J1(Rn) be a hypersurface transverse to ξ, and ` the characteristic line field.

Let L ⊂ Σ be a submanifold such that λ|L = 0 and L is transverse to `. Let L̂ denote the union of

all trajectories of the characteristic foliation intersecting L. Then λ|
L̂

= 0.

70



In other words, if we flow a k-dimensional submanifold of Σ tangent to ξ along the characteristics,

then it swaps a (k+1)-dimensional submanifold of Σ tangent to ξ. Proof. Choose a non-vanishing

vector field v ∈ `. At a point a ∈ L the tangent TaL̂ ⊂ Πa is spanned by TaL and the vector v(a).

Note that dλ
TaL̂

= 0 because dλ|TaL = 0 by assumption, and dλ(v(a), w) = 0 for all w ∈ TaL̂

because v(a) ∈ `a = Ker dλ|Πa . We also note that the flow of the vector field v on L̂ preserves

the form µ := λ|
L̂

. Indeed, the Lie derivative Lv(λ|L̂) = d(λ(v)) + v dλ) = 0. Here the first term

vanishes because v ∈ ` ⊂ ξ, and the second one vanishes because v ∈ ` = Ker (dλ|Π). Therefore, if

λ vanishes in one point of a trajectory of v, then it vanishes at every point of this trajectory. But

by definition any trajectory of v on L̂ intersects L, and as we had seen above λ vanishes on L̂ at

the points of L. Hence, it vanishes, everywhere.

Lemma 6.8. Let Σ ⊂ J1(Rn) be a hypersurface transverse to ξ, and ` the characteristic line field.

Then any Legendrian submanifold L ⊂ Σ is tangent to `.

Proof. Recall that a Legendrian submanifold is an n-dimensional submanifold tangent to Σ.

Suppose that for a point a ∈ Σ the characteristic line `a is transverse to TaL. Consider the (n+ 1)-

dimensional space S := Span(TaL, v). We have S ⊂ Πa ⊂ ξa. On the other hand, dλ|S = 0. Indeed,

dλ|TaL = 0 by assumption, and dλ(v, w) = 0 for all w ∈ S and v ∈ `a because `a = Ker dλ|Πa . But

dλ is a non-degenerate form on a 2n-dimensional space ξa. Hence, it cannot vanish on a subspace

of dimension > n.

Theorem 6.9. Let Ω1,Ω2 ⊂ Rn−1 = {xn = 0} be two bounded open domains such that Ω1 ⊂ Ω2,

and φ : Ω2 → R a smooth function. Consider a Cauchy problem

∂u

∂xn
= f

(
x1, . . . , xn−1,

∂u

∂x1
, . . . ,

∂u

∂xn−1
, u

)
u(x1, . . . , xn−1, 0) = φ(x1, . . . , xn−1).

(6.3.5)

with respect to a function u : Rn → R. Then for a sufficiently small ε > 0 the Cauchy problem

(6.3.5) has a unique solution for (x1, . . . , xn−1 ∈ Ω1, |xn| ≤ ε. This solution can be found using the
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following procedure. Consider a system of ordinary differential equations

ẋi = − ∂f
∂pi

(x, p1, . . . , pn−1, z), i = 1, . . . , n− 1,

ẋn = 1,

ṗi =
∂f

∂xi
(x, p1, . . . , pn−1, z)− pi

∂f

∂z
(x, p1, . . . , pn−1, z),

ż = f(x, p1, . . . , pn−1, z)−
n−1∑

1

pi
∂f

∂pi
(x, p1, . . . , pn−1, z),

(6.3.6)

Let

xj = αj(c1, . . . , cn−1, t), j = 1, . . . , n− 1, xn = t, (6.3.7)

pj = βj(c1, . . . , cn−1, t), j = 1, . . . , n− 1, (6.3.8)

z = γ(c1, . . . , cn−1, t), (6.3.9)

be the solution of system (6.3.6) with initial data

xj(0) = cj , j = 1, . . . , n− 1, (c1, . . . , cn−1) ∈ Ω2,

xn(0) = 0.,

pj(0) =
∂φ

∂xj
(c1, . . . , cn−1), j = 1, . . . , n− 1,

z(0) = φ(c1, . . . , cn−1).

The system of algebraic equations (6.3.7) can be resolved with respect to ci, i = 1, . . . , n− 1:

cj = δj(x1, . . . , xn), j = 1, . . . , n− 1,

for sufficiently small values of xn. Then the function

u(x1, . . . , xn) := γ(δ1(x1, . . . , xn), . . . , δn−1(x1, . . . , xn), t)

is the solution of the Cauchy problem for (6.3.5).
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Chapter 7

Proof of basic theorems

7.1 Existence and uniqueness theorem

Theorem 7.1. Consider a system

ẋ = f(x, t), (x, t) ∈ Ω ⊂ Rn × R, (7.1.1)

where f is a C1-map. Then there exists ε > 0 such that for any point (x, t) ∈ Ω with ||x− x0|| ≤ ε

there exists a unique solution gx(t), |t − t0| < ε which satisfies gx(t0) = x. Moreover, gx(t) is a

continuous function of x and t.

Proof. To simplify the notation we assume t0 = 0, x0 = 0. First, choose some a > 0 such that

Ca = {||x||, |t| ≤ a} ⊂ Ω.

Denote

C := max
(x,t)∈Ca

||f(x, t)||, L = max
(x,t)∈Ca

||dx,tf ||.

Choose ε ∈ (0, a) such that Lε < C and (C + 1)ε < a. Denote Cε := {||x||, |t| ≤ ε}

Let us denote by M the subset of the space of continuous maps h : Cε → Rn such that h(x, 0) = 0

and ||h(x, t)|| ≤ Ct. The space M is a closed subset of the space C0(Cε,Rn) endowed with the norm

||h|| = max
(x,t)∈Cε

||h(x, t)||. The space C0(Cε,Rn) of continuous maps Cε → Rn with this norm is a

complete space (i.e. any Cauchy sequence converges) and hence M is a complete space as well.

Define an integral operator K : M → C0(Cε,Rn) by the formula
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K(h)(x, t) =

t∫
0

f(x+ h(x, s), s)ds, (x, t) ∈ Cε.

The operator K has the following properties:

• K(h) ∈M , i.e. K maps M to M ;

• there exists a positive constant µ < 1 such that

||K(h)−K(ĥ)|| ≤ µ||h− ĥ||

for all h, ĥ ∈M ; in other words, K is a contracting operator.

Indeed, first we note that

||(x+ h(x, t))|| ≤ ||x− x0||+ ||h(x, t)|| ≤ ε+ Cε = (C + 1)ε < a,

i.e. (x+ h(x, t), t) ∈ Ca if (x, t) ∈ Cε. Note that K(h)(x, 0) = 0. Hence, for |t| < ε we have

|K(h)(x, t)|| ≤ max
||x||≤ε

||K(h)(x, t)|| ≤
t∫

0

||f(x+ h(x, s), s)||ds ≤
t∫

0

Cds ≤ Ct.

Thus, K(h) ∈M . Denote µ := Lε (recall that L = max
(x,t)∈Ca

||dx,tf ||)). Then by assumption we have

µ < 1. We have

||K(h)−K(ĥ)|| ≤
t∫

0

||f(x+ h(x, s), s)− f(x+ ĥ(x, s), s)||ds

t∫
0

L||h− ĥ||ds ≤ Lε||h− ĥ|| = µ||h− ĥ||.

According to the fixed point theorem for contracting operators there exists a unique h ∈ M

such that K(h) = h.

We claim that then gx(t) := x+h(x, t) is the required solution of the system ẋ = f(x, t). Indeed,

we have gx(0) = x and

d

dt
gx(t) =

d

dt

 t∫
0

f(gx(s), s)ds

 = f(gx(t), t).

Note, that conversely, any solution of the system is a fixed point of the operator K, and hence, the

solution is unique. �
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7.2 Equation in variations

Consider again the system (7.1.1) and assume here that f(x, t) is at least C1-smooth.

Let φ : (−a, a)→ Ω be a solution of (7.1.1) which corresponds to the initial condition φ(0) = x0.

Let us look for solutions x(t) close to φ(t) in the form x(t) := φ(t) + εu(t), t ∈ (−a, a), we get

f(x, t) = f(φ(t) + u(t), t) = f(φ(t), t) + εC(t)u(t) + o(ε).

Here C(t) = dx=φ(t)f(x, t) is the differential (with respect to x of f(x, t) at the point φ(t). In what

follows we will not distinguish between the differential and the corresponding Jacobi matrix.

Thus plugging x(t) := φ(t) + εu(t) into equation (7.1.1) we get

φ̇+ εu̇ = f(φ(t), t) + εC(t)u(t) + o(ε).

Taking into account that φ is a solution of (7.1.1) we get that φ̇ = f(φ(t), t). Dividing the remaining

terms of the equation by ε and passing to the limit when ε→ 0 we get the equation

u̇ = C(t)u. (7.2.1)

which is called an equation in variations along a solution x(t) of (7.1.1).

If we denote by φε(t) the solution of (7.1.1) corresponding to the initial condition φε(0) = εu0

for some vector u0 ∈ Rn, then, assuming that the solution depends smoothly on the parameter ε

we get
dφε(t)
dε

∣∣∣
ε=0

= u(t), where u(t) is the solution of (7.2.1) which satisfies the initial condition

u(0) = u0. We will establish the smooth dependence in the next section.

7.3 Smooth dependence on the initial data

Theorem 7.2. Let gx(t) be a family of solutions of the system (7.1.1) constructed in Theorem 7.1.

Suppose that the right-hand side f(x, t) is C2-smooth. Then gx(t) depends smoothly on (x, t).

Consider equations in variations for a solution x(t) of (7.1.1)

u̇ = Cx(t)u, u ∈ Rn, (7.3.1)
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where Cx(t) is the Jacobi matrix of the map f(x, t) with respect to x at the point (x(t), t). We will

not distinguish below between the differential, which is a linear map and its Jacobi matrix. Let us

also consider the corresponding matrix equation:

U̇ = Cx(t)U, U ∈Mn, (7.3.2)

where Mn is the space of n × n-matrix. If U(t) is the solution of this matrix equation satisfying

U(0) = I, then u(t) = U(t)u0 is the solution of equation (7.3.1) with the initial condition u(0) = u0.

In other words, U(t) is the matrix of the phase flow of equation (7.3.1).

The right-hand side of equation (7.3.3) depends on a solution of (7.1.1), so it is more natural

to consider the two equations as a system of equations:

ẋ = f(x, t),

U̇ = Cx(t)U, x ∈ Ω ⊂ Rn, U ∈Mn.
(7.3.3)

Let us recall from the proof of Theorem 7.1 that the solution gx(t) of equation (7.1.1) can be

obtained as the limit of successive approximations g
(0)
x (t), . . . , g

(0)
x (t), . . . , where g0

x(t) = x and

gk+1
x (t) = x+

t∫
0

f(gkx(s), s)ds (7.3.4)

for k ≥ 0. Let us apply the same iteration scheme to the system (7.3.3):

Namely, we set g0
x(t) = x, G0

x = Id and define

gk+1
x (t) = x+

t∫
0

f(gkx(s), s)ds,

Gk+1
x (t) = I +

t∫
0

Cgkx(s)G
k
x(s)ds

(7.3.5)

Note that all maps in both sequences are smooth, G0
x = dxg

0
x, and differentiating the first equation

with respect to x we inductively get that

dxg
k
x(t) = Gkx(t) for all k ≥ 0. (7.3.6)

On the other hand, according to Theorem 7.1 applied to equation (7.3.3) we conclude that the

sequence (gkx(t), Gkx(t)) uniformly converges to the solution (gx(t), Gx(t)) of (7.3.3). Then, using
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(7.3.6) we conclude that dxgx(t) = Gx(t) which implies, in particular, that gx(t) is continuously

differentiable with respect to x on some domain Cε ⊂ Ω where ε may need to be further decreased

depending on the upper bound for the second derivatives of f(x, t).

We leave it to the reader as an exercise to show that the differentiability with respect to the

pair (x, t) of variables follows from what was already proven by the standard trick of passing to the

extended phase space of the system.
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