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Chapter 1

What is a differential equation?

1.1 Preliminaries

Differential equations and system of equations are equations or system of equations involving deriva-
tives of unknown functions. If all the unknown functions are of the same one variable then the
differential equations are called ordinary. In the case of functions of more than one variable one

speaks of partial differential equations.

Thus any system of ordinary differential equations can be written as
F(t,u(t), ' (t),u" (), ..., u®(t)) =0, (1.1.1)

t € [a,b], where u : [a,b] — R™ is a vector-valued function, and F' is a map of a domain U in the

space RV, N = km + 2 to R for some integer [.

An important observation is that it is always possible to equivalently rewrite the system ((1.1.1))

to involve only the first derivatives of the unknown functions.



Indeed, the system

F(t,u(t),vi(t),va(t),...,vp_1(t),v,_1(t)) =0,

Vg _o(t) = vp—1(1),

t € la,b], u,vi,...,v5-1:[a,b] = R™, is equivalent to the system ([1.1.1].

Let us stress the point that when dealing with concrete equations this transformation is not
always the best way of action. However, in many cases it is, and also for theoretical purposes
considering the systems of first order differential equations is sufficient and we will usually do that

. In other words, we will be studying the systems

F(t,u(t),u(t)) =0, (1.1.2)

t €la,b), u:[a,b] = R™ F:U — R! where U is a domain in R?*+1,

1.2 Differential equations as vector fields

If m =1, i.e. the number of equations is equal to the number of unknown functions the system is
called determined. If [ > m it is called over-dertermined and if | < m under-determined. We will be
dealing in this class exclusively with determined systems.

More precisely, for determined system one usually imposes an additional condition, that the
minor of the Jacobi matrix of the map F : U — R! corresponding to the last m coordinates does
not vanish at every points (¢,u,y) € U C R?*"*! = R x R™ x R™ for which F(¢,u,y) = 0. Then
according to the implicit functions locally near each such point the system can be solved

with respect to the derivatives, i.e. written in the form

u'(t) = v(t,u(t)), (1.2.1)

te€fa,b,u:R™ - R v:RxR™ =R,



Let us consider first the case when v is independent of ¢, i.e. the system has the form

W (1) = v(u(t), (1.2.2)

t € [a,b], u,v : R™ — R. A system of this type is called autonomous. It is useful to think about v
as a vector field on R™, or on a domain 2 C R™. In other word, if coordinates in R" are denoted
by (u1,...,uy,) and the coordinate functions of v are (v, ... v,,) then we can think of v as a vector
field v = ivi(u)(fw. Then the problem of solving the ODE can be interpreted as finding a
path

u: [a,b] - R™ (1.2.3)
such that its velocity vector u/(t) at each point ¢ € [a,b] coincides with the vector field v at the
point u(t), i.e. with the vector v(u(t)). Usually one also impose an initial condition on the solution:
u(a) = A € R™.

The space R™ on which the vector field v lives is called the phase space of the system , and
the solutions are called phase curves or integral curves of the system . The dimension
of the phase space is called the order of the system.

If one thinks about the vector field v as a velocity vector field of a motion of some fluid then
phase curves are trajectories of the individual particles. In the mechanical context when we think
about the parameter ¢ as the time, it is customary to denote the derivative by the dot, i.e. to write
u instead of u'.

Let us point out, however, that usually for problems arising from Mechanics the phase space is
not the space in which the motion takes place. Indeed, consider, for instance, the so-called, 3-body
problem when, three bodies (say, the Sun, the Earth and the Moon) move in the 3-space according

to the law of gravity, The motion of this system can be described by Newton equations of the form
ul - fl(ulau27u3)7
’1-1.12 = fQ(ula uz, u3)7

g = fa(u1,u2,us),

where 1y, ug, uz € R3 are positions of (the centers of mass) of the bodies. After transforming this into

a system of first order equations we get a vector field in R'®. This is the phase space of our system.
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Thus a motion of a the 3-body system corresponds to a phase trajectory of the corresponding point
in its 18-dimensional phase space.

A non-autonomous system can be viewed as a time-dependent vector field v (u) = v(t, u).
For instance, one encounters this situation when studying a non-steady flow of a fluid. Note that

any non-autonomous system of order m can be viewed as an autonomous system of order m + 1:

= v(r(t), u(t)),

7=1

The space R™T! = R™ x R of variables (u,7) is called the extended phase space of the original

non-autonomous system ([1.2.1)). In the extended phase space we can write the system as
i =0(a(t)), (1.2.4)

where 4 = (u,7) € R™TH

1.3 Line (direction) fields and Pfaffian equations

Let us denote by A the line field \ := Span(v) generated by the vector field v. We note that the
vector field ¥ can be uniquely reconstructed from A, and hence the system can be equivalently
viewed as the line field A. [

More generally, given any line field A in a domain U C R™ one can consider the problem of its
integration as finding integral curves for this line field, i.e. paths u : [a,b] — U such that u(t) € Ay
for any ¢ € [a, b]. Note that in this case while the direction of the velocity vector is prescribed at any
point, its length is not. Hence, one can reparameterize v by composing it with a diffeomorphism
¢ : [e,d] — [a,b] and get a different integral path which corresponds to the same integral curve
viewed as a submanifold of U.

Note that in our original example of the line field \ generated by the vector field when the line
field A has a non-singular projection to one of the coordinates lines (namely, 7). Hence, any integral

curve is graphical with respect to this projection, and therefore we can choose 7 as the parameter

In Arnold’s book is used the term direction field for the line field .



on them. In fact any line field, in a neighborhood of each point projects non-singularly to one of
coordinate axis, and hence the corresponding coordinate can be chosen as a parameter for integral
curves near that point.

Consider now the case when n = 2, i.e. when \ is a line field on a domain U C R?. Then, if the

line field A is co-orientable it can be defined by a Pfaffian equation
a=0

for a 1-form o = Pdx + Qdy on U.
A solution of this equation, or which is the same, an integral curve of the line field A = {a = 0}.

Hence, if it is given parametrically by x = z(t),y = y(t), t € [a, b], then we get

(P(x(t),y(t))a(t) + Qx(t), y(t))y(t)) dt = 0

P(x(t),y(t)2(t) + Q(x(t), y(t))y(t) = 0.

Near a point where (z9,yp) € U where Q(xo,yo) # 0 (i.e. near a point where the projection of the
line field A to the z-axis is non-singular, we can equivalently write the equation Pdx + Qdy = 0 as

dy = —gd:r, and hence look for solutions y = f(z) of the equation

Pz, f(z
f/(l') — _ ( ( ))’
Q(z, f(z)
and similarly if P(zg,y0) # 0 we can write the equation in the form dzr = —%dy and look for
solutions x = g(y) of the equation
Q ;
i) = — (9(),y)
Pg(y),y)
Example 1.1. Vector field on the line. Consider a vector field v(z) = f (m)% on R where

f(x) # 0 for all x € R. Consider the corresponding differential equation
T =v(x).
Passing to the extended phase space R? with coordinates (z,¢) this equivalent to a Pafaffian equation

dx = f(x)dt,
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which in turn can be rewritten as

dz
f@)’

because by our assumption f(x) # 0. Suppose we are looking for an integral curve passing through

dt =

a point (o, o). Then integrating this equation we get

T

t—ty = @)

Zo
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Chapter 2

Phase flow

In this chapter we denote by U,V domains in R". However, everything can be generalized to the

case when U and V are any two n-dimensional manifolds.

2.1 Action of a diffeomorphism on a vector field

Let f: U — V be a diffeomorphism. Let us denote by Vect(U) and Vect(V') the spaces of vector
fields on U and V, respectively.

Given a diffeomorphism f : U — V one can define the push-forward map f. : Vect(U) —
Vect(V) as follows. Let X € Vect(U) be a vector field on U. Then we define the vector field
Y = f,X by the formula

Y () = dp f(X(w)), where u= f1(0)

Let us point out that unlike the pull-back operator f* on differential forms which defined for any
smooth maps and not, necessarily for diffeomorphisms, the push-forward operator f, on vector
fields is defined only for diffeomorphisms (why?).

We can similarly define the push-forward operator on line fields. If X is a vector field and

A = Span(X) the line field which it generates then f,A = Span(f.v).

Exercise 2.1. 1. Suppose n = 2 and a line field A on U is defined by a Pfaffian equation oo = 0,
where « is a 1-form on U. Show that given a diffeomorphism f : U — V the line field f,A on
V can be defined by a Pfaffian equation § = 0, where 3 := (f_l)* a= (f*)f1 Q).
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2. Let P : U — V be the map introducing polar coordinates. In other word U = {0 < r < o0, 0 <
¢ < 27} be a domain in R? with Cartesian coordinates (r,¢), V = R?\ {y = 0,z > 0} in R?

with Cartesian coordinates (z,y) and P is defined by the formula

P(r,¢) = (rcos ¢, rsing).

Let X = a% + ba% be a vector field on U. Find Y := P.X = Aa% + Ba%. This can also
be equivalently formulated as relating the expressions of a given vector field Y on R? in two

different bases, the basis (a%, a%) and (%, %).

2.2 Isotopy and diffeotopy

Let us denote by A C R an interval in R. This interval can be closed, open, semi-open, and even
concides with the whole R or the rays (a,00) or (—o0, a).

Let us recall that a homotopy f; : U — V, ¢t € A, is just a continuous family of continuous
maps U — V| which depends continuously on the parameter A. Equivalently, one can think of a
homotopy as a continuous map F : U x A — V. The relation to the first definition is given by the
formula

F(x,t) = fi(x), for x €U, teA.

In this class we will always assume all homotopies to be smooth, i.e. F: U x A — V is at least a
C'-smooth map.

We will also need two special cases of a homotopy, called an isotopy and a diffeotopy.

A homotopy f; : U — V,t € A, is called a diffeotopy if f; : U — V is a diffeomorphism for each
t € U. A homotopy f; : U — V, t € A, is called a isotopy if for each t € U the map f; : U = V
is an embedding, i.e. a diffeomorphism onto its image f;(U). Thus, an embedding need not to be
onto, and the image f;(U) can move during an isotopy. Of course, a diffeotopy is a special case of
an isotopy.

Let f; : U — U (note that the source and the target are the same!) be a diffeotopy. Then we

can define a family of vector fields Xy on U by the formula

_an

Xi(@) = 5

(fi'(x), zeUteA. (2.2.1)

12



Equivalently, one can write

X)) = Be(a), we Ve A,

which means that for every xo € U the path t — fi(xg), t € A, is a solution of the equation
&= X¢(z) (2.2.2)

For any ¢y € A this solution satisfies the initial condition x(t9) = f¢(z0)-

2.3 Rectification theorems

Theorem 2.2. Let X be a C'-smooth vector field in a domain Q2 C R™. Then for any point xq €
there exists € > 0 and a neighborhood U > xo,U C €, such that there exists an isotopy fiy : U — €,
t € (—e€,€) such that

o fo(z)=x forallz e U;

o W) — X(f(2)).

We will prove this theorem later on.

The isotopy f¢ is called the local phase flow. If f; defined globally, i.e. it is a diffeotopy U — U,
even defined for small interval of time (—¢, €) then it is automatically defined for all ¢t € R, see the
next section.

Theorem have several corollaries, most of which are essentially equivalent to the theorem
itself.

First, we note that by the standard trick of reducing the non-autonomous case to an autonomous

one in a space of a bigger dimension, Theorem implies its own generalization:

Theorem 2.3. Let X;, t € A be a C'-smooth family of vector fields in a domain Q C R™. Then
for any points xo € ) and ty € A there exists € > 0 and a neighborhood U > xo,U C €, such that

there exists an isotopy f; : U — Q, t € (to — €, to + €) which satisfies
o fi,(x)==x for all x € U;
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o U)X, (fi(w)),x €Ut € (to—e,tg + €)

The next theorem shows that two non-vanishing smooth vector fields are locally diffeomorphic.

More precisely,

Theorem 2.4. Let X be a C'-smooth vector field in a domain 2 C R™. Suppose that that X (a) # 0
for some point a € Q. Then there exists a local coordinate system (yi,...,yn) on a neighborhood

U>3a, UCS, centered at the point a such that the vector field X on U is equal to 8%1

In particular,

Theorem 2.5. Let A be a C'-smooth line field in a domain @ C R™. Then for any point a € €
there exists a neighborhood U > a,U C Q and a local coordinate system (y1,...,yn) on U, centered

at the point a such that the line field Y on U is spanned by the vector field 3%1.

Proof of Theorem We can assume without loss of generality that a is the origin of the
Cartesian coordinate system, and the vector X (a) coincides with the vector 8%1 at the point a.

This could be achieved by rotating and scaling the original Cartesian system of coordinates. Let
n
Dyt i= {x = 0; Zx? < 6%,
2

Suppose that € is chosen so small that DZ;*l C U, where U is the neighborhood provided by
Theorem Let fi : U — Q,t € (—¢,€) be the local phase flow constructed in Theorem

Denote

n
H = {|z;] < e,Zx? < 6%}
2

and define a map F' : H — Q given by the formula F(z1,z9,...,2,) = fo (0, 22,...,2y)).
The map F is an embedding, provided that e,d are small enough. Indeed, the differential of
F at the origin is the identity map (why?), and hence by the implicit function theorem it is an
embedding in a sufficiently small neighborhood of 0. But F*(a%l) = X, and hence, assuming that
€,0 are small enough, the coordinate system introduced on the neighborhood U’ = F(H) by the
diffeomorphism F~!: U’ — H is the required one. |
This theorem, in particular implies existence of the solution of a system & = X (z) for any initial

data z(tg) = xo on an interval (t — €, + €), provided that the vector field X is C'-smooth. It also
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implies the uniqueness of solution with given initial data and its smooth dependence on the initial

data.

2.4 Phase flow

Let X be a smooth vector field in a domain 2 C R". Choose a € 2. Recall that according to
Theorem there exists a neighborhood U 3 a in €2 and € > 0 such that there exists a local phase
flow for the equation

t=X(z), zeQ, (2.4.1)
i.e. an isotopy f;: U — Q, t € (—¢,€), such that
e fo(z) ==xforall x € U,
o BB _ X, (fi(2)), € Ut € (—e6).

Let us observe that that the interval (—¢, €) depends on the choice of an initial point a € Q and
its neighborhood U. However, if the flow is defined on the whole €2, i.e. it is a diffeotopy fi : 2 — Q
then the flow is defined for all ¢t € R.

Indeed, let E = supe such that the flow is defined on (—¢,¢€). Suppose that E < oco. Then
the flow is defined on (=E + 0, E + §) for 6 < § but then we can define it on (—E’, E’), where
E' = E—§+ 32 > E by the formula f;, := fg% Oft,?% for t € (E—6, E'). This contradiction shows
that E = oo, i.e. the flow is defined for all ¢ € R. The following lemma follows from the definition
of the flow.

Lemma 2.6. Suppose the flow f: : Q — § for a vector field X is defined for all t € R. Then
1. firo fu = fiyy for all t,u € R;
2. fo=1d;
3. f=f7"

One may express this lemma by saying that the flow of an autonomous system which is defined

for allt € R forms a 1-parametric group of diffeomorphisms.
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Often for the flow f; generated by a vector field X we will use the notation X* instead of f;.

Conversely, any 1-parametric group of diffeomorphisms f; :  — € corresponds to a vector field

X on . Indeed, according to the formula (2.2.1)) the isotopy f; defines a family of vector fields

Xi(x) = %(ft_l(x)), z € Q,t € R. But in this case, denoting y = f; ' (z)
X,(z) = %(y} — QIL%W — i%w = Xo(a),

i.e. X¢ is independent of t.

Proposition 2.7. Suppose that a vector field X on Q integrates to a flow Xt : Q — Q, t € R, and
f: Q- Qa diffeomorphism. Denote X = f«X. Then the vector field X integrates to a flow )?t,
teR, on Q and

Xt=foXtof ! teR.

Proof. For any point y = f(z) € Q we have

4
dt

d

(X' W), = S (foX o f W),

d

t _ d t —
= (foX (@)= = do f( (X (@)],—o) = duf (X (2))

2.5 Symmetries

Let A be a line field in Q C R”. A diffeomorphism f : Q — Q is called a symmetry of the line field
Aif fd= A

Lemma 2.8. All symmetries of the line field \ form a group.

Indeed, Id is a symmetry, if f, g are symmetries then fo g is a symmetry and if f is a symmetry
then f~!is a symmetry.

Consider a differential equation
t=Xi(z), z€Q, t €A (2.5.1)
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with the phase space 2 C R"™. Let A be the corresponding line field on its extended phase space
Q x A. Then any symmetry f : Q x A — Q x A of the line field X is called the symmetry of the
equation .

Let us stress the point that a symmetry is a diffeomorphism of an extended phase space, i.e. it
acts on space-time domain, even in the case of an autonomous system. Of course, in the case of an
autonomous system & = X (x), € 2, one can consider also more restricted class of symmetries,
namely diffeomorphisms h : 2 — € preserving the vector field X, i.e. h, X = X, as for instance, in

the following

Proposition 2.9. Consider an autonomous system & = X (z) on Q C R™. Suppose that it integrates
to a phase flow X' : Q — Q. Then for each s € R the diffeomorphism X° is a symmetry of the

equation.

Proof. Let us compute Y := X?(X). By definition of the phase flow,

X(z) = %Xt(x)‘tzo.

On the other hand, by the chain rule for any path v : (—e,e) — Q such that 4(0) = z and
v'(0) = X (x) we have %f('y(t))|t:0 =df,(X(z)) = fL X(f(x)). Denote f := X*. Then

LX) = 7o X! @),y = X, = X(X*(2).
In other words, f. X (f(x)) = X(f(X)), i.e. fuX = X. [

Theorem 2.10. Let Y and A be a vector field and o line field in 2.
e Y integrates to a flow Y*° :Q — Q;

e Y admits a transverse hypersurface 2 such that |J Y*(X) = Q and either
seR

(a) Y5(2) £ Y5 () for s # s, or
(b) the flow Y* is periodic with period T, i.e. YT =Y for all s € R and Y*(X) # V¥ (¥)
if |[s—§'| <T.

Suppose that Y® is a symmetry of X for all s € R. Then the order of the differential equation
corresponding to A can be reduced by 1. In particular, if dimQ = 2 then the Pfaffian equation
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corresponding to A can be reduced to an equation with separable variables, and hence solved in

quadratures.

Proof. We consider below only the case n = 2. The proof in the general case follows a similar
scheme. In this case X is a 1-dimensional manifold, and hence it is diffeomorphic either to R or to
S1. We will concentrate below on the case of R. Consider a parameterization ¢ : R — 3. Define a

map ® : R? — Q by the formula
®(u,v) = Y*(¢(u)).

We can think about (u,v) as curvilinear coordinates in 2. The flow Y* in these coordinates look

like translation along the v-direction:
(u,v) = (u,v + s).

The line field A in these coordinates can be defined by a 1-form a = P(u,v)du + Q(u,v)dv. Let
us assume that P # 0. In fact, at every point (u,v) either P(u,v) # 0 or Q(u,v) # 0. The case
when @) # 0 can be considered similarly. Then we can define the line field A by a Pfaffian equation
du + R(u,v)dv = 0, where R = %.

The fact that the line field A is preserved by the flow Y® means that

(Y*)*(du + R(u,v)dv) = fs(u,v)(du + R(u,v)dv).

But (Y*)*(du + R(u,v)dv) = du+ R(u,v + s)dv. Hence, fs(u,v) =1 and R(u,v+ s) = R(u,v), i.e.
the function R is independent of V', so we will just write R(u).

Thus in coordinates (u,v) the equation takes the form
du+ R(u)dv =0

which is an equation with separable variables. |
Let us notice that if we change the variables (u,v) to (u, V') where v = h(V') then the variables

will separate anyway. Indeed, the form du + R(u)dv in coordinates (u, V') takes the form du +

R(u)l/(V)dV. And thus the variables in the equation du + R(u)h/(V)dV = 0 separate as well.
Hence, it is not so important that the coordinate v along trajectories of Y coincides with the

time-parameter, but what is crucial is that v is constant on translates of ¥ under the flow Y*.
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2.6 Quasi-homogeneous equations

Consider in R" the vector field
0
Y = g ;
> iy -

where ay,...,ay. It is called an Fuler field with weights aq,...,ay,, or just an Euler field, if all
weights are equal to 1.

The vector field Y integrates to a 1-parametric group of linear transformations Y* : R — R”
given by the formula

Yo(x1,...,2n) = (e%2q,..., e xy).

A function f : R™ — R is called quasi-homogeneous of degree d with weights aq,...,q, if
f(Y3(z)) = e®F(x) for all z € R", s € R.

A line field A in a domain  is called quasi-homogeneous of degree d with weights a1, ..., ap) if
YA = X for all s, i.e. transformations Y?® are symmetries of )\H

A differential equation is called quasi-homogeneous if the corresponding line field in the extended

phase space is quasi-homogeneous.

Exercise 2.11. 1. Consider a system of equations & = f(z), z € R™. Suppose that the coor-
dinate functions f; are quasi-homogeneous of degrees d; with the same weights aq,...,ay,. The

corresponding line field A in the extended phase space (z,t) is given by the system of Pfaffian

equations

dry = fi(z1, ..., x,)dt;

dry, = fo(z1,. .., x,)dt.
Suppose diy — a1 = --- = d,, — ay,. Prove that the line field A is quasi-homogeneous and find the
weights. Let Y® be the quasi-homogeneous flow Y*(z1,...,2,) = (e***xy,...,e**x,). Compute

the push-forward by Y*® of the vector field X =" f, 1%
1 1

! Note that the above definition implies, among other things that domain Q itself is invariant with respect to Y*,

ie. Y(Q)=Q for all s € R.
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2. Consider equation of k-th order with respect to 1 unknown function:

dky
qk f(z,y).

Suppose that f(z,y) is a quasi-homogeneous function of degree d with weights «, 8. Find a relation
between «, 5 and d which ensures that the line field representing the system in its extended (k+1)-

dimensional phase space is quasi-homogeneous (and find weights).

2.7 Directional derivative revisited

Let X be a smooth vector field defined on a domain U C R™ (more generally we can assume that U
is any n-dimensional manifold). Given a function f : U — R we can define the directional derivative

Lxf of f along X:

Lyf = lim fla +tX) — f(z)

s—0 t

(2.7.1)

The directional derivative has many other notation: Dx (f), %, af (X),....
Let us denote by Xt : U" — U, t € (—¢,€), the local phase flow of X* defined on a neighborhood
U’ C U of a point a € U.

Let us observe that the directional derivative can be also defined by the formula

Lyf(a) = %f o x| _(a). (2.7.2)

It turns out that formula (2.7.2)) can be generalized to define an analog of directional derivatives

for differential forms and vector fields, which is the Lie derivative.

2.8 Lie derivative of a differential form
Let w be a differential k-form. We define the Lie derivative Lxw of w along a vector field X as

d
L = —(X%)* . 2.8.1
Xw ds( )wszo (2.8.1)

Note that if w is a 0-form, i.e. a function f, then (X?®)*f = foX?*, and hence, in this case definitions

(2.7.2) and (2.8.1) coincide, i.e. for functions the Lie derivative is the same as the directional

derivative.
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Proposition 2.12. The following identities hold

1. Lx(wl /\CUQ) = (Lle) A wg + wi A Lxws.

2. Lx(dw) = d(LXw).

Proof.

d

d S\ * S\ * S\ *
1. Lx(wi Awsg) = %(X )" (w1 A wa) o £((X )fwi A (X°)*ws) o
d S\ * d S\ * _
= g((X ) wl) o Nwo 4+ w1 A $((X ) wg) o (wa1) Awg 4+ wi A Lxws.
2. Ly(dw) = L((xyaw)| = Laexoyw| = d(i( ) w ) — Ly (dw).
ds s= ds s=0 ds s=0

The following formula of Elie Cartan provides an effective way for computing the Lie derivative

of a differential form.

Theorem 2.13. Let X be a vector field and w a differential k-form. Then

Lxw=d(X Jw)+ X Jdw. (2.8.2)

Proof. Suppose first that w = f is a O-form. Then Lx f = df(X) = X Jdf, which is equivalent
to formula (2.8.2), because in this case the first term in the formula is equal to 0. Then, using
Proposition 2.12R) we get

Lxdf = dLx f = d(df (X)) = d(X 1df),

which is again equivalent to (2.8.2)) because in this case ddf = 0. Next we note that if the formula
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(3.8.1)) holds for w; and wo then it holds also for w; A wy. Indeed, we have

(*) Lx(w1 Aw2) = (Lxwi) Awa + w1 A Lxws
= (X Jdwy + d(X Jw1)) Awe + wy A (X Jdws 4+ d(X Jws))
= (X Jdwy) Awa + w1 A (X Jdwa) + d(X Jwi) Aws + wi A d(X Jws)
On the other hand, denoting by d; and ds the degrees of w; and wy, we get
(%) X Jd(wi Awz) +d(X 1 (w1 Aws))
= X J(dwy Awa + (=1)%wy A dws) 4+ d((X Jwy) Aws + (—1)Pw; A (X dws))
= (X Jdwi) Aws 4 (=) dwy A (X Jws) + (=1 (X Jwy) A dws + wy A (X Jdws)
+d(X dwi) Aws + (=1D)BHLX Jwy Adws + (=) dwy A (X Jws) +wi A (d(X Jws))

= (Xdel) N wo + w1 A (XJdWQ) +d(XJw1) Nwo 4+ w1 A d(XJOJQ) .
Comparing the computation in (x) and (**) we conclude that
LX(w1 A wg) = XJd(w1 VAN (UQ) + d(X J (w1 A (.UQ)).

By induction we can prove a similar formulas for an exterior product of any number of forms.

Finally we observe that any differential k-form w can be written in coordinates as

Z flllk ($)dl‘“ FANCIIRIVAN dl‘ik,

1< <-<ip<n
i.e. w is a sum of exterior products of functions (O-forms) and exact 1-forms, and hence Cartan’s

formula follows. [
Proposition 2.14. We have
Lxw=0 < (X*)'w=w forall seR.

Proof. If (X*)"w = w then Lyw = %(XS)*w 0= 0. To prove the converse we note that

S—=

Xsoth *o — (X S0)* Xt *,
i(XS)*w — lim ( ) w ( ) w _ (XSO)* <lim ()ww>
ds s=sg t—=0 t t—0 t
= (X*)" (Lxw),
and hence if Lyw = 0 then (X*)"w = w. [ |
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2.9 Lie bracket of vector fields

Let A, B € Vect(U) be two vector fields on a domain U C R™. As it was shown in 52H, there is
a vector field C' € Vect(V), called the Lie bracket of the vector fields A and B and denoted by
C = [A, B], which is characterized by the following property: for any smooth function ¢ : U — R
one has

Lo¢p = (LaLlp — LpLa)¢.

A surprising fact here is that though the right-hand side of this equation seems to be the second
order differential operator, the left-hand side is the first order operator, so the second derivatives
on the right side cancel each other.

Recall that the bracket [A, B] has the following properties

e Lie bracket is a bilinear operation;
e [A, B] = —[B, A] (skew-symmetricity);
e [[A, B]C]+[[B,C], Al + [[C, A], B] = 0 (Jacobi identity);

o If A= Zaja and B = ija then

4, Z Z a] b; ax; aii . (2.9.1)

i=1 \j=1

In this section we will give a new interpretation of the Lie bracket [A, B].

Recall that given a diffeomorphism f : U — V we can define the push-forward map
f«: Vect(U) — Vect(V).
We can also define the pull back map
f*: Vect(V) — Vect(U)

by the formula f* := f;!. Note that we also have f* = f;!

We define the Lie derivative L 4B of the vector field B along the vector field A in a similar way
as we defined in Section the Lie derivative of a differential form. Namely,
d(A%)* B

LB = .
A ds s=0

(2.9.2)
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More explicitly,

LaB(z) = lim 0@ (A7) (BA()) = B(w)

s—0 S

Similarly, to Proposition [2.14] we have

Proposition 2.15.
LyB=0 <= (A*)"B=B forall se€R.
Proof. We have

d(A%)* B (A5+50)* B — (A%)* B

= lim
ds s=50 s—0 S
:lim(ASO)*<(A) B_B>:(ASO)*<]im(A) B_B>
s—0 S s—0 S

= (A%)* (LaB).

Hence, if LyB = 0 then % for all s and hence (A%)* B = (A°)" B = B. The converse is

obvious. m
Theorem 2.16. For any two vector fields A, B € Vect(U)
LaB =[A,B.
Proof. Note that A*(z) = z + sA(x) + o(s). Hence, we can write
dyA™* =1d — sdyA + o(s),
where we view here A as a map R” — R". Furthermore, plugging y = A*(z) we get
dps(zyA™% = 1d — sd A + o(s).
Indeed, dgs(;)A — dxAstO and hence s(dyA — d,A) = o(s). We also have
B(A®(z)) = B(z + sA(x) + o(x)) = B(x) + sdy B(A(z)) + o(s).

Thus, ignoring o(s)-terms we get
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LB = hm (dAS(I) (A™°) (B(A%(z))) — B(x))

= lim ~ ((Id — sd,;A)) (B(z) + sd; B(A(x))) — B(x))

s—0 S

— lim © (B(z) — sdy A(B) + sds B(A) — B(x)) = dy B(A) — dy A(B).

s—0 S

But the right-hand-side expression written in coordinates has the form

d,B(A) —d,A(B —
( ) zz; Z_: a] ] al,] 8337,
which coincides with the expression (2.9.1)) for the Lie bracket. |

Exercise 2.17. Prove that for any smooth function ¢ one has
0%(¢p o A% o BY)
ds0t '
If [A, B] = 0 then one says that the vector field A and B commute.

Liap¢ =

Lemma 2.18. Suppose two commuting vector fields A, B on £ can be integrated into phase flows
At B%. Then

Alo B* = B% o0 A,
t,s € R, i.e. the flows of commuting vector fields. Conversely, if two flows A, BS commute for all

t,s € R then [A, B] = 0.
Proof. We have [A, B] = Ly B. Then according to Proposition we have
(A°)"B = B. (2.9.3)
Recall from Proposition that for any diffeomorphism f : Q — Q if f*B = C then
Ct=f"1oBlof teR.
Applying this to f = A® and using we conclude
Bt =A"%0B'o A%,

or

Ao B = B'o A%, s,teR.
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2.10 First integrals

Suppose we are given a differential equation
T = A(x), (2.10.1)

where A is a vector field on the domain U C R™ A function ¢ : U — R is called a first integral, or
simply an integral of equation (2.10.1)) if it is constant on solutions of this equation, or equivalently
on integral curves of the vector field A.

Clearly, a necessary and sufficient condition for ¢ to be an integral is to satisfy the equation
L4¢ =0. Here L4¢ denotes the directional derivative of ¢ along A.

If ¢ is an integral of then the solutions are contained in the level sets of the function ¢,
and hence, this allows us to reduce the order of equation by 1. If has two integrals ¢1, ¢2,
then the solutions lie in the intersection of level sets {¢1 = ¢1} and {pa = 2}, c1,co € R. Hence, if
these level sets transverse to each other (which means that the differential d¢; and d¢o are linearly
independent at every point of the intersection), then the solutions lie in {¢1 = ¢1} N {p2 = c2},
which allows to further reduce the order of the system. If the order is reduced to 1 then the equation
can be explicitly integrated in quadratures. Such systems are called completely intregrable.

Some important examples of integrals which come from Mechanics are discussed in the next

section.

2.11 Hamiltonian vector fields

Consider the vector space R?" with coordinates (pi,...,Pn,q1,--.,¢,) and a closed differential 2-
form w = idpi A dg;. Note that this form is non-degenerate, i.e. its matrix is non-degenerate at
every pointl. Therefore, the map J : Vect(R?") — QY(R?") given by the formula X — X Jw is
an isomorphism between the space Vect(R?") of vector fields and the space Q!(R?") of differential

n n
1-forms on R™. In coordinates the map J associates with a vector field ;Pi% + ; Qic’%i the

differential form ) P;dq; — Q;dp;.
i

Lemma 2.19. Given a vector field A on R?*" the differential 1-form J(A) = A Jw is closed if and

only if Law = 0.
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Proof. Indeed, according to Cartan’s formula (2.8.2) we have L w = d(A Jw) = dJ(A) because w

is closed. [

Given a function H : R?® — R we denote by Xy the vector field —J~(dH). Vector fields
obtained by this construction are called Hamiltonian.

To find a coordinate expression for Xy we write Xy = Z a; 8 + b; 8?1 Then

XHJ(,u—<ZaZ : )JZalpz/\alq2 i—bidpi—l—aidqi.
1

Hence, the equation
OH OH

Xy lw=—-dH = — —dp; +
H% o " Bg,

——dg;

implies a; = —%,bi = g—g, 1=1,...,n. Thus,

n

Z OH 9 0H 0.
0q; 8pz Ip; Oq;

In a shorter form, omitting indices we will write

X, - 9HO 0HO
= "9qop " apoq

Thus the system of differential equations corresponding to the vector field Xy has the form

o
dq

o 87H (2.11.1)

q 8p .

These equations play an important role in Mechanics, and called Hamilton canonical equations.
They describe the phase flow of a mechanical system. Here the coordinates ¢ = (q1,...,¢n) de-
termine a position of the system, or a point in the configuration space of the mechanical system.
The coordinates p = (p1,...,pn) are called momenta and can be viewed as vectors of the cotan-
gent bundle to the configuration space. The function H is the full energy of the system expressed

through coordinates and momenta.

Lemma 2.20. The function H is a first integral of the equation (2.11.1), i.e. Lx,H = 0.
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Proof.
OHOH OHOH
Lx.,H=dH(Xyg)=———— 4+ —— =
Xy dH(Xpy) o 3q+8q o

|
Example 2.21. Consider Newton equations
. ou 1
i = T yeees T
q; g
or in shorter notation
oU
j=———=—-VU.
Reducing it to a system of first order equation we get
oU
)= —— 2.11.2
b="3, ( )
q=np. (2.11.3)

n p2
Consider the full energy H(p,q) = ; %+ U(q) = ip* + U(q). Then %—ZI = %—g and %—g = p, and
hence equation (2.11.2) takes the form (2.11.1)) with this Hamiltonian function H. Lemma is

the law of conservation law of energy.

Lemma 2.22. Let Xy be a Hamiltonian vector field and X3, the phase flow it generates. Then
(X3)"w = w for all s € R. In other words, the flow of a Hamiltonian vector field preserves the

form w.
Proof. It is sufficient to prove that Lx,w = 0. Using Theorem we get
LXHw = d(XHJw) + Xy Jdw.

But w is closed, and hence dw = 0, while Xz Jw = dH. Thus, Lx,w = ddH = 0. |

2.12 Canonical transformations

The equations (2.11.1]) are called canonical because they are invariant with respect to a large group
of transformation of the phase space. Let us call a diffeomorphism f : R?® — R?" a  symplectomor-

phism (or alternatively a canonical transformation) if it preserves the form w. Then it preserves also
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the form of the equations (2.11.1)). Indeed, suppose f(p,q) = (p,q). Then f*(w) = f*(dp A dq) =
dp Ndq = w = dp A dq. Thus if we express the function H(p,q) through the coordinates p, ¢,

H(p,q) = H(p,§) then the equation (2.11.1)) will take the same form in coordinates (7, q):

. on

94 (2.12.1)
5_OoH
q_ 85'

The following proposition provides an important class of canonical transformations,

Proposition 2.23. Consider any diffeomorphism f: U — V between two domains U,V C R". Let
Df be the Jacobi matrixz of the map U. Then the map

w.0)~ (0N b 1(a)

is a symplectomorphism f of the domain U = {p e R",q € U} to the domain V= {peR" qeV}.
T
Here ((Df)_l) is the matriz transpose to inverse of the Jacobi matriz Df.

In other words, any change of g-coordinates extends to a canonical change of the (p, q)-coordinates.

n
Proof. Let us denote the elements of the matrix (Df)_1 by gij, i,j =1,...,n. Thus, > gj; gg; =
i
(5jk,5jk:1ifj:kand(5jk:01fj7ék.
~ ~ n
Let us compute f*(pdq) = f* (Z pidqi>. We have
1

f(pla' -y Pnsq1, - .- 7Qn) = (Zgjlpja 7Zgjnp]af1(Q)a ;fn(Q)) .
1 1

Hence,
F(pdg) = f* <Z piin> =) gjipjdf;
1 i=1 j=1
. ofi .
= 9ii, Pidax = > dikpsdar
i k=1 k k=1
= Zpkd% = pdq.
1
Hence,

frw= frdp A dq = d(f*(pdqg)) = d(pdg) = dp A dq = w.
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Corollary 2.24. . Suppose that there exists a change of coordinates ¢ = f(q) such that in new
n

coordinates the Hamiltonian function H is independent of the coordinate q1. Then py = ) gj1pj 15
1

a first integral of the system (2.11.1). Here the notation g;; stands for the elements of the matrix
(D)~

Proof. Let us extend the coordinate change ¢ — ¢ = f(q) to a canonical change of coordinates
(p,q) — (p,q) = f(p, q) as in Proposition Then the equation in the new coordinates (p, q)
also has the canonical Hamiltonian form . Then ﬁl = g—g = 0 because by assumption the
Hamiltonian is independent of the coordinate ¢;. Hence p; = i;: g;1p; is constant along trajectories,

i.e. it is a first integral. |

2.13 Example: angular momentum

Consider a Newton equation

j=-VU(q), q€R’ (2.13.1)

which describes the motion of a particle of mass 1 in a field with a potential energy function U(q).
Suppose there exists an axis [ in R? such that the function U(q) remains invariant with respect to
rotations around .

The system can be rewritten in the Hamiltonian form with the Hamiltonian
function H = % +U(q) = % + % + % +U(q1,q2,q3)- Let us assume for simplicity that the gs-axis
coincides with the axis [.

Let us change coordinates (q1, g2, ¢3) to cylindrical coordinates (¢, r, z):

q1 =TCOSP,qo =TSsing,q3 = z.

qb:arctan;]—?,r: \/q%—l—qg,z:qg.

D(¢7T7Z)

Equivalently,

Computing the Jacobi matrix Dlanmas) Ve get
9¢ 99  0b — 22 a1 0
dq1 a2 g3 Gta  aita
o or o | = a a2
991 Og2  Ogs Vait+a  /d+a
Oz 0z 0z
dq1  Oq2  Ogs 0 0 1
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Then the inverse matrix is equal to

_ q1 0
2 ?+q2
q2 0
« vV aE+¢2
0 0 1

Let us extend the coordinate change (g1, g2, q3) — (r, ¢, z) to a canonical coordinate change

(qlv q2, Q3aplup27p3) = (d)vra Z’pcf)vprvpz)7

where we denoted by p;, ps, p. momenta variables corresponding to new coordinates (r, ¢, z). In
fact, we need only the coordinate ps which is given by py = —p1g2 + qip2. Thus, the function

—p1q2 + p2qi is the first integral. It is called the angular momentum around the ¢s-axis.

Recall that along trajectories we have p; = ¢;, ¢ = 1,2, 3. Hence, q1¢2 — ¢1g2 is constant along
the trajectories. But this is exactly the projection Ms of the cross-product M = g X ¢ to the g3-axis
which is the axis of rotational symmetry. Introducing cylindrical coordinates (r, ¢, z)with the axis
q3 as z, then we get Mz = rqu.

In particular, if U(q) is invariant under all rotations, i.e. it depends only on the distance r = ||q||
from the origin, then all components of the angular momentum vector M = ¢ X ¢, and hence, the
angular momentum vector M is constant along trajectories. Note that gM = 0, and hence the
motion happens in the plane orthogonal to the vector M. In the cylindrical coordinates with M at

its axis, the absolute value of the angular momentum,
5
|M]] =r¢

is preserved.

31



32



Chapter 3

Simplification of the matrix of a linear

operator

3.1 Linear operators and their matrices

Let A : Vi — V5 be a linear operator between ni-dimensional vector space Vi and no-dimensional

manifold V3. Given bases B* = (v{,..., v} ) in Vi and B? = (v{,...,v2,) in V5 one can associate with
it an n; X ng-matrix Mgf (A) = A whose columns are coordinates of the vectors A(vi), ..., A(v;))
in the basis By. Given a third space V3 with a basis B® = (v3, ... ,’Uf:g) and a map B: Vo — V3 one

can associate with it a matrix B = Mgf (A). Then the composition C = B o A has a matrix
C = ME(C) = M3 (B)ME?(A) = BA (3.1.1)
B B B . 1.

Let us apply this formula to the following situation. Suppose we are given two different bases

B! = @l,... ,Up,) in V4 and B2 = (22,... ,02) in V. In order to relate the matrices A = Mgf(.A)

and A =M gQ (A) let us consider the following diagram
1

1d A Id
Vi—Vi—Vh—VW.
B Bl B2 B2

Then, using (3.1.1) we get
ME (A) = ME (1d)ME> (A)MB (1 3.1.2
32( ) 32( ) Bl( ) Bl( ) ()
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The matrix Mgll (Id) is called the transition matriz from the basis B! to B'. Its columns are
coordinates of the vectors of the basis B! in the basis B!. Note that the formula (3.1.1)) also implies
that

We will mostly consider below operators A : V' — V which map an n-dimensional space V into
itself. Given a basis B in V we will write Mp(A) instead of M§(A).
Suppose we are given another basis B. Let us denote by C' the transition matrix M g from B to

B. Then, using (3.1.2) we get

A= Mgz(A) =C'AC, (3.1.3)

where we denoted A := Mp(A).

3.2 Characteristic polynomial, eigenvectors and eigenvevalues

Let us assume that V is a complex vector space and A : V — V is a complex linear operator.

A complex number \ € C is called an eigenvalue of the operator A if there exists a non-zero
vector v € V such that A(v) = Av. The vector v is called an eigenvector corresponding to the
eigenvalue \. The set of all eigenvectors corresponding to the eigenvalue A (including the 0-vector)
form a linear subspace of V', which is called the eigenspace corresponding to the eigenvalue A and
is denoted by E).

Let us observe that if A is the matrix of A in a basis B then the determinant det(A — AI) is

independent of a choice of B. Indeed,

det(C™TAC — \I) = det(C~1AC — C™I\IC)
= det(C™'A — XI)C) = det O~ det(A — XI) det C' = det(A — AI).

This determinant, which is a polynomial of degree n is called the characteristic polynomial of the

operator A, or the matrix A. We will denote it either by x.4(\) or xa ().

Lemma 3.1. ) is an eigenvalue of an operator A if and only if it is a root of its characteristic

polynomial, i.e. x 4(\) = 0.
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Indeed, if A is an eigenvalue, then Ker (A4 — AId) # 0, and hence the rank of the operator is
< n. This is in turn equivalent to the vanishing of its determinant, i.e. x 4(\) = det(A — AId) = 0.
Conversely, det(A — AId) = 0 implies that Ker (A — AId) # 0, i.e. A is an eigenvalue.

Consider an expansion of the characteristic polynomial of a matrix A = (a;j) :

ainl — A a2 ... a1(n—1) a1n
xa(A) =
An-1)1 Gn-12 -+ Qn-1)n — A A(n—1)n
anl an2 s A(n—1)n Ann — A

= (—1)"A" + (=) T AN 4 fdet A

= (=)A= )R (= )k

n
Here we denote by TrA the trace ) a;; of the matrix A, i.e. the sum of its diagonal elements.
1
Note that TrA (as well as det A and all other coefficients of the characteristic polynomial) depends
only on the operator 4 and not on its matrix A. Hence, we can also use the notation Tr.A instead

of TrA.

Exercise 3.2. Prove that

det e = T4,

Hint: Replace A by At and differentiate both parts with respect to t.
Note that the decomposition x4(A) = (=1)"(A — A1)*1 ... (A = A\)¥s into the product of linear
terms is possible only because we consider the complex case.

The set of all eigenvalues of an operator A is called its spectrum.

3.3 Diagonalization of the matrix of a linear operator

The matrix of an operator A is diagonal in a basis B if and only if this basis consists of eigenvectors

of A. In this case the diagonal elements are eigenvalues of A.

Lemma 3.3. If vy,...,v; are non-zero eigenvectors which correspond to pairwise distinct eigen-

values of an operator A then they are linearly independent.
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Proof. We argue by induction. Suppose the claim is already proven for the eigenvectors vy, ..., vg_1.

Suppose that we have

vl + -+ cp_1Vp_1 + cpvg = 0. (3.3.1)

Then applying to both parts the operator A we get
A1c1vr + -0+ Ag—16k 10k -1 + Agcgvr = 0.
Subtracting from the second equality the first one multiplied by Az, we get

(M — Ap)avr + -+ (Ag—1 — Ag)ek—1v5—1 = 0.

But A\j — Ay # 0 forall j =1,...,k—1. Hence, ¢; = --- = ¢4—1 = 0. But then from (3.3.1)
follows that c; = 0 as well, and therefore, the vectors vy, ..., v are linearly independent. |

Corollary 3.4. Suppose that A has n distinct eigenvalues (i.e. its characteristic polynomial does
not have multiple roots). Then there is a basis of its eigenvalues, i.e. the matriz of A is diagonal-

1zable.
The next lemma shows that a generic matrix has distinct eigenvalues, and hence diagonalizable.

Lemma 3.5. The set of diagonalizable matrices is everywhere dense in the space M, of all n X n

complex matrices.
Exercise 3.6. Prove that the set of diagonalizable matrices is also open in the space M,.
To prove Lemma [3.5| we need the following

Lemma 3.7. For any operator A :V — V there exists a basis in which its matriz has an upper

triangular (or a lower triangular) form.

Proof. We prove it by induction over the dimension of the vector space V. For 1-dimensional spaces,
the claim is obviously true. Suppose we already proved it for operators on spaces of dimension < n.
Suppose now that dimV = n. Operator A has at least one eigenvalue A1. Let v1 # 0 be the

corresponding eigenvector. Let us complete it to a basis vy, vy ..., v, of V. The matrix A of A in
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this basis has the form

Al a2 a3 ... aip
A _ 0 agzy a3 ... aon
0 an2 anz ... apn
|
Denote V' := Span(vs,...,v,) and consider an operator A’ : V' — V' which is given in the
basis v, ..., v, of V' by the matrix
a2 ... [0570)
A =
anp2 ... Qpn
By the inductional hypothesis, there exists a basis vs, ..., v, of the space V’ such that the matrix
of A" in this basis has an upper triangular form. Then the vectors vy, vs, ..., v, form a basis of V,
and the matrix of A in this basis has an upper triangular form, because for each j = 2,...,n we
have A(v;) = A'(v) + ¢ju; for some c;. [ |

Proof of Lemma According to Lemma any matrix can be written as A = C~1T'C, where
T is a triangular matrix. But for a triangular matrix its eigenvalue concides with the diagonal
elements. Hence, there exists an arbitrarily close matrix 7" with all distinct eigenvalues. Then the

matrix A’ = C~'T'C is the required approximation of A. |

Let us remark that matrix can be diagonalizable even when it has multiple eigenvalues, though
in general in that case one can only get a more complicated Jordan normal form of the matrix

which we discuss below.

Let us also point out that there several important classes of diagonalizable matrices. For in-
stance, any real symmetric matriz is diagonalizable (specrtral theorem). More generally any complex

Hermitian matriz A, i.e. a matrix which satisfies A7 = A4 is diagonalizable.
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3.4 Hamilton-Cayley theorem

We consider in this section polynomial functions of linear operators, or which is equivalent, of their
matrices. Given a polynomial f(\) = coA"+ci A" 14 - -+¢, we have f(A) = cgA"+c1 A" Lo 4, 1
for a square matrix A.

Note that for any two polynomials f(\) and g(\) the matrices f(A) and g(A) always commute:

because two powers A* and A! of the same matrix commute.

The following is the main result of this section

Theorem 3.8. For any matriz A we have

i.e. the matriz A is annihilated by its own characteristic polynomial.
We begin the proof this theorem of Hamilton-Cayley with its special case:
Lemma 3.9. Theorem[3.8 holds for diagonal matrices.

Proof.
Xa(A) = (=1)"(A = A" (A= Ak

Hence,

xa(A) = (—)™(A = Dk (A= NIk

0 0 0 A0 0
0 A 0 0 A 0
0 0 An 0 0 0

Proof of Theorem The function x4(A) on the space M, of complex n x n matrices depends
continuously on A. According to Lemma the function vanishes on the set of diagonalizable
matrices D C M,,. But according to Lemma the set D is everywhere dense in M,,. Hence, by

continuity the function y 4(A) is identically 0. |
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3.5 The structure of nilpotent operators

An operator B: V — V is called nilpotent if there exists k such that B* = 0.

Consider an operator 7, : C™ — C™ with the matrix

0 1 0 0 0

0 0 1 0 O
T, =

0 O o ... 0 1

0 0 O ... 0 0

This operator is nilpotent: 7 = 0. On the standard basis in C™ it acts as the shift J,,(en) =
€m—1, jm(emfl) =€m—2,--- 7\7m(€2) = €1, jm(el) =0.

Theorem 3.10. For any nilpotent operator B there exists a basis in which its matriz has a block-

diagonal form with matrices Jy,, Jmsy, .- ., JIm, along the diagonal.

Proof. Let vy,...,v, be a basis of V. Take the first vector v;. Let hy be the maximal power such

that B" (v1) # 0. We claim that the vectors w9 = vy, w! = B(v1),...w!" = B"(v;) are linearly

independent. We prove this by induction. We assume that the vectors wi“*iﬂ, . ,wi“ are linearly
independent for some ¢ = 1,..., h; and then show that wi”_i, . ,wi” are independent (the base of

hi .
the induction 7 = 1 holds by our assumption). If we have > cjw{ = 0 the applying the operator

hi1—1
B’ to both parts we get chl_iwi” = 0 which means that c,,—; = 0. But then by the inductional
hypothesis we have c; = 0 for all j > hy — 1, i.e. the vectors wi“_i, e ,wi“ are independent.
If vectors w?, . . . wi”l form a basis of V, i.e. if h; = m—1 then we are done: in the basis wY, . . . wi“

the operator B has the matrix Jy,.

If this is not the case, we continue the process. Take the first of the remaining basic vectors
which is not in V7. We can assume that this is the vector va: the vectors always can be reordered to
achieve this, and denote by ho the largest power such that Bh2yy # 0. We can assume that hy < h.
If this is not the case we rename the vectors v into ve and vy into v;.

As above, form the sequence w3 := va, ..., wi = B(va), ... ,wé” := B"2(vy). Consider two cases:

ho

a) vectors wh? and w] are linearly independent;

b) wgz = cwi‘1 for some c € R.

39



In case a) the vectors w?, cee wi“ , wg e ,w;” are linearly independent. Indeed, suppose that
h1 ha '
D et + ) djw) =0, (3.5.1)
0 0

where not all coefficients d; are equal to 0. Let us denote k := min{j;d; # 0}. Thus k € {0, ..., ho}.
If all coefficients ¢;,i = 0,...,h; are 0 then we get a contradiction similar to the previous step of
the inductional process. Denote [ := min{j;¢; # 0}. Thus { € {0,...,h1}. If hy — 1 > hy — k, then
applying to both parts of operator B2l we get

h1—ho+k—1 )
Z ciw?hrkﬂ =0.
0
But we already proved that the vectors w?, .. .w{” are linearly independent, and hence all coeffi-
cients ¢; for ¢ < hy — he + k are equal to 0. Similarly, we get a contradiction if hy — 1 < hy — k.

Thus, h1 — I = hy — k and hence, by applying to both parts of (3.5.1])) operator B"2~* we get
clwi“ + dkw§2 =0.

Hence dj, # 0 contradicts assumption a).

If the vectors w?, . . .wi”,wg, . ,wg"’ form a basis of V, i.e. if hy +h+ 2 = m then we are done:
in the basis w?, ... wi“ T ,wé” the operator B has the Jordan form with the blocks matrix Jp,

and Jp, along the diagonal. If hy + h +2 < m we continue the process, building asimilar tower over
v3 etc.

In the case b) we can replace in the basis vy, ..., v, the vector vy with the vector v} := vy —
eBM=h2y . Then B'v| = wl? — cw™ =0, i.e. the vector v}, has a height b} < hy. We repeat the
above procedure again considering two cases a) and b) as above, and in both cases we proceed

exactly as before. The process will terminate after a finite number of steps.

3.6 Root vectors and root spaces

Let x4(A\) = (=1)"(A=A1)¥ ... (A=As)¥s be the characteristic polynomial of an operator A : V — V.
The root space Ry, © = 1,...,s, corresponding to an eigenvalue )\; is the set of all vectors v € V'

such that (A — \;Id)*v = 0 for some integer k. Thus, eigenvectors are root vectors of height 1
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If v is the root vector for an eigenvalue \; then its height is defined as
height(v) = (min(k; (A — \Id)*v = 0).

Thus, eigenvectors are root vectors of height 1. As we will see below, if v is the root vector for
an eigenvalue \; then height(v) < k;, i.e. the height of a root vector is bounded above by by the
multiplicity of the corresponding eigenvalue in the characteristic polynomial. Let us begin with the

following

Lemma 3.11. The root space Ry, is an invariant subspace of the operator A, i.e. if v € Ry, then

A(v) € Ry,.
Indeed, if (A — \;Id)¥v = 0 then
(A—\Id)FAv = A((A — \Id)Fv) = 0.
The goal of this section is to prove the following

Proposition 3.12. Suppose that the characteristic polynomial x A(\) of an operator A:V — V is

equal to (—1)"(A — A1)*1 .. X — Xs)¥s. Then V decomposes as the direct sum of its root spaces:
S
V=Ry@-®Ry, =OR,,.

In other words, if one chooses a basis in each root space, then they together form a basis of V,
and in this basis the matrix of A has a block-diagonal form.

We will need several lemmas. The first one is a general fact concerning the divisibility of poly-
nomials.

Let f, g be two polynomial of one variable (let us call it \) with complex coefficients. We say
that ¢ is a divisor of f if there exists a polynomial h such that f = gh. Suppose that deg(f) =
n,deg(g) = k and k& > n. Then one can always divide f by g with a remainder term, i.e. present f
in the form f = hg 4+ r, where r is a polynomial of degree < k.

The greatest common divisor of two polynomials f, g is a polynomial A of maximal degree which

divides simultaneously f and g.

Exercise 3.13. Show that the greatest common divisor is unique up to multiplication by a constant.
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The greatest common divisor of f and g is denoted by (f,¢g). If (f,g) = 1 then f and g are called

mutually prime. Equivalently this means that the polynomials f and g have no common roots.

Lemma 3.14. If (f,g) = 1 then there exist polynomials p and q such that

pf+aq9=1

Proof. Let m be the minimal degree of a non-zero polynomial r which can be presented in the
form r = pf 4 qg for some polynomials p,q. We need to show that m = 0. Indeed, suppose that
m > 0. Divide f by r with a remainder term: f = ar + s, where degs < m. Then ar = f — s and
a(pf+qg) = f—s,or (ap—1)f+qg = —s. But this means that s = 0, because by our assumption
m is a minimal degree of a non-zero polynomial which can be presented as a combination of f and
g. Hence, f = ar, i.e. f is divisible by r. A similar argument shows that g is also divisible by r, but

this contradicts to our assumption that f and g are mutually prime. |

Lemma 3.15. Let f and g are mutually prime polynomials and A : 'V — V a linear operator.

Suppose that f(A)g(A) =0. Then
V =Ker f(A) @ Ker g(A).

Proof. We need to show that every vector € V' can be uniquely presented as a sum = = y + z,
where y € Kerg(A) and z € Ker f(A). According to Lemma there exist polynomials p and ¢
such that pf + qg = 1. Then

p(A) o f(A) + q(A) o g(A) = Id.

Hence, for any vector € V' we have

But then
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ie. y € Kerg(A) and z € Ker f(A).
Suppose that there exists a different presentation x = y’ + 2/, where y' € Ker g(A) and 2’ €
Ker f(A). Then
Kerg(A) 2y —y =2 —2 € Ker f(A).

Then g(A)(y —y') =0 and f(A)(y —y') =0, and hence
y—y =p(A)o f(A)y—y)+a(A) og(A)(y—y)=0.

Thus y = ¢/ and z = 2/, i.e. every vector x € V can be uniquely presented as a sum = = y + z,
where y € Ker g(A) and z € Ker f(A). [ ]

By induction, we can deduce from Lemma its generalization for the case of several factors:

Lemma 3.16. Let f1,...fs are pairwise mutually prime polynomials and A : V. — V a linear

operator. Suppose that fi(A)o---o fs(A) =0. Then
V= él Ker f;(A).

Proof of Proposition Polynomials f1(A) := (A= A1)*1, ..., fo(A) := (A= \,)P* are pairwise
mutually prime. On the other hand, by the Hamilton-Cayley Theorem, see [3.8

fi(A)o... fs(A) = xa(A) = 0.
Hence, by Lemma we have

V=& Ker fi(A) = esalKer (A - NIk = & Ry,
=1 1= =

. 1
7 =1

3.7 Jordan normal formal

A Jordan block of order m is a matrix of of the form

Al 0O ... 0 0O

o x 1 ... 0 O
Im + A =

0o 0 0 A1

0 0 0 0 A




One say that a matrix A is in a Jordan normal form if it is a block-diagonal matrix with Jordan

blocks along the diagonal.

Theorem 3.17 (Jordan Normal Form). For any linear operator A :V — V on a complex vector

space V' there exists a basis in which its matrix has a Jordan normal form.

Proof. Let x4(\) = (—=1)"(A = A)* ... (A= Xs)* be the characteristic polynomial of the operator

A. Then the space V' can be decomposed in the direct sum

of its root spaces, which according to Lemma [3.11] are invariant subspaces of the operator A.
Denote B; := (A — >‘i)|in’i =1,...,s. Then Bfi =0, i.e. B; is a nilpotent operator of height

k;. Hence, by Proposition there exists a basis 1)21', ... ,fu,ii of Ry, such that in this basis the

operator B; has a block-diagonal form with matrices Jlli ol . along the diagonal for some integers

i, 0

r'myg

with l’i + e+ lﬁni = k;. Hence the matrix of A|RM = B; + \;Id has a a block-diagonal

form whose diagonal blocks are Jordan blocks of sizes I¢, ...} with )\; on the diagonal.

m;
Together the bases vt, ... ,vii for ¢ = 1,dots, s form a basis of V' in which the matrix of the

operator A has a Jordan normal form. |

3.8 Algorithm

In this section we present a practical algorithm which follows the theory described in the previous

section for computing the Jordan normal form of a matrix.

Consider an operator A : C" — C™ with the matrix A.

Step 1 Find the characteristic polynomial y(A) = det(A — AI) and decompose as a product of
linear factors:

XA) =M1 = A" (A — A)E.
Step 2 Find the root spaces V1, ..., Vy for each eigenvalue:

Vj = Ker (A — \;1d)".
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To find a basis of V; one needs to find a fundamental system of solutions (i.e. a basis of the

space of solutions) of the linear system

(A= X\j)5=0. (3.8.1)

According to the general theory dimV; = r;, so one needs to find r; linear independent

solutions of the system (3.8.1)).

Step 3 Now we need to construct the canonical basis of each root space V;. To simplify the
notation we drop the index j and will write denote this root space by V and its basis found

in Step 2 by v1,...,v,.. We will also write A instead of A; and denote N := A — AI.

The algorithm which we describe below attempts to organize a basis as a table of the form

w1 Nw1 Nklwl
w2 N’LUQ Nk2w1
Wy Nuwy, ... NFmw,,
where we have N¥1+1w; = .. NFn+tly, = 0. If these vectors form a basis of V, i.e. if they

are linearly independent and the total number of vectors in this table is equal dimV = r,
then if we order these vectors counting first the vectors of the first row from the right to the
left, then similarly, the second row, etc. then in this basis the matrix of N will consists of m

nilpotent blocks

01 O 00
0 0 1 00
0 0 O 01
0 0 O 00
of sizes k1, ..., kny, and hence the matrix of A will have Jordam blocks of the same sizes with

A on the diagonal.
We will construct the table by an inductive process.
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At the beginning we set wy := v; and write the first row of the matrix:

w1 Nw1 Nkl’wl (382)

The general theory guarantees that these vectors are linearly independent. Hence, if the total
number of these vectors, k1 + 1 is equal to r that this terminates the process, If this is not

the case we continue and form in a similar way a row beginning with wg = vs:
N Nk
w2, INW2, ..., w2.

Next, we form a 2-row table writing the longer row first and aligning the rows to the right.

Let, for determinacy, k1 > ko (otherwise, swap the notation for w; and ws). Thus, we get

wy ... Nkl_k2wl Nklwl

Wy oo Nk2qyy
If the vectors N¥1w; and N*2w, are linearly dependent, then
Nk2w2 = cNklwl

for some ¢ € R.

We then subtract from the second row the portion of the first row which is above the elements

of the second row:
wy ... NFE1=k2q, ... NF—ly, Nk,
wh = wg — cNF1=k2qpy .. Nkl 0
Shift the new second row to the right:

wy ... Nki=k2g o NEizksy, Nk,
wh coo Nkl
Now check again whether two vectors in the last column are linear dependent. If they are, i.e.
NkQ—lwé = ¢ NF1wy, then we repeat the process again, i.e. subtract from the second raw the
part of the first row which is directly above. We continue till either the second row completely
annihilated, or if the vectors in the last column become linearly independent. In this case the

general theory guarantees that all the vectors in the table are linearly independent.
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At this moment we check again whether the total number of vectors in the table less or equal

dimV = r. If we got enough vectors we go to Step 4.

Otherwise, we take a new vector from the original basis, which did not yet use, and again
form a row as in (3.8.2]).

We add this row to the previously constructed table, ordering the rows in such a way that

longer raws take higher positions.

Thus, we get a table with 3 rows (to simplify the notation we renamed vectors on the left

side back to wi, wy, w3 and their heights to ki, ko, k3):

w, ... Nkl_k2w1 ... Nkl_k3+1w1 . Nkl’wl
w29 ng—kng Nk2w2
w3 ce Nk3w3

Now we again repeat the procedure beginning from the top two rows and check if the two
top vectors in the right column are linearly dependent. If they are then we use the previous
algorithm to shorten the second row. If after some iterations the second row becomes shorter

than the 3rd one, we reorder the rows again.

After making top two vectors in the right column independent, we check if the 3rd vector of

this column is a linear combination of the top two. If it is , i.e.
Nk3w3 = ClNklwl -+ CQNkQU]Q

then we subtract from the 3rd row the corresponding portions of the first and the second

ones, multiplied by the coefficients ¢; and co.

Eventually this process stops when the number of elements in the table reaches r and all

vectors in the right column become independent. After that we pass to Step 4.

Step 4 The Jordan basis for the root space is formed by vectors in the table numbered from the
right to the left and from the top to the bottom, i.e. we first enumerate the elements of the
first row from the right to the left, then similarly the elements of the second row etc. If we
terminated with a table of [ rows with my, ms, ..., m; elements in each row, then the matrix

of the operator A on V in this basis will consists of [ Jordan blocks of sizes myq, ..., m;.
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Chapter 4

Systems of linear differential

equations with constant coefficients

4.1 The phase flow of a linear system

In this chapter we study the system

&= Az, x € C". (4.1.1)

Our main interest is when A is a real matrix, and solutions themselves are real. However, the
consistent theory in the real case requires us to look at the complex picture at the same time.

We denote by A the linear operator C* — C™ given by the matrix A in the standard basis.
When A is a real basis we can consider both, operators R” — R™ and C" — C™ with this matrix.

When we need to distinguish them we will use the notation A® : R — R™ and A® : C* — C".

Proposition 4.1. The space S(A) of solutions of the system (4.1.1) is an n-dimensional vector
space. The map x(t) — x(0) which associates to a solution x(t) its initial value x(0) is an isomor-

phism S(A) — C™. The inverse map is given by the formula

and hence the phase flow of the equation (4.1.1)) consists of the linear operators et teR.
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4.2 General form of a solution of a homogeneous linear system

with constant coefficients

Let us first consider the case of a diagonalizable matrix A.

Corollary 4.2. Suppose the operator A is diagonalizable and let A1,..., A, and vy,...,v, be its

eigenvalues and the corresponding basis of eigenvectors (some of eigenvalues may coincide). Then

a general solution of (4.1.1)) has the form
x(t) = Z cietit;, (4.2.1)

Equivalently the solution which correspond to the initial data ©(0) = z¢ can be written as

eMt 0 0
0 e ... 0
z(t) =C C g, (4.2.2)
0 0 etnt
where C' is the matriz of transition to the basis vi,...,v,, i.e. the matrix whose columns are
coordinates of the vectors v1,...,v, in the standard basis of C™.
When the matrix A is real then its spectrum (i.e. the set of eigenvalues) has the form Ay, A1, ..., g, A,

M1, -, g, where 2k +1 =n, p; € R, j =1,...,k, and Im\,, # 0,m = 1,...,[. The eigenvectors
corresponding to conjugated eigenvalues can be chosen themselves conjugated, i.e. v1,v1, ..., Vk, Uk,
wi,...,w;, where w,, € R", m=1,...,[, and v; = X; +1Y;, X;,Y; e R Y; #0,j=1,... k.

Next, we consider the case of a real diagonalizable matrix (with possibly complex eigenvalues)

Corollary 4.3. Suppose the matriz A is diagonalizable and real. Let \y = o1 + iwy, \jag —
W, .y A = Qp+HiWE, j\k = Qp—IWE, U1y, 4, 2k+H =n andv; = X1+iY1, 07 = X1—iY1, ..., 0 =
Xp+1iYy, v = X — 1Yy, w1, ..., wy, be its eigenvalues and the corresponding basis of eigenvectors,

where X;,Y;,wp € R", j =1,...,k,m =1,...,l. Then a general real solution of (4.1.1) has the
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form

k l
x(t) = Re (Z rjelli ittt (X, 4 zY})) + Z T
1

1

k l
= Re (Z rjeajtei(9j+wjt) (X5 + ZYJ)> + Z dmel ™ wy,
1 1
k

!
= Z et (cos(0; + wit) X; — sin(0; + w;t)Y;) + Z dme"™ 1wy,
1 1
where r; > 0,0;,d; € R are arbitrary constants.
Next, we consider the case of a non-diagonalizable A.

Lemma 4.4. Suppose that A is a Jordan block

Al 0 0

0 X 1 0
A=

0 0 O 1

0 0 O A

of order n. Then the phase flow et has the form

Mo My eMi? eMgn—1
(& et 2 . W
At At ertgn—2
QA 0 e et n—2)1
0 0 0 eM
7
75
solution with the initial data z(0) = 2° = has the form
0
xn
n 45—1..0
)\t t x]
"2 G
Nt Zn: L
z(t) = 7 U=
e)\txo




Corollary 4.5. Suppose that the matriz A of the system (4.1.1)) has eigenvalues A1, ..., s of muti-
plicities k1, . .., ks, respectively. Then each coordinate function x;(t), | =1,...,n (in any coordinate

system) of any solution has a form
S
ni(t) =Y _mi(t)eM,
j=1
where py j(t) are polynomials of degree < k;.

It is important to point out that not all vector functions whose coordinates have this form are

solutions. The space of solutions is always n-dimensional, while the total number of coefficients of
S

all polynomials p; ; is equal ton ) k; = n? > n. Thus if n > 1 then between the coefficients should
1

be a lot of dependences.

If A is a real matrix and we are interested only in real solutions then Corollary [L.5] takes the

following form:

Corollary 4.6. Suppose that the matriz A of the system [.1.1)) has eigenvalues A\; = o +iwy, \| =

Q1 = W1,y Ap = Qp + 1Wp, A\p = Qp — Wy, 11, - - -, g Of multiplicities ki, ..., ky, and mq,...,mg,
respectively. Then each coordinate function xi(t), | = 1,...,n (in any coordinate system) of any

solution has a form
q q
x(t) = me(t)e“jt - Z e (ry;(t) coswjt + 815 (t) sinw;) ,
j=1 j=1

where py j(t) are polynomials of degree < k; and r;;(t) and s;;(t) are polynomials of degree < m;.

4.3 One linear equation of order n

Let us consider a special case of 1 equation of order n:
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Rewriting (4.3.1]) as a system of first order equations we get

T =
T =
(4.3.2)
Tpo1 = —Q1Tp—1 — A2Tp_9 — *** — Ap_1T] — Apx.
The matrix of this system is equal to
0 1 0
0 0 0
A= : (4.3.3)
0 0 1
—0p —Op—1 ... —a1
Let us compute the characteristic polynomial
- 1 . 0
0 R 0
Ea(N) = J=(=D)" TN o N g N Fay). (4.3.4)
0 0 . 1
—an, —Qp—1 ... —G1— A

We also note that the rank of the matrix

- 1 0
0 - 0
A—-M =
0 0 1
—ay —Qp—-1 ... —Q1— A

for an eigenvalue A is equal to n — 1. This means that the eigenspace F is 1-dimensional for each
eigenvalue \. In turn, this implies that the Jordan normal form has blocks of maximal size for each
eigenvalue, i.e. if £4(A) = (X — A)F ... (A — X\y)¥ then the Jordan form of A has 1 block of size
k; for each eigenvalue \;,j =1,...,s. According to Corollary this implies that
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Corollary 4.7. The general solution of equation (4.3.1) has a form
S
£(t) = Y pi(0eM, (4.35)
1

where p;(t) are polynomials of degree < kj. Moreover, every function of this form is a solution of

(@.31).

We note that there is a short-cut to the fact the characteristic polynomial of (4.3.1) has the

form (4.3.4]) as well as to the general form (4.3.5)) of its solution.
Indeed, one can argue as following. For each eigenvalue A of the matrix A from (4.3.3) there

exists at least one eigenvector v = (c1,...,¢,) # 0. Then z(t) = eMe; is a solution of (4.3.1)) and
(z(t), 21 (t) := @(t) = AeMer, .. a1 () = 27D (@) = A leMe))

is a solution of the corresponding system (|4.3.2)) of first order equations, and hence co = Ay, ... ¢, =
AL, It follows that ¢ # (0 and we can choose ¢; = 1.

Plugging it to (4.3.1) we get
2™ a4 g = (AN N 4 a1 A+ an)eN =0,

and hence

NNt an A+ a, =0,

i.e. each eigenvalue is a root of the polynomial (4.3.4]). Conversely, for any root A of (4.3.4) the
functionz(t) = e satisfies (#.3.1)), and hence Corollary implies that A is one of eigenvalues of
the matrix A. Hence, the characteristic polynomial of A has the form (4.3.4]) as claimed.

According to Corollary any solution of (4.3.1]) has the form (4.3.5)). But the space of solu-
tions of equation (4.3.1)) is n-dimensional, and the total number of coefficients in the polynomials

p1(t),ps(t) is equal to k; + --- + ks = n, and therefore any expression of the form (4.3.5)) is a
solution of (4.3.1)).

Finally we consider the form of a general real solution of equation (4.3.1)) with real coefficients.

Corollary 4.8. Suppose that the characteristic polynomial (4.3.4) has roots \y = a1 + iwy, a1 —

W1,  Ag = Qg+ Wy, Qg — tWe and 1, ...,y of multiplicities k1, ..., kg and 1y, ..., 1y, respectively.
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A general solution of equation (4.3.1)) has a form

b

x(t) = Z e (p;(t) coswjt + ¢;(t) sinw;t) + Z eFmip, (t), (4.3.6)
1 1

where pj(t),q; are polynomials of degree < k; and ry,(t) are polynomials of degree < l,,. Moreover,

every function of this form is a solution of (4.3.1)).

4.4 Inhomogeneous linear systems with constant coefficients

Consider a system

& — Az = f(t), € C", (4.4.1)

Recall that according to Proposition the space S(A) of solutions of the corresponding ho-
mogeneous system is an n-dimensional vector subspace of the space of all smooth vector-functions.
Correspondingly, the space of solution S(A) of the inhomogeneous system is an affine sub-
space of this space, i.e. if z(t) is any particular solution of then any other solution has the
form z(t) 4 y(t), where y(t) is a solution of the homogeneous system (4.1.1).

To find a particular solution z(¢) which satisfies the initial condition z(0) = 0. we use the method

of variation of constants, i.e. will search for a solution in the form z(t) = etc(t), ¢(t) € C™. Plugging

into equation (4.1.1)) we get

Aee(t) + eMe(t) — Aete(t) = eMé(t) = f(t), or

é(t) =e M f(),

and hence

and

In practice, there usually are simpler methods for finding a particular solution of an inhomoge-

neous equation. Let us consider, for example, the case of one inhomogeneous equation of order n
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with the right-hand side a quasi-polynomial
2™ a4 e, = f(t), zeC. (4.4.2)
Lemma 4.9. Suppose f(t) = q(t)e, where q(t) is a polynomial of degree < k.
1. Suppose that v is not a root of the characteristic equation
N+ a N b a, At a, =0 (4.4.3)

Then there exists a particular solution of the form p(t)e’*, where p(t) is a polynomial of degree

<k.

2. Suppose that v is a root of (4.4.3) of multiplicity m. Then there exists a particular solution

of the form p(t)e’t, where p(t) is a polynomial of degree < k + m.
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Chapter 5

Stability

5.1 Asymptotic and Lyapunov stability

Consider a general ODE

t=F(x), eUCR" (5.1.1)

Let a € U be an equilibrium point, i.e. F(a) = 0.

The equilibrium point a is called

o asymptotically stable if there exists a neighborhood Q > a, 0 C U, such that for any point
xo € 2 the solution z(¢) with the initial condition z(0) = x exists for all ¢ > 0 and satisfies

the condition lim z(t) = a;
t——+oo

e Lyapunov stable or stable in the sense of Lyapunov if for any neighborhood €2 3 a, Q C U
there exists a smaller neighborhood ) a, Qc Q, such that for any point x¢ € Q) the solution
x(t) with the initial condition z(0) = =z exists for all £ > 0 and satisfies the condition x(t) € §2

for all t € [0, 00).
Asymptotic stability implies Lyapunov stability but not vice versa.

Exercise 5.1. a) Consider the equation & = —x. Show that 0 is asymptotically stable.
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b) Consider the system

i’l = —X92

.fg = 21.

Show that that the origin is Lyapunov stable but not asymptotically stable.

5.2 Criterion of asymptotic stability
Let a € U be an equilibrium point of system ({5.1.1). Then we have
F(z) = A(z — a) + 0(||z — al|).

The linear system

g = Ay, yecCn, (5.2.1)
is called the linearization of (5.1.1]) at the equilibrium point a € U.

Theorem 5.2. Let a € U be an equilibrium point of system and y = Ay its linearization at
the point a. Suppose that SpecA C {z € C;Rez < 0}, i.e. all eigenvalues of the matriz A lie in the
half-plane {z € C;Rez < 0}. Then the equilibrium point a is asymptotically stable for the system
(5.1.1)).

Remark 5.3. 1. If at least one of the eigenvalues of A has a positive real part, that the equilibrium
a is Lyapunov (and asymptotically) unstable.

This fact is more difficult to prove then Theorem though we will discuss it later on.

2. If eigenvalues of A satisfy ReA < 0 then the linearized system is Lyapunov stable.

However, if there is an eigenvalue with ReA = 0 then one cannot draw any conclusion about stability

or instability of the original system (5.1.1]) (why?).

The proof of Theorem [5.2] will require several lemmas.
Given a vector field X on U a smooth real-valued function ¢ : U — R is called a Lyapunov
function for X (and the vector field X is called gradient-like for ¢ if Lx¢ = do(X) > || X||? for

some positive function ¢ : U — R.
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Exercise 5.4. Prove that for any function ¢ its gradient vector field is gradient-like.

Lemma 5.5. If ¢ : U — R is a Lyapunov function for a vector field X on U and f : U — U a
diffeomorphism then the function 5 =¢o fl: U—>Risa Lyapunov function for the vector field
X := f.X on U. Moreover, if (¢, X) satisfy an inequality c||X||? < dp(X) < C||X||?, then so does
(¢, X).

Indeed, by chain rule

c

A9(X) = dg o d(f~)(df (X)) = dd(X) 2 e X|I* 2 e K11 = &K
We also have
IXI? < Tl K1
and hence if dp(X) < C[|X||2, then
4B(X) = do(X) < CIIX|P < IR

We recall that the norm of a linear operator C : C* — C" is defined as

A
(€] = max A2 1144,
w20 x| [le=1]]

A particular case of Lemma [5.5] is

Corollary 5.6. Consider a linear vector field Z(x) = Az on C". Let ¢ be a Lyapunov function for
¢. The for any non-singular matriz C the function 5(:6) = ¢(C~1x) is a Lyapunov function for the
vector field Z(z) = CAC 'z,

Indeed, Z=0CZ , where C : C™" — C" is a linear map with the matrix C.

Lemma 5.7. Suppose that SpecA C {z € C;Rez > 0}. Then the vector field Z(z) = Az,z € C

admits a Lyapunov function.
We divide the proof of Lemma in a few step

Lemma 5.8. Lemmal[5.7 holds when A is a diagonal matriz.
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Proof. Let \; = a; +iwj,j = 1,...,n be the eigenvalues of A. Then the vector field Z has
in complex coordinates the form Z(z) = (Alzl,...,Anzn)H To understand better its geometry
let us rewrite it in real coordinates. We identify the space C" with R?" (as usual viewing each
complex coordinate z; = z; + iy; as a pair of real coordinates (z;,y;). Set A\; = o + if3;. Then
Njzj = ajx; — Biy; +i(ajy; + Bixj), i.e. in real notation the vector field Z can be written as
n
0 0
Z = zl:(ajl‘i - Bjyf)ajj + (o5 + ﬁﬂj)afyj-
: 2 1SR, 12 1Nn(,2

Define the function ¢ : C* = R*" — R by the formula ¢(z) = 3 ; |z;|° = 5 ZI:(J: + y]) Then ¢ is
a Lyapunov function for Z. Indeed,

n

o 0
Lyd(2) = do(Z) = zlz(ajxi — Bjyj)a;i + (ajyy + ﬁiu’ﬂj)ai

(i — Bjy;)z; + (eyy; + Biwy)y; = ZO‘J x + y]

Denote ¢c:= min «;, C = min |);|. By assumption, ¢ > 0. Then

12 ()] = ZIAZJIQ > 1z < Ol
1

and therefore
Lzé(z >Z%\zy\2>cllz\l2 Sz

Lemma 5.9. Let A be a triangular matriz. Then for any € > 0 there exists a diagonal matriz C
such that C~YAC is an upper trangular matriz whose all elements a;j above the diagonal (i.e. with

i < j) satisfy |aij| <.

"'We switched the notation for coordinates in C" from 1, ..., Zn t0 21, ..., zn and will use the letter z for the real

part of z.
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Proof. Take

Nt 0 0 0
0 Nm2 0 0
C =
0 0 ... N O
0 0 ... 0 1
Then for a sufficiently large N the matrix C~'AC has the required properties. |

Lemma 5.10. Lemma holds when A is an upper triangular matrix.

Proof. According to Lemma [5.9] we can arrange that for any given ¢ > 0 the elements above the
diagonal are < €. Let us denote by A the diagonal matrix with the same elements on the diagonal,
by Z the vector field 2(2) —=Azandset B=A— A, Y = Z — Z, so that Y (z) = Bz.

Then according to Lemma [5.8| the function ¢(z) = £||2]|? is Lyapunov for Z, ie.

CUllZ(2)I? = Lzo(z) = a1l Z(=2)].
On the other hand, we have ||Y (z)|| < ca¢||z|| for some constant ca > 0 and similarly
Ly(¢(2)) = (Y, V) = (Bz,2) < csell2|P”
for some constant cg > 0. Thus,
CUIZIP + csell2ll* > Lzd = Lpé + Ly d > e1l| Z(2)[]* — exel ][

We also have

allZ|? < 1ZI1° < Cu|2Z)?

and

o5l < [1Z(2)1]> < Cs|l2] . (5.2.2)

Combining all the inequalities we get for a sufficiently small € > 0

cl|Z|* < Lzo < O 2.
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Proof of Lemma Using Corollary we can replace the matrix A by a similar matrix, and
thus may assume that it is in the Jordan normal form, and in particular, it is upper triangular.

Therefore, it remains to apply Lemma [ |

Proof of Theorem To simplify the notation we assume that the equilibrium point « is the
origin 0 € C™. Thus —F(z) = Az+ Y (z), where Y (z) = o(]|z||). By assumption, the spectrum of A
lies in the right half-plane {Rez > 0} C C. Hence, applying Lemmawe find a Lyapunov function
for the vector field Z(z) = Az. Let us recall that the Lyapunov function which we constructed for
this vector field is equal to ||z||> for some Euclidean structure on C".

Let us first check that the same function ¢(z) = 3||z||? is also Lyapunov for the vector field —F
in a sufficiently small ball Bs(0) = {||z|]| < ¢}. In fact, it will be more useful for us to prove the

following equivalent (why?) inequality:
2c(2) = cl[2]|* < =L ()¢ < Cl|2[|* = 2C¢(2) (5.2.3)

if ||z|| is small enough. For any e > 0 there exists a sufficiently small 6 > 0 such that for any
z € Bs(0) we have ||Y (2)|| < €|z]|.
Hence,

Ly o(2)] = (Vo(2), Y (2))] = (2, Y (2))] < |V (2)]] < ell2]]? (5.2.4)

On the other hand, according to Lemma and taking into account (|5.2.2)) we have

2¢9(2) = d|z|* < Lzd(2) < Cl|z|1” = 2Cg(2). (5.2.5)

Combining the inequalities (5.2.4)) and (5.2.5) we get (5.2.3]).

Now we are ready to finish the proof of asymptotic stability.
Take a point xg € Bs(0) where J is chosen so small that the inequality (5.2.3) holds. Let z(t)
be the solution of the equation & = F'(x) with the initial condition 2(0) = xo Denote h(t) = ¢(z(t).

Then

%0 = s (G10(0)) = o (F(0) = Lroa(0),

and combining with we get
— 2Ch(t) = —2co(h(t)) < h(t) < —2ch(h(t)) = —2ch(t) (5.2.6)
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Let us solve the equation §(t) = —2cg(t) with the initial condition g(0) = h(0) = ¢(xg). Then
g(t) = h(0)e~2°*. On the other hand, the function 1 (t) := g¢(t) — h(t) satisfies the conditions
d(t) <0, ¢(0) =0, and hence ¢(t) > 0 for t > 0, i.e. we have

0 < h(t) < g(t) = h(0)e 2t — 0.

But h(t) = ¢(x(t)) = 2Ol and therefore lim x(t) = 0. This concludes the proof of the asymptotic

2 —00

stability. |

5.3 Smooth classification of linear systems

Consider two vector fields X on a domain U C R” and X on a domain X C R™. We say that that
the systems & = X (x) and & = X(a:) are diffeomorphic, or smoothly equivalent if there exists a
diffeomorphism f: U — U such that X = X. If both can be integrated to flows X! : U — U and

X' : U — U then their smooth equivalence can be equivalently defined by the equations
X'=f"1loX'of teR

The two systems are called linearly equivalent if they are equivalent via a linear map C : R™ — R™.
For two linear systems & = Ax and & = Bx to be linear equivalent via a linear map C' just means
that A = C~!BC (here we denote by the same letter the linear map R™ — R™ and its matrix in the

standard basis). Indeed, the equation A = C~!BC is equivalent the equation et = 0-1eBlCt e R.

Lemma 5.11. Consider two linear systems, £ = Az and © = Bx. Suppose that they are diffeo-

morphic. Then they are linearly equivalent.

Proof. Denote by Y the vector field Y (x) = Az and by Z the vector field Z(x) = Bz. Suppose
that f.Y = Z. Both vector fields have unique zeroes at the origin, and hence f(0) = 0. Thus
f(z) = dfo(x) + G(z), where G(x) = o(||z||). In the computation below we identify the space R
with R™ via the parallel transport, and thus think about the differential d, f as a malp R" — R".

We have
dfe(Y(2)) = df:(Az) = Z(f(z)) = Bf ().
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By continuity df, = dfp + H(x), where H(x) is a linear map R™ — R” such that ||H(z)|| — 0.

[|z][—0
Hence,

dfo(Az) = Bf(x) — H(x)(Az) = Bdfo(x) + B(G(x)) — H(x)Aa,

Set z = eu. Then we get

dfooA(u)—BodfO(u):%(B(G(eu))—eH(eu)oA(u)) S0

|l =0

Hence, dfy o A(u) — B o dfy(u) for all u € R”, i.e. A =dfy"' o Bodfy,ie Aand B are equivalent
via the linear map dfp : R” — R". |

Corollary 5.12. If the systems © = Ax and & = Bx are smoothly equivalent then A and B have

the same eigenvalues.

5.4 Topological classification of linear systems: generic case

Corollary shows that smooth classification is to rigid: even a small modification of eigenvalues
lead to non-equivalent systems. The notion of topological classification which we discuss in this
section is a coarser notion which still catches some essntial characteristics of the systems.
Consider two vector fields X on a domain U C R™ and X on a domain X C R". Suppose
that the phase flows X! and X! for X and X are well defined for all ¢ € R. We say that that the
systems & = X (x) and & = )Z'(x) are homeomorphic, or topologically equivalent if there exists a

homeomorphism f : U — U such that
Xt:f_lo)N(tof, teR.

Theorem 5.13. Suppose that the matriz A has no eigenvalues X with ReA = 0. Then the system
& = Ax is topologically equivalent to the system & = Dx for a diagonal matriz D = (d;;) such that
djj = —1 for j < k and d;; = 1 for j > k, where k is the number of eigenvalues of A with negative

real part. Two such systems with different k are not topologically equivalent.

Lemma 5.14. The first assertion of Theorem[5.13 holds for k = 0.
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Proof. According to Lemma there exists a Fuclidean structure on R™ for which the function
||z||? is a Lyapunov function for the vector field Y (z) = Az. The same function is also Lyapunov
for the radial vector field Z = ixia%i which defines the system & = x.

We construct a homeomorplhism f which send the trajectory of the second system onto the
trajectories of the first one by the formula

T
|||

By Theorem we have lim eA 108!zl (HT”CH) = 0, and hence we can extend the map f by continuity

z—0

f(x) = eAlosll=ll( ), for z #0.

to 0 by setting f(0) = 0. the constructed map is a diffeomorphism in the complement of the origin,
but it is never smooth at 0 if A # I (why?). Let us check that the map f is a topological equivalence

of the systems & = x and © = Ax. Indeed, for x # 0 denote u := |I%H’ r:=||z||. Then we have
f(etx) _ 6A(t-l—logr)u _ eAt(elogrAu) _ eAtf(.T).
[ |

Proof of Theorem Lemma settles the case when there are no eigenvalues with the
negative real part. The same lemma applied to —A implies the result for the case when there are
no eigenvalues with the positive real part. Let us now consider the general case. Suppose that the
matrix A has exactly k eigenvalues with the negative real part and (n — k) eigenvalues with the
positive one (counting their multiplicities). The the phase space V' = R" of the system splits in the
direct sum V = V_ @V, | where Vi are both invariant subspaces of the operator A, have dimension
k and n — k, respectively, and such that all eigenvalues of A_ := A|y_ lie in the left half-plane
{Rez < 0} and all eigenvalues of A+ — := A|y, lie in the right half-plane {Rez > 0}. Indeed, V_ is
the direct sum of all root spaces corresponding to the eigenvalues with the negative real part, and
V. is the direct sum of all root spaces corresponding to the eigenvalues with the positive real part.
Then if one chooses a basis in V' which has its first k£ vectors in V_ and the last (n — k) in V. then
the matrix of the system will have the block form, and thus the system splits into the direct sum of
the systems © = A_2 and § = A,y, € R¥ and y € R"*. According to Lemma, there exists
a homeomorphism f_ : R¥ — RF of the system & = —z on R¥ and the system # = A_x. The same
lemma also implies existence of a homeomorphism Ay : R"% — R** between the systems § = y

and §y = A,y on R" ¥ Then the homeomorphism h : R* = RF @ R*% — R¥ ¢ R»~* = R" given
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by the formula h(z,y) = (h_(z),hi(y)), € R¥ y € R"¥ is the required topological equivalence.
|
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Chapter 6

Solving one first order partial

differential equation

6.1 Jet spaces

When studying functions on R", or a domain in R it is useful to consider their graphs which live

in R” x R = R"*! je. for u: R” — R its graph
Ty:={z=u(zy,...,z,)} C R"

Similarly, when studying first order partial differential equations with respect to a function on

R™ it is useful to consider a simultaneous graph of a function and all its derivatives:

= )= 2 @) o = (a1, 2a) € R CRE,
81’1

Au:{zzu(x)apl —%

where we denoted coordinates in R?"*! = R" x R® x R by (z,p, 2), z,p € R", 2 € R. The coordinate
z is reserved for graphing the value of a function u and p1, ..., p, for the corresponding first partial
derivatives.

The space R?"*! in this context is called the 1-jet space of functions on R™ and usually denoted

by J'(R™). We denote by 7 the projection J!(R") — R™ — R" given by the formula

m(z,p,2) =, (z,y,2) € J'(R") =R" x R" x R.
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A map s : R* — JYR") is called a section if 7 o s = Id : R® x R™. In other words, if s(z) =
(z,v(x),u(r)) € R" x R" x R for x € R™. With every function u : R™ — R one can associate a very

special section. Namely,

ou ou n
x <x,axl(x),,axn(x),u(x)> , x € R",

which maps R™ onto the simultaneous graph of the function w and all its first partial derivatives.
Sections of this type are called holonomic. We note that most of the sections are not holonomic..
The following lemma gives a necessary and sufficient condition for a section s : R — R?**1 to

be holonomic. Denote by A the differential 1-form
n
Ai=dz — sz‘dl’i,
1
and by £ the hyperplne field defined by the Pfaffian equation A = 0. This hyperplane field is called
a contact structure.

Lemma 6.1. A section s: R" — J'(R") is holonomic if and only if s*\ = 0. In other words, s is

holonomic if its image is tangent to the contact structure £.
Proof. We have s(x) = (z,p = v(x),z = u(z)), and hence the equation
0= s\ =s%(dz — pdx) = du — vdx

is equivalent to
() = (@) n(e) = ()
which is the definition of a holonomic section.

Submanifolds of dimension n which are tangent to £ are called Legendrian. We note that a

general Legendrian submanifold need not be necessarily graphical.

Exercise 6.2. Give an example of a non-graphical Legendrian submanifold A c J'(R™).

6.2 The casen=1

When n = 1 then the 1-jet space is 3-dimensional, J!(R) = R3. A holonomic section s : R — J(R)

is a simultaneous graph of a function and its derivative:

s(z) = (z,p = f'(z), 2 = f(2)).
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The contact structure & is the 2-dimensional plane field given by a Pfaffian equation dz — pdx = 0.

Let ¥ C J'(R) be a 2-dimensional submanifold. Suppose that for a € ¥ the tangent plane T,
is transverse to the contact plane &,. Then the line ¢, = T,X N &, is called the characteristic line.
If ¥ is transverse to £ everywhere, then ¢ = {/{,},ex is a tangent line field to 3 (which is called the

characteristic line field). The integral curves of this line field are called characteristics.

Lemma 6.3. Characteristics are Legendrian submanifolds. In particular, if a characteristic A C R
is graphiical with respect to the projection J'(R) — R then it is a holonomic, i.e. there erists a

function h : (a,b) = R such that s(z) = (¢, b (z), h(z)),z € (a,b).

6.3 Characteristics in the n-dimensional case

Let ¥ C J'(R") be a hypersurface. A point a € ¥ is called singular if T,% = £,. Otherwise, i.e.
if T, is transverse to &g, it is called reqular. At a regular point a € 3 the intersection 11, = T,3XN&,
is an (2n — 1)-dimensional subspace. Here are some conditions which guarantees transversality of
¥ C JYR™) and & = {\ = 0}, i.e. regularity of all points of X.

Example 6.4. 1. Suppose a ¥ = {F = 0} where for every point a € ¥ there exists i = 1,...,n

such that g—;(a) # 0. Then ¥ is transverse to &.

2. Suppose the hypersurface ¥ is tangent to the z-directions (e.g. the defining it function F' is

independent of z. Then ¥ is transverse to £.

Lemma 6.5. Suppose Y is transverse to £&. Then for any point a € X there exists a unique line
Ly, C I, =&, NT, which is characterized by the following condition. Given any vectors v € £, and
w € I, we have

dA\(v,w) = 0.

In other words, ¢, is the kernel of the form d\|,,.

Proof. The contact hyperplane field £ — {dz — pdx = 0} is transverse to the z-axis, and hence
the form d\ = dp A dx|¢ has the maximal rank 2n. Therefore the restriction of this form to the
codimension 1 subspace II, C &, has rank 2n — 1, because the rank cannot drop more than by 1,
but on the other hand the rank of a skew-symmetric form is always even. Hence, there exists a

1-dimensional kernel ¢, C II, of the form d\|f,, i.e. dA(v,w) = 0 for any vectors v € {4, w € I1,.
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The line field ¢ = {{;}4ex which is tangent to ¥ is called the characteristic line field, and its
integral curves are called characteristics.

The next lemma gives an explicit expression for a vector field directing the line field £.

Lemma 6.6. Suppose ¥ = {F(z,p,z) =0} and a = (x,p, z) € X a reqular point. Then the line £,

1s generated by the vector

n

v= ZFpi% — > (Fy, —Pin)afp. + ZPini&. (6.3.1)
1 ! ! 1

1

Proof. Given any vector w = (X,Y,Z) € II, = & N T,% its coordinates should satisfies the

following conditions. The equation dF,(w) = 0 takes the form

F, X+ F,P+F.Z=0. (6.3.2)
The equation A(w) = 0 takes the form
Z —pX =0. (6.3.3)

Hence, vectors in &, have the form (X, P,pX), and the necessary and sufficient condition for a

vector w to be £, NT,Y is that it satisfies the equation
(Fp +pF,)X + F,P =0.

~ o~ o~ ~ ~ n ~
Let v = (X,Y,Z) be a non-zero vector given by (6.3.1). We have Z = pX = > p,X; and
1

(Fy +pF,)X + F,P = (F, + pF,)F, — F,(F, + pF,) =0, and hence v € II,. We also have
vildA=vldpANdx = Pdx — )?dp,
and for any vector w = (X, P,pX) € I, we have (F, + pF,)X + F,P = 0 we have
PX — PX = (Fy + pF.)X + F,P = 0. (6.3.4)

Lemma 6.7. Let ¥ C JY(R") be a hypersurface transverse to £, and £ the characteristic line field.
Let L C ¥ be a submanifold such that A|p = 0 and L is transverse to £. Let L denote the union of

all trajectories of the characteristic foliation intersecting L. Then M|z = 0.
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In other words, if we flow a k-dimensional submanifold of ¥ tangent to £ along the characteristics,
then it swaps a (k + 1)-dimensional submanifold of 3 tangent to £. Proof. Choose a non-vanishing
vector field v € . At a point a € L the tangent T,L C I, is spanned by T, L and the vector v(a).
Note that dA;, 7 = 0 because dA|r,, = 0 by assumption, and dA(v(a),w) = 0 for all w € T,L
because v(a) € ¢, = Kerd\|m,. We also note that the flow of the vector field v on L preserves
the form p := A|7. Indeed, the Lie derivative L,(A|;) = d(A(v)) + v 1dA) = 0. Here the first term
vanishes because v € £ C &, and the second one vanishes because v € £ = Ker (dA|r). Therefore, if
A vanishes in one point of a trajectory of v, then it vanishes at every point of this trajectory. But
by definition any trajectory of v on L intersects L, and as we had seen above \ vanishes on L at

the points of L. Hence, it vanishes, everywhere.

Lemma 6.8. Let ¥ C JY(R") be a hypersurface transverse to £, and £ the characteristic line field.

Then any Legendrian submanifold L C X is tangent to £.

Proof. Recall that a Legendrian submanifold is an n-dimensional submanifold tangent to .
Suppose that for a point a € ¥ the characteristic line ¢, is transverse to T, L. Consider the (n+ 1)-
dimensional space S := Span(7,L,v). We have S C II, C &,. On the other hand, d\|g = 0. Indeed,
dA|7, . = 0 by assumption, and dA(v,w) =0 for all w € S and v € ¢, because ¢, = Kerd\|,. But
dX is a non-degenerate form on a 2n-dimensional space &,. Hence, it cannot vanish on a subspace

of dimension > n.

Theorem 6.9. Let Q1,0 C R* ! = {x, = 0} be two bounded open domains such that Q1 C Qa,

and ¢ : Qs — R a smooth function. Consider a Cauchy problem

2o 20 )
Bacn 1y---yLn—-1, 81}1 PR 8.%”_1’ (635)
u(xl,...,xn_l,O):<Z>(:U1,...,xn_1).

with respect to a function u : R™ — R. Then for a sufficiently small ¢ > 0 the Cauchy problem
(6.3.5) has a unique solution for (z1,...,xn—1 € Q, |xn| < €. This solution can be found using the

71



following procedure. Consider a system of ordinary differential equations

of

Ti=———(x,p1,---yPn-1,%2), t=1,...,n—1,

i 8pi( P1 Pn-1,%2)

Ty =1,

= 2L - p L@ )

Di = a.TZ yP1s- -y Pn—1, plaz yP1y -+ Pn—1, )
n—1 f

2:f(l'aplv"'7pnfla2)_Zpiaip'(mapla""pnflaz)a
1 T

Let
zj=aj(cr,...,cn-1,t), j=1,...,n—1, &, =1,

pjzﬁj(cl,...,cn,l,t), j:]_,...,n—l,

z = 7(61, s 7Cn717t)a

be the solution of system (6.3.6)) with initial data

zj(0)=¢j, j=1,....,n—1, (c1,...,cn—1) € Qo,

z,(0) = 0.,

0¢ )
p;i(0) = =—(c1,...,cn-1), j=1,...,n—1,
J 6.%'j

z2(0) = p(c1y ..oy Cna1).

The system of algebraic equations (6.3.7)) can be resolved with respect to ¢;, i =1, ...

Cj :(5j(x1,...,xn), j: 1,...,n—1,
for sufficiently small values of x,,. Then the function
w(zy, ..o xn) =01 (z1, -y xn)y ey Op—1 (X1, ooy Tp), 1)

is the solution of the Cauchy problem for (/6.3.5)).

72

(6.3.6)

(6.3.7)
(6.3.8)

(6.3.9)

,n—1:



Chapter 7

Proof of basic theorems

7.1 Existence and uniqueness theorem

Theorem 7.1. Consider a system
&= f(x,t),(z,t) € QR CR" xR, (7.1.1)

where f is a C-map. Then there exists € > 0 such that for any point (x,t) € Q with ||z — zo|| < €
there exists a unique solution g5(t), |t — to| < € which satisfies gz(to) = x. Moreover, g.(t) is a

continuous function of x and t.

Proof. To simplify the notation we assume tg = 0, zg = 0. First, choose some a > 0 such that
Ca = {ll]],[t] < a} C Q.

Denote

C = )|, L = dy .
s 1f (=, )1, e ||dzt f]

Choose € € (0,a) such that Le < C and (C + 1)e < a. Denote C, := {||z|], |t| < €}

Let us denote by M the subset of the space of continuous maps h : C. — R such that h(x,0) =0
and ||h(x,t)|| < Ct. The space M is a closed subset of the space C°(C,, R") endowed with the norm
[|h]] = (x%%)ée ||h(x,t)]|. The space C°(C,,R"™) of continuous maps C. — R"™ with this norm is a

complete space (i.e. any Cauchy sequence converges) and hence M is a complete space as well.

Define an integral operator K : M — C%(C.,R") by the formula
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¢
K()(a,t) = [ S+ hlz,),5)ds, (@.6) € C..
0
The operator K has the following properties:
e K(h)€ M,ie K maps M to M,
e there exists a positive constant p < 1 such that
I (h) = K(h)|| < pl[h — Rl|
for all h,//% € M; in other words, K is a contracting operator.

Indeed, first we note that
(@ + h(z,t)|] < [l — ol + ||h(z,1)|| < €+ Ce = (C + L)e < a,

ie. (x4 h(x,t),t) € Cq if (z,t) € Ce. Note that K(h)(x,0) = 0. Hence, for |t| < € we have

Il <e

K (h) (@, )] < max ||K(h)(, )] < / 1£(x + h(z, s), 8)lds < / Cds < Ct.
0 0

Thus, K(h) € M. Denote p := Le (recall that L = ( max l|dz¢f|])). Then by assumption we have

)

u < 1. We have

1K (h) — K(h)]| < / 1f(z + h(z,s),s) — f(z +h(z,s),s)||ds
0

t
[ Elin=Rllds < Lellh =l = ul}h - .
0

According to the fixed point theorem for contracting operators there exists a unique h € M
such that K(h) = h.
We claim that then g, (t) := x+ h(z,t) is the required solution of the system & = f(z,t). Indeed,

we have g,(0) = z and

%g:c(t) = % /f(gx(s)v S)dS = f(gx(t),t).
0

Note, that conversely, any solution of the system is a fixed point of the operator K, and hence, the

solution is unique. |
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7.2 Equation in variations

Consider again the system (7.1.1]) and assume here that f(x,t) is at least C''-smooth.
Let ¢ : (—a,a) — 2 be a solution of ([7.1.1)) which corresponds to the initial condition ¢(0) = xo.
Let us look for solutions z(t) close to ¢(t) in the form x(t) := ¢(t) + eu(t), t € (—a,a), we get

fla,t) = f(o(t) +u(t),t) = f(o(t), 1) + eCt)u(t) + ofe).

Here C(t) = dy—g(1) f(,t) is the differential (with respect to = of f(z,t) at the point ¢(t). In what
follows we will not distinguish between the differential and the corresponding Jacobi matrix.

Thus plugging z(t) := ¢(t) + eu(t) into equation ([7.1.1]) we get
&+ eiv = f(P(t),t) + eC(t)u(t) + ofe).

Taking into account that ¢ is a solution of (7.1.1)) we get that ¢ = f(¢(t),t). Dividing the remaining

terms of the equation by € and passing to the limit when ¢ — 0 we get the equation
= C(t)u. (7.2.1)

which is called an equation in variations along a solution x(t) of (7.1.1)).
If we denote by ¢(t) the solution of ([7.1.1)) corresponding to the initial condition ¢(0) = eug

for some vector ug € R", then, assuming that the solution depends smoothly on the parameter e

we get % T u(t), where u(t) is the solution of (7.2.1) which satisfies the initial condition

u(0) = ug. We will establish the smooth dependence in the next section.

7.3 Smooth dependence on the initial data

Theorem 7.2. Let g,.(t) be a family of solutions of the system (7.1.1)) constructed in Theorem .
Suppose that the right-hand side f(x,t) is C%-smooth. Then g.(t) depends smoothly on (x,t).

Consider equations in variations for a solution z(t) of (7.1.1))

U= Cx(t)u, u € R", (7.3.1)
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where Cj ;) is the Jacobi matrix of the map f(x,t) with respect to = at the point (z(t),?). We will
not distinguish below between the differential, which is a linear map and its Jacobi matrix. Let us

also consider the corresponding matrix equation:

U=C,yU, Ué€ M, (7.3.2)
where M, is the space of n x n-matrix. If U(t) is the solution of this matrix equation satisfying
U(0) = I, then u(t) = U(t)ug is the solution of equation ([7.3.1)) with the initial condition u(0) = wy.
In other words, U(t) is the matrix of the phase flow of equation ([7.3.1).

The right-hand side of equation ((7.3.3) depends on a solution of (7.1.1)), so it is more natural

to consider the two equations as a system of equations:

jj = f(x7t)7
U=C,(t)U,z e QCR, Ue€ M,.

(7.3.3)

Let us recall from the proof of Theorem that the solution g, (t) of equation (|7.1.1)) can be

obtained as the limit of successive approximations gg(go) (t),... ,gg(go) (t),..., where ¢2(t) = x and
t
Jruala(’ x+/f (7.3.4)
0

for k > 0. Let us apply the same iteration scheme to the system ((7.3.3):
Namely, we set g2(t) = 2, G2 = Id and define

gttty =+
(7.3.5)

GiHlty=1+ [ C g(s)Gle(s)ds

Note that all maps in both sequences are smooth, GO = d, ¢, and differentiating the first equation
with respect to x we inductively get that
degk(t) = GF(t) for all k> 0. (7.3.6)

On the other hand, according to Theorem applied to equation 1' we conclude that the

sequence (g¥(t), GE(t)) uniformly converges to the solution (g,(t),G.(t)) of . Then, using
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we conclude that dg,(t) = G.(t) which implies, in particular, that g, (¢) is continuously
differentiable with respect to x on some domain C, C ) where € may need to be further decreased
depending on the upper bound for the second derivatives of f(x,t).

We leave it to the reader as an exercise to show that the differentiability with respect to the
pair (x,t) of variables follows from what was already proven by the standard trick of passing to the

extended phase space of the system.
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