Math 52H: Multilinear algebra, differential forms and Stokes' theorem

Yakov Eliashberg

January 2015

Contents

I Multilinear Algebra 7
1 Linear and multilinear functions 9
1.1 Dual space 9
1.2 Canonical isomorphism between $\left(V^{*}\right)^{*}$ and V 11
1.3 The map \mathcal{A}^{*} 11
1.4 Multilinear functions 14
1.5 Quotient space 15
1.6 Symmetric bilinear functions and quadratic forms 16
2 Tensor and exterior products 19
2.1 Tensor product 19
2.2 Spaces of multilinear functions 20
2.3 Symmetric and skew-symmetric tensors 21
2.4 Symmetrization and anti-symmetrization 22
2.5 Exterior product 23
2.6 Spaces of symmetric and skew-symmetric tensors 26
2.7 Operator \mathcal{A}^{*} on spaces of tensors 26
3 Orientation and Volume 31
3.1 Orientation 31
3.2 Orthogonal transformations 32
3.3 Determinant and Volume 33
3.4 Volume and Gram matrix 35
4 Dualities 37
4.1 Duality between k-forms and $(n-k)$-forms on a n-dimensional Euclidean space V 37
4.2 Euclidean structure on the space of exterior forms 43
4.3 Contraction 46
5 Complex vector spaces 51
5.1 Complex numbers 51
5.2 Complex vector space 54
5.3 Complex linear maps 56
II Calculus of differential forms 59
6 Topological preliminaries 61
6.1 Elements of topology in a vector space 61
6.2 Everywhere and nowhere dense sets 63
6.3 Compactness and connectedness 63
6.4 Connected and path-connected components 66
6.5 Continuous maps and functions 67
7 Vector fields and differential forms 71
7.1 Differential and gradient 71
7.2 Smooth functions 73
7.3 Gradient vector field 73
7.4 Vector fields 74
7.4.1 Gradient vector field 76
7.5 Differential forms 77
7.6 Coordinate description of differential forms 77
7.7 Smooth maps and their differentials 78
7.8 Operator f^{*} 79
7.9 Coordinate description of the operator f^{*} 81
7.10 Examples 82
7.11 Pfaffian equations 83
8 Exterior differential 85
8.1 Coordinate definition of the exterior differential 85
8.2 Properties of the operator d 87
8.3 Curvilinear coordinate systems 91
8.4 Geometric definition of the exterior differential 91
8.5 More about vector fields 93
8.6 Case $n=3$. Summary of isomorphisms 95
8.7 Gradient, curl and divergence of a vector field 96
8.8 Example: expressing vector analysis operations in spherical coordinates 97
8.9 Complex-valued differential k-forms 100
9 Integration of differential forms and functions 103
9.1 Useful technical tools: partition of unity and cut-off functions 103
9.2 One-dimensional Riemann integral for functions and differential 1-forms 106
9.3 Integration of differential 1 -forms along curves 109
9.4 Integrals of closed and exact differential 1-forms 114
9.5 Integration of functions over domains in high-dimensional spaces 115
9.6 Fubini's Theorem 129
9.7 Integration of n-forms over domains in n-dimensional space 132
9.8 Manifolds and submanifolds 140
9.8.1 Manifolds 140
9.8.2 Gluing construction 142
9.8.3 Examples of manifolds 149
9.8.4 Submanifolds of an n-dimensional vector space 151
9.8.5 Submanifolds with boundary 153
9.9 Tangent spaces and differential 155
9.10 Vector bundles and their homomorphisms 158
9.11 Orientation 159
9.12 Integration of differential k-forms over k-dimensional submanifolds 159
III Stokes' theorem and its applications 165
10 Stokes' theorem 167
10.1 Statement of Stokes' theorem 167
10.2 Proof of Stokes' theorem 171
10.3 Integration of functions over submanifolds 173
10.4 Work and Flux 179
10.5 Integral formulas of vector analysis 182
10.6 Expressing div and curl in curvilinear coordinates 183
11 Applications of Stokes' formula 187
11.1 Integration of closed and exact forms 187
11.2 Approximation of continuous functions by smooth ones 188
11.3 Homotopy 190
11.4 Winding and linking numbers 196
11.5 Properties of k-forms on k-dimensional manifolds 199

Part I

Multilinear Algebra

Chapter 1

Linear and multilinear functions

1.1 Dual space

Let V be a finite-dimensional real vector space. The set of all linear functions on V will be denoted by V^{*}.

Proposition 1.1. V^{*} is a vector space of the same dimension as V.
Proof. One can add linear functions and multiply them by real numbers:

$$
\begin{aligned}
\left(l_{1}+l_{2}\right)(x) & =l_{1}(x)+l_{2}(x) \\
(\lambda l)(x) & =\lambda l(x) \quad \text { for } l, l_{1}, l_{2} \in V^{*}, x \in V, \lambda \in \mathbb{R}
\end{aligned}
$$

It is straightforward to check that all axioms of a vector space are satisfied for V^{*}. Let us now check that $\operatorname{dim} V=\operatorname{dim} V^{*}$.

Choose a basis $v_{1} \ldots v_{n}$ of V. For any $x \in V$ let $\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$ be its coordinates in the basis $v_{1} \ldots v_{n}$. Notice that each coordinate x_{1}, \ldots, x_{n} can be viewed as a linear function on V. Indeed,

1) the coordinates of the sum of two vectors are equal to the sum of the corresponding coordinates;
2) when a vector is multiplied by a number, its coordinates are being multiplied by the same number.

Thus x_{1}, \ldots, x_{n} are vectors from the space V^{*}. Let us show now that they form a basis of V^{*}. Indeed, any linear function $l \in V^{*}$ can be written in the form $l(x)=a_{1} x_{1}+\ldots+a_{n} x_{n}$ which means that l is a linear combination of $x_{1} \ldots x_{n}$ with coefficients a_{1}, \ldots, a_{n}. Thus x_{1}, \ldots, x_{n} generate V^{*}. On the other hand, if $a_{1} x+\ldots+a_{n} x_{n}$ is the 0 -function, then all the coefficients must be equal to 0 ; i.e. functions x_{1}, \ldots, x_{n} are linearly independent. Hence x_{1}, \ldots, x_{n} form a basis of V and therefore $\operatorname{dim} V^{*}=n=\operatorname{dim} V$.

The space V^{*} is called dual to V and the basis x_{1}, \ldots, x_{n} dual to $v_{1} \ldots v_{n}{ }^{\top}$
Exercise 1.2. Prove the converse: given any basis l_{1}, \ldots, l_{n} of V^{*} we can construct a dual basis w_{1}, \ldots, w_{n} of V so that the functions l_{1}, \ldots, l_{n} serve as coordinate functions for this basis.

Recall that vector spaces of the same dimension are isomorphic. For instance, if we fix bases in both spaces, we can map vectors of the first basis into the corresponding vectors of the second basis, and extend this map by linearity to an isomorphism between the spaces. In particular, sending a basis $S=\left\{v_{1}, \ldots, v_{n}\right\}$ of a space V into the dual basis x_{1}, \ldots, x_{n} of the dual space V^{*} we can establish an isomorphism $i_{S}: V \rightarrow V^{*}$. However, this isomorphism is not canonical, i.e. it depends on the choice of the basis v_{1}, \ldots, v_{n}.

If V is a Euclidean space, i.e. a space with a scalar product $\langle x, y\rangle$, then this allows us to define another isomorphism $V \rightarrow V^{*}$, different from the one described above. This isomorphism associates with a vector $v \in V$ a linear function $l_{v}(x)=\langle v, x\rangle$. We will denote the corresponding map $V \rightarrow V^{*}$ by \mathcal{D}. Thus we have $\mathcal{D}(v)=l_{v}$ for any vector $v \in V$.

Exercise 1.3. Prove that $\mathcal{D}: V \rightarrow V^{*}$ is an isomorphism. Show that $\mathcal{D}=i_{S}$ for any orthonormal basis S.

The isomorphism \mathcal{D} is independent of a choice of an orthonormal basis, but is still not completely canonical: it depends on a choice of a scalar product. However, when talking about Euclidean spaces, this isomorphism is canonical.

[^0]Remark 1.4. The definition of the dual space V^{*} also works in the infinite-dimensional case.
Exercise 1.5. Show that both maps i_{S} and \mathcal{D} are injective in the infinite case as well. However, neither one is surjective if V is infinite-dimensional.

1.2 Canonical isomorphism between $\left(V^{*}\right)^{*}$ and V

The space $\left(V^{*}\right)^{*}$, dual to the dual space V, is canonically isomorphic in the finite-dimensional case to V. The word canonically means that the isomorphism is "god-given", i.e. it is independent of any additional choices.

When we write $f(x)$ we usually mean that the function f is fixed but the argument x can vary. However, we can also take the opposite point of view, that x is fixed but f can vary. Hence, we can view the point x as a function on the vector space of functions.

If $x \in V$ and $f \in V^{*}$ then the above argument allows us to consider vectors of the space V as linear functions on the dual space V^{*}. Thus we can define a map $I: V \rightarrow V^{* *}$ by the formula

$$
x \mapsto I(x) \in\left(V^{*}\right)^{*}, \quad \text { where } \quad I(x)(l)=l(x) \quad \text { for any } \quad l \in V^{*} .
$$

Exercise 1.6. Prove that if V is finite-dimensional then I is an isomorphism. What can go wrong in the infinite-dimensional case?

1.3 The map \mathcal{A}^{*}

Given a map $\mathcal{A}: V \rightarrow W$ one can define a dual map $\mathcal{A}^{*}: W^{*} \rightarrow V^{*}$ as follows. For any linear function $l \in W^{*}$ we define the function $\mathcal{A}^{*}(l) \in V^{*}$ by the formula $\mathcal{A}^{*}(l)(x)=l(A(x)), x \in V$. In other words, $\left.\mathcal{A}^{*}(l)=l \circ \mathcal{A}\right]^{2}$

[^1]Given bases $\mathcal{B}_{v}=\left\{v_{1}, \ldots, v_{n}\right\}$ and $\mathcal{B}_{w}=\left\{w_{1}, \ldots, w_{k}\right\}$ in the vector spaces V and W one can associate with the map \mathcal{A} a matrix $A=M_{\mathcal{B}_{v} \mathcal{B}_{w}}(\mathcal{A})$. Its columns are coordinates of the vectors $\mathcal{A}\left(v_{j}\right), j=1, \ldots, n$, in the basis \mathcal{B}_{w}. Dual spaces V^{*} and W^{*} have dual bases $X=\left\{x_{1}, \ldots x_{n}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{k}\right\}$ which consist of coordinate functions corresponding to the basis \mathcal{B}_{v} and \mathcal{B}_{w}. Let us denote by A^{*} the matrix of the dual map \mathcal{A}^{*} with respect to the bases Y and X, i. e. $A^{*}=M_{Y X}\left(\mathcal{A}^{*}\right)$.

Proposition 1.7. The matrices A and A^{*} are transpose to each other, i.e. $A^{*}=A^{T}$.
Proof. By the definition of the matrix of a linear map we should take vectors of the basis $Y=$ $\left\{y_{1}, \ldots, y_{k}\right\}$, apply to them the map \mathcal{A}^{*}, expand the images in the basis $X=\left\{x_{1}, \ldots x_{n}\right\}$ and write the components of these vectors as columns of the matrix \mathcal{A}^{*}. Set $\tilde{y}_{i}=\mathcal{A}^{*}\left(y_{i}\right), i=1, \ldots, k$. For any vector $u=\sum_{j=i}^{n} u_{j} v_{j} \in V$, we have $\tilde{y}_{i}(u)=y_{i}(\mathcal{A}(u))$. The coordinates of the vector $\mathcal{A}(u)$ in the basis w_{1}, \ldots, w_{k} may be obtained by multiplying the matrix A by the column $\left(\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right)$. Hence,

$$
\tilde{y}_{i}(u)=y_{i}(\mathcal{A}(u))=\sum_{j=1}^{n} a_{i j} u_{j} .
$$

But we also have

$$
\sum_{j=1}^{n} a_{i j} x_{j}(u)=\sum_{j=1}^{n} a_{i j} u_{j} .
$$

Hence, the linear function $\tilde{y}_{i} \in V^{*}$ has an expansion $\sum_{j=1}^{n} a_{i j} x_{j}$ in the basis $X=\left\{x_{1}, \ldots x_{n}\right\}$ of the space V^{*}. Hence the i-th column of the matrix A^{*} equals $\left(\begin{array}{c}a_{i 1} \\ \vdots \\ a_{i n}\end{array}\right)$, so that the whole matrix A^{*} has the form

$$
A^{*}=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{k 1} \\
\cdots & \cdots & \cdots \\
a_{1 n} & \cdots & a_{k n}
\end{array}\right)=A^{T}
$$

Exercise 1.8. Given a linear map $\mathcal{A}: V \rightarrow W$ with a matrix A, find $\mathcal{A}^{*}\left(y_{i}\right)$.

Answer. The map \mathcal{A}^{*} sends the coordinate function y_{i} on W to the function $\sum_{j=1}^{n} a_{i j} x_{j}$ on V, i.e. to its expression in coordinates x_{i}.

Proposition 1.9. Consider linear maps

$$
U \xrightarrow{\mathcal{A}} V \xrightarrow{\mathcal{B}} W .
$$

Then $(\mathcal{B} \circ \mathcal{A})^{*}=\mathcal{A}^{*} \circ \mathcal{B}^{*}$.
Proof. For any linear function $l \in W^{*}$ we have

$$
(\mathcal{B} \circ \mathcal{A})^{*}(l)(x)=l\left(\mathcal{B}(\mathcal{A}(x))=\mathcal{A}^{*}\left(\mathcal{B}^{*}(l)\right)(x)\right.
$$

for any $x \in U$.

Exercise 1.10. Suppose that V is a Euclidean space and \mathcal{A} is a linear map $V \rightarrow V$. Prove that for any two vectors $X, Y \in V$ we have

$$
\begin{equation*}
\langle\mathcal{A}(X), Y\rangle=\left\langle X, \mathcal{D}^{-1} \circ \mathcal{A}^{*} \circ \mathcal{D}(Y)\right\rangle . \tag{1.3.1}
\end{equation*}
$$

Solution. By definition of the operator \mathcal{D} we have

$$
\left\langle X, \mathcal{D}^{-1}(Z)\right\rangle=Z(X)
$$

for any vector $Z \in V^{*}$. Applying this to $Z=\mathcal{A}^{*} \circ \mathcal{D}(Y)$ we see that the right-hand send of (1.3.1) is equal to to $\mathcal{A}^{*} \circ \mathcal{D}(Y)(X)$. On the other hand, the left-hand side can be rewritten as $\mathcal{D}(Y)(\mathcal{A}(X))$. But $\mathcal{A}^{*} \circ \mathcal{D}(Y)(X)=\mathcal{D}(Y)(\mathcal{A}(X))$.

Let us recall that if V is an Euclidean space, then operator $\mathcal{B}: V \rightarrow V$ is called adjoint to $\mathcal{A}: V \rightarrow V$ if for any two vectors $X, Y \in V$ one has

$$
\langle\mathcal{A}(X), Y\rangle=\langle X, \mathcal{B}(Y)\rangle .
$$

The adjoint operator always exist and unique. It is denoted by \mathcal{A}^{\star}. Clearly, $\left(\mathcal{A}^{\star}\right)^{\star}=\mathcal{A}$. In any orthonormal basis the matrices of an operator and its adjoint are transpose to each other. An
operator $\mathcal{A}: V \rightarrow V$ is called self-adjoint if $\mathcal{A}^{\star}=\mathcal{A}$, or equivalently, if for any two vectors $X, Y \in V$ one has

$$
\langle\mathcal{A}(X), Y\rangle=\langle X, \mathcal{A}(Y)\rangle
$$

The statement of Exercise 1.10 can be otherwise expressed by saying that the adjoint operator \mathcal{A}^{\star} is equal to $\mathcal{D}^{-1} \circ \mathcal{A}^{*} \circ \mathcal{D}: V \rightarrow V$. In particular, an operator $\mathcal{A}: V \rightarrow V$ is self-adjoint if and only if $\mathcal{A}^{*} \circ \mathcal{D}=\mathcal{D} \circ \mathcal{A}$.

Remark 1.11. As it follows from Proposition 1.7 and Exercise 1.10 the matrix of a self-adjoint operator in any orthonormal basis is symmetric. This is not true in an arbitrrary basis.

1.4 Multilinear functions

A function $l\left(X_{1}, X_{2}, \ldots, X_{k}\right)$ of k vector arguments $X_{1}, \ldots, X_{k} \in V$ is called k-linear (or multilinear) if it is linear with respect to each argument when all other arguments are fixed. We say bilinear instead of 2-linear. Multilinear functions are also called tensors. Sometimes, one may also say a " k-linear form", or simply k-form instead of a " k-linear functions". However, we will reserve the term k-form for a skew-symmetric tensors which will be defined in Section 2.3 below.

If one fixes a basis $v_{1} \ldots v_{n}$ in the space V then with each bilinear function $f(X, Y)$ one can associate a square $n \times n$ matrix as follows. Set $a_{i j}=f\left(v_{i}, v_{j}\right)$. Then $A=\left(a_{i j}\right)_{i, j=1, \ldots, n}$ is called the matrix of the function f in the basis v_{1}, \ldots, v_{n}. For any 2 vectors

$$
X=\sum_{1}^{n} x_{i} v_{i}, Y=\sum_{1}^{n} y_{j} v_{j}
$$

we have

$$
f(X, Y)=f\left(\sum_{i=1}^{n} x_{i} v_{i}, \sum_{j=1}^{n} y_{j} v_{j}\right)=\sum_{i, j=1}^{n} x_{i} y_{j} f\left(v_{i}, v_{j}\right)=\sum_{i, j=1}^{n} a_{i j} x_{i} y_{j}=X^{T} A Y
$$

Exercise 1.12. How does the matrix of a bilinear function depend on the choice of a basis?

Answer. The matrices A and \tilde{A} of the bilinear form $f(x, y)$ in the bases v_{1}, \ldots, v_{n} and $\tilde{v}_{1}, \ldots, \tilde{v}_{n}$ are related by the formula $\tilde{A}=C^{T} A C$, where C is the matrix of transition from the basis $v_{1} \ldots v_{n}$
to the basis $\tilde{v}_{1} \ldots \tilde{v}_{n}$, i.e the matrix whose columns are the coordinates of the basis $\tilde{v}_{1} \ldots \tilde{v}_{n}$ in the basis $v_{1} \ldots v_{n}$.

Similarly, with a k-linear function $f\left(X_{1}, \ldots, X_{k}\right)$ on V and a basis v_{1}, \ldots, v_{n} one can associate a " k-dimensional" matrix

$$
A=\left\{a_{i_{1} i_{2} \ldots i_{k}} ; 1 \leq i_{1}, \ldots, i_{k} \leq n\right\},
$$

where

$$
a_{i_{1} i_{2} \ldots i_{k}}=f\left(v_{i_{1}}, \ldots, v_{i_{k}}\right) .
$$

If $X_{i}=\sum_{j=1}^{n} x_{i j} v_{j}, i=1, \ldots, k$, then

$$
f\left(X_{1}, \ldots, X_{k}\right)=\sum_{i_{1}, i_{2}, \ldots i_{k}=1}^{n} a_{i_{1} i_{2} \ldots i_{k}} x_{1 i_{1}} x_{2 i_{2}} \ldots x_{k i_{k}}
$$

see Proposition 2.1 below.

1.5 Quotient space

Let V be a vector space and $L \subset V$ be its linear subspace. Given a vector $a \in V$ let us denote by L_{a} the affine subspace $a+L=\{a+x ; x \in L\}$. Note that two affine subspaces L_{a} and $L_{b}, a, b \in V$ concide if $a-b \in L$ and are disjoint if $a-b \notin L$. Consider the set, denoted by V / L of all affine subspaces parallel to L. The set can be made into a vector space by defining the operations by the formulas

$$
L_{a}+L_{b}:=L_{a+b}, \quad \lambda L_{a}:=L_{\lambda a} ; a, b \in V, \lambda \in \mathbb{R}
$$

If a^{\prime} and b^{\prime} are other vectors in V such that $a^{\prime}-a, b^{\prime}-b \in L$ then $\left(a^{\prime}+b^{\prime}\right)-(a+b) \in L$ and $\lambda a^{\prime}-\lambda a \in L$, and hence $L_{a^{\prime}+b^{\prime}}=L_{a+b}, L_{\lambda a^{\prime}}=\mathrm{E}_{\lambda a}$.

The vector space V / L is called the quotient space of V by L.
In other words, we can say that V / L is obtained from V by identifying vectors which differ by a vector in L. The operations in V then naturally descend to the opertions on the quotient space.

If $N \subset V$ be any linear subspace such that $\operatorname{dim} L+\operatorname{dim} N=\operatorname{dim} V$ and $L \cap N=0$ then the map $N \rightarrow V / L$ given by the formula $x \in N \mapsto L_{x} \in V / L$ is an isomorphism (why?). In particular, $\operatorname{dim}(V / L)=\operatorname{dim} V-\operatorname{dim} L=\operatorname{codim}_{V} L$.

If V is a Euclidean space then we can choose as N the orthogonal complement L^{\perp} of L in V, and thus L / V is isomorphic to L^{\perp}. The advantage of the quotient construction that it is canonical while L^{\perp} depends on a choice of the Euclidean structure (scalar product).

1.6 Symmetric bilinear functions and quadratic forms

A function $Q: V \rightarrow \mathbb{R}$ on a vector space V is called quadratic if there exists a bilinear function $f(X, Y)$ such that

$$
\begin{equation*}
Q(X)=f(X, X), X \in V . \tag{1.6.1}
\end{equation*}
$$

One also uses the term quadratic form. The bilinear function $f(X, Y)$ is not uniquely determined by the equation 1.6.1). For instance, all the bilinear functions $x_{1} y_{2}, x_{2} y_{1}$ and $\frac{1}{2}\left(x_{1} y_{2}+x_{2} y_{1}\right)$ on \mathbb{R}^{2} define the same quadratic form $x_{1} x_{2}$.

On the other hand, there is a 1-1 corerspondence between quadratic form and symmetric bilinear functions. A bilinear function $f(X, Y)$ is called symmetric if $f(X, Y)=f(Y, X)$ for all $X, Y \in V$.

Lemma 1.13. Given a quadratic form $Q: V \rightarrow \mathbb{R}$ there exists a unique symmetric bilinear form $f(X, Y)$ such that $Q(X)=f(X, X), X \in V$.

Proof. If $Q(X)=f(X, X)$ for a symmetric f then

$$
\begin{aligned}
Q(X+Y) & =f(X+Y, X+Y)=f(X, X)+f(X, Y)+f(Y, X)+f(Y, Y) \\
& =Q(X)+2 f(X, Y)+Q(Y),
\end{aligned}
$$

and hence

$$
\begin{equation*}
f(X, Y)=\frac{1}{2}(Q(X+Y)-Q(X)-Q(Y)) . \tag{1.6.2}
\end{equation*}
$$

I leave it as an exercise to check that the formula 1.6.2 always defines a symmetric bilinear function.

Let $S=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of V. The matrix $A=\left(a_{i j}\right)$ of a symmetric bilinear form $f(X, Y)$ in the basis S is called also the matrix of the corresponding quadratic form $Q(X)=f(X, X)$. This matrix is symmetric, and

$$
Q(X)=\sum_{i j} a_{i j} x_{i} x_{j}=a_{11} x_{1}^{2}+\cdots+a_{n n} x_{n}^{2}+2 \sum_{i<j} a_{i j} x_{i} x_{j} .
$$

Thus the matrix A is diagonal if and only if the quadratic form Q is the sum of squares (with coefficients). Let us recall that if one changes the basis S to a basis $\widetilde{S}=\left\{\widetilde{v}_{1}, \ldots, \widetilde{v}_{n}\right\}$ then the matrix of a bilinear form f changes to $\widetilde{C}=C^{T} A C$.

Exercise 1.14. (Sylvester's inertia law) Prove that there is always exists a basis $\widetilde{S}=\left\{\widetilde{v}_{1}, \ldots, \widetilde{v}_{n}\right\}$ in which a quadratic form Q is reduced to a sum of squares. The number of positive, negative and zero coefficients with the squares is independent of the choice of the basis.

Thus, in some coordinate system a quadratic form can always be written as

$$
-\sum_{1}^{k} x_{i}^{2}+\sum_{k+1}^{k+l} x_{j}^{2}, k+l \leq n
$$

The number k of negative squares is called the negative index or simply the index of the quadratic form Q, the total number of $k+l$ of non-zero squares is called the rank of the form. It coincides with the rank of the matrix of the form in any basis. A bilinear (and quadratic) form is called non-degenerate if its rank is maximal possible, i.e. equal to n. For a non-degenerate quadratic for Q the difference $l-k$ between the number of positive and negative squares is called the signature.

A quadratic form Q is called positive definite if $Q(X) \geq 0$ and if $Q(X)=0$ then $X=0$. Equivalently, one can say that a form is positive definite if it is non-degenerate and its negative index is equal to 0 .

Chapter 2

Tensor and exterior products

2.1 Tensor product

Given a k-linear function ϕ and a l-linear function ψ, one can form a $(k+l)$-linear function, which will be denoted by $\phi \otimes \psi$ and called the tensor product of the functions ϕ and ψ. By definition

$$
\phi \otimes \psi\left(X_{1}, \ldots, X_{k}, X_{k+1}, \ldots, X_{k+l}\right):=\phi\left(X_{1}, \ldots, X_{k}\right) \cdot \psi\left(X_{k+1}, \ldots, X_{k+l}\right) .
$$

For instance, the tensor product two linear functions l_{1} and l_{2} is a bilinear function $l_{1} \otimes l_{2}$ defined by the formula

$$
l_{1} \otimes l_{2}(U, V)=l_{1}(U) l_{2}(V) .
$$

Let $v_{1} \ldots v_{n}$ be a basis in V and x_{1}, \ldots, x_{n} a dual basis in V^{*}, i.e. x_{1}, \ldots, x_{n} are coordinates of a vector with respect to the basis v_{1}, \ldots, v_{n}.

The tensor product $x_{i} \otimes x_{j}$ is a bilinear function $x_{i} \otimes x_{j}(Y, Z)=y_{i} z_{j}$. Thus a bilinear function f with a matrix A can be written as a linear combination of the functions $x_{i} \otimes x_{j}$ as follows:

$$
f=\sum_{i, j=1}^{n} a_{i j} x_{i} \otimes x_{j}
$$

where $a_{i j}$ is the matrix of the form f in the basis $v_{1} \ldots v_{n}$. Similarly any k-linear function f with a " k-dimensional" matrix $A=\left\{a_{i_{1} i_{2} \ldots i_{k}}\right\}$ can be written (see 2.1 below) as a linear combination of functions

$$
x_{i_{1}} \otimes x_{i_{2}} \otimes \cdots \otimes x_{i_{k}}, 1 \leq i_{1}, i_{2}, \ldots, i_{k} \leq n
$$

Namely, we have

$$
f=\sum_{i_{1}, i_{2}, \ldots i_{k}=1}^{n} a_{i_{1} i_{2} \ldots i_{k}} x_{i_{1}} \otimes x_{i_{2}} \otimes \cdots \otimes x_{i_{k}}
$$

2.2 Spaces of multilinear functions

All k-linear functions, or k-tensors, on a given n-dimensional vector space V themselves form a vector space, which will be denoted by $V^{* \otimes k}$. The space $V^{* \otimes 1}$ is, of course, just the dual space V^{*}.

Proposition 2.1. Let $v_{1}, \ldots v_{n}$ be a basis of V, and x_{1}, \ldots, x_{k} be the dual basis of V^{*} formed by coordinate functions with respect to the basis V. Then $n^{k} k$-linear functions $x_{i_{1}} \otimes \cdots \otimes x_{i_{k}}$, $1 \leq i_{1}, \ldots, i_{k} \leq n$, form a basis of the space $V^{* \otimes k}$.

Proof. Take a k-linear function F from $V^{* \otimes k}$ and evaluate it on vectors $v_{i_{1}}, \ldots, v_{i_{k}}$:

$$
F\left(v_{i_{1}}, \ldots, v_{i_{k}}\right)=a_{i_{1} \ldots i_{k}} .
$$

We claim that we have

$$
F=\sum_{1 \leq i_{1}, \ldots, i_{k} \leq n} a_{i_{1} \ldots i_{k}} x_{i_{1}} \otimes \cdots \otimes x_{i_{k}} .
$$

Indeed, the functions on the both sides of this equality being evaluated on any set of k basic vectors $v_{i_{1}}, \ldots, v_{i_{k}}$, give the same value $a_{i_{1} \ldots i_{k}}$. The same argument shows that if $\sum_{1 \leq i_{1}, \ldots, i_{k} \leq n} a_{i_{1} \ldots i_{k}} x_{i_{1}} \otimes$ $\cdots \otimes x_{i_{k}}=0$, then all coefficients $a_{i_{1} \ldots i_{k}}$ should be equal to 0 . Hence the functions $x_{i_{1}} \otimes \cdots \otimes x_{i_{k}}$, $1 \leq i_{1}, \ldots, i_{k} \leq n$, are linearly independent, and therefore form a basis of the space $V^{* \otimes k}$

Similar to the case of spaces of linear functions, a linear map $\mathcal{A}: V \rightarrow W$ induces a linear map $\mathcal{A}^{*}: W^{* \otimes k} \rightarrow V^{* \otimes k}$, which sends a k-linear function $F \in W^{* \otimes k}$ to a k-linear function $\mathcal{A}^{*}(F) \in V^{* \otimes k}$, defined by the formula

$$
\mathcal{A}^{*}(F)\left(X_{1}, \ldots, X_{k}\right)=F\left(\mathcal{A}\left(X_{1}\right), \ldots, \mathcal{A}\left(X_{k}\right)\right) \quad \text { for any vectors } \quad X_{1}, \ldots X_{k} \in V
$$

Exercise 2.2. Suppose V is provided with a basis v_{1}, \ldots, v_{n} and $x_{i_{1}} \otimes \cdots \otimes x_{i_{k}}, 1 \leq i_{1}, \ldots, i_{k} \leq n$, is the corresponding basis of the space $V^{* \otimes k}$. Suppose that the map $\mathcal{A}: V \rightarrow V$ has a matrix $A=\left(a_{i j}\right)$ in the basis v_{1}, \ldots, v_{n}. Find the matrix of the map $\mathcal{A}^{*}: V^{* \otimes k} \rightarrow V^{* \otimes k}$ in the basis $x_{i_{1}} \otimes \cdots \otimes x_{i_{k}}$.

2.3 Symmetric and skew-symmetric tensors

A multilinear function (tensor) is called symmetric if it remains unchanged under the transposition of any two of its arguments:

$$
f\left(X_{1}, \ldots, X_{i}, \ldots, X_{j}, \ldots, X_{k}\right)=f\left(X_{1}, \ldots, X_{j}, \ldots, X_{i}, \ldots, X_{k}\right)
$$

Equivalently, one can say that a k-tensor f is symmetric if

$$
f\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)=f\left(X_{1}, \ldots, X_{k}\right)
$$

for any permutation i_{1}, \ldots, i_{k} of indices $1, \ldots, k$.
Exercise 2.3. Show that a bilinear function $f(X, Y)$ is symmetric if and only if its matrix (in any basis) is symmetric.

Notice that the tensor product of two symmetric tensors usually is not symmetric.
Example 2.4. Any linear function is (trivially) symmetric. However, the tensor product of two functions $l_{1} \otimes l_{2}$ is not a symmetric bilinear function unless l_{1} is proportional to l_{2}. On the other hand, the function $l_{1} \otimes l_{2}+l_{2} \otimes l_{1}$ is symmetric.

A tensor is called skew-symmetric (or anti-symmetric) if it changes its sign when one transposes any two of its arguments:

$$
f\left(X_{1}, \ldots, X_{i}, \ldots, X_{j}, \ldots, X_{k}\right)=-f\left(X_{1}, \ldots, X_{j}, \ldots, X_{i}, \ldots, X_{k}\right)
$$

Equivalently, one can say that a k-tensor f is anti-symmetric if

$$
f\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)=(-1)^{\operatorname{inv}\left(i_{1} \ldots i_{k}\right)} f\left(X_{1}, \ldots, X_{k}\right)
$$

for any permutation i_{1}, \ldots, i_{k} of indices $1, \ldots, k$, where $\operatorname{inv}\left(i_{1} \ldots i_{k}\right)$ is the number of inversions in the permutation i_{1}, \ldots, i_{k}. Recall that two indices i_{k}, i_{l} form an inversion if $k<l$ but $i_{k}>i_{l}$.

The matrix A of a bilinear skew-symmetric function is skew-symmetric, i.e.

$$
A^{T}=-A .
$$

Example 2.5. The determinant $\operatorname{det}\left(X_{1}, \ldots, X_{n}\right)$ (considered as a function of columns X_{1}, \ldots, X_{n} of a matrix) is a skew-symmetric n-linear function.

Exercise 2.6. Prove that any n-linear skew-symmetric function on \mathbb{R}^{n} is proportional to the determinant.

Linear functions are trivially anti-symmetric (as well as symmetric).
As in the symmetric case, the tensor product of two skew-symmetric functions is not skewsymmetric. We will define below in Section 2.5 a new product, called an exterior product of skewsymmetric functions, which will again be a skew-symmetric function.

2.4 Symmetrization and anti-symmetrization

The following constructions allow us to create symmetric or anti-symmetric tensors from arbitrary tensors. Let $f\left(X_{1}, \ldots, X_{k}\right)$ be a k-tensor. Set

$$
f^{\operatorname{sym}}\left(X_{1}, \ldots, X_{k}\right):=\sum_{\left(i_{1} \ldots i_{k}\right)} f\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)
$$

and

$$
f^{\operatorname{asym}}\left(X_{1}, \ldots, X_{k}\right):=\sum_{\left(i_{1} \ldots i_{k}\right)}(-1)^{\operatorname{inv}\left(i_{1}, \ldots, i_{k}\right)} f\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)
$$

where the sums are taken over all permutations i_{1}, \ldots, i_{k} of indices $1, \ldots, k$. The tensors f sym and $f^{\text {asym }}$ are called, respectively, symmetrization and anti-symmetrization of the tensor f. It is now easy to see that

Proposition 2.7. The function f^{sym} is symmetric. The function $f^{\text {asym }}$ is skew-symmetric. If f is symmetric then $f^{\mathrm{sym}}=k!f$ and $f^{\text {asym }}=0$. Similarly, if f is anti-symmetric then $f^{\text {asym }}=k!f$, $f^{\mathrm{sym}}=0$.

Exercise 2.8. Let x_{1}, \ldots, x_{n} be coordinate function in \mathbb{R}^{n}. Find $\left(x_{1} \otimes x_{2} \otimes \ldots \otimes x_{n}\right)^{\text {asym }}$.

Answer. The determinant.

2.5 Exterior product

For our purposes skew-symmetric functions will be more important. Thus we will concentrate on studying operations on them.

Skew-symmetric k-linear functions are also called exterior k-forms. Let ϕ be an exterior k-form and ψ an exterior l-form. We define an exterior $(k+l)$-form $\psi \wedge \psi$, the exterior product of ϕ and ψ, as

$$
\phi \wedge \psi:=\frac{1}{k!l!}(\phi \otimes \psi)^{\mathrm{asym}} .
$$

In other words,
$\phi \wedge \psi\left(X_{1}, \ldots, X_{k}, X_{k+1}, \ldots, X_{k+l}\right)=\frac{1}{k!l!} \sum_{i_{1}, \ldots i_{k+l}}(-1)^{\operatorname{inv}\left(i_{1}, \ldots, i_{k+l}\right)} \phi\left(X_{i_{1}} \ldots, X_{i_{k}}\right) \psi\left(X_{i_{k+1}}, \ldots, X_{i_{k+l}}\right)$, where the sum is taken over all permutations of indices $1, \ldots, k+l$.

Note that because the anti-symmetrization of an anti-symmetric k-tensor amounts to its multiplication by k !, we can also write

$$
\phi \wedge \psi\left(X_{1}, \ldots, X_{k+l}\right)=\sum_{i_{1}<\ldots<i_{k}, i_{k+1}<\ldots<i_{k+l}}(-1)^{\operatorname{inv}\left(i_{1}, \ldots, i_{k+l}\right)} \phi\left(X_{i_{1}}, \ldots, X_{i_{k}}\right) \psi\left(X_{i_{k+1}}, \ldots, X_{i_{k+l}}\right),
$$

where the sum is taken over all permutations i_{1}, \ldots, i_{k+l} of indices $1, \ldots, k+l$.

Exercise 2.9. The exterior product operation has the following properties:

- For any exterior k-form ϕ and exterior l-form ψ we have $\phi \wedge \psi=(-1)^{k l} \psi \wedge \phi$.
- Exterior product is linear with respect to each factor:

$$
\begin{aligned}
\left(\phi_{1}+\phi_{2}\right) \wedge \psi & =\phi_{1} \wedge \psi+\phi_{2} \wedge \psi \\
(\lambda \phi) \wedge \psi & =\lambda(\phi \wedge \psi)
\end{aligned}
$$

for k-forms $\phi, \phi_{1}, \phi_{2}, l$-form ψ and a real number λ.

- Exterior product is associative: $(\phi \wedge \psi) \wedge \omega=\phi \wedge(\psi \wedge \omega)$.

First two properties are fairly obvious. To prove associativity one can check that both sides of the equality $(\phi \wedge \psi) \wedge \omega=\phi \wedge(\psi \wedge \omega)$ are equal to

$$
\frac{1}{k!!!m!}(\phi \otimes \psi \otimes \omega)^{\mathrm{asym}} .
$$

In particular, if ϕ, ψ and ω are 1-forms, i.e. if $k=l=m=1$ then

$$
\psi \wedge \phi \wedge \omega=(\phi \otimes \psi \otimes \omega)^{\text {asym }} .
$$

This formula can be generalized for computing the exterior product of any number of 1-forms:

$$
\begin{equation*}
\phi_{1} \wedge \cdots \wedge \phi_{k}=\left(\phi_{1} \otimes \cdots \otimes \phi_{k}\right)^{\text {asym }} . \tag{2.5.1}
\end{equation*}
$$

Example 2.10. $x_{1} \wedge x_{2}=x_{1} \otimes x_{2}-x_{2} \otimes x_{1}$. For 2 vectors, $U=\left(\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right), V=\left(\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right)$, we have

$$
x_{1} \wedge x_{2}(U, V)=u_{1} v_{2}-u_{2} v_{1}=\left|\begin{array}{ll}
u_{1} & v_{1} \\
u_{2} & v_{2}
\end{array}\right| .
$$

For 3 vectors U, V, W we have

$$
\begin{gathered}
x_{1} \wedge x_{2} \wedge x_{3}(U, V, W)= \\
=x_{1} \wedge x_{2}(U, V) x_{3}(W)+x_{1} \wedge x_{2}(V, W) x_{3}(U)+x_{1} \wedge x_{2}(W, U) x_{3}(V)= \\
\left(u_{1} v_{2}-u_{2} v_{1}\right) w_{3}+\left(v_{1} w_{2}-v_{2} w_{1}\right) u_{3}+\left(w_{1} u_{2}-w_{2} u_{1}\right) v_{3}=\left|\begin{array}{lll}
u_{1} & v_{1} & w_{1} \\
u_{2} & v_{2} & w_{2} \\
u_{3} & v_{3} & w_{3}
\end{array}\right|
\end{gathered}
$$

The last equality is just the expansion formula of the determinant according to the last row.

Proposition 2.11. Any exterior 2 -form f can be written as

$$
f=\sum_{1 \leq i<j \leq n} a_{i j} x_{i} \wedge x_{j}
$$

Proof. We had seen above that any bilinear form can be written as $f=\sum_{i j} a_{i, j} x_{i} \otimes x_{j}$. If f is skew-symmetric then the matrix $A=\left(a_{i j}\right)$ is skew-symmetric, i.e. $a_{i i}=0, a_{i j}=-a_{j i}$ for $i \neq j$.

Thus, $f=\sum_{1 \leq i<j \leq n} a_{i j}\left(x_{i} \otimes x_{j}-x_{j} \otimes x_{i}\right)=\sum_{1 \leq i<j \leq n} a_{i j} x_{i} \wedge x_{j}$.
Exercise 2.12. Prove that any exterior k-form f can be written as

$$
f=\sum_{1 \leq i,<\ldots<i_{k} \leq n} a_{i_{1} \ldots i_{k}} x_{i_{1}} \wedge x_{i_{2}} \wedge \ldots x_{i_{k}}
$$

The following proposition can be proven by induction over k, similar to what has been done in Example 2.10 for the case $k=3$.

Proposition 2.13. For any $k 1$-forms l_{1}, \ldots, l_{k} and k vectors X_{1}, \ldots, X_{k} we have

$$
l_{1} \wedge \cdots \wedge l_{k}\left(X_{1}, \ldots, X_{k}\right)=\left|\begin{array}{ccc}
l_{1}\left(X_{1}\right) & \ldots & l_{1}\left(X_{k}\right) \tag{2.5.2}\\
\ldots & \ldots & \ldots \\
l_{k}\left(X_{1}\right) & \ldots & l_{k}\left(X_{k}\right)
\end{array}\right|
$$

Corollary 2.14. The 1 -forms l_{1}, \ldots, l_{k} are linearly dependent as vectors of V^{*} if and only if $l_{1} \wedge \ldots \wedge l_{k}=0$. In particular, $l_{1} \wedge \ldots \wedge l_{k}=0$ if $k>n=\operatorname{dim} V$.

Proof. If l_{1}, \ldots, l_{k} are dependent then for any vectors $X_{1}, \ldots, X_{k} \in V$ the rows of the determinant in the equation 2.13 are linearly dependent. Therefore, this determinant is equal to 0 , and hence $l_{1} \wedge \ldots \wedge l_{k}=0$. In particular, when $k>n$ then the forms l_{1}, \ldots, l_{k} are dependent (because $\left.\operatorname{dim} V^{*}=\operatorname{dim} V=n\right)$.

On the other hand, if l_{1}, \ldots, l_{k} are linearly independent, then the vectors $l_{1}, \ldots, l_{k} \in V^{*}$ can be completed to form a basis $l_{1}, \ldots, l_{k}, l_{k+1}, \ldots, l_{n}$ of V^{*}. According to Exercise 1.2 there exists a basis w_{1}, \ldots, w_{n} of V that is dual to the basis l_{1}, \ldots, l_{n} of V^{*}. In other words, l_{1}, \ldots, l_{n} can be viewed as coordinate functions with respect to the basis w_{1}, \ldots, w_{n}. In particular, we have $l_{i}\left(w_{j}\right)=0$ if $i \neq j$ and $l_{i}\left(w_{i}\right)=1$ for all $i, j=1, \ldots, n$. Hence we have

$$
l_{1} \wedge \cdots \wedge l_{k}\left(w_{1}, \ldots, w_{k}\right)=\left|\begin{array}{ccc}
l_{1}\left(w_{1}\right) & \ldots & l_{1}\left(w_{k}\right) \\
\ldots & \ldots & \ldots \\
l_{k}\left(w_{1}\right) & \ldots & l_{k}\left(w_{k}\right)
\end{array}\right|=\left|\begin{array}{ccc}
1 & \ldots & 0 \\
\ldots & 1 & \ldots \\
0 & \ldots & 1
\end{array}\right|=1
$$

i.e. $l_{1} \wedge \cdots \wedge l_{k} \neq 0$.

Proposition 2.13 can be also deduced from formula 2.5.1.
Corollary 2.14 and Exercise 2.12 imply that there are no non-zero k-forms on an n-dimensional space for $k>n$.

2.6 Spaces of symmetric and skew-symmetric tensors

As was mentioned above, k-tensors on a vector space V form a vector space under the operation of addition of functions and multiplication by real numbers. We denoted this space by $V^{* \otimes k}$. Symmetric and skew-symmetric tensors form subspaces of this space $V^{* \otimes k}$, which we denote, respectively, by $S^{k}\left(V^{*}\right)$ and $\Lambda^{k}\left(V^{*}\right)$. In particular, we have

$$
V^{*}=S^{1}\left(V^{*}\right)=\Lambda^{1}\left(V^{*}\right)
$$

Exercise 2.15. What is the dimension of the spaces $S^{k}\left(V^{*}\right)$ and $\Lambda^{k}\left(V^{*}\right)$?

Answer.

$$
\begin{gathered}
\operatorname{dim} \Lambda^{k}\left(V^{*}\right)=\binom{n}{k}=\frac{n!}{k!(n-k)!} \\
\operatorname{dim} S^{k}\left(V^{*}\right)=\frac{(n+k-1)!}{k!(n-1)!}
\end{gathered}
$$

The basis of $\Lambda^{k}\left(V^{*}\right)$ is formed by exterior k-forms $x_{i_{1}} \wedge x_{i_{2}} \wedge \ldots \wedge x_{i_{k}}, 1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$.

2.7 Operator \mathcal{A}^{*} on spaces of tensors

For any linear operator $\mathcal{A}: V \rightarrow W$ we introduced above in Section 1.3 the notion of a dual linear operator $\mathcal{A}^{*}: W^{*} \rightarrow V^{*}$. Namely $\mathcal{A}^{*}(l)=l \circ \mathcal{A}$ for any element $l \in V^{*}$, which is just a linear function on V. In this section we extend this construction to k-tensors for $k \geq 1$, i.e. we will define $a \operatorname{map} \mathcal{A}^{*}: W^{* \otimes k} \rightarrow V^{* \otimes k}$.

Given a k-tensor $\phi \in W^{* \otimes k}$ and k vectors $X_{1}, \ldots, X_{k} \in V$ we define

$$
\mathcal{A}^{*}(\phi)\left(X_{1}, \ldots, X_{k}\right)=\phi\left(\mathcal{A}\left(X_{1}\right), \ldots, \mathcal{A}\left(X_{k}\right)\right)
$$

Note that if ϕ is symmetric, or anti-symmetric, so is $\mathcal{A}^{*}(\phi)$. Hence, the map \mathcal{A}^{*} also induces the maps $S^{k}\left(W^{*}\right) \rightarrow S^{k}\left(V^{*}\right)$ and $\Lambda^{k}\left(W^{*}\right) \rightarrow \Lambda^{k}\left(V^{*}\right)$. We will keep the same notation \mathcal{A}^{*} for both of these maps as well.

Proposition 2.16. Let $\mathcal{A}: V \rightarrow W$ be a linear map. Then

1. $\mathcal{A}^{*}(\phi \otimes \psi)=\mathcal{A}^{*}(\phi) \otimes \mathcal{A}^{*}(\psi)$ for any $\phi \in W^{* \otimes k}, \psi \in W^{* \otimes l}$;
2. $\mathcal{A}^{*}\left(\phi^{\mathrm{asym}}\right)=\left(\mathcal{A}^{*}(\phi)\right)^{\mathrm{asym}}, \mathcal{A}^{*}\left(\phi^{\mathrm{sym}}\right)=\left(\mathcal{A}^{*}(\phi)\right)^{\mathrm{sym}} ;$
3. $\mathcal{A}^{*}(\phi \wedge \psi)=\mathcal{A}^{*}(\phi) \wedge \mathcal{A}^{*}(\psi)$ for any $\phi \in \Lambda^{k}\left(W^{*}\right), \psi \in \Lambda^{l}\left(W^{*}\right)$.

If $\mathcal{B}: W \rightarrow U$ is another linear map then $(\mathcal{B} \circ \mathcal{A})^{*}=\mathcal{A}^{*} \circ \mathcal{B}^{*}$.

Proof.

1. Take any $k+l$ vectors $X_{1}, \ldots, X_{k+l} \in V$. Then by definition of the operator \mathcal{A}^{*} we have

$$
\begin{aligned}
\mathcal{A}^{*}(\phi \otimes \psi)\left(X_{1}, \ldots, X_{k+l}\right)= & \phi \otimes \psi\left(\mathcal{A}\left(X_{1}\right), \ldots, \mathcal{A}\left(X_{n+k}\right)=\right. \\
& \phi\left(\mathcal{A}\left(X_{1}\right), \ldots, \mathcal{A}\left(X_{k}\right) \psi\left(\mathcal{A}\left(X_{k+1}\right), \ldots, \mathcal{A}\left(X_{n+k}\right)\right)=\right. \\
& \mathcal{A}^{*}(\phi)\left(X_{1}, \ldots, X_{k}\right) \mathcal{A}^{*}(\psi)\left(X_{k+1}, \ldots, X_{k+n}\right)= \\
& \mathcal{A}^{*}(\phi) \otimes \mathcal{A}^{*}(\psi)\left(X_{1}, \ldots, X_{k+l}\right) .
\end{aligned}
$$

2. Given k vectors $X_{1}, \ldots, X_{k} \in V$ we get

$$
\begin{aligned}
& \mathcal{A}^{*}\left(\phi^{\mathrm{asym}}\right)\left(X_{1}, \ldots, X_{k}\right)=\phi^{\operatorname{asym}}\left(\mathcal{A}\left(X_{1}\right), \ldots, \mathcal{A}\left(X_{k}\right)\right)=\sum_{\left(i_{1} \ldots i_{k}\right)}(-1)^{\operatorname{inv}\left(i_{1}, \ldots, i_{k}\right)} \phi\left(\mathcal{A}\left(X_{i_{1}}\right), \ldots, \mathcal{A}\left(X_{i_{k}}\right)\right)= \\
& \sum_{\left(i_{1} \ldots i_{k}\right)}(-1)^{\operatorname{inv}\left(i_{1}, \ldots, i_{k}\right)} \mathcal{A}^{*}(\phi)\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)=\left(\mathcal{A}^{*}(\phi)\right)^{\mathrm{asym}}\left(X_{1}, \ldots, X_{k}\right)
\end{aligned}
$$

where the sum is taken over all permutations i_{1}, \ldots, i_{k} of indices $1, \ldots, k$. Similarly one proves that $\mathcal{A}^{*}\left(\phi^{\mathrm{sym}}\right)=\left(\mathcal{A}^{*}(\phi)\right)^{\mathrm{sym}}$.
3. $\left.\mathcal{A}^{*}(\phi \wedge \psi)=\frac{1}{k!!!} \mathcal{A}^{*}\left((\phi \otimes \psi)^{\text {asym }}\right)\right)=\frac{1}{k!l!}\left(\mathcal{A}^{*}(\phi \otimes \psi)\right)^{\text {asym }}=\mathcal{A}^{*}(\phi) \wedge \mathcal{A}^{*}(\psi)$.

The last statement of Proposition 2.16 is straightforward and its proof is left to the reader.

Let us now discuss how to compute $\mathcal{A}^{*}(\phi)$ in coordinates. Let us fix bases v_{1}, \ldots, v_{m} and w_{1}, \ldots, w_{n} in spaces V and W. Let x_{1}, \ldots, x_{m} and y_{1}, \ldots, y_{n} be coordinates and

$$
A=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 m} \\
\vdots & \vdots & \vdots \\
a_{n 1} & \ldots & a_{n m}
\end{array}\right)
$$

be the matrix of a linear map $\mathcal{A}: V \rightarrow W$ in these bases. Note that the map \mathcal{A} in these coordinates is given by n linear coordinate functions:

$$
\begin{gathered}
y_{1}=l_{1}\left(x_{1}, \ldots, x_{m}\right)=a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 m} x_{m} \\
y_{2}=l_{2}\left(x_{1}, \ldots, x_{m}\right)=a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 m} x_{m} \\
\ldots \\
y_{n}=l_{n}\left(x_{1}, \ldots, x_{k}\right)=a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n m} x_{n}
\end{gathered}
$$

We have already computed in Section 1.3 that $\mathcal{A}^{*}\left(y_{k}\right)=l_{k}=\sum_{j=1}^{m} a_{k j} x_{j}, k=1, \ldots, n$. Indeed, the coefficients of the function $l_{k}=\mathcal{A}^{*}\left(y_{k}\right)$ form the k-th column of the transpose matrix A^{T}. Hence, using Proposition 2.16 we compute:

$$
\mathcal{A}^{*}\left(y_{j_{1}} \otimes \cdots \otimes y_{j_{k}}\right)=l_{j_{1}} \otimes \cdots \otimes l_{j_{k}}
$$

and

$$
\mathcal{A}^{*}\left(y_{j_{1}} \wedge \cdots \wedge y_{j_{k}}\right)=l_{j_{1}} \wedge \cdots \wedge l_{j_{k}} .
$$

Consider now the case when $V=W, n=m$, and we use the same basis v_{1}, \ldots, v_{n} in the source and target spaces.

Proposition 2.17.

$$
\mathcal{A}^{*}\left(x_{1} \wedge \cdots \wedge x_{n}\right)=\operatorname{det} A x_{1} \wedge \cdots \wedge x_{n} .
$$

Note that the determinant $\operatorname{det} A$ is independent of the choice of the basis. Indeed, the matrix of a linear map changes to a similar matrix $C^{-1} A C$ in a different basis, and $\operatorname{det} C^{-1} A C=\operatorname{det} A$. Hence, we can write $\operatorname{det} \mathcal{A}$ instead of $\operatorname{det} A$, i.e. attribute the determinant to the linear operator \mathcal{A} rather than to its matrix A.

Proof. We have

$$
\begin{aligned}
& \mathcal{A}^{*}\left(x_{1} \wedge \cdots \wedge x_{n}\right)=l_{1} \wedge \cdots \wedge l_{n}=\sum_{i_{1}=1}^{n} a_{1 i_{1}} x_{i_{1}} \wedge \cdots \wedge \sum_{i_{n}=1}^{n} a_{n i_{n}} x_{i_{n}}= \\
& \sum_{i_{1}, \ldots, i_{n}=1}^{n} a_{1 i_{1}} \ldots a_{n i_{n}} x_{i_{1}} \wedge \cdots \wedge x_{i_{n}} .
\end{aligned}
$$

Note that the in the latter sum all terms with repeating indices vanish, and hence we can replace this sum by a sum over all permutations of indices $1, \ldots, n$. Thus, we can continue

$$
\begin{aligned}
& \mathcal{A}^{*}\left(x_{1} \wedge \cdots \wedge x_{n}\right)=\sum_{i_{1}, \ldots, i_{n}} a_{1 i_{1}} \ldots a_{n i_{n}} x_{i_{1}} \wedge \cdots \wedge x_{i_{n}}= \\
& \left(\sum_{i_{1}, \ldots, i_{n}}(-1)^{\operatorname{inv}\left(i_{1}, \ldots, i_{n}\right)} a_{1 i_{1}} \ldots a_{n i_{n}}\right) x_{1} \wedge \cdots \wedge x_{n}=\operatorname{det} A x_{1} \wedge \cdots \wedge x_{n} .
\end{aligned}
$$

Exercise 2.18. Apply the equality

$$
\mathcal{A}^{*}\left(x_{1} \wedge \cdots \wedge x_{k} \wedge x_{k+1} \wedge \cdots \wedge x_{n}\right)=\mathcal{A}^{*}\left(x_{1} \wedge \cdots \wedge x_{k}\right) \wedge \mathcal{A}^{*}\left(x_{k+1} \wedge \cdots \wedge x_{n}\right)
$$

for a map $\mathcal{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ to deduce the formula for expansion of a determinant according to its first k rows:

$$
\operatorname{det} A=\sum_{i_{1}<\cdots<i_{k}, j_{1}<\cdots<j_{n-k} ; i_{m} \neq j_{l}}(-1)^{\operatorname{inv}\left(i_{1}, \ldots, j_{n-k}\right)}\left|\begin{array}{ccc}
a_{1, i_{1}} & \ldots & a_{1, i_{k}} \\
\vdots & \vdots & \vdots \\
a_{k, i_{1}} & \ldots & a_{k, i_{k}}
\end{array}\right|\left|\begin{array}{ccc}
a_{k+1, j_{1}} & \ldots & a_{k+1, j_{n-k}} \\
\vdots & \vdots & \vdots \\
a_{n, j_{1}} & \ldots & a_{n, j_{n-k}}
\end{array}\right| .
$$

Chapter 3

Orientation and Volume

3.1 Orientation

We say that two bases v_{1}, \ldots, v_{k} and w_{1}, \ldots, w_{k} of a vector space V define the same orientation of V if the matrix of transition from one of these bases to the other has a positive determinant. Clearly, if we have 3 bases, and the first and the second define the same orientation, and the second and the third define the same orientation then the first and the third also define the same orientation. Thus, one can subdivide the set of all bases of V into the two classes. All bases in each of these classes define the same orientation; two bases chosen from different classes define opposite orientation of the space. To choose an orientation of the space simply means to choose one of these two classes of bases.

There is no way to say which orientation is "positive" or which is "negative"-it is a question of convention. For instance, the so-called counter-clockwise orientation of the plane depends from which side we look at the plane. The positive orientation of our physical 3 -space is a physical, not mathematical, notion.

Suppose we are given two oriented spaces V, W of the same dimension. An invertible linear map (= isomorphism) $\mathcal{A}: V \rightarrow W$ is called orientation preserving if it maps a basis which defines the given orientation of V to a basis which defines the given orientation of W.

Any non-zero exterior n-form η on V induces an orientation of the space V. Indeed, the preferred set of bases is characterized by the property $\eta\left(v_{1}, \ldots, v_{n}\right)>0$.

3.2 Orthogonal transformations

Let V be a Euclidean vector space. Recall that a linear operator $\mathcal{U}: V \rightarrow V$ is called orthogonal if it preserves the scalar product, i.e. if

$$
\begin{equation*}
\langle\mathcal{U}(X), \mathcal{U}(Y)\rangle=\langle X, Y\rangle, \tag{3.2.1}
\end{equation*}
$$

for any vectors $X, Y \in V$. Recall that we have

$$
\langle\mathcal{U}(X), \mathcal{U}(Y)\rangle=\left\langle X, \mathcal{U}^{\star}(\mathcal{U}(Y))\right\rangle,
$$

where $\mathcal{U}^{\star}: V \rightarrow V$ is the adjoint operator to \mathcal{U}, see Section 1.3 above.
Hence, the orthogonality of an operator \mathcal{U} is equivalent to the identity $\mathcal{U}^{\star} \circ \mathcal{U}=\mathrm{Id}$, or $\mathcal{U}^{\star}=\mathcal{U}^{-1}$. Here we denoted by Id the identity operator, i.e. $\operatorname{Id}(X)=X$ for any $X \in V$.

Let us recall, see Exercise 1.10, that the adjoint operator U^{\star} is related to the dual operator $U^{*}: V^{*} \rightarrow V^{*}$ by the formula

$$
U^{\star}=\mathcal{D}^{-1} \circ U^{*} \circ \mathcal{D}
$$

Hence, for an orthogonal operator \mathcal{U}, we have $\mathcal{D}^{-1} \circ U^{*} \circ \mathcal{D}=\mathcal{U}^{-1}$, i.e.

$$
\begin{equation*}
\mathcal{U}^{*} \circ \mathcal{D}=\mathcal{D} \circ \mathcal{U}^{-1} \tag{3.2.2}
\end{equation*}
$$

Let v_{1}, \ldots, v_{n} be an orthonormal basis in V and U be the matrix of \mathcal{U} in this basis. The matrix of the adjoint operator in an orthonormal basis is the transpose of the matrix of this operator. Hence, the equation $\mathcal{U}^{*} \circ \mathcal{U}=\operatorname{Id}$ translates into the equation $U^{T} U=E$, or equivalently $U U^{T}=E$, or $U^{-1}=U^{T}$ for its matrix. Matrices, which satisfy this equation are called orthogonal. If we write

$$
U=\left(\begin{array}{ccc}
u_{11} & \ldots & u_{1 n} \\
\ldots & \ldots & \ldots \\
u_{n 1} & \ldots & u_{n n}
\end{array}\right)
$$

then the equation $U^{T} U=E$ can be rewritten as

$$
\sum_{i} u_{k i} u_{j i}= \begin{cases}1, & \text { if } k=j \\ 0, & \text { if } k \neq j\end{cases}
$$

Similarly, the equation $U U^{T}=E$ can be rewritten as

$$
\sum_{i} u_{i k} u_{i j}= \begin{cases}1, & \text { if } k=j \\ 0, & \text { if } k \neq j\end{cases}
$$

The above identities mean that columns (and rows) of an orthogonal matrix U form an orthonormal basis of \mathbb{R}^{n} with respect to the dot-product.

In particular, we have

$$
1=\operatorname{det}\left(U^{T} U\right)=\operatorname{det}\left(U^{T}\right) \operatorname{det} U=(\operatorname{det} U)^{2},
$$

and hence $\operatorname{det} U= \pm 1$. In other words, the determinant of any orthogonal matrix is equal ± 1. We can also say that the determinant of an orthogonal operator is equal to ± 1 because the determinant of the matrix of an operator is independent of the choice of a basis. Orthogonal transformations with det $=1$ preserve the orientation of the space, while those with det $=-1$ reverse it.

Composition of two orthogonal transformations, or the inverse of an orthogonal transformation is again an orthogonal transformation. The set of all orthogonal transformations of an n-dimensional Euclidean space is denoted by $O(n)$. Orientation preserving orthogonal transformations sometimes called special, and the set of special orthogonal transformations is denoted by $S O(n)$. For instance $O(1)$ consists of two elements and $S O(1)$ of one: $O(1)=\{1,-1\}, S O(1)=\{1\} . S O(2)$ consists of rotations of the plane, while $O(2)$ consists of rotations and reflections with respect to lines.

3.3 Determinant and Volume

We begin by recalling some facts from Linear Algebra. Let V be an n-dimensional Euclidean space with an inner product \langle,$\rangle . Given a linear subspace L \subset V$ and a point $x \in V$, the projection $\operatorname{proj}_{L}(x)$ is a vector $y \in L$ which is uniquely characterized by the property $x-y \perp L$, i.e. $\langle x-y, z\rangle=0$ for any $z \in L$. The length $\left\|x-\operatorname{proj}_{L}(x)\right\|$ is called the distance from x to L; we denote it by $\operatorname{dist}(x, L)$.

Let $U_{1}, \ldots, U_{k} \in V$ be linearly independent vectors. The k-dimensional parallelepiped spanned by vectors U_{1}, \ldots, U_{k} is, by definition, the set

$$
P\left(U_{1}, \ldots, U_{k}\right)=\left\{\sum_{1}^{k} \lambda_{j} U_{j} ; 0 \leq \lambda_{1}, \ldots, \lambda_{k} \leq 1\right\} \subset \operatorname{Span}\left(U_{1}, \ldots, U_{k}\right)
$$

Given a k-dimensional parallelepiped $P=P\left(U_{1}, \ldots, U_{k}\right)$ we will define its k-dimensional volume by the formula

$$
\begin{equation*}
\operatorname{Vol} P=\left\|U_{1}\right\| \operatorname{dist}\left(U_{2}, \operatorname{Span}\left(U_{1}\right)\right) \operatorname{dist}\left(U_{3}, \operatorname{Span}\left(U_{1}, U_{2}\right)\right) \ldots \operatorname{dist}\left(U_{k}, \operatorname{Span}\left(U_{1}, \ldots, U_{k-1}\right)\right) \tag{3.3.1}
\end{equation*}
$$

Of course we can write $\operatorname{dist}\left(U_{1}, 0\right)$ instead of $\left\|U_{1}\right\|$. This definition agrees with the definition of the area of a parallelogram, or the volume of a 3-dimensional parallelepiped in the elementary geometry.

Proposition 3.1. Let v_{1}, \ldots, v_{n} be an orthonormal basis in V. Given n vectors U_{1}, \ldots, U_{n} let us denote by U the matrix whose columns are coordinates of these vectors in the basis v_{1}, \ldots, v_{n} :

$$
U:=\left(\begin{array}{ccc}
u_{11} & \ldots & u_{1 n} \\
& \vdots & \\
& & \\
u_{n 1} & \ldots & u_{n n}
\end{array}\right)
$$

Then

$$
\operatorname{Vol} P\left(U_{1}, \ldots, U_{n}\right)=|\operatorname{det} U|
$$

Proof. If the vectors U_{1}, \ldots, U_{n} are linearly dependent then $\operatorname{Vol} P\left(U_{1}, \ldots, U_{n}\right)=\operatorname{det} U=0$. Suppose now that the vectors U_{1}, \ldots, U_{n} are linearly independent, i.e. form a basis. Consider first the case where this basis is orthonormal. Then the matrix U is orthogonal. i.e. $U U^{T}=E$, and hence $\operatorname{det} U= \pm 1$. But in this case $\operatorname{Vol} P\left(U_{1}, \ldots, U_{n}\right)=1$, and hence $\operatorname{Vol} P\left(U_{1}, \ldots, U_{n}\right)=|\operatorname{det} U|$.

Now let the basis U_{1}, \ldots, U_{n} be arbitrary. Let us apply to it the Gram-Schmidt orthonormalization process. Recall that this process consists of the following steps. First, we normalize the vector U_{1}, then subtract from U_{2} its projection to $\operatorname{Span}\left(U_{1}\right)$, Next, we normalize the new vector U_{2}, then subtract from U_{3} its projection to $\operatorname{Span}\left(U_{1}, U_{2}\right)$, and so on. At the end of this process we obtain an orthonormal basis. It remains to notice that each of these steps affected $\operatorname{Vol} P\left(U_{1}, \ldots, U_{n}\right)$ and $|\operatorname{det} U|$ in a similar way. Indeed, when we multiplied the vectors by a positive number, both the volume and the determinant were multiplied by the same number. When we subtracted from a vector U_{k} its projection to $\operatorname{Span}\left(U_{1}, \ldots, U_{k-1}\right)$, this affected neither the volume nor the determinant.

Corollary 3.2. 1. Let x_{1}, \ldots, x_{n} be a Cartesian coordinate system ${ }^{1}$ Then

$$
\operatorname{Vol} P\left(U_{1}, \ldots, U_{n}\right)=\left|x_{1} \wedge \ldots x_{n}\left(U_{1}, \ldots, U_{n}\right)\right|
$$

[^2]2. Let $\mathcal{A}: V \rightarrow V$ be a linear map. Then
$$
\operatorname{Vol} P\left(\mathcal{A}\left(U_{1}\right), \ldots, \mathcal{A}\left(U_{n}\right)\right)=|\operatorname{det} \mathcal{A}| \operatorname{Vol} P\left(U_{1}, \ldots, U_{n}\right)
$$

Proof.

1. According to 2.13, $x_{1} \wedge \ldots x_{n}\left(U_{1}, \ldots, U_{n}\right)=\operatorname{det} U$.
2. $x_{1} \wedge \ldots x_{n}\left(\mathcal{A}\left(U_{1}\right), \ldots, \mathcal{A}\left(U_{n}\right)\right)=\mathcal{A}^{*}\left(x_{1} \wedge \cdots \wedge x_{n}\right)\left(U_{1}, \ldots, U_{n}\right)=\operatorname{det} \mathcal{A} x_{1} \wedge \ldots x_{n}\left(U_{1}, \ldots, U_{n}\right)$.

In view of Proposition 3.1 and the first part of Corollary 3.2 the value

$$
x_{1} \wedge \ldots x_{n}\left(U_{1}, \ldots, U_{n}\right)=\operatorname{det} U
$$

is called sometimes the signed volume of the parallelepiped $P\left(U_{1}, \ldots, U_{n}\right)$. It is positive when the basis U_{1}, \ldots, U_{n} defines the given orientation of the space V, and it is negative otherwise.

Note that $x_{1} \wedge \ldots x_{k}\left(U_{1}, \ldots, U_{k}\right)$ for $0 \leq k \leq n$ is the signed k-dimensional volume of the orthogonal projection of the parallelepiped $P\left(U_{1}, \ldots, U_{k}\right)$ to the coordinate subspace $\left\{x_{k+1}=\right.$ $\left.\cdots=x_{n}=0\right\}$.

For instance, let ω be the 2 -form $x_{1} \wedge x_{2}+x_{3} \wedge x_{4}$ on \mathbb{R}^{4}. Then for any two vectors $U_{1}, U_{2} \in \mathbb{R}^{4}$ the value $\omega\left(U_{1}, U_{2}\right)$ is the sum of signed areas of projections of the parallelogram $P\left(U_{1}, U_{2}\right)$ to the coordinate planes spanned by the two first and two last basic vectors.

3.4 Volume and Gram matrix

In this section we will compute the $\operatorname{Vol}_{k} P\left(v_{1}, \ldots, v_{k}\right)$ in the case when the number k of vectors is less than the dimension n of the space.

Let V be an Euclidean space. Given vectors $v_{1}, \ldots, v_{k} \in V$ we can form a $k \times k$-matrix

$$
G\left(v_{1}, \ldots, v_{k}\right)=\left(\begin{array}{ccc}
\left\langle v_{1}, v_{1}\right\rangle & \ldots & \left\langle v_{1}, v_{k}\right\rangle \tag{3.4.1}\\
\ldots & \ldots & \ldots \\
\left\langle v_{k}, v_{1}\right\rangle & \ldots & \left\langle v_{k}, v_{k}\right\rangle
\end{array}\right)
$$

which is called the Gram matrix of vectors v_{1}, \ldots, v_{k}.
Suppose we are given Cartesian coordinate system in V and let us form a matrix C whose columns are coordinates of vectors v_{1}, \ldots, v_{k}. Thus the matrix C has n rows and k columns. Then

$$
G\left(v_{1}, \ldots, v_{k}\right)=C^{T} C
$$

because in Cartesian coordinates the scalar product looks like the dot-product.
We also point out that if $k=n$ and vectors v_{1}, \ldots, v_{n} form a basis of V, then $G\left(v_{1}, \ldots, v_{k}\right)$ is just the matrix of the bilinear function $\langle X, Y\rangle$ in the basis v_{1}, \ldots, v_{n}. It is important to point out that while the matrix C depends on the choice of the basis, the matrix G does not.

Proposition 3.3. Given any k vectors v_{1}, \ldots, v_{k} in an Euclidean space V the volume $\operatorname{Vol}_{k} P\left(v_{1}, \ldots, v_{k}\right)$ can be computed by the formula

$$
\begin{equation*}
\operatorname{Vol}_{k} P\left(v_{1}, \ldots, v_{k}\right)^{2}=\operatorname{det} G\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det} C^{T} C, \tag{3.4.2}
\end{equation*}
$$

where $G\left(v_{1}, \ldots, v_{k}\right)$ is the Gram matrix and C is the matrix whose columns are coordinates of vectors v_{1}, \ldots, v_{k} in some orthonormal basis.

Proof. Suppose first that $k=n$. Then according to Proposition 3.1 we have $\operatorname{Vol}_{k} P\left(v_{1}, \ldots, v_{k}\right)=$ $|\operatorname{det} C|$. But $\operatorname{det} C^{T} C=\operatorname{det} C^{2}$, and the claim follows.

Let us denote vectors of our orthonormal basis by w_{1}, \ldots, w_{n}. Consider now the case when

$$
\begin{equation*}
\operatorname{Span}\left(v_{1}, \ldots, v_{k}\right) \subset \operatorname{Span}\left(w_{1}, \ldots, w_{k}\right) \tag{3.4.3}
\end{equation*}
$$

In this case the elements in the j-th row of the matrix C are zero if $j>k$. Hence, if we denote by \widetilde{C} the square $k \times k$ matrix formed by the first k rows of the matrix C, then $C^{T} C=\widetilde{C}^{T} \widetilde{C}$ and thus $\operatorname{det} C^{T} C=\operatorname{det} \widetilde{C}^{T} \widetilde{C}$. But $\operatorname{det} \widetilde{C}^{T} \widetilde{C}=\operatorname{Vol}_{k} P\left(v_{1}, \ldots, v_{k}\right)$ in view of our above argument in the equi-dimensional case applied to the subspace $\operatorname{Span}\left(w_{1}, \ldots, w_{k}\right) \subset V$, and hence

$$
\operatorname{Vol}_{k}^{2} P\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det} C^{T} C=\operatorname{det} G\left(v_{1}, \ldots, v_{k}\right)
$$

But neither $\operatorname{Vol}_{k} P\left(v_{1}, \ldots, v_{k}\right)$, nor the Gram matrix $G\left(v_{1}, \ldots, v_{k}\right)$ depends on the choice of an orthonormal basis. On the other hand, using Gram-Schmidt process one can always find an orthonormal basis which satisfies condition (3.4.3).

Remark 3.4. Note that $\operatorname{det} G\left(v_{1}, \ldots, v_{k}\right) \geq 0$ and $\operatorname{det} G\left(v_{1}, \ldots, v_{k}\right)=0$ if an and only if the vectors v_{1}, \ldots, v_{k} are linearly dependent.

Chapter 4

Dualities

4.1 Duality between k-forms and $(n-k)$-forms on a n-dimensional Euclidean space V

Let V be an n-dimensional vector space. As we have seen above, the space $\Lambda^{k}\left(V^{*}\right)$ of k-forms, and the space $\Lambda^{n-k}\left(V^{*}\right)$ of $(n-k)$-forms have the same dimension $\frac{n!}{k!(n-k)!}$; these spaces are therefore isomorphic. Suppose that V is an oriented Euclidean space, i.e. it is supplied with an orientation and an inner product \langle,$\rangle . It turns out that in this case there is a canonical way to establish this$ isomorphism which will be denoted by

$$
\star: \Lambda^{k}\left(V^{*}\right) \rightarrow \Lambda^{n-k}\left(V^{*}\right)
$$

Definition 4.1. Let α be a k-form. Then given any vectors U_{1}, \ldots, U_{n-k}, the value $\star \alpha\left(U_{1}, \ldots, U_{n-k}\right)$ can be computed as follows. If U_{1}, \ldots, U_{n-k} are linearly dependent then $\star \alpha\left(U_{1}, \ldots, U_{n-k}\right)=0$. Otherwise, let S^{\perp} denote the orthogonal complement to the space $S=\operatorname{Span}\left(U_{1}, \ldots, U_{n-k}\right)$. Choose a basis Z_{1}, \ldots, Z_{k} of S^{\perp} such that

$$
\operatorname{Vol}_{k}\left(Z_{1}, \ldots, Z_{k}\right)=\operatorname{Vol}_{n-k}\left(U_{1}, \ldots, U_{n-k}\right)
$$

and the basis $Z_{1}, \ldots, Z_{k}, U_{1}, \ldots, U_{n-k}$ defines the given orientation of the space V. Then

$$
\begin{equation*}
\star \alpha\left(U_{1}, \ldots, U_{n-k}\right)=\alpha\left(Z_{1}, \ldots, Z_{k}\right) \tag{4.1.1}
\end{equation*}
$$

Let us first show that

Lemma 4.2. $\star \alpha$ is a $(n-k)$-form, i.e. $\star \alpha$ is skew-symmetric and multilinear.

Proof. To verify that $\star \alpha$ is skew-symmetric we note that for any $1 \leq i<j \leq n-q$ the bases

$$
Z_{1}, Z_{2}, \ldots, Z_{k}, U_{1}, \ldots, U_{i}, \ldots, U_{j}, \ldots, U_{n-k}
$$

and

$$
-Z_{1}, Z_{2}, \ldots, Z_{k}, U_{1}, \ldots, U_{j}, \ldots, U_{i}, \ldots, U_{n-k}
$$

define the same orientation of the space V, and hence

$$
\begin{aligned}
& \star \alpha\left(U_{1}, \ldots, U_{j}, \ldots, U_{i}, \ldots, U_{n-k}\right)=\alpha\left(-Z_{1}, Z_{2}, \ldots, Z_{k}\right) \\
= & -\alpha\left(Z_{1}, Z_{2}, \ldots, Z_{k}\right)=-\star \alpha\left(U_{1}, \ldots, U_{i}, \ldots, U_{j}, \ldots, U_{n-k}\right)
\end{aligned}
$$

Hence, in order to check the multi-linearity it is sufficient to prove the linearity of α with respect to the first argument only. It is also clear that

$$
\begin{equation*}
\star \alpha\left(\lambda U_{1}, \ldots, U_{n-k}\right)=\star \lambda \alpha\left(U_{1}, \ldots, U_{n-k}\right) \tag{4.1.2}
\end{equation*}
$$

Indeed, multiplication by $\lambda \neq 0$ does not change the span of the vectors U_{1}, \ldots, U_{n-q}, and hence if $\star \alpha\left(U_{1}, \ldots, U_{n-k}\right)=\alpha\left(Z_{1}, \ldots, Z_{k}\right)$ then $\star \alpha\left(\lambda U_{1}, \ldots, U_{n-k}\right)=\alpha\left(\lambda Z_{1}, \ldots, Z_{k}\right)=\lambda \alpha\left(Z_{1}, \ldots, Z_{k}\right)$.

Thus it remains to check that

$$
\left.\star \alpha\left(U_{1}+\widetilde{U}_{1}, U_{2}, \ldots, U_{n-k}\right)=\star \alpha\left(U_{1}, U_{2}, \ldots, U_{n-k}\right)+\star \alpha\left(\widetilde{U}_{1}, U_{2}, \ldots, U_{n-k}\right)\right)
$$

Let us denote $L:=\operatorname{Span}\left(U_{2}, \ldots, U_{n-k}\right)$ and observe that $\operatorname{proj}_{L}\left(U_{1}+\widetilde{U}_{1}\right)=\operatorname{proj}_{L}\left(U_{1}\right)+$ $\operatorname{proj}_{L}\left(\widetilde{U}_{1}\right)$. Denote $N:=U_{1}-\operatorname{proj}_{L}\left(U_{1}\right)$ and $\tilde{N}:=\widetilde{U}_{1}-\operatorname{proj}_{L}\left(\widetilde{U}_{1}\right)$. The vectors N and \tilde{N} are normal components of U_{1} and \widetilde{U}_{1} with respect to the subspace L, and the vector $N+\widetilde{N}$ is the normal component of $U_{1}+\widetilde{U}_{1}$ with respect to L. Hence, we have

$$
\star \alpha\left(U_{1}, \ldots, U_{n-k}\right)=\star \alpha\left(N, \ldots, U_{n-k}\right), \star \alpha\left(\widetilde{U}_{1}, \ldots, U_{n-k}\right)=\star \alpha\left(\widetilde{N}, \ldots, U_{n-k}\right)
$$

and

$$
\star \alpha\left(U_{1}+\widetilde{U}_{1}, \ldots, U_{n-k}\right)=\star \alpha\left(N+\tilde{N}, \ldots, U_{n-k}\right)
$$

Indeed, in each of these three cases,

- vectors on both side of the equality span the same space;
- the parallelepiped which they generate have the same volume, and
- the orientation which these vectors define together with a basis of the complementary space remains unchanged.

Hence, it is sufficient to prove that

$$
\begin{equation*}
\star \alpha\left(N+\widetilde{N}, U_{2}, \ldots, U_{n-k}\right)=\star \alpha\left(N, U_{2}, \ldots, U_{n-k}\right)+\star \alpha\left(\widetilde{N}, U_{2}, \ldots, U_{n-k}\right) . \tag{4.1.3}
\end{equation*}
$$

If the vectors N and \widetilde{N} are linearly dependent, i.e. one of them is a multiple of the other, then 4.1.3) follows from 4.1.2.

Suppose now that N and \widetilde{N} are linearly independent. Let L^{\perp} denote the orthogonal complement of $L=\operatorname{Span}\left(U_{2}, \ldots, U_{n-k}\right)$. Then $\operatorname{dim} L^{\perp}=k+1$ and we have $N, \widetilde{N} \in L^{\perp}$. Let us denote by M the plane in L^{\perp} spanned by the vectors N and \widetilde{N}, and by M^{\perp} its orthogonal complement in L^{\perp}. Note that $\operatorname{dim} M^{\perp}=k-1$.

Choose any orientation of M so that we can talk about counter-clockwise rotation of this plane. Let $Y, \widetilde{Y} \in M$ be vectors obtained by rotating N and \widetilde{N} in M counter-clockwise by the angle $\frac{\pi}{2}$. Then $Y+\widetilde{Y}$ can be obtained by rotating $N+\widetilde{N}$ in M counter-clockwise by the same angle $\frac{\pi}{2}$. Let us choose in M^{\perp} a basis Z_{2}, \ldots, Z_{k} such that

$$
\operatorname{Vol}_{k-1} P\left(Z_{2}, \ldots, Z_{k}\right)=\operatorname{Vol}_{n-k-1} P\left(U_{2}, \ldots, U_{n-k}\right)
$$

Note that the orthogonal complements to $\operatorname{Span}\left(N, U_{2}, \ldots, U_{n-k}\right), \operatorname{Span}\left(\widetilde{N}, U_{2}, \ldots, U_{n-k}\right)$, and to $\operatorname{Span}\left(N+\widetilde{N}, U_{2}, \ldots, U_{n-k}\right)$ in V coincide, respectively, with the orthogonal complements to the the vectors N, \widetilde{N} and to $N+\widetilde{N}$ in L^{\perp}. In other words, we have

$$
\begin{gathered}
\left(\operatorname{Span}\left(N, U_{2}, \ldots, U_{n-k}\right)\right)_{V}^{\perp}=\operatorname{Span}\left(Y, Z_{2}, \ldots, Z_{k}\right), \\
\left(\operatorname{Span}\left(\widetilde{N}, U_{2}, \ldots, U_{n-k}\right)\right)_{V}^{\perp}=\operatorname{Span}\left(\widetilde{Y}, Z_{2}, \ldots, Z_{k}\right) \text { and } \\
\left(\operatorname{Span}\left(N+\widetilde{N}, U_{2}, \ldots, U_{n-k}\right)\right)_{V}^{\perp}=\operatorname{Span}\left(Y+\widetilde{Y}, Z_{2}, \ldots, Z_{k}\right) .
\end{gathered}
$$

Next, we observe that

$$
\operatorname{Vol}_{n-k} P\left(N, U_{2}, \ldots, U_{n-k}\right)=\operatorname{Vol}_{k} P\left(Y, Z_{2}, \ldots, Z_{k}\right),
$$

$$
\begin{gathered}
\operatorname{Vol}_{n-k} P\left(\tilde{N}, U_{2}, \ldots, U_{n-k}\right)=\operatorname{Vol}_{k} P\left(\widetilde{Y}, Z_{2}, \ldots, Z_{k}\right) \text { and } \\
\operatorname{Vol}_{n-k} P\left(N+\widetilde{N}, U_{2}, \ldots, U_{n-k}\right)=\operatorname{Vol}_{k} P\left(Y+\widetilde{Y}, Z_{2}, \ldots, Z_{k}\right) .
\end{gathered}
$$

Consider the following 3 bases of V :

$$
\begin{gathered}
Y, Z_{2}, \ldots, Z_{k}, N, U_{2}, \ldots, U_{n-k}, \\
\widetilde{Y}, Z_{2}, \ldots, Z_{k}, \widetilde{N}, U_{2}, \ldots, U_{n-k}, \\
Y+\widetilde{Y}, Z_{2}, \ldots, Z_{k}, N+\widetilde{N}, U_{2}, \ldots, U_{n-k}
\end{gathered}
$$

and observe that all three of them define the same a priori given orientation of V. Thus, by definition of the operator \star we have:

$$
\begin{aligned}
& \star \alpha\left(N+\widetilde{N}, U_{2}, \ldots, U_{n-k}\right)=\alpha\left(Y+\widetilde{Y}, Z_{2}, \ldots, Z_{k}\right) \\
& =\alpha\left(Y, Z_{2}, \ldots, Z_{k}\right)+\alpha\left(\widetilde{Y}, Z_{2}, \ldots, Z_{k}\right)=\star \alpha\left(N, U_{2}, \ldots, U_{n-k}\right)+\star \alpha\left(\widetilde{N}, U_{2}, \ldots, U_{n-k}\right)
\end{aligned}
$$

This completes the proof that $\star \alpha$ is an $(n-k)$-form.

Thus the map $\alpha \mapsto \star \alpha$ defines a map $\star: \Lambda^{k}\left(V^{*}\right) \rightarrow \Lambda^{n-k}\left(V^{*}\right)$. Clearly, this map is linear. In order to check that \star is an isomorphism let us choose an orthonormal basis in V and consider the coordinates $x_{1}, \ldots, x_{n} \in V^{*}$ corresponding to that basis.

Let us recall that the forms $x_{i_{1}} \wedge x_{i_{2}} \wedge \cdots \wedge x_{i_{k}}, 1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$, form a basis of the space $\Lambda^{k}\left(V^{*}\right)$.

Lemma 4.3.

$$
\begin{equation*}
\star x_{i_{1}} \wedge x_{i_{2}} \wedge \cdots \wedge x_{i_{k}}=(-1)^{\operatorname{inv}\left(i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{n-k}\right)} x_{j_{1}} \wedge x_{j_{2}} \wedge \cdots \wedge x_{j_{n-k}} \tag{4.1.4}
\end{equation*}
$$

where $j_{1}<\cdots<j_{n-k}$ is the set of indices, complementary to i_{1}, \ldots, i_{k}. In other words, $i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{n-k}$ is a permutation of indices $1, \ldots, n$.

Proof. Evaluating $\star\left(x_{i_{1}} \wedge \cdots \wedge x_{i_{k}}\right)$ on basic vectors $v_{j_{1}}, \ldots, v_{j_{n-k}}, 1 \leq j_{1}<\cdots<j_{n-q} \leq n$, we get 0 unless all the indices j_{1}, \ldots, j_{n-k} are all different from i_{1}, \ldots, i_{k}, while in the latter case we get

$$
\star\left(x_{i_{1}} \wedge \cdots \wedge x_{i_{k}}\right)\left(v_{j_{1}}, \ldots, v_{j_{n-k}}\right)=(-1)^{\operatorname{inv}\left(i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{n-k}\right)} .
$$

Hence,

$$
\star x_{i_{1}} \wedge x_{i_{2}} \wedge \cdots \wedge x_{i_{k}}=(-1)^{\operatorname{inv}\left(i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{n-k}\right)} x_{j_{1}} \wedge x_{j_{2}} \wedge \cdots \wedge x_{j_{n-k}}
$$

Thus \star establishes a 1 to 1 correspondence between the bases of the spaces $\Lambda^{k}\left(V^{*}\right)$ and the space $\Lambda^{n-k}\left(V^{*}\right)$, and hence it is an isomorphism. Note that by linearity for any form $\alpha=$ $\left.\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} a_{i_{1} \ldots i_{k}} x_{i_{1}} \wedge \cdots \wedge x_{i_{k}}\right)$ we have

$$
\star \alpha=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} a_{i_{1} \ldots i_{k}} \star\left(x_{i_{1}} \wedge \cdots \wedge x_{i_{k}}\right) .
$$

Examples.

1. $\star C=C x_{1} \wedge \cdots \wedge x_{n}$; in other words the isomorphism \star acts on constants ($=0$-forms) by multiplying them by the volume form.
2. In \mathbb{R}^{3} we have

$$
\begin{gathered}
\star x_{1}=x_{2} \wedge x_{3}, \star x_{2}=-x_{1} \wedge x_{3}=x_{3} \wedge x_{1}, \star x_{3}=x_{1} \wedge x_{2}, \\
\star\left(x_{1} \wedge x_{2}\right)=x_{3}, \star\left(x_{3} \wedge x_{1}\right)=x_{2}, \star\left(x_{2} \wedge x_{3}\right)=x_{1} .
\end{gathered}
$$

3. More generally, given a 1-form $l=a_{1} x_{1}+\cdots+a_{n} x_{n}$ we have

$$
\star l=a_{1} x_{2} \wedge \cdots \wedge x_{n}-a_{2} x_{1} \wedge x_{3} \wedge \cdots \wedge x_{n}+\cdots+(-1)^{n-1} a_{n} x_{1} \wedge \cdots \wedge x_{n-1}
$$

In particular for $n=3$ we have

$$
\star\left(a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}\right)=a_{1} x_{2} \wedge x_{3}+a_{2} x_{3} \wedge x_{1}+a_{3} x_{1} \wedge x_{2}
$$

Proposition 4.4.

$$
\star^{2}=(-1)^{k(n-k)} \mathrm{Id}, \quad \text { i.e. } \quad \star(\star \omega)=(-1)^{k(n-k)} \omega \quad \text { for any } k \text {-form } \omega .
$$

In particular, if dimension $n=\operatorname{dim} V$ is odd then $*^{2}=\mathrm{Id}$. If n is even and ω is ak-form then $\star(\star \omega)=\omega$ if k is even, and $\star(\star \omega)=-\omega$ if k is odd .

Proof. It is sufficient to verify the equality

$$
\star(\star \omega)=(-1)^{k(n-k)} \omega
$$

for the case when ω is a basic form, i.e.

$$
\omega=x_{i_{1}} \wedge \cdots \wedge x_{i_{k}}, \quad 1 \leq i_{1}<\cdots<i_{k} \leq n .
$$

We have

$$
\star\left(x_{i_{1}} \wedge \cdots \wedge x_{i_{k}}\right)=(-1)^{\operatorname{inv}\left(i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{n-k}\right)} x_{j_{1}} \wedge x_{j_{2}} \wedge \cdots \wedge x_{j_{n-k}}
$$

and

$$
\star\left(x_{j_{1}} \wedge x_{j_{2}} \wedge \cdots \wedge x_{j_{n-k}}\right)=(-1)^{\operatorname{inv}\left(j_{1}, \ldots, j_{n-k}, i_{1}, \ldots, i_{k}\right)} * x_{i_{1}} \wedge \cdots \wedge x_{i_{k}} .
$$

But the permutations $i_{1} \ldots i_{k} j_{1} \ldots j_{n-k}$ and $j_{1} \ldots j_{n-k} i_{1} \ldots i_{k}$ differ by $k(n-k)$ transpositions of pairs of its elements. Hence, we get

$$
(-1)^{\operatorname{inv}\left(i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{n-k}\right)}=(-1)^{k(n-k)}(-1)^{\operatorname{inv}\left(j_{1}, \ldots, j_{n-k}, i_{1}, \ldots, i_{k}\right)},
$$

and, therefore,

$$
\begin{aligned}
\star\left(\star\left(x_{i_{1}} \wedge \cdots \wedge x_{i_{k}}\right)\right) & =\star\left((-1)^{\operatorname{inv}\left(i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{n-k}\right)} x_{j_{1}} \wedge x_{j_{2}} \wedge \cdots \wedge x_{j_{n-k}}\right) \\
& =(-1)^{\operatorname{inv}\left(i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{n-k}\right)} \star\left(x_{j_{1}} \wedge x_{j_{2}} \wedge \cdots \wedge x_{j_{n-k}}\right) \\
& =(-1)^{\operatorname{inv}\left(i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{n-k}\right)+\operatorname{inv}\left(j_{1}, \ldots, j_{n-k}, i_{1}, \ldots, i_{k}\right)} x_{i_{1}} \wedge \cdots \wedge x_{i_{k}} \\
& =(-1)^{k(n-k)} x_{i_{1}} \wedge \cdots \wedge x_{i_{k}} .
\end{aligned}
$$

Exercise 4.5. (a) For any special orthogonal operator \mathcal{A} the operators \mathcal{A}^{*} and \star commute, i.e.

$$
\mathcal{A}^{*} \circ \star=\star \circ \mathcal{A}^{*} .
$$

(b) Let A be an orthogonal matrix of order n with $\operatorname{det} A=1$. Prove that for any $k \in\{1, \ldots, n\}$ the absolute value of each k-minor M of A is equal to the absolute value of its complementary minor of order $(n-k)$. (Hint: Apply (a) to the form $x_{i_{1}} \wedge \cdots \wedge x_{i_{k}}$).
(c) Let V be an oriented 3-dimensional Euclidean space. Prove that for any two vectors $X, Y \in V$, their cross-product can be written in the form

$$
X \times Y=\mathcal{D}^{-1}(\star(\mathcal{D}(X) \wedge \mathcal{D}(Y)))
$$

4.2 Euclidean structure on the space of exterior forms

Suppose that the space V is oriented and Euclidean, i.e. it is endowed with an inner product \langle, and an orientation.

Given two forms $\alpha, \beta \in \Lambda^{k}\left(V^{*}\right), k=0, \ldots, n$, let us define

$$
\langle\langle\alpha, \beta\rangle\rangle=\star(\alpha \wedge \star \beta) .
$$

Note that $\alpha \wedge \star \beta$ is an n-form for every k, and hence, $\langle\langle\alpha, \beta\rangle\rangle$ is a 0 -form, i.e. a real number.
Proposition 4.6. 1. The operation $\langle\langle\rangle$,$\rangle defines an inner product on \Lambda^{k}\left(V^{*}\right)$ for each $k=$ $0, \ldots, n$.
2. If $\mathcal{A}: V \rightarrow V$ is a special orthogonal operator then the operator $\mathcal{A}^{*}: \Lambda^{k}\left(V^{*}\right) \rightarrow \Lambda^{k}\left(V^{*}\right)$ is orthogonal with respect to the inner product $\langle\langle\rangle$,$\rangle .$

Proof. 1. We need to check that $\langle\langle\alpha, \beta\rangle\rangle$ is a symmetric bilinear function on $\Lambda^{k}\left(V^{*}\right)$ and $\langle\langle\alpha, \alpha\rangle\rangle>0$ unless $\alpha=0$. Bilinearity is straightforward. Hence, it is sufficient to verify the remaining properties for basic vectors $\alpha=x_{i_{1}} \wedge \cdots \wedge x_{i_{k}}, \beta=x_{j_{1}} \wedge \cdots \wedge x_{j_{k}}$, where $1 \leq i_{1}<\cdots<i_{k} \leq n, 1 \leq j_{1}<\cdots<$ $j_{k} \leq n$. Here $\left(x_{1}, \ldots, x_{n}\right)$ is any Cartersian coordinates in V which define its given orientation.

Note that $\langle\langle\alpha, \beta\rangle\rangle=0=\langle\langle\beta, \alpha\rangle\rangle$ unless $i_{m}=j_{m}$ for all $m=1, \ldots, k$, and in the the latter case we have $\alpha=\beta$. Furthermore, we have

$$
\langle\langle\alpha, \alpha\rangle\rangle=\star(\alpha \wedge \star \alpha)=\star\left(x_{1} \wedge \cdots \wedge x_{n}\right)=1>0 .
$$

2. The inner product $\langle\langle\rangle$,$\rangle is defined only in terms of the Euclidean structure and the orientation$ of V. Hence, for any special orthogonal operator \mathcal{A} (which preserves these structures) the induced operator $\mathcal{A}^{*}: \Lambda^{k}\left(V^{*}\right) \rightarrow \Lambda^{k}\left(V^{*}\right)$ preserves the inner product $\langle\langle\rangle$,$\rangle .$

Note that we also proved that the basis of k-forms $x_{i_{1}} \wedge \cdots \wedge x_{i_{k}}, 1 \leq i_{1}<\cdots<i_{k} \leq n$, is orthonormal with respect to the scalar product $\langle\langle\rangle$,$\rangle . Hence, we get$

Corollary 4.7. Suppose that a k-form α can be written in Cartesian coordinates as

$$
\alpha=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} a_{i_{1} \ldots i_{k}} x_{i_{1}} \wedge \cdots \wedge x_{i_{k}}
$$

Then

$$
\|\alpha\|^{2}=\langle\langle\alpha, \alpha\rangle\rangle=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} a_{i_{1} \ldots i_{k}}^{2}
$$

Corollary 4.8. For any two exterior k-forms we have

$$
\star \alpha \wedge \beta=(-1)^{k(n-k)} \alpha \wedge \star \beta
$$

Exercise 4.9. 1. Show that for any k-forms we have

$$
\langle\langle\alpha, \beta\rangle\rangle=\langle\langle\star \alpha, \star \beta\rangle\rangle .
$$

2. Show that if α, β are 1-forms on an Euclidean space V. Then

$$
\langle\langle\alpha, \beta\rangle\rangle=\left\langle\mathcal{D}^{-1}(\alpha), \mathcal{D}^{-1}(\beta)\right\rangle
$$

i.e the scalar product $\langle\langle\rangle$,$\rangle on V^{*}$ is the push-forward by \mathcal{D} of the scalar product \langle,$\rangle on V$.

Corollary 4.10. Let V be a Euclidean n-dimensional space. Choose an orthonormal basis e_{1}, \ldots, e_{n} in V. Then for any vectors $Z_{1}=\left(z_{11}, \ldots, z_{n 1}\right), \ldots, Z_{k}=\left(z_{1 k}, \ldots, z_{n k}\right) \in V$ we have

$$
\begin{equation*}
\left(\operatorname{Vol}_{k} P\left(Z_{1}, \ldots, Z_{k}\right)\right)^{2}=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} Z_{i_{1}, \ldots, i_{k}}^{2}, \tag{4.2.1}
\end{equation*}
$$

where

$$
Z_{i_{1}, \ldots, i_{k}}=\left|\begin{array}{ccc}
z_{i_{1} 1} & \ldots & z_{i_{1} k} \\
\ldots & \ldots & \ldots \\
z_{i_{k} 1} & \ldots & z_{i_{k} k}
\end{array}\right|
$$

Proof. Consider linear functions $l_{j}=\mathcal{D}\left(Z_{j}\right)=\sum_{i=1}^{n} z_{i j} x_{i} \in V^{*}, j=1, \ldots, k$. Then

$$
\begin{align*}
& l_{1} \wedge \cdots \wedge l_{k}=\sum_{i_{1}=1}^{n} z_{i_{1} j} x_{i_{1}} \wedge \cdots \wedge \sum_{i_{k}=1}^{n} z_{i_{k} j} x_{i_{k}}= \\
& \sum_{i_{1}, \ldots, i_{k}} z_{i_{1}} \ldots z_{i_{k}} x_{i_{1}} \wedge x_{i_{k}}=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} Z_{i_{1}, \ldots, i_{k}} x_{i_{1}} \wedge \ldots x_{i_{k}} . \tag{4.2.2}
\end{align*}
$$

In particular, if one has $Z_{1}, \ldots Z_{k} \in \operatorname{Span}\left(e_{1}, \ldots, e_{k}\right)$ then $Z_{1 \ldots k}=\operatorname{Vol} P\left(Z_{1}, \ldots, Z_{k}\right)$ and hence

$$
l_{1} \wedge \cdots \wedge l_{k}=Z_{1 \ldots k} x_{1} \wedge \cdots \wedge x_{k}=\operatorname{Vol} P\left(Z_{1}, \ldots, Z_{k}\right) x_{1} \wedge \cdots \wedge x_{k}
$$

which yields the claim in this case.
In the general case, according to Proposition 4.7 we have

$$
\begin{equation*}
\left\|l_{1} \wedge \cdots \wedge l_{k}\right\|^{2}=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} Z_{i_{1}, \ldots, i_{k}}^{2} \tag{4.2.3}
\end{equation*}
$$

which coincides with the right-hand side of 4.2.1). Thus it remains to check to that

$$
\left\|l_{1} \wedge \cdots \wedge l_{k}\right\|=\operatorname{Vol}_{k} P\left(Z_{1}, \ldots, Z_{k}\right) .
$$

Given any orthogonal transformation $\mathcal{A}: V \rightarrow V$ we have, according to Proposition 4.6, the equality

$$
\begin{equation*}
\left\|l_{1} \wedge \cdots \wedge l_{k}\right\|=\left\|\mathcal{A}^{*} l_{1} \wedge \cdots \wedge \mathcal{A}^{*} l_{k}\right\| . \tag{4.2.4}
\end{equation*}
$$

We also note that any orthogonal transformation $\mathcal{B}: V \rightarrow V$ preserves k-dimensional volume of all k-dimensional parallelepipeds:

$$
\begin{equation*}
\left|\operatorname{Vol}_{k} P\left(Z_{1}, \ldots, Z_{k}\right)\right|=\left|\operatorname{Vol}_{k} P\left(\mathcal{B}\left(Z_{1}\right), \ldots, \mathcal{B}\left(Z_{k}\right)\right)\right| . \tag{4.2.5}
\end{equation*}
$$

On the other hand, there exists an orthogonal transformation $\mathcal{A}: V \rightarrow V$ such that $\mathcal{A}^{-1}\left(Z_{1}\right), \ldots, \mathcal{A}^{-1}\left(Z_{k}\right) \in$ $\operatorname{Span}\left(e_{1}, \ldots, e_{k}\right)$. Denote $\widetilde{Z}_{j}:=\mathcal{A}^{-1}\left(Z_{j}\right), j=1, \ldots, k$. Then, according to (3.2.2) we have

$$
\widetilde{l}_{j}:=\mathcal{D}\left(\widetilde{Z}_{j}\right)=\mathcal{D}\left(\mathcal{A}^{-1}\left(Z_{j}\right)\right)=\mathcal{A}^{*}\left(\mathcal{D}\left(Z_{j}\right)\right)=\mathcal{A}^{*} l_{j} .
$$

As was pointed out above we then have

$$
\begin{equation*}
\left|\operatorname{Vol}_{k} P\left(\widetilde{Z}_{1}, \ldots, \widetilde{Z}_{k}\right)\right|=\left\|\widetilde{l}_{1} \wedge \cdots \wedge \widetilde{l}_{k}\right\|=\left\|\mathcal{A}^{*} l_{1} \wedge \cdots \wedge \mathcal{A}^{*} l_{k}\right\|, \tag{4.2.6}
\end{equation*}
$$

and hence, the claim follows from (4.2.4) and 4.2.5 applied to $\mathcal{B}=\mathcal{A}^{-1}$.
We recall that an alternative formula for computing $\operatorname{Vol}_{k} P\left(Z_{1}, \ldots, Z_{k}\right)$ was given earlier in Proposition 3.3.

Remark 4.11. Note that the above proof also shows that for any k vectors v_{1}, \ldots, v_{k} we have

$$
\operatorname{Vol}_{k} P\left(v_{1}, \ldots, v_{k}\right)=\left\|l_{1} \wedge \cdots \wedge l_{k}\right\|
$$

where $l_{j}=\mathcal{D}\left(v_{i}\right), i=1, \ldots, k$.

4.3 Contraction

Let V be a vector space and $\phi \in \Lambda^{k}\left(V^{*}\right)$ a k-form. Define a $(k-1)$-form $\left.\psi=v\right\lrcorner \phi$ by the formula

$$
\psi\left(X_{1}, \ldots, X_{k-1}\right)=\phi\left(v, X_{1}, \ldots, X_{k-1}\right)
$$

for any vectors $X_{1}, \ldots, X_{k-1} \in V$. We say that the form ψ is obtained by a contraction of ϕ with the vector v. Sometimes, this operation is called also an interior product of ϕ with v and denoted by $i(v) \phi$ instead of $v\lrcorner \psi$. In these notes we will not use this notation.

Proposition 4.12. Contraction \lrcorner is a bilinear operation, i.e.

$$
\begin{aligned}
\left.\left(v_{1}+v_{2}\right)\right\lrcorner \phi & \left.\left.=v_{1}\right\lrcorner \phi+v_{2}\right\lrcorner \phi \\
(\lambda v)\lrcorner \phi & =\lambda(v\lrcorner \phi) \\
v\lrcorner\left(\phi_{1}+\phi_{2}\right) & \left.=v\lrcorner \phi_{1}+v\right\lrcorner \phi_{2} \\
v\lrcorner(\lambda \phi) & =\lambda(v\lrcorner \phi) .
\end{aligned}
$$

Here $v, v_{1}, v_{2} \in V ; \phi, \phi_{1}, \phi_{2} \in \Lambda^{k}\left(V^{*}\right) ; \lambda \in \mathbb{R}$.

The proof is straightforward.

Let ϕ be a non-zero n-form. Then we have
Proposition 4.13. The map $\lrcorner: V \rightarrow \Lambda^{n-1}\left(V^{*}\right)$, defined by the formula $\left.\lrcorner(v)=v\right\lrcorner \phi$ is an isomorphism between the vector spaces V and $\Lambda^{n-1}\left(V^{*}\right)$.

Proof. Take a basis v_{1}, \ldots, v_{n}. Let $x_{1}, \ldots, x_{n} \in V^{*}$ be the dual basis, i.e. the corresponding coordinate system. Then $\phi=a x_{1} \wedge \ldots \wedge x_{n}$, where $a \neq 0$. To simplify the notation let us assume that $a=1$, so that

$$
\phi=x_{1} \wedge \ldots \wedge x_{n}
$$

Let us compute the images $\left.v_{i}\right\lrcorner \phi, i=1, \ldots, k$ of the basic vectors. Let us write

$$
\left.v_{i}\right\lrcorner \phi=\sum_{1}^{n} a_{j} x_{1} \wedge \cdots \wedge x_{j-1} \wedge x_{j+1} \wedge \cdots \wedge x_{n}
$$

Then

$$
\begin{align*}
& \left.v_{i}\right\lrcorner \phi\left(v_{1}, \ldots, v_{l-1}, v_{l+1}, \ldots, v_{n}\right) \\
& =\sum_{1}^{n} a_{j} x_{1} \wedge \cdots \wedge x_{j-1} \wedge x_{j+1} \wedge \cdots \wedge x_{n}\left(v_{1}, \ldots, v_{l-1}, v_{l+1}, \ldots, v_{n}\right)=a_{l} \tag{4.3.1}
\end{align*}
$$

but on the other hand,

$$
\begin{align*}
& \left.v_{i}\right\lrcorner \phi\left(v_{1}, \ldots, v_{l-1}, v_{l+1}, \ldots, v_{n}\right)=\phi\left(v_{i}, v_{1}, \ldots, v_{l-1}, v_{l+1}, \ldots, v_{n}\right) \\
& =(-1)^{i-1} \phi\left(v_{1}, \ldots, v_{l-1}, v_{i}, v_{l+1}, \ldots, v_{n}\right)= \begin{cases}(-1)^{i-1} & , l=i \\
0 & , \text { otherwise }\end{cases} \tag{4.3.2}
\end{align*}
$$

Thus,

$$
\left.v_{i}\right\lrcorner \phi=(-1)^{i-1} x_{1} \wedge \cdots \wedge x_{i-1} \wedge x_{i+1} \wedge \cdots \wedge x_{n}
$$

Hence, the map $ل$ sends a basis of V^{*} into a basis of $\Lambda^{n-1}\left(V^{*}\right)$, and therefore it is an isomorphism.

Take a vector $v=\sum_{1}^{n} a_{j} v_{j}$. Then we have

$$
\begin{equation*}
v\lrcorner\left(x_{1} \wedge \cdots \wedge x_{n}\right)=\sum_{1}^{n}(-1)^{i-1} a_{i} x_{1} \wedge \cdots \wedge x_{i-1} \wedge x_{i+1} \wedge \cdots \wedge x_{n} \tag{4.3.3}
\end{equation*}
$$

This formula can be interpreted as the formula of expansion of a determinant according to the first column (or the first row). Indeed, for any vectors U_{1}, \ldots, U_{n-1} we have

$$
v\lrcorner \phi\left(U_{1}, \ldots, U_{n-1}\right)=\operatorname{det}\left(v, U_{1}, \ldots, U_{n-1}\right)=\left|\begin{array}{cccc}
a_{1} & u_{1,1} & \ldots & u_{1, n-1} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n} & u_{n, 1} & \ldots & u_{n, n-1}
\end{array}\right|
$$

where $\left(\begin{array}{c}u_{1, i} \\ \vdots \\ u_{n, i}\end{array}\right)$ are coordinates of the vector $U_{i} \in V$ in the basis v_{1}, \ldots, v_{n}. On the other hand,

$$
v\lrcorner \phi\left(U_{1}, \ldots, U_{n-1}\right)=\sum_{1}^{n}(-1)^{i-1} a_{i} x_{1} \wedge \cdots \wedge x_{i-1} \wedge x_{i+1} \wedge \cdots \wedge x_{n}\left(U_{1}, \ldots, U_{n-1}\right)
$$

$$
=a_{1}\left|\begin{array}{ccc}
u_{2,1} & \ldots & u_{2, n-1} \tag{4.3.4}\\
u_{3,1} & \ldots & u_{3, n-1} \\
\ldots & \ldots & \ldots \\
u_{n, 1} & \ldots & u_{n, n-1}
\end{array}\right|+\cdots+(-1)^{n-1} a_{n}\left|\begin{array}{ccc}
u_{1,1} & \ldots & u_{1, n-1} \\
u_{2,1} & \ldots & u_{2, n-1} \\
\ldots & \ldots & \ldots \\
u_{n-1,1} & \ldots & u_{n-1, n-1}
\end{array}\right|
$$

Suppose that $\operatorname{dim} V=3$. Then the formula 4.3.3) can be rewritten as

$$
v\lrcorner\left(x_{1} \wedge x_{2} \wedge x_{3}\right)=a_{1} x_{2} \wedge x_{3}+a_{2} x_{3} \wedge x_{1}+a_{3} x_{1} \wedge x_{2},
$$

where $\left(\begin{array}{c}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)$ are coordinates of the vector V. Let us describe the geometric meaning of the operation \lrcorner. Set $\omega=v\lrcorner\left(x_{1} \wedge x_{2} \wedge x_{3}\right)$. Then $\omega\left(U_{1}, U_{2}\right)$ is the volume of the parallelogram defined by the vectors U_{1}, U_{2} and v. Let ν be the unit normal vector to the plane $L\left(U_{1}, U_{2}\right) \subset V$. Then we have

$$
\omega\left(U_{1}, U_{2}\right)=\text { Area } P\left(U_{1}, U_{2}\right) \cdot\langle v, \nu\rangle
$$

If we interpret v as the velocity of a fluid flow in the space V then $\omega\left(U_{1}, U_{2}\right)$ is just an amount of fluid flown through the parallelogram Π generated by vectors U_{1} and U_{2} for the unit time. It is called the flux of v through the parallelogram Π.

Let us return back to the case $\operatorname{dim} V=n$.
Exercise 4.14. Let

$$
\alpha=x_{i_{1}} \wedge \cdots \wedge x_{i_{k}}, \quad 1 \leq i_{1}<\cdots<i_{k} \leq n
$$

and $v=\left(a_{1}, \ldots, a_{n}\right)$. Show that

$$
v\lrcorner \alpha=\sum_{j=1}^{k}(-1)^{j+1} a_{i_{j}} x_{i_{1}} \wedge \ldots x_{i_{j-1}} \wedge x_{i_{j+1}} \wedge \ldots x_{i_{k}} .
$$

The next proposition establishes a relation between the isomorphisms \star,$\lrcorner and \mathcal{D}$.
Proposition 4.15. Let V be a Euclidean space, and x_{1}, \ldots, x_{n} be coordinates in an orthonormal basis. Then for any vector $v \in V$ we have

$$
\star \mathcal{D} v=v\lrcorner\left(x_{1} \wedge \cdots \wedge x_{n}\right) .
$$

Proof. Let $v=\left(a_{1}, \ldots, a_{n}\right)$. Then $\mathcal{D} v=a_{1} x_{1}+\cdots+a_{n} x_{n}$ and

$$
\star \mathcal{D} v=a_{1} x_{2} \wedge \cdots \wedge x_{n}-a_{2} x_{1} \wedge x_{3} \wedge \cdots \wedge x_{n} \wedge x_{1}+\cdots+(-1)^{n-1} a_{n} x_{1} \wedge \cdots \wedge x_{n-1} .
$$

But according to Proposition 4.13 the $(n-1)$-form $v\lrcorner\left(x_{1} \wedge \cdots \wedge x_{n}\right.$ is defined by the same formula.

We finish this section by the proposition which shows how the contraction operation interacts with the exterior product.

Proposition 4.16. Let α, β be forms of order k and l, respectively, and v a vector. Then

$$
\left.v\lrcorner(\alpha \wedge \beta)=(v\lrcorner \alpha) \wedge \beta+(-1)^{k} \alpha \wedge(v\lrcorner \beta\right) .
$$

Proof. Note that given any indices $k_{1}, \ldots k_{m}$ (not necessarily ordered) we have $\left.e_{i}\right\lrcorner x_{k_{1}} \wedge \cdots \wedge x_{k_{m}}=0$ if $i \notin\left\{k_{1}, \ldots, k_{m}\right\}$ and $\left.e_{i}\right\lrcorner x_{k_{1}} \wedge \cdots \wedge x_{k_{m}}=(-1)^{J} x_{k_{1}} \wedge \ldots \stackrel{i}{\vee} \cdots \wedge x_{k_{m}}$, where $J=\operatorname{inv}\left(i ; k_{1}, \ldots, k_{m}\right)$ is the number of variables ahead of x_{i}.

By linearity it is sufficient to consider the case when v, α, β are basic vector and forms, i.e.

$$
v=e_{i}, \alpha=x_{i_{1}} \wedge \cdots \wedge x_{i_{k}}, \beta=x_{j_{1}} \ldots x_{j_{l}} .
$$

We have $v\lrcorner \alpha \neq 0$ if and only if the index i is among the indices i_{1}, \ldots, i_{k}. In that case

$$
v\lrcorner \alpha=(-1)^{J} x_{i_{1}} \wedge \ldots \stackrel{i}{\vee} \cdots \wedge x_{i_{k}}
$$

and if $v\lrcorner \beta \neq 0$ then

$$
v\lrcorner \beta=(-1)^{J^{\prime}} x_{j_{1}} \wedge \ldots \stackrel{ }{ }^{i} \cdots \wedge x_{j_{l}}
$$

where $J=\operatorname{inv}\left(i ; i_{1}, \ldots, i_{k}\right), J^{\prime}=\operatorname{inv}\left(i ; j_{1}, \ldots, j_{l}\right)$.
If it enters α bot not β then

$$
\left.v\lrcorner(\alpha \wedge \beta)=(-1)^{J} x_{i_{1}} \wedge \ldots \stackrel{i}{\vee} \cdots \wedge x_{i_{k}} \wedge x_{j_{1}} \wedge \cdots \wedge x_{j_{l}}=(v\lrcorner \alpha\right) \wedge \beta
$$

while $\alpha \wedge(v\lrcorner \beta)=0$.
Similarly, if it enters β but not α then

$$
v\lrcorner(\alpha \wedge \beta)=(-1)^{J^{\prime}+m} x_{i_{1}} \wedge \cdots \wedge x_{i_{k}} \wedge x_{j_{1}} \wedge \ldots \stackrel{ }{ }_{i}^{\left.\cdots \wedge x_{j_{l}}=(-1)^{k} \alpha \wedge(v\lrcorner \beta\right), ~}
$$

while $v\lrcorner \alpha \wedge \beta=0$. Hence, in both these cases the formula holds.
If x_{i} enters both products then $\alpha \wedge \beta=0$, and hence $\left.v\right\lrcorner(\alpha \wedge \beta)=0$.
On the other hand,

$$
\begin{aligned}
& \left.(v\lrcorner \alpha) \wedge \beta+(-1)^{k} \alpha \wedge(v\lrcorner \beta\right)=(-1)^{J} x_{i_{1}} \wedge \ldots \stackrel{i}{\vee} \cdots \wedge x_{i_{k}} \wedge x_{j_{1}} \cdots \wedge x_{j_{l}} \\
& +(-1)^{k+J^{\prime}} x_{i_{1}} \wedge \cdots \wedge x_{i_{k}} \wedge x_{j_{1}} \wedge \ldots \stackrel{ }{ }^{i} \cdots \wedge x_{j_{l}}=0,
\end{aligned}
$$

because the products $x_{i_{1}} \wedge \ldots \vee^{i} \cdots \wedge x_{i_{k}} \wedge x_{j_{1}} \cdots \wedge x_{j_{l}}$ and $x_{i_{1}} \wedge \cdots \wedge x_{i_{k}} \wedge x_{j_{1}} \wedge \ldots \vee^{i} \cdots \wedge x_{j_{l}}$ differ only in the position of x_{i}. In the first product it is at the $\left(k+J^{\prime}\right)$-s position, and in the second at $(J+1)$-st position. Hence, the difference in signs is $(-1)^{J+J^{\prime}+k+1}$, which leads to the required cancellation.

Chapter 5

Complex vector spaces

5.1 Complex numbers

The space \mathbb{R}^{2} can be endowed with an associative and commutative multiplication operation. This operation is uniquely determined by three properties:

- it is a bilinear operation;
- the vector $(1,0)$ is the unit;
- the vector $(0,1)$ satisfies $(0,1)^{2}=(0,-1)$.

The vector $(0,1)$ is usually denoted by i, and we will simply write 1 instead of the vector $(1,0)$. Hence, any point $(a, b) \in \mathbb{R}^{2}$ can be written as $a+b i$, where $a, b \in \mathbb{R}$, and the product of $a+b i$ and $c+d i$ is given by the formula

$$
(a+b i)(c+d i)=a c-b d+(a d+b c) i
$$

The plane \mathbb{R}^{2} endowed with this multiplication is denoted by \mathbb{C} and called the set of complex numbers. The real line generated by 1 is called the real axis, the line generated by i is called the imaginary axis. The set of real numbers \mathbb{R} can be viewed as embedded into \mathbb{C} as the real axis. Given a complex number $z=x+i y$, the numbers x and y are called its real and imaginary parts, respectively, and denoted by $\operatorname{Re} z$ and $\operatorname{Im} z$, so that $z=\operatorname{Re} z+i \operatorname{Im} z$.

For any non-zero complex number $z=a+b i$ there exists an inverse z^{-1} such that $z^{-1} z=1$. Indeed, we can set

$$
z^{-1}=\frac{a}{a^{2}+b^{2}}-\frac{b}{a^{2}+b^{2}} i
$$

The commutativity, associativity and existence of the inverse is easy to check, but it should not be taken for granted: it is impossible to define a similar operation any \mathbb{R}^{n} for $n>2$.

Given $z=a+b i \in \mathbb{C}$ its conjugate is defined as $\bar{z}=a-b i$. The conjugation operation $z \mapsto \bar{z}$ is the reflection of \mathbb{C} with respect to the real axis $\mathbb{R} \subset \mathbb{C}$. Note that

$$
\operatorname{Re} z=\frac{1}{2}(z+\bar{z}), \quad \operatorname{Im} z=\frac{1}{2 i}(z-\bar{z})
$$

Let us introduce the polar coordinates (r, ϕ) in $\mathbb{R}^{2}=\mathbb{C}$. Then a complex number $z=x+y i$ can be written as $r \cos \phi+i r \sin \phi=r(\cos \phi+i \sin \phi)$. This form of writing a complex number is called, sometimes, ttrigonometric. The number $r=\sqrt{x^{2}+y^{2}}$ is called the modulus of z and denoted by $|z|$ and ϕ is called the argument of ϕ and denoted by $\arg z$. Note that the argument is defined only $\bmod 2 \pi$. The value of the argument in $[0,2 \pi)$ is sometimes called the principal value of the argument. When z is real than its modulus $|z|$ is just the absolute value. We also not that $|z|=\sqrt{z \bar{z}}$.

An important role plays the triangle inequality

$$
\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \leq\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|
$$

Exponential function of a complex variable

Recall that the exponential function e^{x} has a Taylor expansion

$$
e^{x}=\sum_{0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\ldots
$$

We then define for a complex the exponential function by the same formula

$$
e^{z}:=1+z+\frac{z^{2}}{2!}+\cdots+\frac{z^{n}}{n!}+\ldots
$$

One can check that this power series absolutely converging for all z and satisfies the formula

$$
e^{z_{1}+z_{2}}=e^{z_{1}} e^{z_{2}}
$$

Figure 5.1: Leonhard Euler (1707-1783)

In particular, we have

$$
\begin{align*}
e^{i y} & =1+i y-\frac{y^{2}}{2!}-i \frac{y^{3}}{3!}+\frac{y^{4}}{4!}+\cdots+\ldots \tag{5.1.1}\\
& =\sum_{k=0}^{\infty}(-1)^{k} \frac{y^{2 k}}{2 k!}+i \sum_{k=0}^{\infty}(-1)^{k} \frac{y^{2 k+1}}{(2 k+1)!} . \tag{5.1.2}
\end{align*}
$$

But $\sum_{k=0}^{\infty}(-1)^{k} \frac{y^{2 k}}{2 k!}=\cos y$ and $\sum_{k=0}^{\infty}(-1)^{k} \frac{y^{2 k+1}}{(2 k+1)!}=\sin y$, and hence we get Euler's formula

$$
e^{i y}=\cos y+i \sin y
$$

and furthermore,

$$
e^{x+i y}=e^{x} e^{i y}=e^{x}(\cos y+i \sin y),
$$

i.e. $\left|e^{x+i y}\right|=e^{x}, \arg \left(e^{z}\right)=y$. In particular, any complex number $z=r(\cos \phi+i \sin \phi)$ can be rewritten in the form $z=r e^{i \phi}$. This is called the exponential form of the complex number z.

Note that

$$
\left(e^{i \phi}\right)^{n}=e^{i n \phi}
$$

and hence if $z=r e^{i \phi}$ then $z^{n}=r^{n} e^{i n \phi}=r^{n}(\cos n \phi+i \sin n \phi)$.
Note that the operation $z \mapsto i z$ is the rotation of \mathbb{C} counterclockwise by the angle $\frac{\pi}{2}$. More generally a multiplication operation $z \mapsto z w$, where $w=\rho e^{i \theta}$ is the composition of a rotation by the angle θ and a radial dilatation (homothety) in ρ times.

Exercise 5.1. 1. Compute $\sum_{0}^{n} \cos k \theta$ and $\sum_{1}^{n} \sin k \theta$.
2. Compute $1+\binom{n}{4}+\binom{n}{8}+\binom{n}{12}+\ldots$.

5.2 Complex vector space

In a real vector space one knows how to multiply a vector by a real number. In a complex vector space there is defined an operation of multiplication by a complex number. Example is the space \mathbb{C}^{n} whose vectors are n-tuples $z=\left(z_{1}, \ldots, z_{n}\right)$ of complex numbers, and multiplication by any complex number $\lambda=\alpha+i \beta$ is defined component-wise: $\lambda\left(z_{1}, \ldots, z_{n}\right)=\left(\lambda z_{1}, \ldots, \lambda z_{n}\right)$. Complex vector space can be viewed as an upgrade of a real vector space, or better to say as a real vector space with an additional structure.

In order to make a real vector space V into a complex vector space, one just needs to define how to multiply a vector by i. This operation must be a linear map $\mathcal{J}: V \rightarrow V$ which should satisfy the condition $\mathcal{J}^{2}=-\mathrm{Id}$, i.e $\mathcal{J}(\mathcal{J}(v))=i(i v)=-v$.

Example 5.2. Consider $\mathbb{R}^{2 n}$ with coordinates $\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)$. Consider a $2 n \times 2 n$-matrix

$$
J=\left(\begin{array}{ccccccc}
0 & -1 & 0 & 0 & & & \\
1 & 0 & 0 & 0 & & & \\
0 & 0 & 0 & -1 & & & \\
0 & 0 & 1 & 0 & & & \\
& & & & \ldots & & \\
& & & & & 0 & -1 \\
& & & & & 1 & 0
\end{array}\right)
$$

Then $J^{2}=-I$. Consider a linear operator $\mathcal{J}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ with this matrix, i.e. $\mathcal{J}(Z)=J Z$ for any vector $Z \in \mathbb{R}^{2 n}$ which we view as a column-vector. Then $\mathcal{J}^{2}=-\mathrm{Id}$, and hence we can define on $\mathbb{R}^{2 n}$ a complex structure (i.e.the multiplication by i by the formula

$$
i Z=\mathcal{J}(Z), Z \in \mathbb{R}^{2 n}
$$

This complex vector space is canonically isomorphic to \mathbb{C}^{n}, where we identify the real vector $\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right) \in \mathbb{R}^{2 n}$ with a complex vector $\left(z_{1}=x_{1}+i y_{1}, \ldots, z_{n} x_{n}+i y_{n}\right)$.

On the other hand, any complex vector space can be viewed as a real vector space. In order to do that we just need to "forget" how to multiply by i. This procedure is called the realification of a complex vector space. For example, the realification of \mathbb{C}^{n} is $\mathbb{R}^{2 n}$. Sometimes to emphasize the realification operation we will denote the realification of a complex vector space V by $V_{\mathbb{R}}$. As the sets these to objects coincide.

Given a complex vector space V we can define linear combinations $\sum \lambda_{i} v_{i}$, where $\lambda_{i} \in \mathbb{C}$ are complex numbers, and thus similarly to the real case talk about really dependent, really independent vectors. Given vectors $v_{1}, \ldots v_{n} \in V$ we define its complex span $\operatorname{Span}_{\mathbb{C}}\left(V_{1}, \ldots, v_{n}\right)$ by the formula

$$
\operatorname{Span}_{\mathbb{C}}\left(v_{1}, \ldots, v_{n}\right)=\left\{\sum_{1}^{n} \lambda_{i} v_{i}, \lambda_{i} \in \mathbb{C}\right\}
$$

. A basis of a complex vector space is a system of complex linear independent vectors v_{1}, \ldots, v_{n} such that $\operatorname{Span}_{\mathbb{C}}\left(v_{1}, \ldots, v_{n}\right)=V$. The number of vectors in a complex basis is called the complex dimension of V and denoted $\operatorname{dim}_{\mathbb{C}} V$.

For instance $\operatorname{dim} \mathbb{C}^{n}=n$. On the other hand, its realification $\mathbb{R}^{2 n}$ has real dimension $2 n$. In particular, \mathbb{C} is a complex vector space of dimension 1 , and therefore it is called a complex line rather than a plane.

Exercise 5.3. Let v_{1}, \ldots, v_{n} be a complex basis of a complex vector space V. Find the real basis of its realification $V_{\mathbb{R}}$.

Answer. $v_{1}, i v_{1}, v_{2}, i v_{2}, \ldots, v_{n}, i v_{n}$.
There is another important operation which associates with a real vector space V of real dimension n a complex vector space $V_{\mathbb{C}}$ of complex dimension n. It is done in a way similar to how we made complex numbers out of real numbers. As a real vector space the space $V_{\mathbb{C}}$ is just the direct sum $V \oplus V=\{(v, w) ; v, w \in V\}$. This is a real space of dimension $2 n$. We then make $V \oplus V$ into a complex vector space by defining the multiplication by i by the formula:

$$
i(v, w)=(-w, v)
$$

We will write vector $(v, 0)$ simply by v and $(0, v)=i(v, 0)$ by $i v$. Hence, every vector of $V_{\mathbb{C}}$ can be written as $v+i w$, where $v, w \in V$. If v_{1}, \ldots, v_{n} is a real basis of V, then the same vectors form a complex basis of $V_{\mathbb{C}}$.

Complexification of a real vector space

Given a real space V one can associate with it a complex vector space $V_{\mathbb{C}}$, called the complexification of V, as follows. It is made of vectors of V in exactly the same way as complex numbers made of reals. Namely, $V_{\mathbb{C}}$ consists of expressions $X+i Y$, where $X, Y \in V$. We define a multiplication of a complex number $a+i b$ by a vector $X+i Y$ by a formula

$$
(a+i b)(X+i Y)=a X-b Y+i(a Y+b X)
$$

For instance, \mathbb{C}^{n} is canonically isomorphic to $\left(\mathbb{R}^{n}\right)_{\mathbb{C}}$, because any vector $Z=\left(z_{1}=x_{1}+\right.$ $\left.i y_{1}, \ldots, z_{n}=x_{n}+i y_{n}\right) \in \mathbb{C}^{n}$ can be uniquely written as $Z=X+i Y$, where $X=\left(x_{1}, \ldots, x_{n}\right), Y=$ $\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$. Note that the realification of the space $V_{\mathbb{C}}$, i.e. the space $\left(V_{\mathbb{C}}\right)_{\mathbb{R}}$ is canonically is just $V \oplus V=\left\{(X, Y), X, Y \in \mathbb{R}^{n}\right.$.

If v_{1}, \ldots, v_{n} is a basis of a V over \mathbb{R}, then the same vectors form a basis of the complexified space $V_{\mathbb{C}}$ over \mathbb{C}. Thus $\operatorname{dim}_{\mathbb{R}} V=\operatorname{dim}_{\mathbb{C}} V_{\mathbb{C}}$.

5.3 Complex linear maps

Complex linear maps and their realifications

Given two complex vector spaces V, W a map $\mathcal{A}: V \rightarrow W$ is called complex linear (or \mathbb{C}-linear) if $\mathcal{A}(X+Y)=\mathcal{A}(X)+\mathcal{A}(Y)$ and $\mathcal{A}(\lambda X)=\lambda \mathcal{A}(X)$ for any vectors $X, Y \in V$ and any complex number $\lambda \in \mathbb{C}$. Thus complex linearity is stronger condition than the real linearity. The difference is in the additional requirement that $\mathcal{A}(i X)=i \mathcal{A}(X)$. In other words, the operator \mathcal{A} must commute with the operation of multiplication by i.

Any linear map $\mathcal{A}: \mathbb{C} \rightarrow \mathbb{C}$ is a multiplication by a complex number $a=c+i d$. If we view \mathbb{C} as \mathbb{R}^{2} and right the real matrix of this map in the standard basis $1, i$ we get the matrix $\left(\begin{array}{cc}c & -d \\ d & c\end{array}\right)$. Indeed, $\mathcal{A}(1)=a=c+d i$ and $\mathcal{A}(i)=a i=-d+c i$, so the first column of the matrix is equal to $\binom{c}{d}$ and the second one is equal to $\binom{-d}{c}$.

If we have bases v_{1}, \ldots, v_{n} of V and $w_{1}, \ldots w_{m}$ of W then one can associate with \mathcal{A} an $m \times n$ complex matrix A by the same rule as in the real case.

Recall (see Exercise 5.3) that vectors $v_{1}, v_{1}^{\prime}=i v_{1}, v_{2}, v_{2}^{\prime}=i v_{2}, \ldots, v_{n}, v_{n}^{\prime}=i v_{n}$ and $w_{1}, w_{1}^{\prime}=$ $\left.i w_{1}, w_{2}, w_{2}^{\prime}=i w_{2}, \ldots w_{m}, w_{m}^{\prime}=i w_{m}\right)$ form real bases of the realifications $V_{\mathbb{R}}$ and $W_{\mathbb{R}}$ of the spaces V and W. if

$$
A=\left(\begin{array}{lll}
a_{11} & \ldots & a_{1 n} \\
& \ldots & \\
& \ldots & a_{m n}
\end{array}\right)
$$

is the complex matrix of \mathcal{A} then the real matrix $A_{\mathbb{R}}$ of the map \mathcal{A} is the real basis has order $2 n \times 2 n$ and is obtained from A by replacing each complex element $a_{k l}=c_{k l}+i d_{k l}$ by a 2×2 matrix $\left(\begin{array}{cc}c_{k l} & -d_{k l} \\ d_{k l} & c_{k l}\end{array}\right)$.

Exercise 5.4. Prove that

$$
\operatorname{det} A_{\mathbb{R}}=|\operatorname{det} A|^{2}
$$

Complexification of real linear maps

Given a real linear map $\mathcal{A}: V \rightarrow W$ one can define a complex linear map $\mathcal{A}_{\mathbb{C}}: V_{\mathbb{C}} \rightarrow W_{\mathbb{C}}$ by the formula

$$
\mathcal{A}_{\mathbb{C}}(v+i w)=\mathcal{A}(v)+i \mathcal{A}(w)
$$

. If A is the matrix of \mathcal{A} in a basis v_{1}, \ldots, v_{n} then $\mathcal{A}_{\mathbb{C}}$ has the same matrix in the same basis viewed as a complex basis of $V_{\mathbb{C}}$. The operator $\mathcal{A}_{\mathbb{C}}$ is called the complexification of the operator \mathcal{A}.

In particular, one can consider \mathbb{C}-linear functions $V \rightarrow \mathbb{C}$ on a complex vector space V. Complex coordinates z_{1}, \ldots, z_{n} in a complex basis are examples of \mathbb{C}-linear functions, and any other \mathbb{C}-linear function on V has a form $c_{1} z_{1}+\ldots c_{n} z_{n}$, where $c_{1}, \ldots, c_{n} \in \mathbb{C}$ are complex numbers.

Complex-valued \mathbb{R}-linear functions

It is sometimes useful to consider also \mathbb{C}-valued \mathbb{R}-linear functions on a complex vector space V, i.e. \mathbb{R}-linear maps $V \rightarrow \mathbb{C}$ (i.e. a linear $\operatorname{map} V_{\mathbb{R}} \rightarrow \mathbb{R}^{2}$). Such a \mathbb{C}-valued function has the form $\lambda=\alpha+i \beta$, where α, β are usual real linear functions. For instance the function \bar{z} on \mathbb{C} is a \mathbb{C}-valued \mathbb{R}-linear function which is not \mathbb{C}-linear.

If z_{1}, \ldots, z_{n} are complex coordinates on a complex vector space V then any \mathbb{R}-linear complexvalued function can be written as $\sum_{1}^{n} a_{i} z_{i}+b_{i} \bar{z}_{i}$, where $a_{i}, b_{i} \in \mathbb{C}$ are complex numbers.

We can furthermore consider complex-valued tensors and, in particular complex-valued exterior forms. A \mathbb{C}-valued k-form λ can be written as $\alpha+i \beta$ where α and β are usual \mathbb{R}-valued k-forms. For instance, we can consider on \mathbb{C}^{n} the 2 -form $\omega=\frac{i}{2} \sum_{1}^{n} z_{k} \wedge \bar{z}_{k}$. It can be rewritten as $\omega=$ $\frac{i}{2} \sum_{1}^{n}\left(x_{k}+i y_{k}\right) \wedge\left(x_{k}-i y_{k}\right)=\sum_{1}^{n} x_{k} \wedge y_{k}$.

Part II

Calculus of differential forms

Chapter 6

Topological preliminaries

6.1 Elements of topology in a vector space

We recall in this section some basic topological notions in a finite-dimensional vector space and elements of the theory of continuous functions. The proofs of most statements are straightforward and we omit them.

Let us choose in V a scalar product.
Notation $B_{r}(p):=\{x \in V ;\|x-p\|<r\}, D_{r}(p):=\{x \in V ;\|x-p\| \leq r\}$ and $S_{r}(p):=\{x \in$ $V ;\|x-p\|=r\}$ stand for open, closed balls and the sphere of radius r centered at a point $p \in V$.

Open and closed sets

A set $U \subset V$ is called open if for any $x \in U$ there exists $\epsilon>0$ such that $B_{\epsilon}(x) \subset U$.
A set $A \subset V$ is called closed if its complement $V \backslash A$ is open. Equivalently,
Lemma 6.1. The set A is closed if and only if for any sequence $x_{n} \in A, n=1,2, \ldots$ which converges to a point $a \in V$, the limit point a belongs to A.

Remark 6.2. It is important to note that the notion of open and closed sets are independent of the choice of the auxiliary Euclidean structure in the space V.

Points which appear as limits of sequences of points $x_{n} \in A$ are called limit points of A.
There are only two subsets of V which are simultaneously open and closed: V and \varnothing.

Lemma 6.3. 1. For any family $U_{\lambda}, \lambda \in \Lambda$ of open sets the union $\bigcup_{\lambda \in \Lambda} U_{\lambda}$ is open.
2. For any family $A_{\lambda}, \lambda \in \Lambda$ of closed sets the intersection $\bigcap_{\lambda \in \Lambda} A_{\lambda}$ is closed.
3. The union $\bigcup_{1}^{n} A_{i}$ of a finite family of closed sets is closed.
4. The intersection $\bigcap_{1}^{n} U_{i}$ of a finite family of open sets is open.

By a neighborhood of a point $a \in V$ we understand any open set $U \ni p$.
Given any subset $X \subset V$ a point $a \in V$ is called

- interior point for A if there is a neighborhood $U \ni p$ such that $U \subset A$;
- boundary point if it is not an interior point neither for A nor for its complement $V \backslash A$.

We emphasize that a boundary point of A may or may not belong to A. Equivalently, a point $a \in V$ is a boundary point of A if it is a limit point both for A and $V \backslash A$.

The set of all interior points of A is called the interior of A and denoted $\operatorname{Int} A$. The set of all boundary points of A is called the boundary of A and denoted ∂A. The union of all limit points of A is called the closure of A and denoted \bar{A}.

Lemma 6.4. 1. We have $\bar{A}=A \cup \partial A$, $\operatorname{Int} A=A \backslash \partial A$.
2. \bar{A} is equal to the intersection of all closed sets containg A
3. $\operatorname{Int} U$ is the union of all open sets contained in A.

Given a subset $X \subset V$

- a subset $Y \subset X$ is called relatively open in Y if there exists an open set $U \subset V$ such that

$$
Y=X \cap U
$$

- a subset $Y \subset X$ is called relatively closed in Y if there exists a closed set $A \subset V$ such that

$$
Y=X \cap A .
$$

One also call relatively and open and closed subsets of X just open and closed in X.
Exercise 6.5. Prove that though we defined open sets using a Euclidean structure on the vector space V the definition of open and closed sets is independent of this choice.

Figure 6.1: Bernard Bolzano (1781-1848)

6.2 Everywhere and nowhere dense sets

A closed set A is called nowhere dense if $\operatorname{Int} A=\varnothing$. For instance any finite set is nowhere dense. Any linear subspace $L \subset V$ is nowhere dense in V if $\operatorname{dim} L<\operatorname{dim} V$. Here is a more interesting example of a nowhere dense set.

Fix some number $\epsilon<1$. For any interval $\Delta=[a, b]$ we denote by Δ_{ϵ} the open interval centered at the point $c=\frac{a+b}{2}$, the middle point of Δ, of the total length equal to $\epsilon(b-a)$. We denote by $C(\Delta):=\Delta \backslash \Delta_{\epsilon}$. Thus $C(\Delta)$ consists of two disjoint smaller closed intervals. Let $I=[0,1]$. Take $C(I)=I_{1} \cup I_{2}$. Take again $C\left(I_{1}\right) \cup C\left(I_{2}\right)$ then again apply the operation C to four new closed intervals. Continue the process, and take the intersection of all sets arising on all steps of this construction. The resulted closed set $K_{\epsilon} \subset I$ is nowhere dense. It is called a Cantor set.

A subset $B \subset A$ is called everywhere dense in A if $\bar{B} \supset A$. For instance the the set $\mathbf{Q} \cap I$ of rational points in the interval $I=[0,1]$ is everywhere dense in I.

6.3 Compactness and connectedness

A set $A \subset V$ is called compact if one of the following equivalent conditions is satisfied:

COMP1. A is closed and bounded.

Figure 6.2: Karl Weierstrass (1815-1897)

COMP2. from any infinite sequence of points $x_{n} \in A$ one can choose a subsequence $x_{n_{k}}$ converging to a point $a \in A$.

COMP3. from any family $U_{\lambda}, \lambda \in \Lambda$ of open sets covering A, i.e. $\bigcup_{\lambda \in \Lambda} U_{\lambda} \supset A$, one can choose finitely many sets $U_{\lambda_{1}}, \ldots, U_{\lambda_{k}}$ which cover A, i.e. $\bigcup_{1}^{k} U_{\lambda_{k}} \supset A$.

The equivalence of these definitions is a combination of theorems of Bolzano-Weierstrass and Émile Borel.

A set A is called path-connected if for any two points $a_{0}, a_{1} \in A$ there is a continuous path $\gamma:[0,1] \rightarrow A$ such that $\gamma(0)=a_{0}$ and $\gamma(1)=a_{1}$.

A set A is called connected if one cannot present A as a union $A=A_{1} \cup A_{2}$ such that $A_{1} \cap A_{2}=\varnothing$, $A_{1}, A_{2} \neq \varnothing$ and both A_{1} and A_{2} are simultaneously relatively closed and open in A.

Lemma 6.6. Any path-connected set is connected.

Proof. Suppose that A is disconnected. Then it can be presented as a union $A=A_{0} \cup A_{1}$ of two non-empty relatively open (and hence relatively closed) subsets. Consider the function $\phi: A \rightarrow \mathbb{R}$ defined by the formula

$$
\phi(x)= \begin{cases}0, & x \in A_{0}, \\ 1, & x \in A_{1} .\end{cases}
$$

Figure 6.3: Émile Borel (1871-1956)

We claim that the function ϕ is is continuous. Indeed, For each $i=0,1$ and any point $a \in A_{i}$ there exists $\epsilon>0$ such that $B_{\epsilon}(x) \cap A \subset A_{i}$. Hence the function ϕ is constant on $B_{\epsilon}(x) \cap A$, and hence continuous at the point x. Now take points $x_{0} \in A_{0}$ and $x_{1} \in A_{1}$ and connect them by a path $\gamma:[0,1] \rightarrow A$ (this path exists because A is path-connected). Consider the function $\psi:=\phi \circ \gamma:[0,1] \rightarrow \mathbb{R}$. This function is continuous (as a composition of two continuous maps). Furthermore, $\psi(0)=0, \psi(1)=1$. Hence, by an intermediate value theorem of Cauchy the function ψ must take all values in the interval $[0,1]$. But this is a contradiction because by construction the function ψ takes no other values except 0 and 1 .

Lemma 6.7. Any open connected subset $U \subset \mathbb{R}^{n}$ is path connected.
Proof. Take any point $a \in U$. Denote by C_{a} the set of all points in U which can be connected with a by a path. We need to prove that $C_{a}=U$.

First, we note that C_{a} is open. Indeed, if $b \in C_{a}$ then using openness of U we can find $\epsilon>0$ such the ball $B_{\epsilon}(b) \in U$. Any point of $c \in B_{\epsilon}(b)$ can be connected by a straight interval $I_{b c} \subset B_{\epsilon}(b)$ with b, and hence it can be connected by a path with a, i.e. $c \in C_{a}$. Thus $B_{\epsilon}(b) \subset C_{a}$, and hence C_{a} is open. Similarly we prove that the complement $U \backslash C_{a}$ is open. Indeed, take $b \notin C_{a}$. As above, there exists an open ball $B_{\epsilon}(b) \subset U$. Then $B_{\epsilon}(b) \subset U \backslash C_{a}$. Indeed, if it were possible to connect a point $c \in B_{\epsilon}(b)$ with a by a path, then the same would be true for b, because b and c are connected by the interval $I_{b c}$. Thus, we have $U=C_{a} \cup\left(U \backslash C_{a}\right)$, both sets C_{a} and $U \backslash C_{a}$ are open and C_{a} is
non-empty. Hence, $U \backslash C_{a}$ is to be empty in view of connectedness of U. Thus, $C_{a}=U$, i.e. U is path-connected.

Exercise 6.8. In general a connected set need not to be path-connected. A canonical example is the closure of the graph of the function $\sin \frac{1}{x}, x \in \mathbb{R} \backslash 0$.. Prove it.

Exercise 6.9. Prove that any non-empty connected (= path-connected) open subset of \mathbb{R} is equal to an interval (a, b) (we allow here $a=-\infty$ and $b=\infty$). If one drops the condition of openness, then one needs to add a closed and semi-closed intervals and a point.

Remark 6.10. One of the corollaries of this exercise is that in \mathbb{R} any connected set is pathconnected.

Solution. Let $A \subset \mathbb{R}$ be a non-empty connected subset. Let $a<b$ be two points of A. Suppose that a point $c \in(a, b)$ does not belong to A. Then we can write $A=A_{0} \cup A_{1}$, where $A_{0}=$ $A \cap(-\infty, 0), A_{1}=A \cap(0, \infty)$. Both sets A_{0} and A_{1} are relatively open and non-empty, which contradicts connectedness of A. Hence if two points a and $b, a<b$, are in A, then the whole interval $[a, b]$ is also contained in A. Denote $m:=\inf A$ and $M:=\sup A$ (we assume that $m=-\infty$ if A is unbounded from below and $M=+\infty$ if A is unbounded from above). Then the above argument shows that the open interval (m, M) is contained in A. Thus, there could be 5 cases:

- $m, M \notin A$; in this case $A=(m, M)$;
- $m \in A, M \notin A$; in this case $A=[m, M)$;
- $m \notin A, M \in A$; in this case $A=(m, M]$;
- $m, M \in A$ and $m<M$; in this case $A=[m, M]$;
- $m, M \in A$ and $m=M$; in this case A consists of one point.

6.4 Connected and path-connected components

Lemma 6.11. Let $A_{\lambda}, \lambda \in \Lambda$ be any family of connected (resp. path-connected) subsets of a vector space V. Suppose $\bigcap_{\lambda \in \Lambda} A_{\lambda} \neq \varnothing$. Then $\bigcup_{\lambda \in \Lambda} A_{\lambda}$ is also connected (resp. path-connected)

Proof. Pick a point $a \in \bigcap_{\lambda \in \Lambda} A_{\lambda}$. Consider first the case when A_{λ} are path connected. Pick a point $a \in \bigcap_{\lambda \in \Lambda} A_{\lambda}$. Then a can be connected by path with all points in A_{λ} for any points in $\lambda \in \Lambda$. Hence, all points of A_{λ} and $A_{\lambda^{\prime}}$ can be connected with each other for any $\lambda, \lambda^{\prime} \in \Lambda$.

Suppose now that A_{λ} are connected. Denote $A:=\bigcup_{\lambda \in \Lambda} A_{\lambda}$. Suppose A can be presented as a union $A=U \cup U^{\prime}$ of disjoint relatively open subsets, where we denoted by U the set which contains the point $a \in \bigcap_{\lambda \in \Lambda} A_{\lambda}$. Then for each $\lambda \in \Lambda$ the intersections $U_{\lambda}:=U \cap A_{\lambda}$ and $U_{\lambda}^{\prime}:=U^{\prime} \cap A_{\lambda}$ are relatively open in A_{λ}. We have $A_{\lambda}=U_{\lambda} \cup U_{\lambda}^{\prime}$. By assumption, $U_{\lambda} \ni a$, and hence $U_{\lambda} \neq \varnothing$. Hence, connectedness of A_{λ} implies that $U_{\lambda}^{\prime}=\varnothing$. But then $U^{\prime}=\bigcup_{\lambda \in \Lambda} U_{\lambda}^{\prime}=\varnothing$, and therefore A is connected.

Given any set $A \subset V$ and a point $a \in A$ the connected component (resp. path-connected component $C_{a} \subset A$ of the point $a \in A$ is the union of all connected (resp. path-connected) subsets of A which contains the point a. Due to Lemma 6.11 the (path-)connected component C_{a} is itself (path-)connected, and hence it is the biggest (path-)connected subset of A which contains the point a. The path-connected component of a can be equivalently defined as the set of all points of A one can connect with a by a path in A.

Note that (path-)connected components of different points either coincide or do not intersect, and hence the set A can be presented as a disjoint union of (path-)-connected components.

Lemma 6.7 shows that for open sets in a vector space V the notions of connected and pathconnected components coincide, and due to Exercise 6.9 the same is true for any subsets in \mathbb{R}. In particular, any open set $U \subset \mathbb{R}$ can be presented as a union of disjoint open intervals, which are its connected (= path-connected) components. Note that the number of these intervals can be infinite, but always countable.

6.5 Continuous maps and functions

Let V, W be two Euclidean spaces and A is a subset of V. A map $f: A \rightarrow W$ is called continuous if one of the three equivalent properties hold:

1. For any $\epsilon>0$ and any point $x \in A$ there exists $\delta>0$ such that $f\left(B_{\delta}(x) \cap A\right) \subset B_{\epsilon}(f(x))$.
2. If for a sequence $x_{n} \in A$ there exists $\lim x_{n}=x \in A$ then the sequence $f\left(x_{n}\right) \in W$ converges
to $f(x)$.
3. For any open set $U \subset W$ the pre-image $f^{-1}(U)$ is relatively open in A.
4. For any closed set $B \subset W$ the pre-image $f^{-1}(B)$ is relatively closed in A.

Let us verify equivalence of 3 and 4 . For any open set $U \subset W$ its complement $B=W \backslash U$ is closed and we have $f^{-1}(U)=A \backslash f^{-1}(B)$. Hence, if $f^{-1}(U)$ is relatively open, i.e. $f^{-1}(U)=U^{\prime} \cap A$ for an open set $U^{\prime} \subset V$, then $f^{-1}(B)=A \cap\left(V \backslash U^{\prime}\right)$, i.e. $f^{-1}(B)$ is relatively closed. The converse is similar.

Let us deduce 1 from 3. The ball $B_{\epsilon}(f(x))$ is open. Hence $f^{-1}\left(B_{\epsilon}(f(x))\right)$ is relatively open in A. Hence, there exists $\delta>0$ such that $B_{\delta}(x) \cap A \subset f^{-1}\left(B_{\epsilon}(f(x))\right)$, i.e. $f\left(B_{\delta}(x) \cap A\right) \subset B_{\epsilon}(f(x))$. We leave the converse and the equivalence of definition 2 to the reader.

Remark 6.12. Consider a map $f: A \rightarrow W$ and denote $B:=f(A)$. Then definition 3 can be equivalently stated as follows:
3^{\prime}. For any set $U \subset B$ relatively open in B its pre-image $f^{-1}(U)$ is relatively open in A.

Definition 4 can be reformulated in a similar way.
Indeed, we have $U=U^{\prime} \cap A$ for an open set $U^{\prime} \subset W$, while $f^{-1}(U)=f^{-1}\left(U^{\prime}\right)$.
The following theorem summarize properties of continuous maps.

Theorem 6.13. Let $f: A \rightarrow W$ be a continuous map. Then

1. if A is compact then $f(A)$ is compact;
2. if A is connected then $f(A)$ is connected;
3. if A is path connected then $f(A)$ is path-connected.

Proof. 1. Take any infinite sequence $y_{n} \in f(A)$. Then there exist points $x_{n} \in A$ such that $y_{n}=$ $f\left(x_{n}\right), n=1, \ldots$ Then there exists a converging subsequence $x_{n_{k}} \rightarrow a \in A$. Then by continuity $\lim k \rightarrow \infty f\left(x_{n_{k}}\right)=f(a) \in f(A)$, i.e. $f(A)$ is compact.
2. Suppose that $f(A)$ can be presented as a union $B_{1} \cup B_{2}$ of simultaneously relatively open and closed disjoint non-empty sets. Then $f^{-1}\left(B_{1}\right), f^{-1}\left(B_{2}\right) \subset A$ are simultaneously relatively open

Figure 6.4: George Cantor (1845-1918)
and closed in A, disjoint and non-empty. We also have $f^{-1}\left(B_{1}\right) \cup f^{-1}\left(B_{2}\right)=f^{-1}\left(B_{1} \cup B_{2}\right)=$ $f^{-1}(f(A))=A$. Hence A is disconnected which is a contradiction.
3. Take any two points $y_{0}, y_{1} \in f(A)$. Then there exist $x_{0}, x_{1} \in A$ such that $f\left(x_{0}\right)=y_{0}, f\left(x_{1}\right)=$ y_{1}. But A is path-connected. Hence the points x_{0}, x_{1} can be connected by a path $\gamma:[0,1] \rightarrow A$. Then the path $f \circ \gamma:[0,1] \rightarrow f(A)$ connects y_{0} and y_{1}, i.e. $f(A)$ is path-connected.

Note that in the case $W=\mathbb{R}$ Theorem 6.13. 1 is just the Weierstrass theorem: a continuos function on a compact set is bounded and achieves its maximal and minimal values.

We finish this section by a theorem of George Cantor about uniform continuity.

Theorem 6.14. Let A be compact and $f: A \rightarrow W$ a continuous map. Then for any $\epsilon>0$ there exists $\delta>0$ such that for any $x \in A$ we have $f\left(B_{\delta}(x)\right) \subset B_{\epsilon}(f(x))$.

Proof. Choose $\epsilon>0$. By continuity of f for every point $x \in A$ there exists $\delta(x)>0$ such that

$$
f\left(B_{\delta(x)}(x)\right) \subset B_{\frac{\epsilon}{4}}(f(x)) .
$$

We need to prove that $\inf _{x \in A} \delta(x)>0$. Note that for any point in $y \in B_{\frac{\delta(x)}{2}}(x)$ we have $B_{\frac{\delta(x)}{2}}(y) \subset$ $B_{\delta(x)}(x)$, and hence $f\left(B_{\frac{\delta(x)}{2}}(y)\right) \subset B_{\epsilon}(f(y))$. By compactness, from the covering $\bigcup_{x \in A} B_{\frac{\delta(x)}{2}}(x)$ we can choose a finite number of balls $B_{\frac{\delta\left(x_{j}\right)}{2}}\left(x_{j}\right), j=1, \ldots, N$ which still cover A. Then $\delta=\min _{k} \frac{\delta\left(x_{j}\right)}{2}$ satisfy the condition of the theorem, i.e. $f\left(B_{\delta}(x)\right) \subset B_{\epsilon}(f(x))$ for any $x \in A$.

Chapter 7

Vector fields and differential forms

7.1 Differential and gradient

Given a vector space V we will denote by V_{x} the vector space V with the origin translated to the point $x \in V$. One can think of V_{x} as that tangent space to V at the point x. Though the parallel transport allows one to identify spaces V and V_{x} it will be important for us to think about them as different spaces.

Let $f: U \rightarrow \mathbb{R}$ be a function on a domain $U \subset V$ in a vector space V. The function f is called differentiable at a point $x \in U$ if there exists a linear function $l: V_{x} \rightarrow \mathbb{R}$ such that

$$
f(x+h)-f(x)=l(h)+o(\|h\|)
$$

for any sufficiently small vector h, where the notation $o(t)$ stands for any function such that $\frac{o(t)}{t} \underset{t \rightarrow 0}{\rightarrow} 0$. The linear function l is called the differential of the function f at the point x and is denoted by $d_{x} f$. In other words, f is differentiable at $x \in U$ if for any $h \in V_{x}$ there exists a limit

$$
l(h)=\lim _{t \rightarrow 0} \frac{f(x+t h)-f(x)}{t},
$$

and the limit $l(h)$ linearly depends on h. The value $l(h)=d_{x} f(h)$ is called the directional derivative of f at the point x in the direction h. The function f is called differentiable on the whole domain U if it is differentiable at each point of U.

Simply speaking, the differentiability of a function means that at a small scale near a point x the function behaves approximately like a linear function, the differential of the function at the
point x. However this linear function varies from point to point, and we call the family $\left\{d_{x} f\right\}_{x \in U}$ of all these linear functions the differential of the function f, and denote it by $d f$ (without a reference to a particular point x).

Let us summarize the above discussion. Let $f: U \rightarrow \mathbb{R}$ be a differentiable function. Then for each point $x \in U$ there exists a linear function $d_{x} f: V_{x} \rightarrow \mathbb{R}$, the differential of f at the point x defined by the formula

$$
d_{x} f(h)=\lim _{t \rightarrow 0} \frac{f(x+t h)-f(x)}{t}, x \in U, h \in V_{x} .
$$

We recall that existence of partial derivatives at a point $a \in U$ does not guarantee the differentiability of f at the point a. On the other hand if partial derivatives exists in a neighborhood of a and continuous at the point a then f is differentiable at this point. The functions whose first partial derivatives are continuous in u are called C^{1}-smooth, or sometimes just smooth. Equivalently, we can say that f is smooth if the differential $d_{x} f$ continuously depends on the point $x \in U$.

If v_{1}, \ldots, v_{n} are vectors of a basis of V, parallel transported to the point x, then we have

$$
d_{x} f\left(v_{i}\right)=\frac{\partial f}{\partial x_{i}}(x), x \in U, i=1, \ldots, n,
$$

where x_{1}, \ldots, x_{n} are coordinates with respect to the chosen basis v_{1}, \ldots, v_{n}.
Notice that if f is a linear function,

$$
f(x)=a_{1} x_{1}+\cdots+a_{n} x_{n},
$$

then for each $x \in V$ we have

$$
d_{x} f(h)=a_{1} h_{1}+\cdots+a_{n} h_{n}, h=\left(h_{1}, \ldots, h_{n}\right) \in V_{x} .
$$

Thus the differential of a linear function f at any point $x \in V$ coincides with this function, parallel transported to the space V_{x}. This observation, in particular, can be applied to linear coordinate functions x_{1}, \ldots, x_{n} with respect to a chosen basis of V.

In Section 7.7 below we will define the differential for maps $f: U \rightarrow W$, where W is a vector space and not just the real line \mathbb{R}.

7.2 Smooth functions

We recall that existence of partial derivatives at a point $a \in U$ does not guarantee the differentiability of f at the point a. On the other hand if partial derivatives exists in a neighborhood of a and continuous at the point a then f is differentiable at this point. The functions whose first partial derivatives are continuous in u are called C^{1}-smooth. Equivalently, we can say that f is smooth if the differential $d_{x} f$ continuously depends on the point $x \in U$.

More generally, for $k \geq 1$ a function $f: U \rightarrow \mathbb{R}$ is called C^{k}-smooth all its partial derivatives up to order k are continuous in U. The space of C^{k}-smooth functions is denoted by $C^{k}(U)$. We will also use the notation $C^{0}(U)$ and $C^{\infty}(U)$ which stands, respectively, for the spaces of continuous functions and functions with continuous derivatives of all orders. In this notes we will often speak of smooth functions without specifying the class of smoothness, assuming that functions have as many continuous derivatives as necessary to justify our computations.

Remark 7.1. We will often need to consider smooth maps, functions, vectors fields, differential forms, etc. defined on a closed subset A of a vector space V. We will always mean by that the these objects are defined on some open neighborhood $U \supset A$. It will be not important for us how exactly these objects are extended to U but to make sense of differentiability we need to assume that they are extended. In fact, one can define what differentiability means without any extension, but this would go beyond the goals of these lecture notes.

Moreover, a theorem of Hassler Whitney asserts that any function smooth on a closed subset $A \subset V$ can be extended to a smooth function to a neighborhood $U \supset A$.

7.3 Gradient vector field

If V is an Euclidean space, i.e. a vector space with an inner product \langle,$\rangle , then there exists a$ canonical isomorphism $\mathcal{D}: V \rightarrow V^{*}$, defined by the formula $\mathcal{D}(v)(x)=\langle v, x\rangle$ for $v, x \in V$. Of course, \mathcal{D} defines an isomorphism $V_{x} \rightarrow V_{x}^{*}$ for each $x \in V$. Set

$$
\nabla f(x)=\mathcal{D}^{-1}\left(d_{x} f\right)
$$

The vector $\nabla f(x)$ is called the gradient of the function f at the point $x \in U$. We will also use the notation $\operatorname{grad} f(x)$.

By definition we have

$$
\langle\nabla f(x), h\rangle=d_{x} f(h) \quad \text { for any vector } \quad h \in V .
$$

If $\|h\|=1$ then $d_{x} f(h)=\|\nabla f(x)\| \cos \varphi$, where φ is the angle between the vectors $\nabla f(x)$ and h. In particular, the directional derivative $d_{x} f(h)$ has its maximal value when $\varphi=0$. Thus the direction of the gradient is the direction of the maximal growth of the function and the length of the gradient equals this maximal value.

As in the case of a differential, the gradient varies from point to point, and the family of vectors $\{\nabla f(x)\}_{x \in U}$ is called the gradient vector field ∇f.

We discuss the general notion of a vector field in Section 7.4 below.

7.4 Vector fields

A vector field v on a domain $U \subset V$ is a function which associates to each point $x \in U$ a vector $v(x) \in V_{x}$, i.e. a vector originated at the point x.

A gradient vector field ∇f of a function f provides us with an example of a vector field, but as we shall see, gradient vector fields form only a small very special class of vector fields.

Let v be a vector field on a domain $U \in V$. If we fix a basis in V, and parallel transport this basis to all spaces $V_{x}, x \in V$, then for any point $x \in V$ the vector $v(x) \in V_{x}$ is described by its coordinates $\left(v_{1}(x), v_{2}(x), \ldots, v_{n}(x)\right)$. Therefore, to define a vector field on U is the same as to define n functions v_{1}, \ldots, v_{n} on U, i.e. to define a map $\left(v_{1}, \ldots, v_{n}\right): U \rightarrow \mathbb{R}^{n}$. We call a vector field v C^{k}-smooth if the functions v_{1}, \ldots, v_{n} are smooth on U.

Thus, if a basis of V is fixed, then the difference between the maps $U \rightarrow \mathbb{R}^{n}$ and vector fields on U is just a matter of geometric interpretation. When we speak about a vector field v we view $v(x)$ as a vector in V_{x}, i.e. originated at the point $x \in U$. When we speak about a map $v: U \rightarrow \mathbb{R}^{n}$ we view $v(x)$ as a point of the space V, or as a vector with its origin at $\mathbf{0} \in V$.

Vector fields naturally arise in a context of Physics, Mechanics, Hydrodynamics, etc. as force, velocity and other physical fields.

There is another very important interpretation of vector fields as first order differential operators.

Let $C^{\infty}(U)$ denote the vector space of infinitely differentiable functions on a domain $U \subset V$. Let v be a C^{∞}-smooth vector field on V. We associate with v a linear operator

$$
D_{v}: C^{\infty}(U) \rightarrow C^{\infty}(U)
$$

given by the formula

$$
D_{v}(f)=d f(v), f \in C^{\infty}(U)
$$

In other words, we compute at any point $x \in U$ the directional derivative of f in the direction of the vector $v(x)$. Clearly, the operator D_{v} is linear: $D_{v}(a f+b g)=a D_{v}(f)+b D_{v}(g)$ for any functions $f, g \in C^{\infty}(U)$ and any real numbers $a, b \in \mathbb{R}$. It also satisfies the Leibniz rule:

$$
D_{v}(f g)=D_{v}(f) g+f D_{v}(g) .
$$

In view of the above correspondence between vector fields and first order differential operators it is sometimes convenient just to view a vector field as a differential operator. Hence, when it will not be confusing we may drop the notation D_{v} and just directly apply the vector v to a function f (i.e. write $v(f)$ instead of $\left.D_{v}(f)\right)$.

Let v_{1}, \ldots, v_{n} be a basis of V, and x_{1}, \ldots, x_{n} be the coordinate functions in this basis. We would like to introduce the notation for the vector field obtained from vectors v_{1}, \ldots, v_{n} by parallel transporting them to all points of the domain U. To motivate the notation which we are going to introduce, let us temporarily denote these vector fields by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathbf{n}}$. Observe that $D_{\mathbf{v}_{i}}(f)=$ $\frac{\partial f}{\partial x_{i}}, i=1, \ldots, n$. Thus the operator $D_{\mathbf{v}_{i}}$ is just the operator $\frac{\partial}{\partial x_{i}}$ of taking i-th partial derivative. Hence, viewing the vector field $\mathbf{v}_{\mathbf{i}}$ as a differential operator we will just use the notation $\frac{\partial}{\partial x_{i}}$ instead of \mathbf{v}_{i}. Given any vector field v with coordinate functions $a_{1}, a_{2}, \ldots, a_{n}: U \rightarrow \mathbb{R}$ we have

$$
D_{v}(f)(x)=\sum_{i=1}^{n} a_{i}(x) \frac{\partial f}{\partial x_{i}}(x), \text { for any } f \in C^{\infty}(U)
$$

and hence we can write $v=\sum_{i=1}^{n} a_{i} \frac{\partial}{\partial x_{i}}$. Note that the coefficients a_{i} here are functions and not constants.

7.4.1 Gradient vector field

Suppose that V,\langle,$\rangle is a Euclidean vector space. Choose a (not necessarily orthonormal) basis$ v_{1}, \ldots, v_{n}. Let us find the coordinate description of the gradient vector field ∇f, i.e. find the coefficients a_{j} in the expansion $\nabla f(x)=\sum_{1}^{n} a_{i}(x) \frac{\partial}{\partial x_{i}}$. By definition we have

$$
\begin{equation*}
\langle\nabla f(x), h\rangle=d_{x} f(h)=\sum_{1}^{n} \frac{\partial f}{\partial x_{j}}(x) h_{j} \tag{7.4.1}
\end{equation*}
$$

for any vector $h \in V_{x}$ with coordinates $\left(h_{1}, \ldots, h_{n}\right)$ in the basis v_{1}, \ldots, v_{n} parallel transported to V_{x}. Let us denote $g_{i j}=\left\langle v_{i}, v_{j}\right\rangle$. Thus $G=\left(g_{i j}\right)$ is a symmetric $n \times n$ matrix, which is called the Gram matrix of the basis v_{1}, \ldots, v_{n}. Then the equation (7.4.1) can be rewritten as

$$
\sum_{i, j=1}^{n} g_{j i} a_{i} h_{j}=\sum_{1}^{n} \frac{\partial f}{\partial x_{j}}(x) h_{j} .
$$

Because h_{j} are arbitrarily numbers it implies that the coefficients with h_{j} in the right and left sides should coincide for all $j=1, \ldots, n$. Hence we get the following system of linear equations:

$$
\begin{equation*}
\sum_{i=1}^{n} g_{i j} a_{i}=\frac{\partial f}{\partial x_{j}}(x), \quad j=1, \ldots, n \tag{7.4.2}
\end{equation*}
$$

or in matrix form

$$
G\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}}(x) \\
\vdots \\
\frac{\partial f}{\partial x_{n}}(x)
\end{array}\right),
$$

and thus

$$
\left(\begin{array}{c}
a_{1} \tag{7.4.3}\\
\vdots \\
a_{n}
\end{array}\right)=G^{-1}\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}}(x) \\
\vdots \\
\frac{\partial f}{\partial x_{n}}(x)
\end{array}\right)
$$

i.e.

$$
\begin{equation*}
\nabla f=\sum_{i, j=1}^{n} g^{i j} \frac{\partial f}{\partial x_{i}}(x) \frac{\partial}{\partial x_{j}}, \tag{7.4.4}
\end{equation*}
$$

where we denote by $g^{i j}$ the entries of the inverse matrix $G^{-1}=\left(g_{i j}\right)^{-1}$
If the basis v_{1}, \ldots, v_{n} is orthonormal then G is the unit matrix, and thus in this case

$$
\begin{equation*}
\nabla f=\sum_{1}^{n} \frac{\partial f}{\partial x_{j}}(x) \frac{\partial}{\partial x_{j}}, \tag{7.4.5}
\end{equation*}
$$

i.e. ∇f has coordinates $\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)$. However, simple expression (7.4.5) for the gradient holds only in the orthonormal basis. In the general case one has a more complicated expression (7.4.4).

7.5 Differential forms

Similarly to vector fields, we can consider fields of exterior forms, i.e. functions on $U \subset V$ which associate to each point $x \in U$ a k-form from $\Lambda^{k}\left(V_{x}^{*}\right)$. These fields of exterior k-forms are called differential k-forms.

Thus the relation between k-forms and differential k-forms is exactly the same as the relation between vectors and vector-fields. For instance, a differential 1-form α associates with each point $x \in U$ a linear function $\alpha(x)$ on the space V_{x}. Sometimes we will write α_{x} instead of $\alpha(x)$ to leave space for the arguments of the function $\alpha(x)$.

Example 7.2. 1. Let $f: V \rightarrow \mathbb{R}$ be a smooth function. Then the differential $d f$ is a differential 1-form. Indeed, with each point $x \in V$ it associates a linear function $d_{x} f$ on the space V_{x}. As we shall see, most differential 1-form are not differentials of functions (just as most vector fields are not gradient vector fields).
2. A differential 0 -form f on U associates with each point $x \in U$ a 0 -form on V_{x}, i. e. a number $f(x) \in \mathbb{R}$. Thus differential 0 -forms on U are just functions $U \rightarrow \mathbb{R}$.

7.6 Coordinate description of differential forms

Let x_{1}, \ldots, x_{n} be coordinate linear functions on V, which form the basis of V^{*} dual to a chosen basis v_{1}, \ldots, v_{n} of V. For each $i=1, \ldots, n$ the differential $d x_{i}$ defines a linear function on each space $V_{x}, x \in V$. Namely, if $h=\left(h_{1}, \ldots, h_{n}\right) \in V_{x}$ then $d x_{i}(h)=h_{i}$. Indeed

$$
d_{x} x_{i}(h)=\lim _{t \rightarrow 0} \frac{x_{i}+t h_{i}-x_{i}}{t}=h_{i},
$$

independently of the base point $x \in V$. Thus differentials $d x_{1}, \ldots, d x_{n}$ form a basis of the space V_{x}^{*} for each $x \in V$. In particular, any differential 1 -form α on v can be written as

$$
\alpha=f_{1} d x_{1}+\ldots+f_{n} d x_{n}
$$

where f_{1}, \ldots, f_{n} are functions on V. In particular,

$$
\begin{equation*}
d f=\frac{\partial f}{\partial x_{1}} d x_{1}+\ldots+\frac{\partial f}{\partial x_{n}} d x_{n} . \tag{7.6.1}
\end{equation*}
$$

Let us point out that this simple expression of the differential of a function holds in an arbitrary coordinate system, while an analogous simple expression 7.4.5 for the gradient vector field is valid only in the case of Cartesian coordinates. This reflects the fact that while the notion of differential is intrinsic and independent of any extra choices, one needs to have a background inner product to define the gradient.

Similarly, any differential 2 -form w on a 3 -dimensional space can be written as

$$
\omega=b_{1}(x) d x_{2} \wedge d x_{3}+b_{2}(x) d x_{3} \wedge d x_{1}+b_{3}(x) d x_{1} \wedge d x_{2}
$$

where b_{1}, b_{2}, and b_{3} are functions on V. Any differential 3 -form Ω on a 3 -dimensional space V has the form

$$
\Omega=c(x) d x_{1} \wedge d x_{2} \wedge d x_{3}
$$

for a function c on V.
More generally, any differential k-form α can be expressed as

$$
\alpha=\sum_{1 \leq i_{1}<i_{2} \cdots<i_{k} \leq n} a_{i_{1} \ldots i_{k}} d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}
$$

for some functions $a_{i_{1} \ldots i_{k}}$ on V.

7.7 Smooth maps and their differentials

Let V, W be two vector spaces of arbitary (not, necessarily, equal) dimensions and $U \subset V$ be an open domain in V.

Recall that a map $f: U \rightarrow W$ is called differentiable if for each $x \in U$ there exists a linear map

$$
l: V_{x} \rightarrow W_{f(x)}
$$

such that

$$
l(h)=\lim _{t \rightarrow 0} \frac{f(x+t h)-f(x)}{t}
$$

for any $h \in V_{x}$. In other words,

$$
f(x+t h)-f(x)=t l(h)+o(t), \text { where } \frac{o(t)}{t} \underset{t \rightarrow 0}{\rightarrow} 0 .
$$

The map l is denoted by $d_{x} f$ and is called the differential of the map f at the point $x \in U$. Thus, $d_{x} f$ is a linear map $V_{x} \rightarrow W_{f(x)}$.

The space $W_{f(x)}$ can be identified with W via a parallel transport, and hence sometimes it is convenient to think about the differential as a map $V_{x} \rightarrow W$, In particular, in the case of a linear function. i.e. when $W=\mathbb{R}$ it is customary to do that, and hence we defined earlier in Section 7.1 the differential of a function $f: U \rightarrow \mathbb{R}$ at a point $x \in U$ as a linear function $V_{x} \rightarrow \mathbb{R}$, i.e. an element of V_{x}^{*}, rather than a linear map $V_{x} \rightarrow W_{f(x)}$.

Let us pick bases in V and W and let $\left(x_{1}, \ldots, x_{k}\right)$ and (y_{1}, \ldots, y_{n}) be the corresponding coordinate functions. Then each of the spaces V_{x} and $W_{y}, x \in V, y \in W$ inherits a basis obtained by parallel transport of the bases of V and W. In terms of these bases, the differential $d_{x} f$ is given by the Jacobi matrix

$$
\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{k}} \\
\cdots & \cdots & \cdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{k}}
\end{array}\right)
$$

In what follows we will consider only sufficiently smooth maps, i.e. we assume that all maps and their coordinate functions are differentiable as many times as we need it.

7.8 Operator f^{*}

Let U be a domain in a vector space V and $f: U \rightarrow W$ a smooth map. Then the differential $d f$ defines a linear map

$$
d_{x} f: V_{x} \rightarrow W_{f(x)}
$$

for each $x \in V$.
Let ω be a differential k-form on W. Thus ω defines an exterior k-form on the space W_{y} for each $y \in W$.

Let us define the differential k-form $f^{*} \omega$ on U by the formula

$$
\left.\left(f^{*} \omega\right)\right|_{V_{x}}=\left(d_{x} f\right)^{*}\left(\left.\omega\right|_{W_{f(x)}}\right) .
$$

Here the notation $\left.\omega\right|_{W_{y}}$ stands for the exterior k-form defined by the differential form ω on the space W_{y}.

In other words, for any k vectors, $H_{1}, \ldots, H_{k} \in V_{x}$ we have

$$
f^{*} \omega\left(H_{1}, \ldots, H_{k}\right)=\omega\left(d_{x} f\left(H_{1}\right), \ldots, d_{x} f\left(H_{k}\right)\right)
$$

We say that the differential form $f^{*} \omega$ is induced from ω by the map f, or that $f^{*} \omega$ is the pull-back of ω by f.

Example 7.3. Let $\Omega=h(x) d x_{1} \wedge \cdots \wedge d x_{n}$. Then formula (3.2) implies

$$
f^{*} \Omega=h \circ f \operatorname{det} D f d x_{1} \wedge \cdots \wedge d x_{n} .
$$

Here

$$
\operatorname{det} D f=\left|\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\cdots & \cdots & \cdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right|
$$

is the determinant of the Jacobian matrix of $f=\left(f_{1}, \ldots, f_{n}\right)$.
Similarly to Proposition 1.9 we get
Proposition 7.4. Given 2 maps

$$
U_{1} \xrightarrow{f} U_{2} \xrightarrow{g} U_{3}
$$

and a differential k form ω on U_{3} we have

$$
(g \circ f)^{*}(\omega)=f^{*}\left(g^{*} \omega\right)
$$

An important special case of the pull-back operator f^{*} is the restriction operator. Namely Let $L \subset V$ be an affine subspace. Let $j: L \hookrightarrow V$ be the inclusion map. Then given a differential k-form α on a domain $U \subset V$ we can consider the form $j^{*} \alpha$ on the domain $U^{\prime}:=L \cap U$. This form is called the restriction of the form α to U^{\prime} and it is usually denoted by $\left.\alpha\right|_{U} ^{\prime}$. Thus the restricted form $\left.\alpha\right|_{U} ^{\prime}$ is the same form α but viewed as function of a point $a \in U^{\prime}$ and vectors $T_{1}, \ldots, T_{k} \in L_{a}$.

7.9 Coordinate description of the operator f^{*}

Consider first the linear case. Let \mathcal{A} be a linear map $V \rightarrow W$ and $\omega \in \Lambda^{p}\left(W^{*}\right)$. Let us fix coordinate systems x_{1}, \ldots, x_{k} in V and y_{1}, \ldots, y_{n} in W. If A is the matrix of the map \mathcal{A} then we already have seen in Section 2.7 that

$$
\mathcal{A}^{*} y_{j}=l_{j}\left(x_{1}, \ldots, x_{k}\right)=a_{j 1} x_{1}+a_{j 2} x_{2}+\ldots+a_{j k} x_{k}, \quad j=1, \ldots, n,
$$

and that for any exterior k-form

$$
\omega=\sum_{1 \leq i_{1}<\ldots<i_{p} \leq n} A_{i_{1}, \ldots, i_{p}} y_{i_{1}} \wedge \ldots \wedge y_{i_{p}}
$$

we have

$$
\mathcal{A}^{*} \omega=\sum_{1 \leq i,<\ldots<i_{p} \leq n} A_{i_{1} \ldots i_{p}} l_{i_{1}} \wedge \ldots \wedge l_{i_{p}} .
$$

Now consider the non-linear situation. Let ω be a differential p-form on W. Thus it can be written in the form

$$
\omega=\sum A_{i_{1} \ldots i_{p}}(y) d y_{i_{1}} \wedge \ldots d y_{i_{p}}
$$

for some functions $A_{i_{1} \ldots i_{p}}$ on W.

Let U be a domain in V and $f: U \rightarrow W$ a smooth map.

Proposition 7.5. $f^{*} \omega=\sum A_{i_{1} \ldots, i_{p}}(f(x)) d f_{i_{1}} \wedge \ldots \wedge d f_{i_{p}}$, where f_{1}, \ldots, f_{n} are coordinate functions of the map f.

Proof. For each point $x \in U$ we have, by definition,

$$
\left.f^{*} \omega\right|_{V_{x}}=\left(d_{x} f\right)^{*}\left(\left.\omega\right|_{W_{f_{x}}}\right)
$$

But the coordinate functions of the linear map $d_{x} f$ are just the differentials $d_{x} f_{i}$ of the coordinate functions of the map f. Hence the desired formula follows from the linear case proven in the previous proposition.

7.10 Examples

1. Consider the domain $U=\{r>0,0 \leq \varphi<2 \pi\}$ on the plane $V=\mathbb{R}^{2}$ with cartesian coordinates (r, φ). Let $W=\mathbb{R}^{2}$ be another copy of \mathbb{R}^{2} with cartesian coordinates (x, y). Consider a map $P: V \rightarrow W$ given by the formula

$$
P(r, \varphi)=(r \cos \varphi, r \sin \varphi) .
$$

This map introduces (r, φ) as polar coordinates on the plane W. Set $\omega=d x \wedge d y$. It is called the area form on W. Then

$$
\begin{gathered}
P^{*} \omega=d(r \cos \varphi) \wedge d(r \sin \varphi)=(\cos \varphi d r+r d(\cos \varphi)) \wedge(\sin \varphi d r+r d(\sin \varphi)= \\
(\cos \varphi d r-r \sin \varphi d \varphi) \wedge(\sin \varphi d r+r \cos \varphi d \varphi)= \\
\cos \varphi \cdot \sin \varphi d r \wedge d r-r \sin ^{2} \varphi d \varphi \wedge d r+r \cos ^{2} \varphi d r \wedge d \varphi-r^{2} \sin \varphi \cos \varphi d \varphi \wedge d \varphi= \\
r \cos ^{2} \varphi d r \wedge d \varphi+r \sin ^{2} d r \wedge d \varphi=r d r \wedge d \varphi
\end{gathered}
$$

2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a smooth function and the map $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by the formula

$$
F(x, y)=(x, y, f(x, y))
$$

Let

$$
\omega=P(x, y, z) d y \wedge d z+Q(x, y, z) d z \wedge d x+R(x, y, z) d x \wedge d y
$$

Figure 7.1: Johann Friedrich Pfaff (1765-1825)
be a differential 2-form on \mathbb{R}^{3}. Then

$$
\begin{aligned}
F^{*} \omega & =P(x, y, f(x, y)) d y \wedge d f+ \\
& +Q(x, y, f(x, y)) d f \wedge d x+R(x, y, f(x, y)) d x \wedge d y \\
& =P(x, y, f(x, y)) d y \wedge\left(f_{x} d x+f_{y} d y\right)+ \\
& +Q(x, y, f(x, y))\left(f_{x} d x+f_{y} d y\right) \wedge d x+ \\
& +R(x, y, f(x, y)) d x \wedge d y= \\
& =\left(R(x, y, f(x, y))-P(x, y, f(x, y)) f_{x}-Q(x, y, f(x, y)) f_{y}\right) d x \wedge d y
\end{aligned}
$$

where f_{x}, f_{y} are partial derivatives of f.
3. If $p>k$ then the pull-back $f^{*} \omega$ of a p-form ω on U to a k-dimensional space V is equal to 0 .

7.11 Pfaffian equations

Given a non-zero linear function l on an n-dimensional vector space V the equation $l=0$ defines a hyperplane, i.e. an $(n-1)$-dimensional subspace of V.

Figure 7.2: Contact structure

Suppose we are given a differential 1-form λ on a domain $U \subset V$. Suppose that $\lambda_{x} \neq 0$ for each $x \in U$.

Then the equation

$$
\begin{equation*}
\lambda=0 \tag{7.11.1}
\end{equation*}
$$

defines a hyperplane field ξ on U, i.e. a family of of hyperplanes $\xi_{x}=\left\{\lambda_{x}=0\right\} \subset V_{x}, x \in U$.
The equation of this type is called Pfaffian in honor of a German mathematician Johann Friedrich Pfaff (1765-1825).

Example 7.6. Let $V=\mathbb{R}^{3}$ with coordinates (x, y, z)

1. Let $\lambda=d z$. Then $\xi=\{d z=0\}$ is the horizontal plane field which is equal to $\operatorname{Span}\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)$. 2. Let $\lambda=d z-y d x$. Then the plane field $d z-y d x$ is shown on Fig. 7.11. This plane is non-integrable in the following sense. There are no surfaces in \mathbb{R}^{3} tangent to ξ. This plane field is called a contact structure. It plays an important role in symplectic and contact geometry, which is, in turn, the geometric language for Mechanics and Geometric Optics.

Chapter 8

Exterior differential

8.1 Coordinate definition of the exterior differential

Let us denote by by $\Omega^{k}(U)$ the space of all differential k-forms on U. When we will need to specify the class of smoothness of coefficients of the form we will use the notation $\Omega_{l}^{k}(U)$ for the space of differential k-forms with C^{l}-smooth coefficients, i.e. which depend C^{l}-smoothly on a point of U.

We will define a map

$$
d: \Omega^{k}(U) \rightarrow \Omega^{k+1}(U)
$$

or more precisely

$$
d: \Omega_{l}^{k}(U) \rightarrow \Omega_{l-1}^{k+1}(U)
$$

(thus assuming that $l \geq 1$), which is called the exterior differential. In the current form it was introduced by Élie Cartan, but essentially it was known already to Henri Poincaré.

We first define it in coordinates and then prove that the result is independent of the choice of the coordinate system. Let us fix a coordinate system x_{1}, \ldots, x_{n} in $V \supset U$. As a reminder, a differential k-form $w \in \Omega^{k}(U)$ has the form $w=\sum_{i_{1}<\ldots<i_{k}} a_{i_{1} \ldots, i_{k}} d x_{i_{1}} \wedge \ldots \wedge d x_{i_{k}}$ where $a_{i_{1} \ldots i_{k}}$ are functions on the domain U. Define

$$
d w:=\sum_{i_{1}<\ldots<i_{k}} d a_{i_{1} \ldots i_{k}} \wedge d x_{i_{1}} \wedge \ldots \wedge d x_{i_{k}} .
$$

Examples. 1. Let $w \in \Omega^{1}(U)$, i.e. $w=\sum_{i=1}^{n} a_{i} d x_{i}$. Then

Figure 8.1: Élie Cartan (1869-1951)

$$
d w=\sum_{i=1}^{n} d a_{i} \wedge d x_{i}=\sum_{i=1}^{n}\left(\sum_{j=1}^{n} \frac{\partial a_{i}}{\partial x_{j}} d x_{j}\right) \wedge d x_{i}=\sum_{1 \leq i<j \leq n}\left(\frac{\partial a_{j}}{\partial x_{i}}-\frac{\partial a_{i}}{\partial x_{j}}\right) d x_{i} \wedge d x_{j} .
$$

For instance, when $n=2$ we have

$$
d\left(a_{1} d x_{1}+a_{2} d x_{2}\right)=\left(\frac{\partial a_{2}}{\partial x_{1}}-\frac{\partial a_{1}}{\partial x_{2}}\right) d x_{1} \wedge d x_{2}
$$

For $n=3$, we get

$$
d\left(a_{1} d x_{1}+a_{2} d x_{2}+a_{3} d x_{3}\right)=\left(\frac{\partial a_{3}}{\partial x_{2}}-\frac{\partial a_{2}}{\partial x_{3}}\right) d x_{2} \wedge d x_{3}+\left(\frac{\partial a_{1}}{\partial x_{3}}-\frac{\partial a_{3}}{\partial x_{1}}\right) d x_{3} \wedge d x_{1}+\left(\frac{\partial a_{2}}{\partial x_{1}}-\frac{\partial a_{1}}{\partial x_{2}}\right) d x_{1} \wedge d x_{2} .
$$

2. Let $n=3$ and $w \in \Omega^{2}(U)$. Then

$$
w=a_{1} d x_{2} \wedge d x_{3}+a_{2} d x_{3} \wedge d x_{1}+a_{3} d x_{1} \wedge d x_{2}
$$

and

$$
\begin{aligned}
d w & =d a_{1} \wedge d x_{2} \wedge d x_{3}+d a_{2} \wedge d x_{3} \wedge d x_{1}+d a_{3} \wedge d x_{1} \wedge d x_{2} \\
& =\left(\frac{\partial a_{1}}{\partial x_{1}}+\frac{\partial a_{2}}{\partial x_{2}}+\frac{\partial a_{3}}{\partial x_{3}}\right) d x_{1} \wedge d x_{2} \wedge d x_{3}
\end{aligned}
$$

Figure 8.2: Henri Poincaré (1854-1912)
3. For 0 -forms, i.e. functions the exterior differential coincides with the usual differential of a function.

8.2 Properties of the operator d

Proposition 8.1. For any two differential forms, $\alpha \in \Omega^{k}(U), \beta \in \Omega^{l}(U)$ we have

$$
d(\alpha \wedge \beta)=d \alpha \wedge \beta+(-1)^{k} \alpha \wedge d \beta
$$

Proof. We have

$$
\begin{aligned}
\alpha & =\sum_{i_{1}<\ldots<i_{k}} a_{i_{1} \ldots i_{k}} d x_{i_{1}} \wedge \ldots \wedge d x_{i_{k}} \\
\beta & =\sum_{j_{1}<\ldots<j_{l}} b_{j_{i} \ldots j_{l}} d x_{j_{1}} \wedge \ldots \wedge d x_{j_{l}} \\
\alpha \wedge \beta & =\left(\sum_{i_{1}<\ldots<i_{k}} a_{i_{1} \ldots i_{k}} d x_{i_{1}} \wedge \ldots \wedge d x_{i_{k}}\right) \wedge\left(\sum_{j_{i}<\ldots<j_{l}} b_{j_{1} \ldots j_{l}} d x_{j_{1}} \wedge \ldots \wedge d x_{j_{l}}\right) \\
& =\sum_{\substack{i_{1}<\ldots<i_{k} \\
j_{1}<\ldots<j_{l}}} a_{i_{1} \ldots i_{k}} b_{j_{1} \ldots j_{l}} d x_{i_{l}} \wedge \ldots \wedge d x_{i_{k}} \wedge d x_{j_{l}} \wedge \ldots \wedge d x_{j_{l}}
\end{aligned}
$$

$$
\begin{aligned}
d(\alpha \wedge \beta) & =\sum_{\substack{i_{1}<\ldots<i_{k} \\
j_{1}<\ldots<j_{l}}}\left(b_{j_{1} \ldots j_{l}} d a_{i_{1} \ldots i_{k}}+a_{i_{1} \ldots i_{k}} d b_{j_{1} \ldots j_{l}}\right) \wedge d x_{i_{1}} \wedge \ldots \wedge d x_{i_{k}} \wedge d x_{j_{1}} \wedge \ldots \wedge d x_{j_{l}} \\
& =\sum_{\substack{i_{1}<\ldots<i_{k} \\
j_{1}<\ldots<j_{l}}} b_{j_{1} \ldots j_{l}} d a_{i_{1} \ldots i_{k}} \wedge d x_{i_{1}} \wedge \ldots \wedge d x_{i_{k}} \wedge d x_{j_{l}} \wedge \ldots \wedge d x_{j_{l}} \\
& +\sum_{\substack{i_{1}<\ldots<i_{k} \\
j_{1}<\ldots<j_{l}}} a_{i_{1} \ldots i_{k}} d b_{j_{1} \ldots j_{l}} \wedge d x_{i_{1}} \wedge \ldots \wedge d x_{i_{k}} \wedge d x_{j_{1}} \wedge \ldots \wedge d x_{j_{l}} \\
& =\left(\sum_{i_{1}<\ldots<i_{k}} d a_{i_{1} \ldots i_{k}} \wedge d x_{i_{1} \ldots} \wedge d x_{i_{k}}\right) \wedge\left(\sum b_{j_{1} \ldots j_{l}} d x_{j_{1}} \wedge \ldots \wedge d x_{j_{l}}\right) \\
& +(-1)^{k}\left(\sum_{i_{1}<\ldots<i_{k}} a_{i_{1} \ldots i_{k}} d x_{i_{1}} \wedge \ldots \wedge d x_{i_{k}}\right) \wedge\left(\sum_{j_{i}<\ldots<j_{l}} d b_{j_{1} \ldots j_{l}} \wedge d x_{j_{1}} \wedge \ldots \wedge d x_{j_{l}}\right) \\
& d \alpha \wedge \beta+(-1)^{k} \alpha \wedge d \beta .
\end{aligned}
$$

Notice that the sign $(-1)^{k}$ appeared because we had to make k transposition to move $d b_{j_{1} \ldots j_{l}}$ to its place.

Proposition 8.2. For any differential k-form w we have

$$
d d w=0
$$

Proof. Let $w=\sum_{i_{1}<\ldots<i_{k}} a_{i_{1} \ldots i_{k}} d x_{i_{1}} \wedge \ldots \wedge d x_{i_{k}}$. Then we have

$$
d w=\sum_{i_{1}<\ldots<i_{k}} d a_{i_{1} \ldots i_{k}} \wedge d x_{i_{1}} \wedge \ldots \wedge d x_{i_{k}} .
$$

Applying Proposition 8.1 we get

$$
\begin{aligned}
d d w & =\sum_{i_{1}<\ldots<i_{k}} d d a_{i_{1} \ldots i_{k}} \wedge d x_{i_{1}} \wedge \ldots \wedge d x_{i_{k}}-d a_{i_{1} \ldots i_{k}} \wedge d d x_{i_{1}} \wedge \ldots \wedge d x_{i_{k}}+\ldots \\
& +(-1)^{k} d a_{i_{1} \ldots i_{k}} \wedge d x_{i_{1}} \wedge \ldots \wedge d d x_{i_{k}}
\end{aligned}
$$

But $d d f=0$ for any function f as was shown above. Hence all terms in this sum are equal to 0 , i.e. $d d w=0$.

Definition. A k-form ω is called closed if $d \omega=0$. It is called exact if there exists a $(k-1)$-form θ such that $d \theta=\omega$. The form θ is called the primitive of the form ω. The previous theorem can be reformulated as follows:

Corollary 8.3. Every exact form is closed.
The converse is not true in general. For instance, take a differential 1-form

$$
\omega=\frac{x d y-y d x}{x^{2}+y^{2}}
$$

on the punctured plane $U=\mathbb{R}^{2} \backslash 0$ (i.e the plane \mathbb{R}^{2} with the deleted origin). It is easy to calculate that $d \omega=0$, i.e ω is closed. On the other hand it is not exact. Indeed, let us write down this form in polar coordinates (r, φ). We have

$$
x=r \cos \varphi, y=r \sin \varphi .
$$

Hence,

$$
\omega=\frac{1}{r^{2}}(r \cos \varphi(\sin \varphi d r+r \cos \varphi d \varphi)-r \sin \varphi(\cos \varphi d r-r \sin \varphi d \varphi))=d \varphi .
$$

If there were a function H on U such that $d H=\omega$, then we would have to have $H=\varphi+$ const, but this is impossible because the polar coordinate φ is not a continuous univalent function on U. Hence ω is not exact.

However, as we will see later, a closed form is exact if it is defined on the whole vector space V.

Proposition 8.4. Operators f^{*} and d commute, i.e. for any differential k-form $w \in \Omega^{k}(W)$, and a smooth map $f: U \rightarrow W$ we have

$$
d f^{*} w=f^{*} d w
$$

Proof. Suppose first that $k=0$, i.e. w is a function $\varphi: W \rightarrow \mathbb{R}$. Then $f^{*} \varphi=\varphi \circ f$. Then $d(\varphi \circ f)=f^{*} d \varphi$. Indeed, for any point $x \in U$ and a vector $X \in V_{x}$ we have

$$
\begin{gathered}
d(\varphi \circ f)(X)=d \varphi\left(d_{x} f(X)\right) \\
\text { (chain rule) }
\end{gathered}
$$

But $d \varphi\left(d_{x} f(X)\right)=f^{*}(d \varphi(X))$.
Consider now the case of arbitrary k-form w,

$$
w=\sum_{i_{1}<\ldots<i_{k}} a_{i_{1} \ldots i_{k}} d x_{i_{1}} \wedge \ldots \wedge d x_{i_{k}}
$$

Then

$$
f^{*} w=\sum_{i_{1}<\ldots<i_{k}} a_{i_{1} \ldots i_{k}} \circ f d f_{i_{1}} \wedge \ldots \wedge d f_{i_{k}}
$$

where f_{1}, \ldots, f_{n} are coordinate functions of the map f. Using the previous theorem and taking into account that $d\left(d f_{i}\right)=0$, we get

$$
d\left(f^{*} w\right)=\sum_{i_{1}<\ldots<i_{k}} d\left(a_{i_{1} \ldots i_{k}} \circ f\right) \wedge d f_{i_{1}} \wedge \ldots \wedge d f_{i_{k}}
$$

On the other hand

$$
d w=\sum_{i_{1}<\ldots<i_{k}} d a_{i_{1} \ldots i_{k}} \wedge d x_{i_{1}} \wedge \ldots \wedge d x_{i_{k}}
$$

and therefore

$$
f^{*} d w=\sum_{i_{1}<\ldots<i_{k}} f^{*}\left(d a_{i_{1} \ldots i_{k}}\right) \wedge d f_{i_{1}} \wedge \ldots \wedge d f_{i_{k}} .
$$

But according to what is proven above, we have

$$
f^{*} d a_{i_{1} \ldots i_{k}}=d\left(a_{i_{1} \ldots i_{k}} \circ f\right)
$$

Thus,

$$
f^{*} d w=\sum_{i_{1}<\ldots<i_{k}} d\left(a_{i_{1} \ldots i_{k}} \circ f\right) \wedge d f_{i_{1}} \wedge \ldots \wedge d f_{i_{k}}=d f^{*} w
$$

The above theorem shows, in particular, that the definition of the exterior differential is independent of the choice of the coordinate. Moreover, one can even use non-linear (curvilinear) coordinate systems, like polar coordinates on the plane.

8.3 Curvilinear coordinate systems

A (non-linear) coordinate system on a domain U in an n-dimensional space V is a smooth map $f=\left(f_{1}, \ldots, f_{n}\right): U \rightarrow \mathbb{R}^{n}$ such that

1. For each point $x \in U$ the differentials $d_{x} f_{1}, \ldots, d_{x} f_{n} \in\left(V_{x}\right)^{*}$ are linearly independent.
2. f is injective, i.e. $f(x) \neq f(y)$ for $x \neq y$.

Thus a coordinate map f associates n coordinates $y_{1}=f_{1}(x), \ldots, y_{n}=f_{n}(x)$ with each point $x \in U$. The inverse map $f^{-1}: U^{\prime} \rightarrow U$ is called the parameterization. Here $U^{\prime}=f(U) \subset \mathbb{R}^{n}$ is the image of U under the map f. If one already has another set of coordinates $x_{1} \ldots x_{n}$ on U, then the coordinate map f expresses new coordinates $y_{1} \ldots y_{n}$ through the old one, while the parametrization map expresses the old coordinate through the new one. Thus the statement

$$
g^{*} d w=d g^{*} w
$$

applied to the parametrization map g just tells us that the formula for the exterior differential is the same in the new coordinates and in the old one.

Consider a space \mathbb{R}^{n} with coordinates $\left(u_{1}, \ldots, u_{n}\right)$. The j-th coordinate line is given by equations $u_{i}=c_{i}, i=1, \ldots, n ; i \neq j$. Given a domain $U^{\prime} \subset \mathbb{R}^{n}$ consider a parameterization map $g: U^{\prime} \rightarrow$ $U \subset V$. The images $\left.g\left\{u_{i}=c_{i}, i \neq j\right\}\right) \subset U$ of coordinates lines $\left\{u_{i}=c_{i}, i \neq j\right\} \subset U^{\prime}$ are called coordinate lines in U with respect to the curvilinear coordinate system $\left(u_{1}, \ldots, u_{n}\right)$. For instance, coordinate lines for polar coordinates in \mathbb{R}^{2} are concentric circles and rays, while coordinate lines for spherical coordinates in \mathbb{R}^{3} are rays from the origin, and latitudes and meridians on concentric spheres.

8.4 Geometric definition of the exterior differential

We will show later (see Lemma 10.2) that one can give another equivalent definition of the operator d) without using any coordinates at all. But as a first step we give below an equivalent definition of the exterior differential which is manifestly invariant of a choice of affine coordinates.

Given a point $a \in V$ and vectors $h_{1}, \ldots, h_{k} \in V_{a}$ we will denote by $P_{a}\left(h_{1}, \ldots, h_{k}\right)$ the k dimensional parallelepiped

$$
\left\{a+\frac{1}{2} \sum_{1}^{k} u_{j} h_{j} ;\left|u_{1}\right|, \ldots,\left|u_{k}\right| \leq 1\right\}
$$

centered at the point a with its sides parallel to the vectors h_{1}, \ldots, h_{k}, see Fig. ??. For instance, for $k=1$ the parallelepiped $P_{a}(h)$ is an interval centered at a of length $|a|$.

As it was explained above in Section 8.1 for a 0 -form $f \in \Omega^{0}(U)$, i.e. a function $f: U \rightarrow \mathbb{R}$ its exterior differential is just its usual differential, and hence it can be defined by the formula

$$
(d f)_{a}(h)=d_{a} f(h)=\lim _{t \rightarrow 0} \frac{1}{t}\left(f\left(a+\frac{t h}{2}\right)-f\left(a-\frac{t h}{2}\right)\right), t \in \mathbb{R}, h \in V_{a}, a \in U
$$

Proposition 8.5. Let $\alpha \in \Omega_{1}^{k-1}(U)$ be a differential $(k-1)$-form on a domain $U \subset \mathbb{R}^{n}$. Then for any point $a \in U$ and any vectors $h_{1}, \ldots, h_{k} \in V_{a}$ we have

$$
\begin{align*}
& (d \alpha)_{a}\left(h_{1}, \ldots, h_{k}\right)=\lim _{t \rightarrow 0} \frac{1}{t^{k}} \sum_{j=1}^{k}(-1)^{k-1}\left(\alpha_{a+\frac{t h_{j}}{2}}\left(t h_{1}, \ldots, \stackrel{j}{\vee}, \ldots, t h_{k}\right)-\alpha_{a-\frac{t h_{j}}{2}}\left(t h_{1}, \ldots, \stackrel{j}{\vee}, \ldots, t h_{k}\right)\right) \\
& =\lim _{t \rightarrow 0} \frac{1}{t} \sum_{j=1}^{k}(-1)^{k-1}\left(\alpha_{a+\frac{t h_{j}}{2}}\left(h_{1}, \ldots, \stackrel{j}{\vee}, \ldots, h_{k}\right)-\alpha_{a-\frac{t h_{j}}{2}}\left(h_{1}, \ldots, \stackrel{j}{\vee}, \ldots, h_{k}\right)\right) \tag{8.4.1}
\end{align*}
$$

For instance, for a 1-form $\alpha \in \Omega^{1}(U)$, we have

$$
\begin{aligned}
& (d \alpha)_{a}\left(h_{1}, h_{2}\right):=\lim _{t \rightarrow 0} \frac{1}{t^{2}}\left(\alpha_{a+\frac{t h_{1}}{2}}\left(t h_{2}\right)+\alpha_{a-\frac{t h_{1}}{2}}\left(-t h_{2}\right)+\alpha_{a+\frac{t h_{2}}{2}}\left(-t h_{1}\right)+\alpha_{a-\frac{t h_{2}}{2}}\left(t h_{1}\right)\right) \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left(\alpha_{a+\frac{t h_{1}}{2}}\left(h_{2}\right)-\alpha_{a-\frac{t h_{1}}{2}}\left(h_{2}\right)-\alpha_{a+\frac{t h_{2}}{2}}\left(h_{1}\right)+\alpha_{a-\frac{t h_{2}}{2}}\left(h_{1}\right)\right)
\end{aligned}
$$

Proof. First we observe that for a C^{1}-smooth form α the limit in the right-hand side of formula 8.4.1) exists and define a k-form (i.e. for each a it is a multilinear skewsymmetric function of vectors $\left.h_{1}, \ldots, h_{k} \in \mathbb{R}_{a}^{n}\right)$. We can also assume that the vectors h_{1}, \ldots, h_{k} are linearly independent. Otherwise, both definitions give 0 . Denote $L_{a}=\operatorname{Span}\left(h_{1}, \ldots, h_{k}\right) \subset V_{a}$ and consider the restriction $\alpha^{\prime}:=\left.\alpha\right|_{L \cap U}$. Let $\left(y_{1}, \ldots, y_{k}\right)$ be coordinates in L_{a} corresponding to the basis h_{1}, \ldots, h_{k}. Then we
can write $\alpha^{\prime}:=\sum P_{i} d y_{1} \wedge \ldots \vee^{i} \cdots \wedge d y_{k}$ and thus

$$
\begin{align*}
& \lim _{t \rightarrow 0} \frac{1}{t}\left(\sum_{j=1}^{k} \alpha_{a+\frac{t h_{j}}{2}}\left(h_{1}, \ldots, \stackrel{i}{\vee}, \ldots, h_{k}\right)-\alpha_{a+\frac{t h_{j}}{2}}\left(h_{1}, \ldots, \stackrel{i}{\vee}, \ldots, h_{k}\right)\right) \\
& =\sum_{j=1}^{k} \sum_{i=1}^{k} \lim _{t \rightarrow 0} \frac{P_{j}\left(a+\frac{t h_{j}}{2}\right)-P_{j}\left(a-\frac{t h_{j}}{2}\right)}{t} d y_{1} \wedge \ldots \stackrel{i}{\vee} \ldots \wedge d y_{k}\left(h_{1}, \ldots, \stackrel{j}{\vee}, \ldots, h_{k}\right) \tag{8.4.2}\\
& =\sum_{j=1}^{k} \sum_{i=1}^{k} \frac{\partial P_{j}}{\partial y_{j}}(a) d y_{1} \wedge \ldots \stackrel{i}{\vee} \cdots \wedge d y_{k}\left(h_{1}, \ldots, \stackrel{i}{\vee}, \ldots, h_{k}\right) .
\end{align*}
$$

But

$$
d y_{1} \wedge \ldots \stackrel{i}{\vee} \cdots \wedge d y_{k}\left(h_{1}, \ldots, \stackrel{j}{\vee}, \ldots, h_{k}\right)= \begin{cases}(-1)^{i-1}, & \text { if } i=j \\ 0, & \text { if } i \neq j\end{cases}
$$

Hence, the expression in (8.4.2) is equal to $\sum_{1}^{k}(-1)^{i-1} \frac{\partial P_{i}}{\partial y_{i}}(a)$. But

$$
d \alpha^{\prime}=\left(\sum_{1}^{k}(-1)^{i-1} \frac{\partial P_{i}}{\partial y_{i}}\right) d y_{1} \wedge \cdots \wedge d y_{k}
$$

and therefore $\left(d \alpha^{\prime}\right)_{a}\left(h_{1}, \ldots, h_{k}\right)=\sum_{1}^{k}(-1)^{i-1} \frac{\partial P_{i}}{\partial y_{i}}(a)$, i.e. the two definitions of the exterior differential coincide.

8.5 More about vector fields

Similarly to the case of linear coordinates, given any curvilinear coordinate system $\left(u_{1}, \ldots, u_{n}\right)$ in U, one denotes by

$$
\frac{\partial}{\partial u_{1}}, \ldots, \frac{\partial}{\partial u_{n}}
$$

the vector fields which correspond to the partial derivatives with respect to the coordinates u_{1}, \ldots, u_{n}. In other words, the vector field $\frac{\partial}{\partial u_{i}}$ is tangent to the u_{i}-coordinate lines and represents the the velocity vector of the curves $u_{1}=\operatorname{const}_{1}, \ldots, u_{i-1}=\operatorname{const}_{i-1}, u_{i+1}=\operatorname{const}_{i+1}, \ldots, u_{n}=\operatorname{const}_{n}$, parameterized by the coordinate u_{i}.

For instance, suppose we are given spherical coordinates $(r, \theta, \varphi), r \geq 0, \phi \in[0, \pi], \theta \in[0,2 \pi)$ in
\mathbb{R}^{3}. The spherical coordinates are related to the cartesian coordinates (x, y, z) by the formulas

$$
\begin{align*}
& x=r \sin \varphi \cos \theta, \tag{8.5.1}\\
& y=r \sin \varphi \sin \theta, \tag{8.5.2}\\
& z=r \cos \varphi . \tag{8.5.3}
\end{align*}
$$

Then the vector fields

$$
\frac{\partial}{\partial r}, \frac{\partial}{\partial \varphi}, \text { and } \frac{\partial}{\partial \theta}
$$

are mutually orthogonal and define the same orientation of the space as the standard Cartesian coordinates in \mathbb{R}^{3}. We also have $\left\|\frac{\partial}{\partial r}\right\|=1$. However the length of vector fields $\frac{\partial}{\partial \varphi}$ and $\frac{\partial}{\partial \theta}$ vary. When r and θ are fixed and φ varies, then the corresponding point (r, θ, φ) is moving along a meridian of radius r with a constant angular speed 1. Hence,

$$
\left\|\frac{\partial}{\partial \varphi}\right\|=r
$$

When r and φ are fixed and θ varies, then the point (r, φ, θ) is moving along a latitude of radius $r \sin \varphi$ with a constant angular speed 1 . Hence,

$$
\left\|\frac{\partial}{\partial \theta}\right\|=r \sin \varphi
$$

Note that it is customary to introduce unit vector fields in the direction of $\frac{\partial}{\partial r}, \frac{\partial}{\partial \theta}$ and $\frac{\partial}{\partial \varphi}$:

$$
\mathbf{e}_{r}:=\frac{\partial}{\partial r}, \mathbf{e}_{\varphi}:=\frac{1}{r} \frac{\partial}{\partial \varphi}, \quad \mathbf{e}_{\theta}=\frac{1}{r \sin \varphi} \frac{\partial}{\partial \theta},
$$

which form an orthonormal basis at every point. The vector fields $\mathbf{e}_{r}, \mathbf{e}_{\theta}$ and \mathbf{e}_{φ} are not defined at the origin and at the poles $\phi=0, \pi$.

The chain rule allows us to express the vector fields $\frac{\partial}{\partial u_{1}}, \ldots, \frac{\partial}{\partial u_{n}}$ through the vector fields $\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}$. Indeed, for any function $f: U \rightarrow \mathbb{R}$ we have

$$
\frac{\partial f}{\partial u_{i}}=\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}} \frac{\partial x_{j}}{\partial u_{i}},
$$

and, therefore,

$$
\frac{\partial}{\partial u_{i}}=\sum_{j=1}^{n} \frac{\partial x_{j}}{\partial u_{i}} \frac{\partial}{\partial x_{j}},
$$

For instance, spherical coordinates (r, θ, ϕ) are related to the cartesian coordinates (x, y, z) by the formulas (8.5.1), and hence we derive the following expression of the vector fields $\frac{\partial}{\partial r}, \frac{\partial}{\partial \theta}, \frac{\partial}{\partial \varphi}$ through the vector fields $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}$:

$$
\begin{aligned}
\frac{\partial}{\partial r} & =\sin \varphi \cos \theta \frac{\partial}{\partial x}+\sin \varphi \sin \theta \frac{\partial}{\partial y}+\cos \varphi \frac{\partial}{\partial z} \\
\frac{\partial}{\partial \theta} & =-r \sin \varphi \sin \theta \frac{\partial}{\partial x}+r \sin \varphi \cos \theta \frac{\partial}{\partial y} \\
\frac{\partial}{\partial \varphi} & =r \cos \varphi \cos \theta \frac{\partial}{\partial x}+r \cos \varphi \sin \theta \frac{\partial}{\partial y}-r \sin \varphi \frac{\partial}{\partial z}
\end{aligned}
$$

8.6 Case $n=3$. Summary of isomorphisms

Let U be a domain in the 3 -dimensional space V. We will consider 5 spaces associated with U.
$\Omega^{0}(U)=C^{\infty}(U)$-the space of 0 -forms, i.e. the space of smooth functions;
$\Omega^{k}(U)$ for $k=1,2,3$ - the spaces of differential k-forms on U;
$\operatorname{Vect}(U)$-the space of vector fields on U.

Let us fix a volume form $w \in \Omega^{3}(U)$ that is any nowhere vanishing differential 3-form. In coordinates w can be written as

$$
w=f(x) d x_{1} \wedge d x_{2} \wedge d x_{3}
$$

where the function $f: U \rightarrow \mathbb{R}$ is never equal to 0 . The choice of the form w allows us to define the following isomorphisms.

1. $\Lambda_{w}: C^{\infty}(U) \rightarrow \Omega^{3}(U), \quad \Lambda_{w}(h)=h w$ for any function $h \in C^{\infty}(U)$.
2. $\left.\left.\lrcorner_{w}: \operatorname{Vect}(U) \rightarrow \Omega^{2}(U) \quad\right\lrcorner_{w}(v)=v\right\lrcorner w$.

Sometimes we will omit the subscript w an write just Λ and \lrcorner.
Our third isomorphism depends on a choice of a scalar product $<,>$ in V. Let us fix a scalar product. This enables us to define an isomorphism

$$
\mathcal{D}=\mathcal{D}_{<,>}: \operatorname{Vect}(U) \rightarrow \Omega^{1}(U)
$$

which associates with a vector field v on U a differential 1-form $\mathcal{D}(v)=\langle v,$.$\rangle . Let us write down the$ coordinate expressions for all these isomorphisms. Fix a cartesian coordinate system (x_{1}, x_{2}, x_{3}) in V so that the scalar product $\langle x, y\rangle$ in these coordinates equals $x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}$. Suppose also that $w=d x_{1} \wedge d x_{2} \wedge d x_{3}$. Then $\Lambda(h)=h d x_{1} \wedge d x_{2} \wedge d x_{3}$.

$$
\lrcorner(v)=v_{1} d x_{2} \wedge d x_{3}+v_{2} d x_{3} \wedge d x_{1}+v_{3} d x_{1} \wedge d x_{2}
$$

where v_{1}, v_{2}, v_{3} are coordinate functions of the vector field v.

$$
\mathcal{D}(v)=v_{1} d x_{1}+v_{2} d x_{2}+v_{3} d x_{3} .
$$

If V is an oriented Euclidean space then one also has isomorphisms

$$
\star: \Omega^{k}(V) \rightarrow \Omega^{3-k}(V), \quad k=0,1,2,3 .
$$

If w is the volume form on V for which the unit cube has volume 1 and which define the given orientation of V (equivalently, if $w=x_{1} \wedge x_{2} \wedge x_{3}$ for any Cartesian positive coordinate system on $V)$, then

$$
\lrcorner_{w}(v)=\star \mathcal{D}(v), \text { and } \Lambda_{w}=\star: \Omega^{0}(V) \rightarrow \Omega^{3}(V) .
$$

8.7 Gradient, curl and divergence of a vector field

The above isomorphism, combined with the operation of exterior differentiation, allows us to define the following operations on the vector fields. First recall that for a function $f \in C^{\infty}(U)$,

$$
\operatorname{grad} f=\mathcal{D}^{-1}(d f)
$$

Now let $v \in \operatorname{Vect}(U)$ be a vector field. Then its divergence $\operatorname{div} v$ is the function defined by the formula

$$
\left.\operatorname{div} v=\Lambda^{-1}(d(\lrcorner v)\right)
$$

In other words, we take the 2 -form $v\lrcorner w$ (w is the volume form) and compute its exterior differential $d(v\lrcorner w)$. The result is a 3 -form, and, therefore is proportional to the volume form w, i.e. $d(v\lrcorner w)=h w$.

This proportionality coefficient (which is a function; it varies from point to point) is simply the divergence: $\operatorname{div} v=h$.

Given a vector field v, its curl is as another vector field curl v defined by the formula

$$
\operatorname{curl} v:=\lrcorner^{-1} d(\mathcal{D} v)=\mathcal{D}^{-1} * d(\mathcal{D} v) .
$$

If one fixes a cartesian coordinate system in V such that $w=d x_{1} \wedge d x_{2} \wedge d x_{3}$ and $\langle x, y\rangle=$ $x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}$ then we get the following formulas

$$
\begin{aligned}
\operatorname{grad} f & =\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \frac{\partial f}{\partial x_{3}}\right) \\
\operatorname{div} v & =\frac{\partial v_{1}}{\partial x_{1}}+\frac{\partial v_{2}}{\partial x_{2}}+\frac{\partial v_{3}}{\partial x_{3}} \\
\operatorname{curl} v & =\left(\frac{\partial v_{3}}{\partial x_{2}}-\frac{\partial v_{2}}{\partial x_{3}}, \frac{\partial v_{1}}{\partial x_{3}}-\frac{\partial v_{3}}{\partial x_{1}}, \frac{\partial v_{2}}{\partial x_{1}}-\frac{\partial v_{1}}{\partial x_{2}}\right)
\end{aligned}
$$

where $v=\left(v_{1}, v_{2}, v_{3}\right)$.
We will discuss the geometric meaning of these operations later in Section ??.

8.8 Example: expressing vector analysis operations in spherical coordinates

Given spherical coordinates (r, θ, ϕ) in \mathbb{R}^{3}, consider orthonormal vector fields

$$
\mathbf{e}_{r}=\frac{\partial}{\partial r}, \mathbf{e}_{\varphi}=\frac{1}{r} \frac{\partial}{\partial \varphi} \text { and } \mathbf{e}_{\theta}=\frac{1}{r \sin \varphi} \frac{\partial}{\partial \theta}
$$

tangent to the coordinate lines and which form orthonormal basis at every point.
Operator \mathcal{D}.
Given a vector field $\mathbf{v}=a_{1} \mathbf{e}_{r}+a_{2} \mathbf{e}_{\varphi}+a_{3} \mathbf{e}_{\theta}$ we compute $\mathcal{D} \mathbf{v}$. For any vector field $h=h_{1} \mathbf{e}_{r}+$ $h_{2} \mathbf{e}_{\theta}+h_{3} \mathbf{e}_{\varphi}$ we have $\langle\mathbf{v}, h\rangle=\mathcal{D} \mathbf{v}(h)$. Let us write $\mathcal{D} \mathbf{v}=c_{1} d r+c_{2} d \varphi+c_{3} d \theta$. Then

$$
\langle\mathbf{v}, h\rangle=a_{1} h_{1}+a_{2} h_{2}+a_{3} h_{3}
$$

and

$$
\begin{aligned}
\mathcal{D} \mathbf{v}(h) & =\left(c_{1} d r+c_{2} d \varphi+c_{3} d \theta\right)\left(h_{1} \mathbf{e}_{r}+h_{2} \mathbf{e}_{\varphi}+h_{3} \mathbf{e}_{\theta}\right) \\
& =c_{1} h_{1} d r\left(\mathbf{e}_{r}\right)+c_{2} h_{2} d \varphi\left(\mathbf{e}_{\varphi}\right)+c_{3} h_{3} d \theta\left(\mathbf{e}_{\theta}\right)=c_{1} h_{1}+\frac{c_{2}}{r} h_{2}+\frac{c_{3}}{r \sin \varphi} h_{3} .
\end{aligned}
$$

Hence, $c_{1}=a_{1}, c_{2}=r a_{2}, c_{3}=r a_{3} \sin \varphi$, i.e.

$$
\begin{equation*}
\mathcal{D} \mathbf{v}=a_{1} d r+r a_{2} d \varphi+r a_{3} \sin \varphi d \theta . \tag{8.8.1}
\end{equation*}
$$

Operator *. First we express the volume form $\Omega=d x \wedge d y \wedge d z$ in spherical coordinates. One way to do that is just to plug into the form the expression of x, y, z through spherical coordinates. But we can also argue as follows. We have $\Omega=c d r \wedge d \varphi \wedge d \theta$. Let us evaluate both sides of this equality on vectors $\mathbf{e}_{r}, \mathbf{e}_{\varphi}, \mathbf{e}_{\theta}$. Then $\Omega\left(\mathbf{e}_{r}, \mathbf{e}_{\varphi}, \mathbf{e}_{\theta}\right)=1$ because these vectors fields are at every point orthonormal and define the standard orientation of the space. On the other hand,

$$
\begin{aligned}
& (d r \wedge d \varphi \wedge d \theta)\left(\mathbf{e}_{r}, \mathbf{e}_{\varphi}, \mathbf{e}_{\theta}\right) \\
& \quad=\frac{1}{r^{2} \sin \varphi}(d r \wedge d \varphi \wedge d \theta)\left(\frac{\partial}{\partial r}, \frac{\partial}{\partial \varphi}, \frac{\partial}{\partial \theta}\right)=\frac{1}{r^{2} \sin \varphi},
\end{aligned}
$$

and therefore $c=r^{2} \sin \varphi$, i.e.

$$
\Omega=r^{2} \sin \varphi d r \wedge d \varphi \wedge d \theta
$$

In particular, given a 3 -form $\eta=a d r \wedge d \varphi \wedge d \theta$ we get $* \eta=\frac{a}{r^{2} \sin \varphi}$.
Let us now compute $* d r, * d \varphi$ and $* d \theta$. We argue that

$$
* d r=A d \varphi \wedge d \theta, \quad * d \theta=B d r \wedge d \varphi, \quad * d \varphi=C d \theta \wedge d r .
$$

Indeed, suppose that $* d r=A d \varphi \wedge d \theta+A^{\prime} d \theta \wedge d r+A^{\prime \prime} d r \wedge d \varphi$ and compute the value of both sides on vectors $\mathbf{e}_{\theta}, \mathbf{e}_{r}$:

$$
* d r\left(\mathbf{e}_{\theta}, \mathbf{e}_{r}\right)=d r\left(\mathbf{e}_{\phi}\right)=0
$$

because the 2-dimensional volume (i.e the area) of the 2-dimensional parallelepiped $P\left(\mathbf{e}_{\theta}, \mathbf{e}_{r}\right)$ and the 1-dimensional volume (i.e. the length) of the 1-dimensional parallelepiped $P(\mathbf{e} \varphi)$ are both equal to 1 . On the other hand,

$$
\left(A d \varphi \wedge d \theta+A^{\prime} d \theta \wedge d r+A^{\prime \prime} d r \wedge d \varphi\right)\left(\mathbf{e}_{\theta}, \mathbf{e}_{r}\right)=\frac{1}{r \sin \varphi} A^{\prime}
$$

and therefore $A^{\prime}=0$. Similarly, $A^{\prime \prime}=0$. The argument for $* d \theta$ and $* d \varphi$ is also similar.
It remains to compute the coefficients A, B, C. We have

$$
\begin{aligned}
& * d r\left(\mathbf{e} \varphi, \mathbf{e}_{\theta}\right)=d r\left(\mathbf{e}_{r}\right)=1=A d \varphi \wedge d \theta\left(\mathbf{e} \varphi, \mathbf{e}_{\theta}\right)=\frac{A}{r^{2} \sin \varphi} \\
& * d \theta\left(\mathbf{e}_{r}, \mathbf{e}_{\varphi}\right)=d \theta\left(\mathbf{e}_{\theta}\right)=\frac{1}{r \sin \varphi}=B d r \wedge d \varphi\left(\mathbf{e}_{r}, \mathbf{e}_{\varphi}\right)=\frac{B}{r} \\
& * d \varphi\left(\mathbf{e}_{\theta}, \mathbf{e}_{r}\right)=d \varphi\left(\mathbf{e}_{\varphi}\right)=\frac{1}{r}=C d \varphi \wedge d r\left(\mathbf{e}_{\theta}, \mathbf{e}_{r}\right)=\frac{C}{r \sin \varphi}
\end{aligned}
$$

Thus, i.e.

$$
\begin{gather*}
A=r^{2} \sin \varphi, B=\frac{1}{\sin \varphi}, C=\sin \varphi, \\
* d r=r^{2} \sin \varphi d \varphi \wedge d \theta, * d \theta=\frac{1}{\sin \varphi} d r \wedge d \varphi, * d \varphi=\sin \varphi d \theta \wedge d r . \tag{8.8.2}
\end{gather*}
$$

Hence we also have

$$
\begin{align*}
& * d \varphi \wedge d \theta=\frac{1}{r^{2}} d r \\
& * d r \wedge d \varphi=\sin \varphi d \theta \tag{8.8.3}\\
& * d \theta \wedge d r=\frac{1}{\sin \varphi} d \varphi
\end{align*}
$$

Now we are ready to express the vector analysis operations in spherical coordinates.

Exercise 8.6. (Gradient) Given a function $f(r, \theta, \varphi)$ expressed in cylindrical coordinates, compute ∇f.

Solution. We have

$$
\nabla f=D^{-1}\left(f_{r} d r+f_{\varphi} d \varphi+f_{\theta} d \theta\right)=f_{r} \mathbf{e}_{r}+\frac{f_{\varphi}}{r} \mathbf{e}_{\varphi}+\frac{f_{\varphi}}{r \sin \varphi} \mathbf{e}_{\theta}
$$

Here we denote by f_{r}, f_{φ} and f_{θ} the respective partial derivatives of the function f.

Exercise 8.7. Given a vector field $\mathbf{v}=a \mathbf{e}_{r}+b \mathbf{e}_{\varphi}+c \mathbf{e}_{\theta}$ compute div \mathbf{v} and $\operatorname{curl} \mathbf{v}$.

Solution.

a) Divergence. We have

$$
\begin{aligned}
\mathbf{v}\lrcorner \Omega & \left.=\left(a \mathbf{e}_{r}+b \mathbf{e}_{\varphi}+c \mathbf{e}_{\theta}\right)\right\lrcorner r^{2} \sin \varphi d r \wedge d \varphi \wedge d \theta \\
& =a r^{2} \sin \varphi d \varphi \wedge d \theta+c r d r \wedge d \varphi+b r \sin \varphi d \theta \wedge d r
\end{aligned}
$$

and

$$
\begin{aligned}
d(\mathbf{v}\lrcorner \Omega) & =\left(\left(r^{2} a_{r}+2 r a\right) \sin \varphi+r c_{\theta}+r b_{\varphi} \sin \varphi+r b \cos \varphi\right) d r \wedge d \varphi \wedge d \theta \\
& =\left(a_{r}+\frac{2 a}{r}+\frac{c_{\theta}}{r \sin \varphi}+\frac{b_{\varphi}}{r}+\frac{b}{r} \cot \varphi\right) \Omega
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\operatorname{div} \mathbf{v}=a_{r}+\frac{2 a}{r}+\frac{c_{\theta}}{r \sin \varphi}+\frac{b_{\varphi}}{r}+\frac{b}{r} \cot \varphi . \tag{8.8.4}
\end{equation*}
$$

b) Curl. We have

$$
\begin{align*}
\text { curl } \mathbf{v} & =\mathcal{D}^{-1} * d \mathcal{D} \mathbf{v}=\mathcal{D}^{-1} * d(a d r+r b d \varphi+r c \sin \varphi d \theta) \\
& =\mathcal{D}^{-1} *\left(\left(a_{\varphi}-b-r b_{r}\right) d r \wedge d \varphi+\left(c \sin \varphi+r c_{r} \sin \varphi-a_{\theta}\right) d \theta \wedge d r\right. \\
& \left.+\left(r b_{\theta}-r c_{\varphi} \sin \varphi-r c \cos \varphi\right) d \varphi \wedge d \theta\right) \\
& =\mathcal{D}^{-1}\left(\frac{r b_{\theta}-r c_{\varphi} \sin \varphi-r c \cos \varphi}{r^{2}} d r+\frac{c \sin \varphi+r c_{r} \sin \varphi-a_{\theta}}{\sin \varphi} d \varphi\right. \tag{8.8.5}\\
& \left.+\left(a_{\varphi}-b-r b_{r}\right) \sin \varphi d \theta\right) \\
& =\frac{r b_{\theta}-r c_{\varphi} \sin \varphi-r c \cos \varphi}{r^{2}} \mathbf{e}_{r}+\frac{c \sin \varphi+r c_{r} \sin \varphi-a_{\theta}}{r \sin \varphi} \mathbf{e}_{\varphi} \\
& +\frac{a_{\varphi}-b-r b_{r}}{r} \mathbf{e}_{\theta} .
\end{align*}
$$

8.9 Complex-valued differential k-forms

One can consider complex-valued differential k -forms. A \mathbb{C}-valued differential 1-form is a field of \mathbb{C}-valued k-forms, or simply it is an expression $\alpha+i \beta$, where α, β are usual real-valued k -forms. All operations on complex valued k-forms (exterior multiplication, pull-back and exterior differential) are defined in a natural way:

$$
\left(\alpha_{1}+i \beta_{1}\right) \wedge\left(\alpha_{2}+i \beta_{2}\right)=\alpha_{1} \wedge \alpha_{2}-\beta_{1} \wedge \beta_{2}+i\left(\alpha_{1} \wedge \beta_{2}+\beta_{1} \wedge \alpha_{2}\right)
$$

$$
f^{*}(\alpha+i \beta)=f^{*} \alpha+i f^{*} \beta, d(\alpha+i \beta)=d \alpha+i d \beta
$$

We will be in particular interested in complex valued on \mathbb{C}. Note that a complex-valued function (or 0 -form) is on a domain $U \subset \mathbb{C}$ is just a map $f=u+i v: U \rightarrow \mathbb{C}$. Its differential $d f$ is the same as the differntial of this map, but it also can be viewed as a \mathbb{C}-valued differential 1-form $d f=d u+i d v$.

Example 8.8.

$$
\begin{gathered}
d z=d x+i d y, d \bar{z}=d x-i d y, z d z=(x+i y)(d x+i d y)=x d x-y d y+i(x d y+y d x) \\
d z \wedge d \bar{z}=(d x+i d y) \wedge(d x-i d y)=-2 i d x \wedge d y
\end{gathered}
$$

Exercise 8.9. Prove that $d\left(z^{n}\right)=n z^{n-1} d z$ for any integer $n \neq 0$.
Solution. Let us do the computation in polar coordinates. Then $z^{n}=r^{n} e^{i n \phi}$ and assuming that $n \neq 0$ we have

$$
d\left(z^{n}\right)=n r^{n-1} e^{i n \phi} d r+i n r^{n} e^{i n \phi} d \phi=n r^{n-1} e^{i n \phi}(d r+i d \phi)
$$

On the other hand,

$$
n z^{n-1} d z=n r^{n-1} e^{i(n-1) \phi} d\left(r e^{i \phi}\right)=n r^{n-1} e^{i(n-1) \phi}\left(e^{i \phi} d r+i e^{i \phi} d \phi\right)=n r^{n-1} e^{i n \phi}(d r+i d \phi) .
$$

Comparing the two expressions we conclude that $d\left(z^{n}\right)=n z^{n-1} d z$.
It follows that the 1 -form $\frac{d z}{z^{n}}$ is exact on $\mathbb{C} \backslash 0$ for $n>1$. Indeed,

$$
\frac{d z}{z^{n}}=d\left(\frac{1}{(1-n) z^{n-1}}\right) .
$$

On the other hand the form $\frac{d z}{z}$ is closed on $\mathbb{C} \backslash 0$ but not exact. Indeed,

$$
\frac{d z}{z}=\frac{d\left(r e^{i \phi}\right)}{r e^{i \phi}}=\frac{e^{i \phi} d r+i r e^{i \phi} d \phi}{r e^{i \phi}}=\frac{d r}{r}+i d \phi,
$$

and hence $d\left(\frac{d z}{z}\right)=0$.
On the other hand, we already had seen that the form $d \phi$, and hence $\frac{d z}{z}$, is not exact.

Chapter 9

Integration of differential forms and functions

9.1 Useful technical tools: partition of unity and cut-off functions

Let us recall that the support of a function θ is the closure of the set of points where it is not equal to 0 . We denote the support by $\operatorname{Supp}(\theta)$. We say that θ is supported in an open set U if $\operatorname{Supp}(\theta) \subset U$.

Lemma 9.1. There exists a C^{∞} function $\rho: \mathbb{R} \rightarrow[0, \infty)$ with the following properties:

- $\rho(x) \equiv 0,|x| \geq 1$;
- $\rho(x)=\rho(-x)$;
- $\rho(x)>0$ for $|x|<1$.

Proof. There are a lot of functions with this property. For instance, one can be constructed as follows. Take the function

$$
h(x)= \begin{cases}e^{-\frac{1}{x^{2}}} & , x>0 \tag{9.1.1}\\ 0 & , x \leq 0\end{cases}
$$

The function $e^{-\frac{1}{x^{2}}}$ has the property that all its derivatives at 0 are equal to 0 , and hence the function h is C^{∞}-smooth. Then the function $\rho(x):=h(1+x) h(1-x)$ has the required properties.

Lemma 9.2. Existence of cut-off functions Let $C \subset V$ be compact set and $U \supset C$ its open neighborhood. Then there exists a C^{∞}-smooth function $\sigma_{C, U}: V \rightarrow[0, \infty)$ with its support in U which is equal to 1 on C

Proof. Let us fix a Euclidean structure in V and a Cartesian coordinate system. Thus we can identify V with \mathbb{R}^{n} with the standard dot-product. Given a point $a \in V$ and $\delta>0$ let us denote by $\psi_{a, \delta}$ the bump function on V defined by

$$
\begin{equation*}
\psi_{a, \delta}(x):=\rho\left(\frac{\|x-a\|^{2}}{\delta^{2}}\right), \tag{9.1.2}
\end{equation*}
$$

where $\rho: \mathbb{R}^{\rightarrow}[0, \infty)$ is the function constructed in Lemma 9.1. Note that $\psi_{a, \delta}(x)$ is a C^{∞}-function with $\operatorname{Supp}\left(\psi_{a, \delta}\right)=D_{\delta}:=\overline{B_{\delta}(a)}$ and such that $\psi_{a, \delta}(x)>0$ for $x \in B_{\delta}(a)$.

Let us denote by $U_{\epsilon}(C)$ the ϵ-neighborhood of C, i.e.

$$
U_{\epsilon}(C)=\{x \in V ; \exists y \in C,\|y-x\|<\epsilon .\}
$$

There exists $\epsilon>0$ such that $U_{\epsilon}(C) \subset U$. Using compactness of C we can find finitely many points $z_{1}, \ldots, z_{N} \in C$ such that the balls $B_{\epsilon}\left(z_{1}\right), \ldots, B_{\epsilon}\left(z_{N}\right) \subset U$ cover $\overline{U_{\frac{\epsilon}{2}}(C)}$, i.e. $\overline{U_{\frac{\epsilon}{2}}}(C) \subset \bigcup_{1}^{N} B_{\epsilon}\left(z_{j}\right)$. Consider a function

$$
\sigma_{1}:=\sum_{1}^{N} \psi_{z_{i}, \frac{\epsilon}{2}}: V \rightarrow \mathbb{R}
$$

The function ψ_{1} is positive on $\bar{U}_{\frac{\epsilon}{2}}(C)$ and has $\operatorname{Supp}\left(\psi_{1}\right) \subset U$.
The complement $E=V \backslash U_{\frac{\epsilon}{2}}(C)$ is a closed but unbounded set. Take a large $R>0$ such that $B_{R}(0) \supset \bar{U}$. Then $E_{R}=D_{R}(0) \backslash U_{\frac{\epsilon}{2}}(C)$ is compact. Choose finitely many points $x_{1}, \ldots, x_{M} \in E_{R}$ such that $\bigcup_{1}^{M} B_{\frac{\epsilon}{4}}\left(x_{i}\right) \supset E_{R}$. Notice that $\bigcup_{1}^{M} B_{\frac{\epsilon}{4}}\left(x_{i}\right) \cap C=\varnothing$. Denote

$$
\sigma_{2}:=\sum_{1}^{M} \psi_{x_{i}, \frac{\epsilon}{4}} .
$$

Then the function σ_{2} is positive on V_{R} and vanishes on C. Note that the function $\sigma_{1}+\sigma_{2}$ is positive on $B_{R}(0)$ and it coincides with σ_{1} on C. Finally, define the function $\sigma_{C, U}$ by the formula

$$
\sigma_{C, U}:=\frac{\sigma_{1}}{\sigma_{1}+\sigma_{2}}
$$

on $\left.B_{(} R\right)(0)$ and extend it to the whole space V as equal to 0 outside the ball $B_{R}(0)$. Then $\sigma_{C, U}=1$ on C and $\operatorname{Supp}\left(\sigma_{C, U}\right) \subset U$, as required.

Let $C \subset V$ be a compact set. Consider its finite covering by open sets U_{1}, \ldots, U_{N}, i.e.

$$
\bigcup_{1}^{N} U_{j} \supset C .
$$

We say that a finite sequence $\theta_{1}, \ldots, \theta_{K}$ of C^{∞}-functions defined on some open neighborhood U of C in V forms a partition of unity over C subordinated to the covering $\left\{U_{j}\right\}_{j=1, \ldots, N}$ if

- $\sum_{1}^{K} \theta_{j}(x)=1$ for all $x \in C$;
- Each function $\theta_{j}, j=1, \ldots, K$ is supported in one of the sets $U_{i}, i=1, \ldots, K$.

Lemma 9.3. For any compact set C and its open covering $\left\{U_{j}\right\}_{j=1, \ldots, N}$ there exists a partition of unity over C subordinated to this covering.

Proof. In view of compactness of there exists $\epsilon>0$ and finitely many balls $B_{\epsilon}\left(z_{j}\right)$ centered at points $z_{j} \in C, j=1, \ldots, K$, such that $\bigcup_{1}^{K} B_{\epsilon}\left(z_{j}\right) \supset C$ and each of these balls is contained in one of the open sets $U_{j}, j=1, \ldots, N$. Consider the functions $\psi_{z_{j}, \epsilon}$ defined in (9.1.2). We have $\sum_{1}^{K} \psi_{z_{j}, \epsilon}>0$ on some neighborhood $U \supset C$. Let $\sigma_{C, U}$ be the cut-off function constructed in Lemma 9.2. For $j=1, \ldots, K$ we define

$$
\theta_{j}(x)=\left\{\begin{array}{ll}
\frac{\psi_{z_{j}, \epsilon}(x) \sigma_{C, U}(x)}{\sum_{1}^{K} \psi_{z_{j}, \epsilon}(x)}, & \text { if } x \in U, \\
0, & \text { otherwise }
\end{array} .\right.
$$

Each of the functions is supported in one of the open sets $U_{j}, j=1, \ldots, N$, and we have for every $x \in C$

$$
\sum_{1}^{K} \theta_{j}(x)=\frac{\sum_{1}^{K} \psi_{z_{j}, \epsilon}(x)}{\sum_{1}^{K} \psi_{z_{j}, \epsilon}(x)}=1
$$

Figure 9.1: Bernhard Riemann (1826-1866)

9.2 One-dimensional Riemann integral for functions and differential 1-forms

A partition \mathcal{P} of an interval $[a, b]$ is a finite sequence $a=t_{0}<t_{1}<\cdots<t_{N}=b$. We will denote by $T_{j}, j=0, \ldots, N$ the vector $t_{j+1}-t_{j} \in \mathbb{R}_{t_{j}}$ and by Δ_{j} the interval $\left[t_{j}, t_{j+1}\right]$. The length $t_{j+1}-t_{j}=\left\|T_{j}\right\|$ of the interval Δ_{j} will be denoted by δ_{j}. The number $\max _{j=1, \ldots, N} \delta_{j}$ is called the fineness or the size of the partition \mathcal{P} and will be denoted by $\delta(\mathcal{P})$. Let us first recall the definition of (Riemann) integral of a function of one variable. Given a function $f:[a, b] \rightarrow \mathbb{R}$ we will form a lower and upper integral sums corresponding to the partition \mathcal{P} :

$$
\begin{align*}
& L(f ; \mathcal{P})=\sum_{0}^{N-1}\left(\inf _{\left[t_{j}, t_{j+1}\right]} f\right)\left(t_{j+1}-t_{j}\right) \\
& U(f ; \mathcal{P})=\sum_{0}^{N-1}\left(\sup _{\left[t_{j}, t_{j+1}\right]} f\right)\left(t_{j+1}-t_{j}\right) \tag{9.2.1}
\end{align*}
$$

The function is called Riemann integrable if

$$
\sup _{\mathcal{P}} L(f ; \mathcal{P})=\inf _{\mathcal{P}} U(f ; \mathcal{P})
$$

and in this case this number is called the (Riemann) integral of the function f over the interval $[a, b]$. The integrability of f can be equivalently reformulated as follows. Let us choose a set $C=$
$\left\{c_{1}, \ldots, c_{N-1}\right\}, c_{j} \in \Delta_{j}$, and consider an integral sum

$$
\begin{equation*}
I(f ; \mathcal{P}, C)=\sum_{0}^{N-1} f\left(c_{j}\right)\left(t_{j+1}-t_{j}\right), c_{j} \in \Delta_{j} . \tag{9.2.2}
\end{equation*}
$$

Then the function f is integrable if there exists a limit $\lim _{\delta(\mathcal{P}) \rightarrow 0} I(f, \mathcal{P}, C)$. In this case this limit is equal to the integral of f over the interval $[a, b]$. Let us emphasize that if we already know that the function is integrable, then to compute the integral one can choose any sequence of integral sum, provided that their fineness goes to 0 . In particular, sometimes it is convenient to choose $c_{j}=t_{j}$, and in this case we will write $I(f ; \mathcal{P})$ instead of $I(f ; \mathcal{P}, C)$.

The integral has different notations. It can be denoted sometimes by $\int_{[a, b]} f$, but the most common notation for this integral is $\int_{a}^{b} f(x) d x$. This notation hints that we are integrating here the differential form $f(x) d x$ rather than a function f. Indeed, given a differential form $\alpha=f(x) d x$ we have $f\left(c_{j}\right)\left(t_{j+1}-t_{j}\right)=\alpha_{c_{j}}\left(T_{j}\right) \cdot \mid$ and hence

$$
\begin{equation*}
I(\alpha ; \mathcal{P}, C)=I(f ; \mathcal{P}, C)=\sum_{0}^{N-1} \alpha_{c_{j}}\left(T_{j}\right), c_{j} \in \Delta_{j} . \tag{9.2.3}
\end{equation*}
$$

We say that a differential 1-form α is integrable if there exists a limit $\lim _{\delta(\mathcal{P}) \rightarrow 0} I(\alpha, \mathcal{P}, C)$, which is called in this case the integral of the differential 1-form α over the oriented interval $[a, b]$ and will be denoted by $\int_{[\overrightarrow{a, b]}} \alpha$, or simply $\int_{a}^{b} \alpha$. By definition, we say that $\int_{[a, b]} \alpha=-\int_{[\overrightarrow{[a, b]}} \alpha$. This agrees with the definition $\int_{[a, b]} \alpha=\lim _{\delta(\mathcal{P}) \rightarrow 0} \sum_{1}^{N-1} \alpha_{c_{j}}\left(-T_{j}\right)$, and with the standard calculus rule $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$.

Let us recall that a map $\phi:[a, b] \rightarrow[c, d]$ is called a diffeomorphism if it is smooth and has a smooth inverse map $\phi^{-1}:[c, d] \rightarrow[a, b]$. This is equivalent to one of the following:

- $\phi(a)=c ; \phi(b)=d$ and $\phi^{\prime}>0$ everywhere on $[a, b]$. In this case we say that ϕ preserves orientation.
- $\phi(a)=d ; \phi(b)=c$ and $\phi^{\prime}<0$ everywhere on $[a, b]$. In this case we say that ϕ reverses orientation.

[^3]Theorem 9.4. Let $\phi:[a, b] \rightarrow[c, d]$ be a diffeomorphism. Then if a 1-form $\alpha=f(x) d x$ is integrable over $[c, d]$ then its pull-back $f^{*} \alpha$ is integrable over $[a, b]$, and we have

$$
\begin{equation*}
\int_{[\overrightarrow{a, b]}} \phi^{*} \alpha=\int_{\overrightarrow{[c, d]}} \alpha \tag{9.2.4}
\end{equation*}
$$

if ϕ preserves the orientation and
if ϕ reverses the orientation.

Remark 9.5. We will show later a stronger result:

$$
\int_{[\overrightarrow{[a, b]}} \phi^{*} \alpha=\int_{\overrightarrow{[c, d]}} \alpha
$$

for any $\phi:[a, b] \rightarrow[c, d]$ with $\phi(a)=c, \phi(b)=d$, which is not necessarily a diffeomorphism.

Proof. We consider only the orientation preserving case, and leave the orientation reversing one to the reader. Choose any partition $\mathcal{P}=\left\{a=t_{0}<\cdots<t_{N-1}<t_{N}=b\right\}$ of the interval $[a, b]$ and choose any set $C=\left\{c_{0}, \ldots, c_{N-1}\right\}$ such that $c_{j} \in \Delta_{j}$. Then the points $\widetilde{t}_{j}=\phi\left(t_{j}\right) \in[c, d], j=0, \ldots N$ form a partition of $[c, d]$. Denote this partition by $\widetilde{\mathcal{P}}$, and denote $\widetilde{\Delta}_{j}:=\left[\widetilde{t}_{j}, \widetilde{t}_{j+1}\right] \subset[c, d], \widetilde{c}_{j}=\phi\left(c_{j}\right)$, $\widetilde{C}=\phi(C)=\left\{\widetilde{c}_{0}, \ldots, \widetilde{c}_{N-1}\right\}$. Then we have

$$
\begin{align*}
I\left(\phi^{*} \alpha, \mathcal{P}, C\right)= & \sum_{0}^{N-1} \phi^{*} \alpha_{c_{j}}\left(T_{j}\right)=\sum_{0}^{N-1} \alpha_{\widetilde{c}_{j}}\left(d \phi\left(T_{j}\right)\right)= \\
& \sum_{0}^{N-1} \alpha_{\widetilde{c}_{j}}\left(\phi^{\prime}\left(c_{j}\right) \delta_{j}\right) \tag{9.2.5}
\end{align*}
$$

Recall that according to the mean value theorem there exists a point $d_{j} \in \Delta_{j}$, such that

$$
\widetilde{T}_{j}=\tilde{t}_{j+1}-\tilde{t}_{j}=\phi\left(t_{j+1}\right)-\phi\left(t_{j}\right)=\phi^{\prime}\left(d_{j}\right)\left(t_{j+1}-t_{j}\right)
$$

Note also that the function ϕ^{\prime} is uniformly continuous, i.e. for any $\epsilon>0$ there exists $\delta>0$ such that for any $t, t^{\prime} \in[a, b]$ such that $\left|t-t^{\prime}\right|<\delta$ we have $\left|\phi^{\prime}(t)-\phi^{\prime}\left(t^{\prime}\right)\right|<\epsilon$. Besides, the function ϕ^{\prime}
is bounded above and below by some positive constants: $m<\phi^{\prime}<M$. Hence $m \delta_{j}<\widetilde{\delta}_{j}<M \delta_{j}$ for all $j=1, \ldots, N-1$. Hence, if $\delta(\mathcal{P})<\delta$ then we have

$$
\begin{align*}
\left|I\left(\phi^{*} \alpha, \mathcal{P}, C\right)-I(\alpha ; \widetilde{\mathcal{P}}, \widetilde{C})\right|= & \left|\sum_{0}^{N-1} \alpha_{\widetilde{c}_{j}}\left(\left(\phi^{\prime}\left(c_{j}\right)-\phi^{\prime}\left(d_{j}\right)\right) \delta_{j}\right)\right|= \\
& \leq \frac{\epsilon}{m}\left|\sum_{1}^{N-1} f\left(\widetilde{c}_{j}\right) \widetilde{\delta}_{j}\right|=\frac{\epsilon}{m}|I(\alpha ; \widetilde{\mathcal{P}}, \widetilde{C})| . \tag{9.2.6}
\end{align*}
$$

When $\delta(\mathcal{P}) \rightarrow 0$ we have $\widetilde{\delta}(\mathcal{P})=0$, and hence by assumption $I(\alpha ; \widetilde{\mathcal{P}}, \widetilde{C}) \rightarrow \int_{c}^{d} \alpha$, but this implies that $I\left(\phi^{*} \alpha, \mathcal{P}, C\right)-I(\alpha ; \widetilde{\mathcal{P}}, \widetilde{C}) \rightarrow 0$, and thus $\phi^{*} \alpha$ is integrable over $[a, b]$ and

$$
\int_{a}^{b} \phi^{*} \alpha=\lim _{\delta(\mathcal{P}) \rightarrow 0} I\left(\phi^{*} \alpha, \mathcal{P}, C\right)=\lim _{\delta(\widetilde{\mathcal{P}}) \rightarrow 0} I(\alpha, \widetilde{\mathcal{P}}, \widetilde{C})=\int_{c}^{d} \alpha .
$$

If we write $\alpha=f(x) d x$, then $\phi^{*} \alpha=f(\phi(t)) \phi^{\prime}(t) d t$ and the formula (9.4) takes a familiar form of the change of variables formula from the 1 -variable calculus:

$$
\int_{c}^{d} f(x) d x=\int_{a}^{b} f(\phi(t)) \phi^{\prime}(t) d t
$$

9.3 Integration of differential 1-forms along curves

Curves as paths

A path, or parametrically given curve in a domain U in a vector space V is a map $\gamma:[a, b] \rightarrow U$. We will assume in what follows that all considered paths are differentiable. Given a differential 1-form α in U we define the integral of α over γ by the formula

$$
\int_{\gamma} \alpha=\int_{[a, b]} \gamma^{*} \alpha .
$$

Example 9.6. Consider the form $\alpha=d z-y d x+x d y$ on \mathbb{R}^{3}. Let $\gamma:[0,2 \pi] \rightarrow \mathbb{R}^{3}$ be a helix given by parametric equations $x=R \cos t, y=R \sin t, z=C t$. Then

$$
\int_{\gamma} \alpha=\int_{0}^{2 \pi}\left(C d t+R^{2}\left(\sin ^{2} t d t+\cos ^{2} t d t\right)\right)=\int_{0}^{2 \pi}\left(C+R^{2}\right) d t=2 \pi\left(C+R^{2}\right)
$$

Note that $\int_{\gamma} \alpha=0$ when $C=-R^{2}$. One can observe that in this case the curve γ is tangent to the plane field ξ given by the Pfaffian equation $\alpha=0$.

Proposition 9.7. Let a path $\widetilde{\gamma}$ be obtained from $\gamma:[a, b] \rightarrow U$ by a reparameterization, i.e. $\widetilde{\gamma}=\gamma \circ \phi$, where $\phi:[c, d] \rightarrow[a, b]$ is an orientation preserving diffeomorphism. Then $\int_{\tilde{\gamma}} \alpha=\int_{\gamma} \alpha$.

Indeed, applying Theorem 9.4 we get

$$
\int_{\tilde{\gamma}} \alpha=\int_{c}^{d} \widetilde{\gamma}^{*} \alpha=\int_{c}^{d} \phi^{*}\left(\gamma^{*} \alpha\right) \int_{a}^{b} \gamma^{*} \alpha=\int_{\gamma} \alpha .
$$

A vector $\gamma^{\prime}(t) \in V_{\gamma(t)}$ is called the velocity vector of the path γ.

Curves as 1-dimensional submanifolds

A subset $\Gamma \subset U$ is called a 1-dimensional submanifold of U if for any point $x \in \Gamma$ there is a neighborhood $U_{x} \subset U$ and a diffeomorphism $\Phi_{x}: U_{x} \rightarrow \Omega_{x} \subset \mathbb{R}^{n}$, such that $\Phi_{x}(x)=0 \in \mathbb{R}^{n}$ and $\Phi_{x}\left(\Gamma \cap U_{x}\right)$ either coincides with $\left\{x_{2}=\ldots x_{n}=0\right\} \cap \Omega_{x}$, or with $\left\{x_{2}=\ldots x_{n}=0, x_{1} \geq 0\right\} \cap \Omega_{x}$. In the latter case the point x is called a boundary point of Γ. In the former case it is called an interior point of Γ.

A 1-dimensional submanifold is called closed if it is compact and has no boundary. An example of a closed 1-dimensional manifold is the circle $S^{1}=\left\{x^{2}+y^{2}=1\right\} \subset \mathbb{R}^{2}$.

WARNING. The word closed is used here in a different sense than when one speaks about closed subsets. For instance, a circle in \mathbb{R}^{2} is both, a closed subset and a closed 1-dimensional submanifold, while a closed interval is a closed subset but not a closed submanifold: it has 2 boundary points. An open interval in \mathbb{R} (or any \mathbb{R}^{n}) is a submanifold without boundary but it is not closed because it is not compact. A line in a vector space is a 1-dimensional submanifold which is a closed subset of the ambient vector space. However, it is not compact, and hence not a closed submanifold.

Proposition 9.8. 1. Suppose that a path $\gamma:[a, b] \rightarrow U$ is an embedding. This means that $\gamma^{\prime}(t) \neq 0$ for all $t \in[a, b]$ and $\gamma(t) \neq \gamma\left(t^{\prime}\right)$ if $\left.t \neq t^{\prime}\right]^{2}$ Then $\Gamma=\gamma([a, b])$ is 1-dimensional compact submanifold with boundary.

[^4]2. Suppose $\Gamma \subset U$ is given by equations $F_{1}=0, \ldots, F_{n-1}=0$ where $F_{1}, \ldots, F_{n-1}: U \rightarrow \mathbb{R}$ are smooth functions such that for each point $x \in \Gamma$ the differential $d_{x} F_{1}, \ldots, d_{x} F_{n-1}$ are linearly independent. Then Γ is a 1-dimensional submanifold of U.
3. Any compact connected 1-dimensional submanifold $\Gamma \subset U$ can be parameterized either by an embedding $\gamma:[a, b] \rightarrow \Gamma \hookrightarrow U$ if it has non-empty boundary, or by an embedding $\gamma: S^{1} \rightarrow$ $\Gamma \hookrightarrow U$ if it is closed.

Proof. 1. Take a point $c \in[a, b]$. By assumption $\gamma^{\prime}(c) \neq 0$. Let us choose an affine coordinate system $\left(y_{1}, \ldots, y_{n}\right)$ in V centered at the point $C=\gamma(c)$ such that the vector $\gamma^{\prime}(c) \in V_{C}$ coincide with the first basic vector. In these coordinates the map gamma can be written as $\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ where $\gamma_{1}^{\prime}(c)=1, \gamma_{j}^{\prime}(c)=0$ for $j>1$ and $\gamma_{j}(c)=0$ for all $j=1, \ldots, n$. By the inverse function theorem the function γ_{1} is a diffeomorphism of a neighborhood of c onto a neighborhood of 0 in \mathbb{R} (if c is one of the end points of the interval, then it is a diffeomorphism onto the corresponding one-sided neighborhood of 0). Let σ be the inverse function defined on the interval Δ equal to $(-\delta, \delta),[0, \delta)$ and $(-\delta, 0]$, respectively, depending on whether c is an interior point, $c=a$ or $c=b]$. so that $\gamma_{1}(\sigma(u))=u$ for any $u \in \Delta$. Denote $\widetilde{\Delta}=\sigma(\Delta) \subset[a, b]$. Then $\gamma(\widetilde{\Delta}) \subset U$ can be given by the equations:

$$
y_{2}=\widetilde{\gamma}_{2}(u):=\gamma_{2}\left(\sigma\left(y_{1}\right)\right), \ldots, y_{n}=\widetilde{\gamma}_{n}(u):=\gamma_{n}\left(\sigma\left(y_{1}\right)\right) ; y_{1} \in \Delta .
$$

Let us denote

$$
\theta=\theta(\delta):=\max _{j=2, \ldots, n} \max _{u \in \Delta}\left|\widetilde{\gamma}_{j}(u)\right| .
$$

Denote

$$
P_{\delta}:=\left\{\left|y_{1}\right| \leq \delta,\left|y_{j}\right| \leq \theta(\delta)\right\} .
$$

We have $\gamma(\Delta) \subset P_{\delta}$.
We will show now that for a sufficiently small δ we have $\gamma([a, b]) \cap P_{\delta}=\gamma(\Delta)$. For every point $t \in[a, b] \backslash$ Int Δ denote $d(t)=\|\gamma(t)-\gamma(c)\|$. Recall now the condition that $\gamma(t) \neq \gamma\left(t^{\prime}\right)$ for $t \neq t^{\prime}$. Hence $d(t)>0$ for all $t \in[a, b] \backslash \operatorname{Int} \Delta$. The function $d(t)$ is continuous and hence achieve the minimum value on the compact set $[a, b] \backslash \operatorname{Int} \Delta$. Denote $d:=\min _{t \in[a, b \backslash \backslash \operatorname{Int} \Delta} d(t)>0$. Chose $\delta^{\prime}<\min (d, \delta)$ and such that $\theta\left(\delta^{\prime}\right)=\max _{j=2, \ldots, n|u-c|<\delta^{\prime}} \max _{j}\left|\widetilde{\gamma}_{j}(u)\right|<d$. Let $\Delta^{\prime}=\Delta \cap\left\{|u| \leq \delta^{\prime}\right\} \mid$. Then

$$
\gamma([a, b]) \cap P_{\delta^{\prime}}=\left\{y_{2}=\widetilde{\gamma}_{2}(u), \ldots, y_{n}=\widetilde{\gamma}_{n}(u) ; y_{1} \in \Delta^{\prime}\right\} .
$$

2. Take a point $c \in \Gamma$. The linear independent 1-forms $d_{c} F_{1}, \ldots, d_{c} F_{n-1} \in V_{c}^{*}$ can be completed by a 1 -form $l \in V_{c}^{*}$ to a basis of V_{c}^{*}. We can choose an affine coordinate system in V with c as its origin and such that the function x_{n} coincides with l. Then the Jacobian matrix of the functions $F_{1}, \ldots, F_{n-1}, x_{n}$ is non-degenerate at $c=0$, and hence by the inverse function theorem the map $F=\left(F_{1}, \ldots, F_{n-1}, x_{n}\right): V \rightarrow \mathbb{R}^{n}$ is invertible in the neighborhood of $c=0$, and hence these functions can be chosen as new curvilinear coordinates $y_{1}=F_{1}, \ldots, y_{n-1}=F_{n-1}, y_{n}=x_{n}$ near the point $c=0$. In these coordinates the curve Γ is given near c by the equations $y_{1}=\cdots=y_{n-1}=0$.
3. See Exercise ??.

In the case where Γ is closed we will usually parameterize it by a path $\gamma:[a, b] \rightarrow \Gamma \subset U$ with $\gamma(a)=\gamma(b)$. For instance, we parameterize the circle $S^{1}=\left\{x^{2}+y^{2}=1\right\} \subset \mathbb{R}^{2}$ by a path $[0,2 \pi] \mapsto(\cos t, \sin t)$. Such γ, of course, cannot be an embedding, but we will require that $\gamma^{\prime}(t) \neq 0$ and that for $t \neq t^{\prime}$ we have $\gamma(t) \neq \gamma\left(t^{\prime}\right)$ unless one of these points is a and the other one is b. We will refer to 1-dimensional submanifolds simply as curves, respectively closed, with boundary etc.

Given a curve Γ its tangent line at a point $x \in \Gamma$ is a subspace of V_{x} generated by the velocity vector $\gamma^{\prime}(t)$ for any local parameterization $\gamma:[a, b] \rightarrow \Gamma$ with $\gamma(t)=x$. If Γ is given implicitly, as in 9.8,2, then the tangent line is defined in V_{x} by the system of linear equations $d_{x} F_{1}=0, \ldots, d_{x} F_{n-1}=$ 0.

Orientation of a curve Γ is the continuously depending on points orientation of all its tangent lines. If the curve is given as a path $\gamma:[a, b] \rightarrow \Gamma \subset U$ such that $\gamma^{\prime}(t) \neq 0$ for all $t \in[a, b]$ than it is canonically oriented. Indeed, the orientation of its tangent line l_{x} at a point $x=\gamma(t) \in \Gamma$ is defined by the velocity vector $\gamma^{\prime}(t) \in l_{x}$.

It turns out that one can define an integral of a differential form α over an oriented compact curve directly without referring to its parameterization. For simplicity we will restrict our discussion to the case when the form α is continuous.

Let Γ be a compact connected oriented curve. A partition of Γ is a sequence of points $\mathcal{P}=$ $\left\{z_{0}, z_{1}, \ldots, z_{N}\right\}$ ordered according to the orientation of the curve and such that the boundary points of the curve (if they exist) are included into this sequence. If Γ is closed we assume that $z_{N}=z_{0}$. The fineness $\delta(\mathcal{P})$ of \mathcal{P} is by definition is $\max _{j=0, \ldots, N-1} \operatorname{dist}\left(z_{j}, z_{j+1}\right)$ (we assume here that V a Euclidean space).

Definition 9.9. Let α be a differential 1-form and Γ a compact connected oriented curve. Let $\mathcal{P}=\left\{z_{0}, \ldots, z_{N}\right\}$ be its partition. Then we define

$$
\int_{\Gamma} \alpha=\lim _{\delta(\mathcal{P}) \rightarrow 0} I(\alpha, \mathcal{P})
$$

where $I(\alpha, \mathcal{P})=\sum_{0}^{N-1} \alpha_{z_{j}}\left(Z_{j}\right), \quad Z_{j}=z_{j+1}-z_{j} \in V_{z_{j}}$.
When Γ is a closed submanifold then one sometimes uses the notation $\oint_{\Gamma} \alpha$ instead of $\int_{\Gamma} \alpha$.
Proposition 9.10. If one chooses a parameterization $\gamma:[a, b] \rightarrow \Gamma$ which respects the given orientation of Γ then

$$
\int_{\gamma} \alpha=\int_{a}^{b} \gamma^{*} \alpha=\int_{\Gamma} \alpha .
$$

Proof. Indeed, let $\widetilde{\mathcal{P}}=\left\{t_{0}, \ldots, t_{N}\right\}$ be a partition of $[a, b]$ such that $\gamma\left(t_{j}\right)=z_{j}, j=0, \ldots, N$.

$$
I\left(\gamma^{*} \alpha, \widetilde{\mathcal{P}}\right)=\sum_{1}^{N-1} \gamma^{*} \alpha_{t_{j}}\left(T_{j}\right)=\sum_{1}^{N-1} \alpha_{z_{j}}\left(U_{j}\right),
$$

where $\left.U_{j}=d_{t_{j}} \gamma\left(T_{j}\right)\right) \in V_{z_{j}}$ is a tangent vector to Γ at the point z_{j}. Let us evaluate the difference $U_{j}-Z_{j}$. Choosing some Cartesian coordinates in V we denote by $\gamma_{1}, \ldots, \gamma_{n}$ the coordinate functions of the path γ. Then using the mean value theorem for each of the coordinate functions we get $\gamma_{i}\left(t_{j+1}\right)-\gamma_{i}\left(t_{j}\right)=\gamma_{i}^{\prime}\left(c_{j}^{i}\right) \delta_{j}$ for some $c_{j}^{i} \in \Delta_{j}, i=1, \ldots, n ; j=0, \ldots, N-1$. Thus

$$
Z_{j}=\gamma\left(t_{j+1}\right)-\gamma\left(t_{j}\right)=\left(\gamma_{1}^{\prime}\left(c_{j}^{1}\right), \ldots, \gamma_{i}^{\prime}\left(c_{j}^{n}\right)\right) \delta_{j} .
$$

On the other hand, $\left.U_{j}=d_{t_{j}} \gamma\left(T_{j}\right)\right) \in V_{z_{j}}=\gamma^{\prime}\left(t_{j}\right) \delta_{j}$. Hence,

$$
\left\|Z_{j}-U_{j}\right\|=\delta_{j} \sqrt{\sum_{1}^{n}\left(\gamma_{i}^{\prime}\left(c_{j}^{i}\right)-\gamma_{i}^{\prime}\left(t_{j}\right)\right)^{2}}
$$

Note that if $\delta(\mathcal{P}) \rightarrow 0$ then we also have $\delta(\widetilde{\mathcal{P}}) \rightarrow 0$, and hence using smoothness of the path γ we conclude that for any $\epsilon>0$ there exists $\delta>0$ such that $\left\|Z_{j}-U_{j}\right\|<\epsilon \delta_{j}$ for all $j=1, \ldots, N$. Thus

$$
\sum_{1}^{N-1} \alpha_{z_{j}}\left(\widetilde{T}_{j}\right)-\sum_{1}^{N-1} \alpha_{z_{j}}\left(Z_{j}\right) \underset{\delta(\vec{P})}{ } 0
$$

and therefore

$$
\int_{a}^{b} \gamma^{*} \alpha=\lim _{\delta(\widetilde{\mathcal{P}}) \rightarrow 0} I\left(\gamma^{*} \alpha, \widetilde{\mathcal{P}}\right)=\lim _{\delta(\mathcal{P}) \rightarrow 0} I(\alpha, \mathcal{P})=\int_{\Gamma} \alpha
$$

9.4 Integrals of closed and exact differential 1-forms

Theorem 9.11. Let $\alpha=d f$ be an exact 1 -form in a domain $U \subset V$. Then for any path $\gamma:[a, b] \rightarrow U$ which connects points $A=\gamma(a)$ and $B=\gamma(b)$ we have

$$
\int_{\gamma} \alpha=f(B)-f(A) .
$$

In particular, if γ is a loop then $\oint_{\gamma} \alpha=0$.
Similarly for an oriented curve $\Gamma \subset U$ with boundary $\partial \Gamma=B-A$ we have

$$
\int_{\Gamma} \alpha=f(B)-f(A) .
$$

Proof. We have $\int_{\gamma} d f=\int_{a}^{b} \gamma^{*} d f=\int_{a}^{b} d(f \circ \gamma)=f(\gamma(b))-f(\gamma(a))=f(B)-f(A)$.
It turns out that closed forms are locally exact. A domain $U \subset V$ is called star-shaped with respect to a point $a \in V$ if with any point $x \in U$ it contains the whole interval $I_{a, x}$ connecting a and x, i.e. $I_{a, x}=\{a+t(x-a) ; t \in[0,1]\}$. In particular, any convex domain is star-shaped.

Proposition 9.12. Let α be a closed 1-form in a star-shaped domain $U \subset V$. Then it is exact.
Proof. Define a function $F: U \rightarrow \mathbb{R}$ by the formula

$$
F(x)=\underset{\overrightarrow{I_{a, x}}}{\int_{\vec{x}}} \alpha, x \in U,
$$

where the intervals $I_{a, x}$ are oriented from 0 to x.
We claim that $d F=\alpha$. Let us identify V with the \mathbb{R}^{n} choosing a as the origin $a=0$. Then α can be written as $\alpha=\sum_{1}^{n} P_{k}(x) d x_{k}$, and $I_{0, x}$ can be parameterized by

$$
t \mapsto t x, t \in[0,1] .
$$

Hence,

$$
\begin{equation*}
F(x)=\underset{\underset{I_{0, x}}{\vec{~}}}{\int_{0}} \alpha=\int_{1}^{1} \sum_{1}^{n} P_{k}(t x) x_{k} d t \tag{9.4.1}
\end{equation*}
$$

Differentiating the integral over x_{j} as parameters, we get

$$
\frac{\partial F}{\partial x_{j}}=\int_{0}^{1} \sum_{k=1}^{n} t x_{k} \frac{\partial P_{k}}{\partial x_{j}}(t x) d t+\int_{0}^{1} P_{j}(t x) d t
$$

But $d \alpha=0$ implies that $\frac{\partial P_{k}}{\partial x_{j}}=\frac{\partial P_{j}}{\partial x_{k}}$, and using this we can further write

$$
\begin{aligned}
\frac{\partial F}{\partial x_{j}} & =\int_{0}^{1} \sum_{k=1}^{n} t x_{k} \frac{\partial P_{j}}{\partial x_{k}}(t x) d t+\int_{0}^{1} P_{j}(t x) d t=\int_{0}^{1} t \frac{d P_{j}(t x)}{d t} d t+\int_{0}^{1} P_{j}(t x) d t \\
& =\left.\left(t P_{j}(t x)\right)\right|_{0} ^{1}-\int_{0}^{1} P_{j}(t x) d t+\int_{0}^{1} P_{j}(t x) d t=P_{j}(t x)
\end{aligned}
$$

Thus

$$
d F=\sum_{j=1}^{n} \frac{\partial F}{\partial x_{j}} d x_{j}=\sum_{j=1}^{n} P_{j}(x) d x=\alpha
$$

9.5 Integration of functions over domains in high-dimensional spaces

Riemann integral over a domain in \mathbb{R}^{n}.

In this section we will discuss integration of bounded functions over bounded sets in a vector space V. We will fix a basis e_{1}, \ldots, e_{n} and the corresponding coordinate system x_{1}, \ldots, x_{n} in the space and thus will identify V with \mathbb{R}^{n}. Let η denote the volume form $x_{1} \wedge \ldots x_{n}$. As it will be clear below, the definition of an integral will not depend on the choice of a coordinate system but only on the background volume form, or rather its absolute value because the orientation of V will be irrelevant.

We will need a special class of parallelepipeds in V, namely those which are generated by vectors proportional to basic vectors, or in other words, parallelepipeds with edges parallel to the coordinate axes. We will also allow these parallelepipeds to be parallel transported anywhere in the space. Let us denote

$$
P\left(a_{1}, b_{1} ; a_{2}, b_{2} ; \ldots ; a_{n}, b_{n}\right):=\left\{a_{i} \leq x_{i} \leq b_{i} ; i=1, \ldots, n\right\} \subset \mathbb{R}^{n}
$$

We will refer to $P\left(a_{1}, b_{1} ; a_{2}, b_{2} ; \ldots ; a_{n}, b_{n}\right)$ as a special parallelepiped, or rectangle.
Let us fix one rectangle $P:=P\left(a_{1}, b_{1} ; a_{2}, b_{2} ; \ldots ; a_{n}, b_{n}\right)$. Following the same scheme as we used in the 1-dimensional case, we define a partition \mathcal{P} of P as a product of partitions $a_{1}=t_{0}^{1}<\cdots<$ $t_{N_{1}}^{1}=b_{1}, \ldots, a_{n}=t_{0}^{n}<\cdots<t_{N_{n}}^{n}=b_{n}$, of intervals $\left[a_{1}, b_{1}\right], \ldots,\left[a_{n}, b_{n}\right]$. For simplicity of notation we will always assume that each of the coordinate intervals is partitioned into the same number of intervals, i.e. $N_{1}=\cdots=N_{n}=N$. This defines a partition of P into N^{n} smaller rectangles $P_{\mathbf{j}}=\left\{t_{j_{1}}^{1} \leq x_{1} \leq t_{j_{1}+1}^{1}, \ldots, t_{j_{n}}^{n} \leq x_{n} \leq t_{j_{n}+1}^{n}\right\}$, where $\mathbf{j}=\left(j_{1}, \ldots, j_{n}\right)$ and each index j_{k} takes values between 0 and $N-1$. Let us define

$$
\begin{equation*}
\operatorname{Vol}\left(P_{\mathbf{j}}\right):=\prod_{k=1}^{n}\left(t_{j_{k}+1}^{k}-t_{j_{k}}^{k}\right) \tag{9.5.1}
\end{equation*}
$$

This agrees with the definition of the volume of a parallelepiped which we introduced earlier (see formula (3.3.1) in Section 3.3. We will also denote $\delta_{\mathbf{j}}:=\max _{k=1, \ldots, n}\left(t_{j_{k}+1}^{k}-t_{j_{k}}^{k}\right)$ and $\delta(\mathcal{P}):=\max _{\mathbf{j}}\left(\delta_{\mathbf{j}}\right)$. Let us fix a point $c_{\mathbf{j}} \in P_{\mathbf{j}}$ and denote by C the set of all such $c_{\mathbf{j}}$. Given a function $f: P \rightarrow \mathbb{R}$ we form an integral sum

$$
\begin{equation*}
I(f ; \mathcal{P}, C)=\sum_{\mathbf{j}} f\left(c_{\mathbf{j}}\right) \operatorname{Vol}\left(P_{\mathbf{j}}\right) \tag{9.5.2}
\end{equation*}
$$

where the sum is taken over all elements of the partition. If there exists a limit $\lim _{\sigma(\mathcal{P}) \rightarrow 0} I(f ; \mathcal{P}, C)$ then the function $f: P \rightarrow \mathbb{R}$ is called integrable (in the sense of Riemann) over P, and this limit is called the integral of f over P. There exist several different notations for this integral: $\int_{P} f, \int_{P} f d V$, $\int_{P} f d \mathrm{Vol}$, etc. In the particular case of $n=2$ one often uses notation $\int_{P} f d A$, or $\iint_{P} f d A$. Sometime, the functions we integrate may depend on a parameter, and in these cases it is important to indicate with respect to which variable we integrate. Hence, one also uses the notation like $\int_{P} f(x, y) d x^{n}$, where the index n refers to the dimension of the space over which we integrate. One also use the notation $\underbrace{\int \ldots \int}_{P} f\left(x_{1}, \ldots x_{n}\right) d x_{1} \ldots d x_{n}$, which is reminiscent both of the integral $\int_{P} f\left(x_{1}, \ldots x_{n}\right) d x_{1} \wedge \cdots \wedge$
$d x_{n}$ which will be defined later in Section 9.7 and the notation $\int_{a_{n}}^{b_{n}} \ldots \int_{a_{1}}^{b_{1}} f\left(x_{1}, \ldots x_{n}\right) d x_{1} \ldots d x_{n}$ for n interated integral which will be discussed in Section 9.6.

Alternatively and equivalently the integrability can be defined via upper and lower integral sum,
similar to the 1-dimensional case. Namely, we define

$$
U(f ; \mathcal{P})=\sum_{\mathbf{j}} M_{\mathbf{j}}(f) \operatorname{Vol}\left(P_{\mathbf{j}}\right), \quad L(f ; \mathcal{P})=\sum_{\mathbf{j}} m_{\mathbf{j}}(f) \operatorname{Vol}\left(P_{\mathbf{j}}\right)
$$

where $M_{\mathbf{j}}(f)=\sup _{P_{\mathbf{j}}} f, m_{\mathbf{j}}(f)=\inf _{P_{\mathbf{j}}} f$, and say that the function f is integrable over $P \operatorname{if} \inf _{\mathcal{P}} U(f ; \mathcal{P})=$ $\sup _{\mathcal{P}} L(f, \mathcal{P})$.

Note that $\inf _{\mathcal{P}} U(f ; \mathcal{P})$ and $\sup _{\mathcal{P}} L(f, \mathcal{P})$ are sometimes called upper and lower integrals, respectively, and denoted by $\int_{P} f$ and $\frac{\int_{P}}{} f$. Thus a function $f: P \rightarrow \mathbb{R}$ is integrable iff $\int_{P} f=\frac{\int_{P}}{P} f$.

Let us list some properties of Riemann integrable functions and integrals.
Proposition 9.13. Let $f, g: P \rightarrow \mathbb{R}$ be integrable functions. Then

1. $a f+b g$, where $a, b \in \mathbb{R}$, is integrable and $\int_{P} a f+b g=a \int_{P} f+b \int_{P} g$;
2. If $f \leq g$ then $\int_{P} f \leq \int_{P} g$;
3. $h=\max (f, g)$ is integrable; in particular the functions $f_{+}:=\max (f, 0)$ and $f_{-}:=\max (-f, 0)$ and $|f|=f_{+}+f_{-}$are integrable;
4. $f g$ is integrable.

Proof. Parts 1 and 2 are straightforward and we leave them to the reader as an exercise. Let us check properties 3 and 4 .
3. Take any partition \mathcal{P} of P. Note that

$$
\begin{equation*}
M_{\mathbf{j}}(h)-m_{\mathbf{j}}(h) \leq \max \left(M_{\mathbf{j}}(f)-m_{\mathbf{j}}(f), M_{\mathbf{j}}(g)-m_{\mathbf{j}}(g)\right) . \tag{9.5.3}
\end{equation*}
$$

Indeed, we have $M_{\mathbf{j}}(h)=\max \left(M_{\mathbf{j}}(f), M_{\mathbf{j}}(g)\right)$ and $m_{\mathbf{j}}(h) \geq \max \left(m_{\mathbf{j}}(f), m_{\mathbf{j}}(g)\right)$. Suppose for determinacy that $\max \left(M_{\mathbf{j}}(f), M_{\mathbf{j}}(g)\right)=M_{\mathbf{j}}(f)$. We also have $m_{\mathbf{j}}(h) \geq m_{\mathbf{j}}(f)$. Thus

$$
M_{\mathbf{j}}(h)-m_{\mathbf{j}}(h) \leq M_{\mathbf{j}}(f)-m_{\mathbf{j}}(f) \leq \max \left(M_{\mathbf{j}}(f)-m_{\mathbf{j}}(f), M_{\mathbf{j}}(g)-m_{\mathbf{j}}(g)\right) .
$$

Then using (9.5.3) we have

$$
\begin{aligned}
U(h ; \mathcal{P})-L(h ; \mathcal{P})= & \sum_{\mathbf{j}}\left(M_{\mathbf{j}}(h)-m_{\mathbf{j}}(h)\right) \operatorname{Vol}\left(P_{\mathbf{j}}\right) \leq \\
& \sum_{\mathbf{j}} \max \left(M_{\mathbf{j}}(f)-m_{\mathbf{j}}(f), M_{\mathbf{j}}(g)-m_{\mathbf{j}}(g)\right) \operatorname{Vol}\left(P_{\mathbf{j}}\right)= \\
& \max (U(f ; \mathcal{P})-L(f ; \mathcal{P}), U(f ; \mathcal{P})-L(f ; \mathcal{P})) .
\end{aligned}
$$

By assumption the right-hand side can be made arbitrarily small for an appropriate choice of the partition \mathcal{P}, and hence h is integrable.
4. We have $f=f_{+}-f_{-}, g=g_{+}-g_{-}$and $f g=f_{+} g_{+}+f_{-} g_{-}-f_{+} g_{-}-f_{-} g_{+}$. Hence, using 1 and 3 we can assume that the functions f, g are non-negative. Let us recall that the functions f, g are by assumption bounded, i.e. there exists a constant $C>0$ such that $f, g \leq C$. We also have $M_{\mathbf{j}}(f g) \leq M_{\mathbf{j}}(f) M_{\mathbf{j}}(g)$ and $m_{\mathbf{j}}(f g) \geq m_{\mathbf{j}}(f) m_{\mathbf{j}}(g)$. Hence

$$
\begin{aligned}
& U(f g ; \mathcal{P})-L(f g ; \mathcal{P})=\sum_{\mathbf{j}}\left(M_{\mathbf{j}}(f g)-m_{\mathbf{j}}(f g)\right) \operatorname{Vol}\left(P_{\mathbf{j}}\right) \leq \\
& \sum_{\mathbf{j}}\left(M_{\mathbf{j}}(f) M_{\mathbf{j}}(g)-m_{\mathbf{j}}(f) m_{\mathbf{j}}(g)\right) \operatorname{Vol}\left(P_{\mathbf{j}}\right)= \\
& \sum_{\mathbf{j}}\left(M_{\mathbf{j}}(f) M_{\mathbf{j}}(g)-m_{\mathbf{j}}(f) M_{\mathbf{j}}(g)+m_{\mathbf{j}}(f) M_{\mathbf{j}}(g)-m_{\mathbf{j}}(f) m_{\mathbf{j}}(g)\right) \operatorname{Vol}\left(P_{\mathbf{j}}\right) \leq \\
& \sum_{\mathbf{j}}\left(\left(M_{\mathbf{j}}(f)-m_{\mathbf{j}}(f)\right) M_{\mathbf{j}}(g)+m_{\mathbf{j}}(f)\left(M_{\mathbf{j}}(g)-m_{\mathbf{j}}(g)\right)\right) \operatorname{Vol}\left(P_{\mathbf{j}}\right) \leq \\
& C(U(f ; \mathcal{P})-L(f ; \mathcal{P})+U(g ; \mathcal{P})-L(g ; \mathcal{P})) .
\end{aligned}
$$

By assumption the right-hand side can be made arbitrarily small for an appropriate choice of the partition \mathcal{P}, and hence $f g$ is integrable.

Consider now a bounded subset $K \subset \mathbb{R}^{n}$ and choose a rectangle $P \supset K$. Given any function $f: K \rightarrow \mathbb{R}$ one can always extend it to P as equal to 0 . A function $f: K \rightarrow \mathbb{R}$ is called integrable over K if this trivial extension \bar{f} is integrable over P, and we define $\int_{K} f d V:=\int \bar{f} d V$. When this will not be confusing we will usually keep the notation f for the above extension.

Volume

We further define the volume

$$
\operatorname{Vol}(K)=\int_{K} 1 d V=\int_{P} \chi_{K} d V
$$

provided that this integral exists. In this case we call the set K measurable in the sense of Riemann, or just measurable $\sqrt[3]{3}$ Here χ_{K} is the characteristic or indicator function of K, i.e. the function which

[^5]is equal to 1 on K and 0 elsewhere. In the 2 -dimensional case the volume is called the area, and in the 1 -dimensional case the length.

Remark 9.14. For any bounded set A there is defined a lower and upper volumes,

$$
\underline{\operatorname{Vol}}(A)=\underline{\int} \chi_{A} d V \leq \overline{\operatorname{Vol}}(A)=\bar{\int} \chi_{A} d V .
$$

The set is measurable iff $\underline{\operatorname{Vol}}(A)=\overline{\operatorname{Vol}}(A)$. If $\overline{\operatorname{Vol}}(A)=0$ then $\underline{\operatorname{Vol}}(A)=0$, and hence A is measurable and $\operatorname{Vol}(A)=0$.

Exercise 9.15. Prove that for the rectangles this definition of the volume coincides with the one given by the formula 9.5.1.

The next proposition lists some properties of the volume.
Proposition 9.16. 1. Volume is monotone, i.e. if $A, B \subset P$ are measurable and $A \subset B$ then $\operatorname{Vol}(A) \leq \operatorname{Vol}(B)$.
2. If sets $A, B \subset P$ are measurable then $A \cap B, A \backslash B$ and $A \cup B$ are measurable as well and we have

$$
\operatorname{Vol}(A \cup B)=\operatorname{Vol}(A)+\operatorname{Vol}(B)-\operatorname{Vol}(A \cap B)
$$

3. If A can be covered by a measurable set of arbitrarily small total volume then $\operatorname{Vol}(A)=0$. Conversely, if $\operatorname{Vol}(A)=0$ then for any $\epsilon>0$ there exists a $\delta>0$ such that for any partition \mathcal{P} with $\delta(\mathcal{P})<\delta$ the elements of the partition which intersect A have arbitrarily small total volume.
4. A is measurable iff $\operatorname{Vol}(\partial A)=0$.

Proof. The first statement is obvious. To prove the second one, we observe that $\chi_{A \cup B}=\max \left(\chi_{A}, \chi_{B}\right)$, $\chi_{A \cap B}=\chi_{A} \chi_{B}, \max \left(\chi_{A}, \chi_{B}\right)=\chi_{A}+\chi_{B}-\chi_{A} \chi_{B}, \chi_{A \backslash B}=\chi_{A}-\chi_{A \cap B}$ and then apply Proposition 9.13. To prove 9.16. 3 we first observe that if a set B is measurable and $\operatorname{Vol} B<\epsilon$ then then for a sufficiently fine partition \mathcal{P} we have $U\left(\chi_{B} ; \mathcal{P}\right)<\operatorname{Vol} B+\epsilon<2 \epsilon$. Since $A \subset B$ then $\chi_{A} \leq \chi_{B}$, and of this notion to Riemann is incorrect. It was defined by Camille Jordan and Giuseppe Peano before Riemann integral was introduced. What we call in these notes volume is also known by the name Jordan content.
therefore $U\left(\chi_{A}, \mathcal{P}\right) \leq U\left(\chi_{B}, \mathcal{P}\right)<2 \epsilon$. Thus, $\inf _{\mathcal{P}} U\left(\chi_{A}, \mathcal{P}\right)=0$ and therefore A is measurable and $\operatorname{Vol}(A)=0$. Conversely, if $\operatorname{Vol}(A)=0$ then for any $\epsilon>0$ for a sufficiently fine partition \mathcal{P} we have $U\left(\chi_{A} ; \mathcal{P}\right)<\epsilon$. But $U\left(\chi_{A} ; \mathcal{P}\right)$ is equal to the sum of volumes of elements of the partition which have non-empty intersection with A.

Finally, let us prove 9.16.4. Consider any partition \mathcal{P} of P and form lower and upper integral sums for χ_{A}. Denote $M_{\mathbf{j}}:=M_{\mathbf{j}}\left(\chi_{A}\right)$ and $m_{\mathbf{j}}=m_{\mathbf{j}}\left(\chi_{A}\right)$. Then all numbers $M_{\mathbf{j}}, m_{\mathbf{j}}$ are equal to either 0 or 1 . We have $M_{\mathbf{j}}=m_{\mathbf{j}}=1$ if $P_{\mathbf{j}} \subset A ; M_{\mathbf{j}}=m_{\mathbf{j}}=0$ if $P_{\mathbf{j}} \cap A=\varnothing$ and $M_{\mathbf{j}}=1, m_{\mathbf{j}}=0$ if $P_{\mathbf{j}}$ has non-empty intersection with both A and $P \backslash A$. In particular,

$$
B(\mathcal{P}):=\bigcup_{\mathbf{j} ; M_{\mathbf{j}}-m_{\mathbf{j}}=1} P_{\mathbf{j}} \supset \partial A .
$$

Hence, we have

$$
U\left(\chi_{A} ; \mathcal{P}\right)-L\left(\chi_{A} ; \mathcal{P}\right)=\sum_{\mathbf{j}}\left(M_{\mathbf{j}}-m_{\mathbf{j}}\right) \operatorname{Vol}\left(P_{\mathbf{j}}\right)=\operatorname{Vol} B(\mathcal{P}) .
$$

Suppose that A is measurable. Then there exists a partition such that $U\left(\chi_{A} ; \mathcal{P}\right)-L\left(\chi_{A} ; \mathcal{P}\right)<\epsilon$, and hence ∂A is can be covered by the set $B(\mathcal{P})$ of volume $<\epsilon$. Thus applying part 3 we conclude that $\operatorname{Vol}(\partial A)=0$. Conversely, we had seen below that if $\operatorname{Vol}(\partial A)=0$ then there exists a partition such that the total volume of the elements intersecting ∂A is $<\epsilon$. Hence, for this partition we have $L\left(\chi_{A} ; \mathcal{P}\right) \leq U\left(\chi_{A} ; \mathcal{P}\right)<\epsilon$, which implies the integrability of χ_{A}, and hence measurability of A.

Corollary 9.17. If a bounded set $A \subset V$ is measurable then its interior $\operatorname{Int} A$ and its closure \bar{A} are also measurable and we have in this case

$$
\operatorname{Vol} A=\operatorname{Vol} \operatorname{Int} A=\operatorname{Vol} \bar{A} .
$$

Proof. 1. We have $\partial \bar{A} \subset \partial A$ and $\partial(\operatorname{Int} A) \subset \partial A$. Therefore, $\operatorname{Vol} \partial \bar{A}=\operatorname{Vol} \partial \operatorname{Int} A=0$, and therefore the sets \bar{A} and Int A are measurable. Also $\operatorname{Int} A \cup \partial A=\bar{A}$ and $\operatorname{Int} A \cap \partial A=\varnothing$. Hence, the additivity of the volume implies that $\operatorname{Vol} \bar{A}=\operatorname{Vol} \partial \operatorname{Int} A+\operatorname{Vol} \partial A=\operatorname{Vol} \partial \operatorname{Int} A$. On the other hand, Int $A \subset A \subset \bar{A}$. and hence the monotonicity of the volume implies that $\operatorname{Vol} \operatorname{Int} A \leq \operatorname{Vol} A \leq \operatorname{Vol} \bar{A}$. Hence, $\operatorname{Vol} A=\operatorname{Vol} \operatorname{Int} A=\operatorname{Vol} \bar{A}$.

Exercise 9.18. If Int A or \bar{A} are measurable then this does not imply that A is measurable. For instance, if A is the set of rational points in interval $I=[0,1] \subset \mathbb{R}$ then $\operatorname{Int} A=\varnothing$ and $\bar{A}=I$. However, show that A is not Riemann measurable.
2. A set A is called nowhere dense if $\operatorname{Int} A=\varnothing$. Prove that if A is nowhere dense then either $\operatorname{Vol} A=0$, or A is not measurable in the sense of Riemann. Find an example of a non-measurable nowhere dense set.

Lipshitz maps

Let V, W be two Euclidean spaces. Recall the definition of the norm of a linear operator $\mathcal{A}: V \rightarrow W$:

$$
\|\mathcal{A}\|=\max _{\|x\|=1} \frac{\|\mathcal{A}(x)\|}{\|x\|}
$$

Thus we have $\mathcal{A}\left(B_{R}(0)\right) \subset B_{a R}(0) \subset W$, where we denoted $a:=\|\mathcal{A}\|$.
Given a subset $A \subset V$ a map $f: A \rightarrow W$ is called Lipshitz if there exists a constant $C>0$ such that for any $x, y \in A$ we have

$$
\|f(y)-f(x)\| \leq C\|y-x\| .
$$

Lemma 9.19. Let $A \subset V$ be a compact set. Then any C^{1}-smooth map $A \rightarrow W$ is Lipshitz.

Let us recall that given a compact set $C \subset V$, we say that a map $f: C \rightarrow W$ is smooth if it extends to a smooth map defined on an open neighborhood $U \supset C$.

Proof. Let $K: A \rightarrow \mathbb{R}$ be the function defined by $K(x)=\left\|d_{x} f\right\|, x \in A$. The function K is continuous because f is C^{1}-smooth. Hence it is bounded: there exists a constant $E>0$ such that $K(x) \leq E$ for all $x \in A$.

Let us first consider the case when A is a convex set, i.e. with any two points $x, y \in A$ the interval connecting them is also contained in A. Given two points $x, y \in A$ at a distance $d=\|x-y\|>0$ consider a path $\phi(s)=x+\frac{s}{d}(y-x), s \in[0, d]$ which connects them. Note that the velocity vector $\phi^{\prime}(s)=\frac{y-x}{d}$ has the unit length. Denote $\widetilde{f}(s)=f(\phi(s)), s \in[0, d]$. Note that $\widetilde{f}^{\prime}(s)=d f_{\phi(s)}\left(\phi^{\prime}(s)\right)$ by the chain rule. In particular,

$$
\left\|\widetilde{f^{\prime}}(s)\right\| \leq\left\|d f_{\phi(s)}\right\|\left\|\phi^{\prime}(s)\right\| \leq E .
$$

We also have $f(y)-f(x)=\widetilde{f}(d)-\widetilde{f}(0)$. Let $\tilde{f}=\left(\widetilde{f}_{1}, \ldots, \widetilde{f}_{m}\right)$ be the coordinate functions of \tilde{f} in some Cartesian coordinates in W. By the intermediate value theorem, for each $k=1, \ldots, n$ we
have $\widetilde{f}_{k}(d)-\widetilde{f}_{k}(0)=\widetilde{f}_{k}^{\prime}\left(c_{k}\right) d$ for some $c_{k} \in[0, d]$. Hence, $\left|\widetilde{f}_{k}(d)-\widetilde{f}_{k}(0)\right| \leq C d$ and therefore

$$
\begin{equation*}
\|f(y)-f(x)\|=\|\tilde{f}(d)-\widetilde{f}(0)\|=\sqrt{\sum_{1}^{n}\left(\tilde{f}_{k}(d)-\tilde{f}_{k}(0)\right)^{2}} \leq E \sqrt{n} d=\widetilde{E}\|y-x\|, \tag{9.5.4}
\end{equation*}
$$

where we denoted $\widetilde{E}:=E \sqrt{n}$.
For a general bounded set A choose an open neighborhood $U \supset A$ to which the map f extends C^{1}-smoothly. Let $U^{\prime} \subset U$ be a smaller open neighborhood of A such that $\bar{U}^{\prime} \subset U$. We will also assume that \bar{U}^{\prime} is bounded, and hence compact.

For every point $x \in A$ there is $\epsilon(x)>0$ such that the closed ball $\overline{B_{\epsilon(x)}(x)}$ is contained in U^{\prime}. We have $\bigcup_{x \in A} B_{\frac{\epsilon(x)}{2}}(x) \supset A$, and hence by compactness of A there are finitely many balls $B_{i}:=B_{\frac{\epsilon\left(x_{i}\right)}{2}}\left(x_{i}\right)$, $i=1, \ldots, N$, such that $\bigcup_{1}^{N} B_{i} \supset A$. Denote $\epsilon:=\min _{i=1, \ldots, N} \frac{\epsilon\left(x_{i}\right)}{2}$. Then for any two points $x, y \in A$ with $\|y-x\| \leq \epsilon$ belong to one of the balls $\widehat{B}_{i}:=B_{\epsilon\left(x_{i}\right)}\left(x_{i}\right)$ which is convex, and hence according to (9.5.4) we have $\|f(y)-f(x)\| \leq \widetilde{E}\|y-x\|$.

Denote by D the diameter of the compact set $f(A)$, i.e. $D:=\max _{x, y \in A}\|f(y)-f(x)\|$. Then if for the distance between two points $x, y \in A$ is $\geq \epsilon$ we have $\|f(y)-f(x)\| \leq \frac{D}{\epsilon}\|y-x\|$. Finally, if we denote $C:=\max \left(\widetilde{E}, \frac{D}{\epsilon}\right)$ we get

$$
\|f(y)-f(x)\| \leq C\|y-x\| \text { for any } x, y \in A
$$

Volume and smooth maps

Lemma 9.20. Let $A \subset V$ be a compact set of volume 0 and $f: V \rightarrow W$ a Lipshitz map, where $\operatorname{dim} W \geq \operatorname{dim} V$. Then $\operatorname{Vol} f(A)=0$.

Proof. According to Lemma 9.19 there is a constant $C>0$ such that $\|f(y)-f(x)\| \leq C\|y-x\|$ for any $x, y \in A$. In particular, the image $f(P)$ of a cube P of size δ in $V_{x}, x \in A$, centered at x, is contained in a cube of size $K \delta$ in $W_{f(x)}$ centered at $f(x)$.

The volume 0 assumption implies that for any $\epsilon>0$ there exists a partition of some size $\delta>0$ of a larger cube containing A such that the total volume $N \delta^{n}$ of cubes P_{1}, \ldots, P_{N} intersecting A
is $<\epsilon$. But then $\bigcup_{1}^{N} f\left(P_{j}\right) \supset f(A)$ while $\overline{\operatorname{Vol}}_{m}\left(f\left(P_{j}\right)\right) \leq K^{M} \delta^{m}$, and hence

$$
\overline{\operatorname{Vol}}_{m} f(A) \leq N \delta^{n} K^{m} \delta^{m-n} \leq \epsilon K^{m} \delta^{m-n} \underset{\epsilon \rightarrow 0}{\text { to }} \rightarrow 0
$$

Corollary 9.21. Let $A \subset V$ be any compact set and $f: A \rightarrow W$ a C^{1}-smooth map. Suppose that $n=\operatorname{dim} V<m=\operatorname{dim} W$. Then $\operatorname{Vol}(f(A))=0$.

Indeed, f can be extended to a smooth map defined on a neighborhood of $A \times 0$ in $V \times \mathbb{R}$ (e.g. as independent of the new coordinate $t \in \mathbb{R})$. But $\operatorname{Vol}_{n+1}(A \times 0)=0$ and $m \geq n+1$. Hence, the required statement follows from Lemma 9.20 .

Remark 9.22. The statement of Corollary 9.21 is wrong for continuous maps. For instance, there exists a continuous map $h:[0,1] \rightarrow \mathbb{R}^{2}$ such that $h([0,1])$ is the square $\left\{0 \leq x_{1}, x_{1} \leq 1\right\}$. (This is a famous Peano curve passing through every point of the square.)

Corollary 9.21 is a simplest special case of Sard's theorem which asserts that the set of critical values of a sufficiently smooth map has volume 0 . More precisely,

Proposition 9.23. (A. SARD, 1942) Given a C^{k}-smooth map $f: A \rightarrow W$ (where A is a compact subset of $V, \operatorname{dim} V=n, \operatorname{dim} W=m$) let us denote by

$$
\Sigma(f):\left\{x \in A ; \operatorname{rank} d_{x} f<m\right\} .
$$

Then if $k \geq \max (n-m+1,1)$ then $\operatorname{Vol}_{m}(f(\Sigma(f))=0$.
If $m>n$ then $\Sigma(f)=A$, and hence the statement is equivalent to Corollary 9.21 .
Proof. We prove the proposition only for the case $m=n$.
To clarify the main idea we first consider the case when $n=1$ and $A=[0,1]$, i.e. f is a function $f: A \rightarrow \mathbb{R}$ with a continuous derivative f^{\prime}. According to Cantor's theorem f^{\prime} is uniformly continuous and hence for any ϵ there exists $\delta>0$ such that

$$
\begin{equation*}
\left|f^{\prime}(x)-f^{\prime}(y)\right|<\epsilon \text { when }|x-y|<\delta \tag{9.5.5}
\end{equation*}
$$

Let us take a partition of the interval of the size $<\delta$. Let I_{1}, \ldots, I_{N} be the interval of the partition which contain critical points, i.e. points where the derivative is 0 . Then for any point c in on
of these intervals $\left|f^{\prime}(c)\right|<\epsilon$, and hence by the intermidiate value theorem for any two points $x, y \in I_{j}, j=1, \ldots, N$ we have $|f(x)-f(y)|=\left|f^{\prime}(c)\right||x-y|<\epsilon \delta$, i.e. the image $f\left(I_{j}\right)$ is contained in an interval of length $\epsilon \delta$. But total length of theintrvals I_{j} is ≤ 1, and thus $f(\Sigma)(f)$ is covered by the union of intervals of the total length $<\epsilon$. Hence $\operatorname{Vol}_{1}(f(\Sigma(f)))=0$.

Consider now the case of a general n. Again the C^{1}-smoothness of f implies that $d_{x} f$ is uniformly continuous, i.e. for every $\epsilon>0$ there exists $\delta>0$ such that

$$
\begin{equation*}
\left\|d_{x} f-d_{y} f\right\|<\epsilon \text { when }\|x-y\|<\delta \tag{9.5.6}
\end{equation*}
$$

The inequality $\left\|d_{x} f-d_{y} f\right\|<\epsilon$ means that for any unit vector h in V

$$
\begin{equation*}
\left\|d_{x} f(h)-d_{y} f(h)\right\|<\epsilon \tag{9.5.7}
\end{equation*}
$$

where we parallel transport the vector h to points x and y.
Consider a partition of a cube Q containing A by cubes of size $<\frac{\delta}{2 \sqrt{n}}$, so that the ball surrounding each of the cubes and centered at any point of the cube has radius $<\delta$.

Let Q_{1}, \ldots, Q_{N} be the cubes of the partition intersecting $\Sigma(f)$. The total volume $2^{n} n^{-\frac{n}{2}} N \delta^{n}$ of these cubes is bounded by $\operatorname{Vol} P$, where P is a fixed cube containing A.

Choose a point $c_{j} \in Q_{j} \cap \Sigma(f)$ for each $j=1, \ldots, N$ Let B_{1}, \ldots, B_{N} be balls of radius δ centered at c_{j}. As we already pointed out, $B_{j} \supset Q_{j}$ for each $j=1, \ldots, N$.

The differential $d_{c_{j}} f$ is degenerate, and hence the image $d_{c_{j}} f\left(V_{c_{j}}\right) \subset W_{f\left(c_{j}\right)}$ is contained in a codimension 1 subspace $L_{j} \subset W_{f\left(c_{j}\right)}$. Let us choose a Cartesian coordinate system (y_{1}, \ldots, y_{n}) in $W_{f\left(c_{j}\right)}$ such that $L_{j}=\left\{y_{n}=0\right\}$ we can view y_{j} as coordinates in V with the origin shifted to $f\left(c_{j}\right)$. Let $\left(f_{1}, \ldots, f_{n}\right)$ be the coordinate functions of f with respect to these coordinates. Then $d_{c_{j}} f_{n}=0$, i.e. the directional derivatives of the function f at c_{j} at every direction are equal to 0 . But then according to inequality (9.5.7) the (absolute value of the) directional derivatives of f_{n} at any point of B_{j} are $<\epsilon$. Hence, using our above 1-dimensional argument along each radius of B_{j}, we conclude that $\left|f_{n}(x)\right|<\epsilon \delta$, i.e. the image $f\left(B_{j}\right)$ is contained in an $\epsilon \delta$-neighborhood $U_{\epsilon \delta}$ of the hyperplane L_{j} viewed as an affine hyperplane in V. We also recall that the map f is Lipshitz, and hence the image $f\left(B_{j}\right)$ is contained in a ball $B_{K \delta}\left(f\left(c_{j}\right)\right) \subset W$ of radius $K \delta$ centered at $f\left(c_{j}\right)$ for some constant $K>0$. Hence, $f\left(B_{j}\right) \subset U_{\epsilon \delta} \cap B_{K \delta}\left(f\left(c_{j}\right)\right)$, so $f\left(B_{j}\right)$ is contained in a rectangular P_{j} with all sides equal to $2 K \delta$ and one side of size $2 \epsilon \delta$. In particular, $\operatorname{Vol}\left(P_{j}\right)=K^{n-1} 2^{n} \delta^{n} \epsilon$.

Therefore, $f(\Sigma(f)$ can be covered by N such rectangular of total volume

$$
K^{n-1} 2^{n} N \delta^{n} \epsilon=\left(K^{n-1} n^{\frac{n}{2}} \operatorname{Vol} P\right) \epsilon \underset{\epsilon \rightarrow 0}{\rightarrow} 0
$$

Hence, $\operatorname{Vol} f(\Sigma(f))=0$.

Corollary 9.24. Let $A \subset \mathbb{R}^{n}$ be a measurable set and $f: A \rightarrow \mathbb{R}^{q}$, where $q \geq n$, be a C^{1}-smooth map. Then the image $f(A) \subset \mathbb{R}^{q}$ is also measurable.

Proof. If $q>n$ then $\operatorname{Vol}_{q} f(A)=0$ according to Corollary 9.21, and hence $f(A)$ is measurable. Suppose that $q=n$. Then for any interior point $a \in A$ such that rank $d_{a} f=n$ the image $f(a)$ is an interior point of $f(A)$ according to the implicit function theorem. Hence, the boundary $\partial(f(A)) \subset$ $f(\partial A) \cup f(\Sigma(f))$, where $\Sigma(f)$ is the set critical points of f (i.e. points $a \in A$ where $\operatorname{rank} d_{a} f<n$). But $\operatorname{Vol} \partial A=0$ and hence, according to Lemma $9.20 \operatorname{Vol}(f(\partial A))=0$. On the other hand, Sard's theorem 9.23 implies that $\operatorname{Vol} f(\Sigma(f))=0$, and therefore $\operatorname{Vol}(\partial f(A))=0$, which means that $f(A)$ is measurable.

Properties which hold almost everywhere

We say that some property holds almost everywhere (we will abbreviate a.e.) if it holds in the complement of a set of volume 0 . For instance, we say that a bounded function $f: P \rightarrow \mathbb{R}$ is almost everywhere continuous (or a.e. continuous) if it is continuous in the complement of a set $A \subset P$ of volume 0 . For instance, a characteristic function of any measurable set is a.e. continuous. Indeed, it is constant away from the set ∂A which according to Proposition 9.16. 4 has volume 0 .

Proposition 9.25. Suppose that the bounded functions $f, g: P \rightarrow \mathbb{R}$ coincide a.e. Then if f is integrable, then so is g and we have $\int_{P} f=\int_{P} g$.
Proof. Denote $A=\{x \in P: f(x) \neq g(x)\}$. By our assumption, $\operatorname{Vol} A=0$. Hence, for any ϵ there exists a $\delta>0$ such that for every partition \mathcal{P} with $\delta(\mathcal{P}) \leq \delta$ the union B_{δ} of all rectangles of the partition which have non-empty intersection with A has volume $<\epsilon$. The functions f, g are bounded, i.e. there exists $C>0$ such $-C \leq|f(x)|,|g(x)| \leq C$ for all $x \in P$. Due to integrability of f we can choose δ small enough so that $|U(f, \mathcal{P})-L(f, \mathcal{P})| \leq \epsilon$ when $\delta(\mathcal{P}) \leq \delta$. Then we have

$$
\left.|U(g, \mathcal{P})-U(f, \mathcal{P})|=\mid \sum_{J: P_{J} \subset B_{\delta}} \sup _{P_{J}} g-\sup _{P_{J}} f\right) \mid \leq 2 C \mathrm{Vol} B_{\delta} \leq 2 C \epsilon .
$$

Similarly, $|L(g, \mathcal{P})-L(f, \mathcal{P})| \leq 2 C \epsilon$, and hence

$$
\begin{aligned}
|U(g, \mathcal{P})-L(g, \mathcal{P})| & \leq|U(g, \mathcal{P})-U(f, \mathcal{P})|+|U(f, \mathcal{P})-L(f, \mathcal{P})|+|L(f, \mathcal{P})-L(g, \mathcal{P})| \\
& \leq \epsilon+4 C \epsilon \underset{\delta \rightarrow 0}{\longrightarrow} 0
\end{aligned}
$$

and hence g is integrable and

$$
\int_{P} g=\lim _{\delta(\mathcal{P}) \rightarrow 0} U(g, \mathcal{P})=\lim _{\delta(\mathcal{P}) \rightarrow 0} U(f, \mathcal{P})=\int_{P} f .
$$

Proposition 9.26. 1. Suppose that a function $f: P \rightarrow \mathbb{R}$ is a.e. continuous. Then f is integrable.
2. Let $A \subset V$ be compact and measurable, $f: U \rightarrow W$ a C^{1}-smooth map defined on a neighborhood $U \supset A$. Suppose that $\operatorname{dim} W=\operatorname{dim} V$. Then $f(A)$ is measurable.

Proof. 1. Let us begin with a
Warning. One could think that in view of Proposition 9.25 it is sufficient to consider only the case when the function f is continuous. However, this is not the case, because for a given a.e. continuos function one cannot, in general, find a continuos function g which coincides with f a.e.

Let us proceed with the proof. Given a partition \mathcal{P} we denote by J_{A} the set of multi-indices \mathbf{j} such that $\operatorname{Int} P_{\mathbf{j}} \cap A \neq \varnothing$, and by \bar{J}_{A} the complementary set of multi-indices, i.e. for each $\mathbf{j} \in \bar{J}_{A}$ we have $P_{\mathbf{j}} \cap A=\varnothing$. Let us denote $C:=\bigcup_{\mathbf{j} \in J_{A}} P_{\mathbf{j}}$. According to Proposition 9.16 .3 for any $\epsilon>0$ there exists a partition \mathcal{P} such that $\operatorname{Vol}(C)=\sum_{\mathbf{j} \in J_{A}} \operatorname{Vol}\left(P_{\mathbf{j}}\right)<\epsilon$. By assumption the function f is continuous over a compact set $B=\bigcup_{\mathbf{j} \in \bar{J}_{A}} P_{\mathbf{j}}$, and hence it is uniformly continuous over it. Thus there exists $\delta>0$ such that $\left|f(x)-f\left(x^{\prime}\right)\right|<\epsilon$ provided that $x, x^{\prime} \in B$ and $\left\|x-x^{\prime}\right\|<\delta$. Thus we can further subdivide our partition, so that for the new finer partition \mathcal{P}^{\prime} we have $\delta\left(\mathcal{P}^{\prime}\right)<\delta$. By assumption the function f is bounded, i.e. there exists a constant $K>0$ such that $M_{\mathbf{j}}(f)-m_{\mathbf{j}}(f)<K$ for all
indices \mathbf{j}. Then we have

$$
\begin{aligned}
U\left(f ; \mathcal{P}^{\prime}\right)-L\left(f, \mathcal{P}^{\prime}\right)= & \sum_{\mathbf{j}}\left(M_{\mathbf{j}}(f)-m_{\mathbf{j}}(f)\right) \operatorname{Vol}\left(P_{\mathbf{j}}\right)= \\
& \sum_{\mathbf{j} ; P_{\mathbf{j}} \in B}\left(M_{\mathbf{j}}(f)-m_{\mathbf{j}}(f)\right) \operatorname{Vol}\left(P_{\mathbf{j}}\right)+\sum_{\mathbf{j} ; P_{\mathbf{j}} \in C}\left(M_{\mathbf{j}}(f)-m_{\mathbf{j}}(f)\right) \operatorname{Vol}\left(P_{\mathbf{j}}\right)< \\
& \epsilon \operatorname{Vol} B+K \operatorname{Vol} C<\epsilon(\operatorname{Vol} P+K) .
\end{aligned}
$$

Hence $\inf _{\mathcal{P}} U(f ; \mathcal{P})=\sup _{\mathcal{P}} L(f ; \mathcal{P})$, i.e. the function f is integrable.
2. If x is an interior point of A and $\operatorname{det} D f(x) \neq 0$ then the inverse function theorem implies that $f(x) \in \operatorname{Int} f(A)$. Denote $C=\{x \in A ; \operatorname{det} D f(x)=0\}$. Hence, $\partial f(A) \subset f(\partial A) \cup f(C)$. But $\operatorname{Vol}(\partial A)=0$ because A is measurable and $\operatorname{Vol} f(C)=0$ by Sard's theorem 9.23. Therefore, $\operatorname{Vol} \partial f(A)=0$ and thus $f(A)$ is measurable.

Orthogonal invariance of the volume and volume of a parallelepiped

The following lemma provides a way of computing the volume via packing by balls rather then cubes. An admissible set of balls in A is any finite set of disjoint balls $B_{1}, \ldots, B_{K} \subset A$

Lemma 9.27. Let A be a measurable set. Then $\operatorname{Vol} A$ is the supremum of the total volume of admissible sets of balls in A. Here the supremum is taken over all admissible sets of balls in A.

Proof. Let us denote this supremum by β. The monotonicity of volume implies that $\beta \leq \operatorname{Vol} A$. Suppose that $\beta<\operatorname{Vol} A$. Let us denote by μ_{n} the volume of an n-dimensional ball of radius 1 (we will compute this number later on). This ball is contained in a cube of volume 2^{n}. It follows then that the ratio of the volume of any ball to the volume of the cube to which it is inscribed is equal to $\frac{\mu_{n}}{2^{n}}$. Choose an $\epsilon<\frac{\mu_{n}}{2^{n}}(\operatorname{Vol} A-\beta)$. Then there exists a finite set of disjoint balls $B_{1}, \ldots, B_{K} \subset A$ such that $\operatorname{Vol}\left(\bigcup_{1}^{K} B_{j}\right)>\beta-\epsilon$. The volume of the complement $C=A \backslash \bigcup_{1}^{K} B_{j}$ satisfies

$$
\operatorname{Vol} C=\operatorname{Vol} A-\operatorname{Vol}\left(\bigcup_{1}^{K} B_{j}\right)>\operatorname{Vol} A-\beta
$$

Hence there exists a partition \mathcal{P} of P by cubes such that the total volume of cubes Q_{1}, \ldots, Q_{L} contained in C is $>\operatorname{Vol} A-\beta$. Let us inscribe in each of the cubes Q_{j} a ball \widetilde{B}_{j}. Then $B_{1}, \ldots, B_{K}, \widetilde{B}_{1}, \ldots, \widetilde{B}_{L}$
is an admissible set of balls in A. Indeed, all these balls are disjoint and contained in A. The total volume of this admissible set is equal to

$$
\sum_{1}^{K} \operatorname{Vol} B_{j}+\sum_{1}^{L} \operatorname{Vol} \widetilde{B}_{i} \geq \beta-\epsilon+\frac{\mu_{n}}{2^{n}}(\operatorname{Vol} A-\beta)>\beta
$$

in view of our choice of ϵ, but this contradicts to our assumption $\beta<\operatorname{Vol} A$. Hence, we have $\beta=\operatorname{Vol} A$.

Lemma 9.28. Let $A \subset V$ be any measurable set in a Euclidean space V. Then for any linear orthogonal transformation $F: V \rightarrow V$ the set $F(A)$ is also measurable and we have $\operatorname{Vol}(F(A))=$ $\operatorname{Vol}(A)$.

Proof. First note that if $\operatorname{Vol} A=0$ then the claim follows from Lemma 9.20. Indeed, an orthogonal transformation is, of course a smooth map.

Let now A be an arbitrary measurable set. Note that $\partial F(A)=F(\partial A)$. Measurability of A implies $\operatorname{Vol}(\partial A)=0$. Hence, as we just have explained, $\operatorname{Vol}(\partial F(A))=\operatorname{Vol}(F(\partial A))=0$, and hence $F(A)$ is measurable. According to Lemma 9.27 the volume of a measurable set can be computed as a supremum of the total volume of disjoint inscribed balls. But the orthogonal transformation F moves disjoint balls to disjoint balls of the same size, and hence $\operatorname{Vol} A=\operatorname{Vol} F(A)$.

Next proposition shows that the volume of a parallelepiped can be computed by formula (3.3.1) from Section 3.3.

Proposition 9.29. Let $v_{1}, \ldots, v_{n} \in V$ be linearly independent vectors. Then

$$
\begin{equation*}
\operatorname{Vol} P\left(v_{1}, \ldots, v_{n}\right)=\left|x_{1} \wedge \cdots \wedge x_{n}\left(v_{1} \ldots, v_{n}\right)\right| \tag{9.5.8}
\end{equation*}
$$

Proof. The formula (9.5.8) holds for rectangles, i.e. when $v_{j}=c_{j} e_{j}$ for some non-zero numbers c_{j}, $j=1, \ldots n$. Using Lemma 9.28 we conclude that it also holds for any orthogonal basis. Indeed, any such basis can be moved by an orthogonal transformation to a basis of the above form $c_{j} e_{j}, j=$ $1, \ldots n$. Lemma 9.28 ensures that the volume does not change under the orthogonal transformation, while Proposition 2.17 implies the same about $\left|x_{1} \wedge \cdots \wedge x_{n}\left(v_{1} \ldots, v_{n}\right)\right|$.

The Gram-Schmidt orthogonalization process shows that one can pass from any basis to an orthogonal basis by a sequence of following elementary operations:

- - reordering of basic vectors, and
- shears, i.e. an addition to the last vector a linear combination of the other ones:

$$
v_{1}, \ldots, v_{n-1}, v_{n} \mapsto v_{1}, \ldots, v_{n-1}, v_{n}+\sum_{1}^{n-1} \lambda_{j} v_{j}
$$

Note that the reordering of vectors v_{1}, \ldots, v_{n} changes neither $\operatorname{Vol} P\left(v_{1}, \ldots, v_{n}\right)$, nor the absolute value
$\left|x_{1} \wedge \cdots \wedge x_{n}\left(v_{1} \ldots, v_{n}\right)\right|$. On the other hand, a shear does not change

$$
x_{1} \wedge \cdots \wedge x_{n}\left(v_{1} \ldots, v_{n}\right)
$$

It remains to be shown that a shear does not change the volume of a parallelepiped. We will consider here only the case $n=2$ and will leave to the reader the extension of the argument to the general case.

Let v_{1}, v_{2} be two orthogonal vectors in \mathbb{R}^{2}. We can assume that $v_{1}=(a, 0), v_{2}=(0, b)$ for $a, b>0$, because we already proved the invariance of volume under orthogonal transformations. Let $v_{2}^{\prime}=v_{2}+\lambda v_{1}=\left(a^{\prime}, b\right)$, where $a^{\prime}=a+\lambda b$. Let us partition the rectangle $P=P\left(v_{1}, v_{2}\right)$ into N^{2} smaller rectangles $P_{i, j}, i, j=0, \ldots, N-1$, of equal size. We number the rectangles in such a way that the first index corresponds to the first coordinate, so that the rectangles $P_{00}, \ldots, P_{N-1,0}$ form the lower layer, $P_{01}, \ldots, P_{N-1,1}$ the second layer, etc. Let us now shift the rectangles in k-th layer horizontally by the vector $\left(\frac{k \lambda b}{N}, 0\right)$. Then the total volume of the rectangles, denoted $\widetilde{P}_{i j}$ remains the same, while when $N \rightarrow \infty$ the volume of part of the parallelogram $P\left(v_{1}, v_{2}^{\prime}\right)$ that is not covered by rectangles $\widetilde{P}_{i, j}, i, j=0, \ldots, N-1$ converges to 0 .

9.6 Fubini's Theorem

Let us consider \mathbb{R}^{n} as a direct product of \mathbb{R}^{k} and \mathbb{R}^{n-k} for some $k=1, \ldots, n-1$. We will denote coordinates in \mathbb{R}^{k} by $x=\left(x_{1}, \ldots, x_{k}\right)$ and coordinates in \mathbb{R}^{n-k} by $y=\left(y_{1}, \ldots, y_{n-k}\right)$, so the coordinates in \mathbb{R}^{n} are denoted by $\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n-k}\right)$. Given rectangles $P_{1} \subset \mathbb{R}^{k}$ and $P_{2} \subset$ \mathbb{R}^{n-k} their product $P=P_{1} \times P_{2}$ is a rectangle in \mathbb{R}^{n}.

Figure 9.2: Guido Fubini (1879-1943)

The following theorem provides us with a basic tool for computing multiple integrals.

Theorem 9.30 (Guido Fubini). Suppose that a function $f: P \rightarrow \mathbb{R}$ is integrable over P. Given a point $x \in P_{1}$ let us define a function $f_{x}: P_{2} \rightarrow \mathbb{R}$ by the formula $f_{x}(y)=f(x, y), y \in P_{2}$. Then

$$
\int_{P} f d V_{n}=\int_{P_{1}}\left(\int_{\frac{P_{2}}{}} f_{x} d V_{n-k}\right) d V_{k}=\int_{P_{1}}\left(\int_{P_{2}} f_{x} d V_{n-k}\right) d V_{k}
$$

In particular, if the function f_{x} is integrable for all (or almost all) $x \in P_{1}$ then one has

$$
\int_{P} f d V_{n}=\int_{P_{1}}\left(\int_{P_{2}} f_{x} d V_{n-k}\right) d V_{k}
$$

Here by writing $d V_{k}, d V_{n-k}$ and $d V_{n}$ we emphasize the integration with respect to the $k-,(n-k)$ and n-dimensional volumes, respectively.

Proof. Choose any partition \mathcal{P}_{1} of P_{1} and \mathcal{P}_{2} of P_{2}. We will denote elements of the partition \mathcal{P}_{1} by $P_{1}^{\mathbf{j}}$ and elements of the partition \mathcal{P}_{2} by $P_{2}^{\mathbf{i}}$. Then products of $P^{\mathbf{j}, \mathbf{i}}=P_{1}^{\mathbf{j}} \times P_{2}^{\mathbf{i}}$ form a partition \mathcal{P} of $P=P_{1} \times P_{2}$. Let us denote

$$
\bar{I}(x):=\bar{\int}_{P_{2}} f_{x}, \underline{I}(x):=\int_{P_{2}} f_{x}, x \in P_{1} .
$$

Let us show that

$$
\begin{equation*}
L(f, \mathcal{P}) \leq L\left(\underline{I}, \mathcal{P}_{1}\right) \leq U\left(\bar{I}, \mathcal{P}_{1}\right) \leq U(f, \mathcal{P}) . \tag{9.6.1}
\end{equation*}
$$

Indeed, we have

$$
L(f, \mathcal{P})=\sum_{\mathbf{j}} \sum_{\mathbf{i}} m_{\mathbf{j}, \mathbf{i}}(f) \operatorname{Vol}_{n} P^{\mathbf{j}, \mathbf{i}}
$$

Here the first sum is taken over all multi-indices \mathbf{j} of the partition \mathcal{P}_{1}, and the second sum is taken over all multi-indices \mathbf{i} of the partition \mathcal{P}_{2}. On the other hand,

$$
L\left(\underline{I}, \mathcal{P}_{1}\right)=\sum_{\mathbf{j}} \inf _{x \in P_{1}^{\mathbf{j}}}\left(\int_{\frac{P_{2}}{}} f_{x} d V_{n-k}\right) \operatorname{Vol}_{k} P_{1}^{\mathbf{j}}
$$

Note that for every $x \in P_{1}^{\mathbf{j}}$ we have

$$
\frac{\int_{P_{2}}}{} f_{x} d V_{n-k} \geq L\left(f_{x} ; \mathcal{P}_{2}\right)=\sum_{\mathbf{i}} m_{\mathbf{i}}\left(f_{x}\right) \operatorname{Vol}_{n-k}\left(P_{2}^{\mathbf{i}}\right) \geq \sum_{\mathbf{i}} m_{\mathbf{i}, \mathbf{j}}(f) \operatorname{Vol}_{n-k}\left(P_{2}^{\mathbf{i}}\right)
$$

and hence

$$
\inf _{x \in P_{1}^{\mathbf{j}}} \int_{P_{2}} f_{x} d V_{n-k} \geq \sum_{\mathbf{i}} m_{\mathbf{i}, \mathbf{j}}(f) \operatorname{Vol}_{n-k}\left(P_{2}^{\mathbf{i}}\right)
$$

Therefore,

$$
L\left(\underline{I}, \mathcal{P}_{1}\right) \geq \sum_{\mathbf{j}} \sum_{\mathbf{i}} m_{\mathbf{i}, \mathbf{j}}(f) \operatorname{Vol}_{n-k}\left(P_{2}^{\mathbf{i}}\right) \operatorname{Vol}_{k}\left(P_{1}^{\mathbf{j}}\right)=\sum_{\mathbf{j}} \sum_{\mathbf{i}} m_{\mathbf{j}, \mathbf{i}}(f) \operatorname{Vol}_{n}\left(P^{\mathbf{j}, \mathbf{i}}\right)=L(f, \mathcal{P})
$$

Similarly, one can check that $U\left(\bar{I}, \mathcal{P}_{1}\right) \leq U(f, \mathcal{P})$. Together with an obvious inequality $L\left(\underline{I}, \mathcal{P}_{1}\right) \leq$ $U\left(\bar{I}, \mathcal{P}_{1}\right)$ this completes the proof of 9.6 .1 . Thus we have

$$
\max \left(U\left(\bar{I}, \mathcal{P}_{1}\right)-L\left(\bar{I}, \mathcal{P}_{1}\right), U\left(\underline{I}, \mathcal{P}_{1}\right)-L\left(\underline{I}, \mathcal{P}_{1}\right)\right) \leq U\left(\bar{I}, \mathcal{P}_{1}\right)-L\left(\underline{I}, \mathcal{P}_{1}\right) \leq U(f, \mathcal{P})-L(f, \mathcal{P})
$$

By assumption for appropriate choices of partitions, the right-hand side can be made $<\epsilon$ for any a priori given $\epsilon>0$. This implies the integrability of the function $\underline{I}(x)$ and $\bar{I}(x)$ over P_{1}. But then we can write

$$
\int_{P_{1}} \underline{I}(x) d V_{n-k}=\lim _{\delta\left(\mathcal{P}_{1}\right) \rightarrow 0} L\left(\underline{I} ; \mathcal{P}_{1}\right)
$$

and

$$
\int_{P_{1}} \bar{I}(x) d V_{n-k}=\lim _{\delta\left(\mathcal{P}_{1}\right) \rightarrow 0} U\left(\bar{I} ; \mathcal{P}_{1}\right)
$$

We also have

$$
\lim _{\delta(\mathcal{P}) \rightarrow 0} L(f ; \mathcal{P})=\lim _{\delta(\mathcal{P}) \rightarrow 0} U(f ; \mathcal{P})=\int_{P} f d V_{n}
$$

Hence, the inequality 9.6.1) implies that

$$
\int_{P} f d V_{n}=\int_{P_{1}}\left(\int_{P_{2}} f_{x} d V_{n-k}\right) d V_{k}=\int_{P_{1}}\left(\int_{P_{2}} f_{x} d V_{n-k}\right) d V_{k} .
$$

Corollary 9.31. Suppose $f: P \rightarrow \mathbb{R}$ is a continuous function. Then

$$
\int_{P} f=\int_{P_{1}} \int_{P_{2}} f_{x}=\int_{P_{2}} \int_{P_{1}} f_{y} .
$$

Thus if we switch back to the notation x_{1}, \ldots, x_{n} for coordinates in \mathbb{R}^{n}, and if $P=\left\{a_{1} \leq x_{1} \leq\right.$ $\left.b_{1}, \ldots, a_{n} \leq x_{n} \leq b_{n}\right\}$ then we can write

$$
\begin{equation*}
\int_{P} f=\int_{a_{n}}^{b_{n}}\left(\ldots\left(\int_{a_{1}}^{b_{1}} f\left(x_{1}, \ldots, x_{n}\right) d x_{1}\right) \ldots\right) d x_{n} \tag{9.6.2}
\end{equation*}
$$

The integral in the right-hand side of (9.6.2) is called an iterated integral. Note that the order of integration is irrelevant there. In particular, for continuous functions one can change the order of integration in the iterated integrals.

9.7 Integration of n-forms over domains in n-dimensional space

Differential forms are much better suited to be integrated than functions. For integrating a function, one needs a measure. To integrate a differential form, one needs nothing except an orientation of the domain of integration.

Let us start with the integration of a n-form over a domain in a n-dimensional space. Let ω be a n-form on a domain $U \subset V, \operatorname{dim} V=n$.

Let us fix now an orientation of the space V. Pick any coordinate system $\left(x_{1} \ldots x_{n}\right)$ that agrees with the chosen orientation.

We proceed similar to the way we defined an integral of a function. Let us fix a rectangle $P=P\left(a_{1}, b_{1} ; a_{2}, b_{2} ; \ldots ; a_{n}, b_{n}\right)=\left\{a_{i} \leq x_{i} \leq b_{i} ; i=1, \ldots, n\right\}$. Choose its partition \mathcal{P} by N^{n} smaller rectangles $P_{\mathbf{j}}=\left\{t_{j_{n}}^{1} \leq x_{1} \leq t_{j_{n}+1}^{1}, \ldots, t_{j_{1}}^{n} \leq x_{1} \leq t_{j_{1}+1}^{n}\right\}$, where $\mathbf{j}=\left(j_{1}, \ldots, j_{n}\right)$ and each index j_{k} takes values between 0 and $N-1$. Let us fix a point $c_{\mathbf{j}} \in P_{\mathbf{j}}$ and denote by C the set of all such $c_{\mathbf{j}}$. We also denote by $t_{\mathbf{j}}$ the point with coordinates $t_{j_{1}}^{1}, \ldots, t_{j_{n}}^{n}$ and by $T_{\mathbf{j}, m} \in V_{c_{\mathbf{j}}}, m=1, \ldots, n$ the vector $t_{\mathbf{j}+1_{m}}-t_{\mathbf{j}}$, parallel-transported to the point $c_{\mathbf{j}}$. Here we use the notation $\mathbf{j}+1_{m}$ for the multi-index $j_{1}, \ldots, j_{m-1}, j_{m}+1, j_{m+1}, \ldots, j_{n}$. Thus the vector $T_{\mathbf{j}, m}$ is parallel to the m-th basic vector and has the length $\left|t_{j_{m}+1}-t_{j_{m}}\right|$.

Given a differential n-form α on P we form an integral sum

$$
\begin{equation*}
I(\alpha ; \mathcal{P}, C)=\sum_{\mathbf{j}} \alpha\left(T_{1}^{\mathbf{j}}, T_{2}^{\mathbf{j}}, \ldots, T_{\mathbf{j}, n}\right), \tag{9.7.1}
\end{equation*}
$$

where the sum is taken over all elements of the partition. We call an n-form α integrable if there exists a limit $\lim _{\delta(\mathcal{P}) \rightarrow 0} I(\alpha ; \mathcal{P}, C)$ which we denote by $\int_{P} \alpha$ and call the integral of α over P. Note that if $\alpha=f(x) d x_{1} \wedge \cdots \wedge d x_{n}$ then the integral sum $I(\alpha, \mathcal{P}, C)$ from 9.7.1) coincides with the integral sum $I(f ; \mathcal{P}, C)$ from 9.5.2) for the function f. Thus the integrability of α is the same as integrability of f and we have

$$
\begin{equation*}
\int_{P} f(x) d x_{1} \wedge \cdots \wedge d x_{n}=\int_{P} f d V . \tag{9.7.2}
\end{equation*}
$$

Note, however, that the equality (9.7.2) holds only if the coordinate system $\left(x_{1}, \ldots, x_{n}\right)$ defines the given orientation of the space V. The integral $\int_{P} f(x) d x_{1} \wedge \cdots \wedge d x_{n}$ changes its sign with a change of the orientation while the integral $\int_{P} f d V$ is not sensitive to the orientation of the space V.

It is not clear from the above definition whether the integral of a differential form depends on our choice of the coordinate system. It turns out that it does not, as the following theorem, which is the main result of this section, shows. Moreover, we will see that one even can use arbitrarty curvilinear coordinates.

In what follows we use the convention introduced at the end of Section 6.1. Namely by a diffeomorphism between two closed subsets of vector spaces we mean a diffeomorphism between their neighborhoods.

Theorem 9.32. Let $A, B \subset \mathbb{R}^{n}$ be two measurable compact subsets. Let $f: A \rightarrow B$ be an orientation preserving diffeomorphism. Let η be a differential n-form defined on B. Then if η is integrable over B then $f^{*} \alpha$ is integrable over A and we have

$$
\begin{equation*}
\int_{A} f^{*} \eta=\int_{B} \eta \tag{9.7.3}
\end{equation*}
$$

For an orientation reversing diffeomorphism f we have $\int_{A} f^{*} \eta=-\int_{B} \eta$.
Let $\alpha=g(x) d x_{1} \wedge \cdots \wedge d x_{n}$. Then $f^{*} \alpha=g \circ f \operatorname{det} D f d x_{1} \wedge \cdots \wedge d x_{n}$, and hence the formula 9.7.3 can be rewritten as

$$
\int_{P} g\left(x_{1}, \ldots, x_{n}\right) d x_{1} \wedge \cdots \wedge d x_{n}=\int_{P} g \circ f \operatorname{det} D f d x_{1} \wedge \cdots \wedge d x_{n}
$$

Here

$$
\operatorname{det} D f=\left|\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\cdots & \ldots & \cdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right|
$$

is the determinant of the Jacobian matrix of $f=\left(f_{1}, \ldots, f_{n}\right)$.
Hence, in view of formula 9.7 .2 we get the following change of variables formula for multiple integrals of functions.

Corollary 9.33. [Change of variables in a multiple integral] Let $g: B \rightarrow \mathbb{R}$ be an integrable function and $f: A \rightarrow B$ a diffeomorphism. Then the function $g \circ f$ is also integrable and

$$
\begin{equation*}
\int_{B} g d V=\int_{A} g \circ f|\operatorname{det} D f| d V \tag{9.7.4}
\end{equation*}
$$

We begin the proof with the following special case of Theorem 9.32 .
Proposition 9.34. The statement of 9.32 holds when $\eta=d x_{1} \wedge \cdots \wedge d x_{n}$ and the set A is the unit cube $I=I^{n}$. In other words,

$$
\operatorname{Vol} f(I)=\left|\int_{A} f^{*} \eta\right|
$$

Figure 9.3: Image of a cube under a diffeomorphism and its linearization

We will use below the following notation.
For any set $A \subset V$ and any positive number $\lambda>0$ we denote by λA the set $\{\lambda x, x \in A\}$. For any linear operator $F: V \rightarrow W$ between two Euclidean spaces V and W we define its norm $\|F\|$ by the formula

$$
\|F\|=\max _{\|v\|=1}\|F(v)\|=\max _{v \in V, v \neq 0} \frac{\|F(v)\|}{\|v\|} .
$$

Equivalently, we can define $\|F\|$ as follows. The linear map F maps the unit sphere in the space V onto an ellipsoid in the space W. Then $\|F\|$ is the biggest semi-axis of this ellipsoid.

Let us begin by observing the following geometric fact:

Lemma 9.35. Let $I=\left\{\left|x_{i}\right| \leq \frac{1}{2}, i=1, \ldots, n\right\} \subset \mathbb{R}^{n}$ be the unit cube centered at 0 and $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ a non-degenerate linear map. Take any $\epsilon \in(0,1)$ and set $\sigma=\frac{\epsilon}{\left\|F^{-1 \mid}\right\|}$. Then for any boundary point $z \in \partial I$ we have

$$
\begin{equation*}
B_{\sigma}(F(z)) \subset(1+\epsilon) F(I) \backslash(1-\epsilon) F(I), \tag{9.7.5}
\end{equation*}
$$

see Fig. 9.7

Proof. Inclusion 9.7.5 can be rewritten as

$$
F^{-1}\left(B_{\sigma}(F(z)) \subset(1+\epsilon) I \backslash(1-\epsilon) I .\right.
$$

But the set $F^{-1}\left(B_{\sigma}(F(z))\right.$ is an ellipsoid centered at z whose greatest semi-axis is equal to $\sigma\left\|F^{-1}\right\|$. Hence, if $\sigma\left\|F^{-1}\right\| \leq \epsilon$ then $F^{-1}\left(B_{\sigma}(F(z)) \subset(1+\epsilon) I \backslash(1-\epsilon) I\right.$.

Recall that we denote by δI the cube I scaled with the coefficient δ, i.e. $\delta I=\left\{\left|x_{i}\right| \leq \frac{\delta}{2}, i=\right.$ $1, \ldots, n\} \subset \mathbb{R}^{n}$. We will also need

Lemma 9.36. Let $U \subset \mathbb{R}^{n}$ is an open set, $f: U \rightarrow \mathbb{R}^{n}$ such that $f(0)=0$. Suppose that f is differentiable at 0 and its differential $F=d_{0} f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ at 0 is non-degenerate. Then for any $\epsilon \in(0,1)$ there exists $\delta>0$ such that

$$
\begin{equation*}
(1-\epsilon) F(\delta I) \subset f(\delta I) \subset(1+\epsilon) F(\delta I) \tag{9.7.6}
\end{equation*}
$$

see Fig. 9.7.

Proof. First, we note that inclusion 9.7.5 implies, using linearity of F, that for any $\delta>0$ we have

$$
\begin{equation*}
B_{\delta \sigma}(F(z)) \subset(1+\epsilon) F(\delta I) \backslash(1-\epsilon) F(\delta I), \tag{9.7.7}
\end{equation*}
$$

where $z \in \partial(\delta I)$ and, as in Lemma 9.35, we assume that $\epsilon=\sigma\left\|F^{-1}\right\|$.
According to the definition of differentiability we have

$$
f(h)=F(h)+o(\|h\|) .
$$

Denote $\widetilde{\sigma}:=\frac{\sigma}{\sqrt{n}}=\frac{\epsilon}{\sqrt{n}\left\|F^{-1}\right\|}$. There exists $\rho>0$ such that if $\|h\| \leq \rho$ then

$$
\|f(h)-F(h)\| \leq \widetilde{\sigma}\|h\| \leq \widetilde{\sigma} \rho .
$$

Denote $\delta:=\frac{\rho}{\sqrt{n}}$. Then $\delta I \subset B_{\rho}(0)$, and hence $\|f(z)-F(z)\| \leq \widetilde{\sigma} \rho$ for any $z \in \delta I$. In particular, for any point $z \in \partial(\delta I)$ we have

$$
f(z) \in B_{\widetilde{\sigma} \rho}(F(z))=B_{\sqrt{n} \widetilde{\sigma} \delta}(F(z))=B_{\sigma \delta}(F(z)),
$$

and therefore in view of 9.7.7

$$
f(\partial(\delta I)) \subset(1+\epsilon) F(\delta I) \backslash(1-\epsilon) F(\delta I) .
$$

But this is equivalent to inclusion (9.7.6).
Lemma 9.37. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a non-degenerate orientation preserving linear map, $P=$ $P\left(v_{1}, \ldots, v_{n}\right)$ a parallelepiped, and $\eta=d x_{1} \wedge \cdots \wedge d x_{n}$. Then $\int_{F(P)} \eta=\int_{P} F^{*} \eta$. Here we assume that the orientation of P and $F(P)$ are given by the orientation of \mathbb{R}^{n}.

Proof. We have $\int_{F(P)} \eta=\int_{F(P)} d x_{1} \wedge \ldots d x_{n}=\operatorname{Vol} F(P)=(\operatorname{det} F) \operatorname{Vol} P$. On the other hand, $F^{*} \eta=$ $\operatorname{det} F \eta$, and hence $\int_{P} F^{*} \eta=\operatorname{det} F \int_{P} \eta=(\operatorname{det} F) \operatorname{Vol} P$.
Proof of Proposition 9.34. We have $f^{*} \eta=(\operatorname{det} D f) d x_{1} \wedge \cdots \wedge d x_{n}$, and hence the form $f^{*} \eta$ is integrable because f is C^{1}-smooth, and hence $\operatorname{det} D f$ is continuous.

Choose a partition \mathcal{P} of the cube I by N^{n} small cubes $I_{K}, K=1, \ldots, N^{n}$, of the same size $\frac{1}{N}$. Let $c_{K} \in I_{K}$ be the center of the cube I_{K}. Then

$$
\int_{I} f^{*} \eta=\sum_{K=1}^{N^{n}} \int_{I_{K}} f^{*} \eta .
$$

Note that in view of the uniform continuity of the function $\operatorname{det} D f$, for any $\epsilon>0$ the number N can be chosen so large that $\left|\operatorname{det} D f(x)-\operatorname{det} D f\left(x^{\prime}\right)\right|<\epsilon$ for any two points $x, x^{\prime} \in I_{K}$ and any $K=1, \ldots, N^{n}$. Let η_{K} be the form $\operatorname{det} D f\left(c_{k}\right) d x_{1} \wedge \cdots \wedge d x_{n}$ on I_{K}. Then

$$
\left|\int_{I_{K}} f^{*} \eta-\int_{I_{K}} \eta_{K}\right| \leq \int_{I_{K}}\left|\operatorname{det} D f(x)-\operatorname{det} D f\left(c_{K}\right)\right| d x_{1} \wedge \cdots \wedge d x_{n} \leq \epsilon \operatorname{Vol}\left(I_{K}\right)=\frac{\epsilon}{N^{n}} .
$$

Thus

$$
\begin{equation*}
\left|\int_{I} f^{*} \eta-\sum_{K=1}^{N^{n}} \int_{I_{K}} \eta_{K}\right| \leq \epsilon \tag{9.7.8}
\end{equation*}
$$

Next, let us analyze the integral $\int_{I_{K}} \eta_{K}$. Denote $F_{K}:=d_{c_{K}}(f)$. We can assume without loss of generality that $c_{K}=0$, and $f\left(c_{K}\right)=0$, and hence F_{K} can be viewed just as a linear map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

Using Lemma 9.36 we have for a sufficiently large N

$$
(1-\epsilon) F_{K}\left(I_{K}\right) \subset f\left(I_{K}\right) \rightarrow(1+\epsilon) F_{K}\left(I_{K}\right)
$$

Again in view of compactness of I the number ϵ can be chosen the same for all cubes I_{K}. Hence

$$
\begin{equation*}
(1-\epsilon)^{n} \operatorname{Vol}\left(F_{K}\left(I_{K}\right)\right) \leq \operatorname{Vol} f\left(I_{K}\right) \leq(1+\epsilon)^{n} \operatorname{Vol}\left(F_{K}\left(I_{K}\right)\right) \tag{9.7.9}
\end{equation*}
$$

Note that $\operatorname{Vol} f\left(I_{K}\right)=\int_{f\left(I_{K}\right)} \eta$, and hence summing up inequality 9.7.9) over K we get

$$
\begin{equation*}
(1-\epsilon)^{n} \sum_{K=1}^{N^{n}} \operatorname{Vol}\left(F_{K}\left(I_{K}\right)\right) \leq \sum_{K=1}^{N^{n}} \operatorname{Vol} f\left(I_{K}\right)=\sum_{K=1}^{N^{n}} \int_{f\left(I_{K}\right)} \eta=\int_{f(I)} \eta \leq(1+\epsilon)^{n} \sum_{K=1}^{N^{n}} \operatorname{Vol}\left(F_{K}\left(I_{K}\right)\right) . \tag{9.7.10}
\end{equation*}
$$

Note that $\eta_{K}=F_{K}^{*} \eta$ and by Lemma 9.37 we have $\int_{I_{K}} \eta_{K}=\int_{I_{K}} F_{K}^{*} \eta=\int_{F_{K}\left(I_{K}\right)} \eta=\operatorname{Vol}\left(F_{K}\left(I_{K}\right)\right)$. Hence, it follows from 9.7.10 that

$$
\begin{equation*}
(1-\epsilon)^{n} \sum_{K=1}^{N^{n}} \int_{I_{K}} \eta_{K} \leq \int_{f(I)} \eta \leq(1+\epsilon)^{n} \sum_{K=1}^{N^{n}} \int_{I_{K}} \eta_{K} . \tag{9.7.11}
\end{equation*}
$$

Recall that from 9.7.8) we have

$$
\int_{I} f^{*} \eta-\epsilon \leq \sum_{K=1}^{N^{n}} \int_{I_{K}} \leq \int_{I} f^{*} \eta+\epsilon .
$$

Combining with 9.7.11 we get

$$
\begin{equation*}
(1-\epsilon)^{n}\left(\int_{I} f^{*} \eta-\epsilon\right) \leq \int_{f(I)} \eta \leq(1+\epsilon)^{n}\left(\int_{I} f^{*} \eta+\epsilon\right) . \tag{9.7.12}
\end{equation*}
$$

Passing to the limit when $\epsilon \rightarrow 0$ we get

$$
\begin{equation*}
\int_{I} f^{*} \eta \leq \int_{f(I)} \eta \leq \int_{I} f^{*} \eta, \tag{9.7.13}
\end{equation*}
$$

i.e. $\int_{I} f^{*} \eta=\int_{f(I)} \eta$.

Corollary 9.38. The statement of Theorem 9.32 holds for $\eta=d x_{1} \wedge \cdots \wedge d x_{n}$ and an arbitrary measurable A.

Proof. Suppose for determinacy that f preserves the orientation. By assumption the diffeomorphism A extends to an open neighborhood $U \supset A$. Consider a cube containing $P \supset A$. Choose
a $\delta>0$ and consider a partition \mathcal{P} of P by small cube of size $<\delta$. Denote by A_{δ}^{+}the union of elements of the partition which intersect A, and by A_{δ}^{-}the union of elements which are completely inside A. If δ is small enough then $A_{\delta}^{+} \subset U$. We have

$$
\int_{A^{-} \delta} f^{*} \eta \leq \int_{A} f^{*} \eta \leq \int A_{\delta}^{+} f^{*} \eta
$$

and

$$
\int A_{\delta}^{+} f^{*} \eta-\int_{A^{-\delta}} f^{*} \eta \underset{\delta \rightarrow 0}{\rightarrow} 0
$$

On the other hand, each of the sets A_{δ}^{+}is a union of cubes. Hence, Proposition 9.34 implies that

$$
\int A_{\delta}^{ \pm} f^{*} \eta=\int_{f\left(A_{\delta}^{ \pm}\right)} \delta=\operatorname{Vol}\left(A_{\delta}^{ \pm}\right)
$$

But $f\left(A_{\delta}^{-}\right) \subset f(A) \subset f\left(A_{\delta}^{+}\right)$, and hence $\operatorname{Vol}\left(f\left(A_{\delta}^{-}\right)\right) \leq \operatorname{Vol} f(A) \leq \operatorname{Vol}\left(f\left(A_{\delta}^{+}\right)\right)$which implies when $\delta \rightarrow 0$ that $\operatorname{Vol} f(A)=\int_{f(A)} \eta=\int_{A} f^{*} \eta$.
Proof of Theorem 9.32, Let us recall that the diffeomorphism f is defined as a diffeomorphism between open neighborhoods $U \supset A$ and $U^{\prime} \supset B$. We also assume that the form η is extended to U^{\prime} as equal to 0 outside B. The form η can be written as $h d x_{1} \wedge \cdots \wedge d x_{n}$. Let us take a partition \mathcal{P} of a rectangular containg U^{\prime} by cubes $I_{\mathbf{j}}$ of the same size δ. Consider forms $\eta_{\mathbf{j}}^{+}:=M_{\mathbf{j}}(h) d x_{1} \wedge \cdots \wedge d x_{n}$ and $\eta_{\mathbf{j}}^{-}:=m_{\mathbf{j}}(h) d x_{1} \wedge \cdots \wedge d x_{n}$ on $I_{\mathbf{j}}$, where $m_{\mathbf{j}}(h)=\inf _{I_{\mathbf{j}}} h, M_{\mathbf{j}}(h)=\sup _{I_{\mathbf{j}}}(h)$. Let $\eta^{ \pm}$be the form on U^{\prime} equal to $\eta_{\mathbf{j}}^{ \pm}$on each cube $I_{\mathbf{j}}$. The assumption of integrability of η over B guarantees that for any $\epsilon>0$ if δ is chosen small enough we have $\int_{B} \eta^{+}-\int_{B} \eta \leq \epsilon$. The forms $f^{*} \eta^{ \pm}$are a.e. continuous, and hence integrable over A and we have $\int_{A} f^{*} \eta^{-} \leq \int_{A} f^{*} \eta \leq \int_{A} f^{*} \eta^{+}$. Hence, if we prove that $\int_{A} f^{*} \eta^{ \pm}=\int_{B} \eta^{ \pm}$then this will imply that η is integrable and $\int_{A} \eta=\int_{B} \eta$.

On the other hand, $\int_{B} \eta^{ \pm}=\sum_{\mathbf{j}} \int_{I_{\mathbf{j}}} \eta_{\mathbf{j}}^{ \pm}$and $\int_{A} f^{*} \eta^{ \pm}=\sum_{\mathbf{j}} \int_{B_{\mathbf{j}}} f^{*} \eta_{\mathbf{j}}^{ \pm}$, where $B_{\mathbf{j}}=f^{-1}\left(I_{\mathbf{j}}\right)$. But according to Corollary ?? we have $\int_{B_{\mathbf{j}}} f^{*} \eta_{\mathbf{j}}^{ \pm}=\int_{I_{\mathbf{j}}} \eta_{\mathbf{j}}^{ \pm}$, and hence $\int_{A} f^{*} \eta^{ \pm}=\int_{B} \eta^{ \pm}$.

9.8 Manifolds and submanifolds

9.8.1 Manifolds

Manifolds of dimension n are spaces which are locally look like open subsets of \mathbb{R}^{n} but globally could be much more complicated. We give a precise definition below.

Let $U, U^{\prime} \subset \mathbb{R}^{n}$ be open sets. A map $f: U \rightarrow U^{\prime}$ is called a homeomorpism if it is continuous one-to-one map which has a continuous inverse $f^{-1}: U^{\prime} \rightarrow U$.

A map $f: U \rightarrow U^{\prime}$ is called a C^{k}-diffeomorpism, $k=1, \ldots, \infty$, if it is C^{k}-smooth, one-to-one map which has a C^{k}-smooth inverse $f^{-1}: U^{\prime} \rightarrow U$. Usually we will omit the reference to the class of smoothness, and just call f a diffeomorphism, unless it will be important to emphasize the class of smoothness.

A set M is called an n-dimensional C^{k}-smooth (resp. topological) manifold if there exist subsets $U_{\lambda} \subset X, \lambda \in \Lambda$, where Λ is a finite or countable set of indices, and for every $\lambda \in \Lambda$ a map $\Phi_{\lambda}: U_{\lambda} \rightarrow \mathbb{R}^{n}$ such that

M1. $M=\bigcup_{\lambda \in \Lambda} U_{\lambda}$.
M2. The image $G_{\lambda}=\Phi_{\lambda}\left(U_{\lambda}\right)$ is an open set in \mathbb{R}^{n}.

M3. The map Φ_{λ} viewed as a map $U_{\lambda} \rightarrow G_{\lambda}$ is one-to-one.

M4. For any two sets $U_{\lambda}, U_{\mu}, \lambda, \mu \in \Lambda$ the images $\Phi_{\lambda}\left(U_{\lambda} \cap U_{\mu}\right), \Psi_{\mu}\left(U_{\lambda} \cap U_{\mu}\right) \subset \mathbb{R}^{n}$ are open and the map

$$
h_{\lambda \mu}:=\Phi_{\mu} \circ \Phi_{\lambda}^{-1}: \Phi_{\lambda}\left(U_{\lambda} \cap U_{\mu}\right) \rightarrow \Phi_{\mu}\left(U_{\lambda} \cap U_{\mu}\right) \subset \mathbb{R}^{n}
$$

is a C^{k}-diffeomorphism (resp. homeomorphism).

Sets U_{λ} are called coordinate neighborhoods and maps $\Phi_{\lambda}: U_{\lambda} \rightarrow \mathbb{R}^{n}$ are called coordinate maps. The pairs $\left(U_{\lambda}, \Phi_{\lambda}\right)$ are also called local coordinate charts. The maps $h_{\lambda \mu}$ are called transiton maps between different coordinate charts. The inverse maps $\Psi_{\lambda}=\Phi_{\lambda}^{-1}: G_{\lambda} \rightarrow U_{\lambda}$ are called (local) parameterization maps. An atlas is a collection $\mathfrak{A}=\left\{U_{\lambda}, \Phi_{\lambda}\right\}_{\lambda \in \Lambda}$ of all coordinate charts.

One says that two atlases $\mathfrak{A}=\left\{U_{\lambda}, \Phi_{\lambda}\right\}_{\lambda \in \Lambda}$ and $\mathfrak{A}^{\prime}=\left\{U_{\gamma}^{\prime}, \Phi_{\gamma}^{\prime}\right\}_{\gamma \in \Gamma}$ on the same manifold X are equivalent, or that they define the same smooth structure on X if their union $\mathfrak{A} \cup \mathfrak{A}^{\prime}=$
$\left\{\left(U_{\lambda}, \Phi_{\lambda}\right),\left(U_{\gamma}^{\prime}, \Phi_{\gamma}^{\prime}\right)\right\}_{\lambda \in \Lambda, \gamma \in \Gamma}$ is again an atlas on X. In other words, two atlases define the same smooth structure if transition maps from local coordinates in one of the atlases to the local coordinates in the other one are given by smooth functions.

A subset $G \subset M$ is called open if for every $\lambda \in \Lambda$ the image $\Phi_{\lambda}\left(G \cap U_{\lambda}\right) \subset \mathbb{R}^{n}$ is open. In particular, coordinate charts U_{λ} themselves are open, and we can equivalently say that a set G is open if its intersection with every coordinate chart is open. By a neighborhood of a point $a \in M$ we will mean any open subset $U \subset M$ such that $a \in U$.

Given two smooth manifolds M and \widetilde{M} of dimension m and n then a map $f: M \rightarrow \widetilde{M}$ is called continuous if if for every point $a \in M$ there exist local coordinate charts $\left(U_{\lambda}, \Phi_{\lambda}\right)$ in M and $\left(\widetilde{U}_{\lambda}, \widetilde{\Phi}_{\lambda}\right)$ in \widetilde{M}_{λ}, such that $a \in U_{\lambda}, f\left(U_{\lambda}\right) \subset \widetilde{U}_{\lambda}$ and the composition map

$$
G_{\lambda}=\Phi_{\lambda}\left(U_{\lambda}\right) \xrightarrow{\Psi_{\lambda}} U_{\lambda} \xrightarrow{f} \widetilde{U}_{\lambda} \xrightarrow{\widetilde{\Phi}_{\lambda}} \mathbb{R}^{n}
$$

is continuous.
Similarly, for $k=1, \ldots, \infty$ a map $f: M \rightarrow \widetilde{M}$ is called C^{k}-smooth if for every point $a \in M$ there exist local coordinate charts $\left(U_{\lambda}, \Phi_{\lambda}\right)$ in M and $\left(\widetilde{U}_{\lambda}, \widetilde{\Phi}_{\lambda}\right)$ in \widetilde{M}_{λ}, such that $a \in U_{\lambda}, f\left(U_{\lambda}\right) \subset \widetilde{U}_{\lambda}$ and the composition map

$$
G_{\lambda}=\Phi_{\lambda}\left(U_{\lambda}\right) \xrightarrow{\Psi_{\lambda}} U_{\lambda} \xrightarrow{f} \widetilde{U}_{\lambda} \xrightarrow{\widetilde{\Phi}_{\lambda}} \mathbb{R}^{n}
$$

is C^{k}-smooth. In other words, a map is continuous or smooth, if it is continuous or smooth when expressed in local coordinates.

A map $f: M \rightarrow N$ is called a diffeomorphism if it is smooth, one-to-one, and the inverse map is also smooth. One-to-one continuous maps with continuous inverses are called homeomorphisms.

Note that in view of the chain rule the C^{k}-smoothness is independent of the choice of local coordinate charts $\left(U_{\lambda}, \Phi_{\lambda}\right)$ and $\left(\widetilde{U}_{\lambda}, \widetilde{\Phi}_{\lambda}\right)$. Note that for C^{k}-smooth manifolds one can talk only about C^{l}-smooth maps for $l \leq k$. For topological manifolds one can talk only about continuous maps.

If one replaces condition M 2 in the definition of a manifold by
$\mathrm{M} 2^{b}$. The image $G_{\lambda}=\Psi_{\lambda}\left(U_{\lambda}\right)$ is either an open set in \mathbb{R}^{n} or an intersection of an open set in \mathbb{R}^{n} with $\mathbb{R}_{+}^{n}=\left\{x_{1} \geq 0\right\}$
then one gets a definition of a manifold with boundary.
A slightly awkward nuance in the above definition is that a manifold with boundary is not a manifold! It would be, probably, less confusing to write this as a 1 word manifold-with-boundary, but of course nobody does that.

The points of a manifold M with boundary which are mapped by coordinate maps Ψ_{λ} to points in $\mathbb{R}^{n-1}=\partial \mathbb{R}_{+}^{n}$ are called the boundary points of M. The set of boundary points is called the boundary of M and denoted by ∂M. It is itself a manifold of dimension $n-1$.

Note that any (interior) point a of an n-dimensional manifold M has a neighborhood B diffeomorphic to an open ball $B_{1}(0) \subset \mathbb{R}^{n}$, while any boundary point has a neighborhood diffeomorphic to a semi-ball $B_{1}(0) \cap\left\{x_{1} \geq 0\right\} \subset \mathbb{R}^{n}$.

Exercise 9.39. Prove that a boundary point does not have a neighborhood diffeomorphic to an open ball. In other words, the notion of boundary and interior point of a manifold with boundary are well defined.

Next we want to introduce a notion of compactness for subsets in a manifold. Let us recall that for subsets in a Euclidean vector space we introduced three equivalent definition of compactness, see Section 6.1. The first definition, COMP1 is unapplicable because we cannot talk about bounded sets in a manifold. However, definitions COMP2 and COMP3 make perfect sense in an arbitrary manifold. For instance, we can say that a subset $A \subset M$ is compact if from any infinite sequence of points in A one can choose a subsequence converging to a point in A.

A compact manifold (without boundary) is called closed. Note that the word closed is used here in a different sense than a closed set. For instance, a closed interval is not a closed manifold because it has a boundary. An open interval or a real line \mathbb{R} is not a closed manifold because it is not compact. On the other hand, a circle, or a sphere S^{n} of any dimension n is a closed manifold.

The notions of connected and path connected subsets of a manifold are defined in the same way as in an Euclidean space.

9.8.2 Gluing construction

The construction which is described in this section is called gluing or quotient construction. It provides a rich source of examples of manifolds. We discuss here only very special cases of this
construction.
a) Let M be a manifold and U, U^{\prime} its two open disjoint subsets. Let us moreover assume that each point $x \in M$ has a neighborhood which does not intersect at least one of the sets U and $U^{\prime}{ }^{4}$ Consider a diffeomorphism $f: U \rightarrow U^{\prime}$.

Let us denote by $M /\{f(x) \sim x\}$ the set obtained from M by identifying each point $x \in U$ with its image $f(x) \in U^{\prime}$. In other words, a point of $M /\{f(x) \sim x\}$ is either a point from $x \in M \backslash\left(U \cup U^{\prime}\right)$, or a pair of points $(x, f(x))$, where $x \in U$. Note that there exists a canonical projection $\pi: M \rightarrow$ $M /\{f(x) \sim x\}$. Namely $\pi(x)=x$ if $x \notin U \cup U^{\prime}, \pi(x)=(x, f(x))$ if $x \in U$ and $\pi(x)=\left(f^{-1}(x), x\right)$ if $x \in U^{\prime}$. By our assumption each point $x \in M$ has a coordinate neighborhood $G_{x} \ni x$ such that $f\left(G_{x} \cap U\right) \cap G_{x}=\varnothing$. In particular, the projection $\left.\pi\right|_{G_{x}}: G_{x} \rightarrow \widetilde{G}_{x}=\pi\left(G_{x}\right)$ is one-to-one. We will declare by definition that \widetilde{G}_{x} is a coordinate neighborhood of $\pi(x) \in M /\{f(x) \sim x\}$ and define a coordinate map $\widetilde{\Phi}: \widetilde{G}_{x} \rightarrow \mathbb{R}^{n}$ by the formula $\widetilde{\Phi}=\Phi \circ \pi^{-1}$. It is not difficult to check that this construction define a structure of an n-dimensional manifold on the set $M /\{f(x) \sim x\}$. We will call the resulted manifold the quotient manifold of M, or say that $M /\{f(x) \sim x\}$ is obtained from M by gluing U with U^{\prime} with the diffeomorphism f.

Though the described above gluing construction always produce a manifold, the result could be quite pathological, if no additional care is taken. Here is an example of such pathology.

Example 9.40. Let $M=I \cup I^{\prime}$ be the union of two disjoint open intervals $I=(0,2)$ and $I^{\prime}=(3,5)$. Then M is a 1-dimensional manifold. Denote $U:=(0,1) \subset I, U^{\prime}:=(3,4) \subset I^{\prime}$. Consider a diffeomorphism $f: U \rightarrow U^{\prime}$ given by the formula $f(t)=t+3, t \in U$. Let $\widetilde{M}=M /\{f(x) \sim x\}$ be the corresponding quotient manifold. In other words, \widetilde{M} is the result of gluing the intervals I and I^{\prime} along their open sub-intervals U and U^{\prime}. Note that the points $1 \in I$ and $4 \in I^{\prime}$ are not identified, but $1-\epsilon, 4-\epsilon$ are identified for an arbitrary small $\epsilon>0$. This means that any neighborhood of 1 and any neighborhood of 4 have non-empty intersection.

In order to avoid such pathological examples one usually (but not always) requires that manifolds satisfy an additional axiom, called Hausdorff property:

M5. Any two distinct points $x, y \in M$ have non-intersecting neighborhoods $U \ni x, G \ni y$.

[^6]

Figure 9.4: Felix Hausdorff (1868-1942)

In what follows we always assume that the manifolds satisfy the Hausdorff property M5.
Let us make the following general remark about diffeomorphisms $f:(a, b) \rightarrow(c, d)$ between two open intervals. Such diffeomorphism is simply a differentiable function whose derivative never vanishes and whose range is equal to the interval (c, d). If derivative is positive then the diffeomorphism is orientation preserving, and it is orientation reversing otherwise. The function f always extends to a continuous (but necessarily differentiable function $\bar{f}:[a, b] \rightarrow[c, d]$ such that $\bar{f}(a)=c$ and $\bar{f}(b)=d$ in the orientation preserving case, and $\bar{f}(a)=d \bar{f}(b)=c$ in the orientation reversing case.

Lemma 9.41. Given $a, b, a^{\prime} b^{\prime} \in(0,1)$ such that $a<b$ and $a^{\prime}<b^{\prime}$ consider an orientation preserving diffeomorphisms $f:(0, a) \rightarrow\left(0, a^{\prime}\right)$ and $(b, 1) \rightarrow\left(b^{\prime} 1\right)$. Then for any $\widetilde{a} \in(0, a)$ and $\widetilde{b} \in(b, 1)$ there exists a diffeomorphism $F:(0,1) \rightarrow(0,1)$ which coincides with f on $(0, \widetilde{a})$ and coincides with g on $(\widetilde{b}, 1)$.

Proof. Choose real numbers $c, \widetilde{c}, \widetilde{d}, d$ such that $a<c<\widetilde{c}<\widetilde{d}<d<b$. Consider a cut-off C^{∞} function $\theta:(0,1) \rightarrow(0,1)$ which is equal to 1 on $(0, \widetilde{a}] \cup[\widetilde{c}, \widetilde{d}] \cup[\widetilde{b}, 1)$ and equal to 0 on $[a, c] \cup[d, b]$. For positive numbers $\epsilon>0$ and $C>0$ (which we will choose later) consider a function $h_{\epsilon, C}$ on
$(0,1)$ defined by the formula

$$
h_{\epsilon, C}(x)= \begin{cases}\theta(x) f^{\prime}(x)+(1-\theta(x)) \epsilon, & x \in(0, a) ; \\ \epsilon, & x \in[a, c] \cup[d, b] ; \\ C \theta(x)+(1-\theta(x)) \epsilon, & x \in(c, d) ; \\ \theta(x) g^{\prime}(x)+(1-\theta(x)) \epsilon, & x \in(b, 1) .\end{cases}
$$

Note that $h_{\epsilon, C}(x)=f^{\prime}(x)$ on $(0, \widetilde{a}], h_{\epsilon, C}(x)=g^{\prime}(x)$ on $[\widetilde{b}, 1)$ and equal to C on $[\widetilde{c}, \widetilde{d}]$. Define the function $F_{\epsilon, C}:(0,1) \rightarrow(0,1)$ by the formula

$$
F_{\epsilon, C}(x)=\int_{0}^{x} h(u) d u .
$$

Note that the derivative $F_{\epsilon, C}^{\prime}$ is positive, and hence the function $F_{\epsilon, C}$ is strictly increasing. It coincides with f on $(0, \widetilde{a}]$ and coincides up to a constant with g on $(\widetilde{b}, 1)$. Note that when ϵ and C are small we have $F_{\epsilon, C}(\widetilde{b})<b^{\prime}<g(\widetilde{b})$, and $\lim _{C \rightarrow \infty} F_{\epsilon, C}(\widetilde{b})=\infty$. Hence, by continuity one can choose $\epsilon, C>0$ in such a way that $F_{\epsilon, C}(\widetilde{b})=g(\widetilde{b})$. Then the function $F=F_{\epsilon, C}$ is a diffeomorphism $(0,1) \rightarrow(0,1)$ with the required properties.

Lemma 9.42. Suppose that a 1-dimensional manifold M (which satisfies the Hausdorff axiom M5) is covered by two coordinate charts, $M=U \cup U^{\prime}$, with coordinate maps $\Phi: U \rightarrow(0,1), \Phi^{\prime}: U^{\prime} \rightarrow$ $(0,1)$ such that $\Phi\left(U \cap U^{\prime}\right)=(0, a) \cup(b, 1), \Phi^{\prime}\left(U \cap U^{\prime}\right)=\left(0, a^{\prime}\right) \cup\left(b^{\prime} 1\right)$ for some $a, a^{\prime}, b, b^{\prime} \in(0,1)$ with $a<b, a^{\prime}<b^{\prime}$. Then M is diffeomorphic to the circle S^{1}.

Proof. Denote by Ψ and Ψ^{\prime} the parameterization maps Φ^{-1} and $\left(\Phi^{\prime}\right)^{-1}$, and set $G:=\Phi\left(U \cap U^{\prime}\right)$ and $G^{\prime}:=\Phi^{\prime}\left(U \cap U^{\prime}\right)$. Let $h=\Phi^{\prime} \circ \Psi: G \rightarrow G^{\prime}$ be the transition diffeomorphism. There could be two cases: $h((0, a))=\left(0, a^{\prime}\right), h((b, 1))=\left(b^{\prime}, 1\right)$ and $h((0, a))=\left(b^{\prime}, 1\right), h((b, 1))=(0, a)$. We will analyze the first case. The second one is similar.

Let \bar{h} be the continuous extension of h to $[0, a] \cup[b, 1]$. We claim that $\bar{h}(0)=a^{\prime}, \bar{h}(a)=0$, $\bar{h}(b)=1$ and $\bar{h}(1)=b^{\prime}$. Indeed, assuming otherwise we come to a contradiction with the Hausdorff property M5. Indeed, suppose $\bar{h}(a)=a^{\prime}$. Note the points $A:=\Psi(a), A^{\prime}:=\Psi^{\prime}\left(a^{\prime}\right) \in M$ are disjoint. On the other hand, for any neighborhood $\Omega \ni A$ its image $\Phi(\Omega) \subset I$ contains an interval $(a-\epsilon, a)$,
and similarly for any neighborhood $\Omega^{\prime} \ni A^{\prime}$ its image $\Phi^{\prime}(\Omega) \subset I$ contains an interval $\left(a^{\prime}-\epsilon, a^{\prime}\right)$. for a sufficiently small ϵ. But $h((a-\epsilon, a))=\left(a^{\prime}-\epsilon^{\prime}, a^{\prime}\right)$ for some $\epsilon^{\prime}>0$ and hence

$$
\Omega \supset \Psi^{\prime}\left(\left(a^{\prime}, a^{\prime}-\epsilon^{\prime}\right)\right)=\Psi^{\prime} \circ h((a, a-\epsilon))=\Psi^{\prime} \circ \Phi^{\prime} \circ \Phi((a, a-\epsilon))=\Phi((a, a-\epsilon)) \subset \Omega,
$$

i.e. $\Omega \cap \Omega^{\prime} \neq \varnothing$. In other words, any neighborhoods of the distinct points $A, A^{\prime} \in M$ intersect, which violates axiom M5. Similarly we can check that $h(b)=b^{\prime}$.

Now take the unit circle $S^{1} \subset \mathbb{R}^{2}$ and consider the polar coordinate ϕ on S^{1}. Let us define a map $g^{\prime}: U^{\prime} \rightarrow S^{1}$ by the formula $\phi=-\pi \Phi^{\prime}(x)$. Thus g^{\prime} is a diffeomorphism of U^{\prime} onto an arc of S^{1} given in polar coordinates by $-\pi<\phi<0$. The points $A^{\prime}=\Psi^{\prime}\left(a^{\prime}\right)$ and $B^{\prime}=\Psi^{\prime}\left(b^{\prime}\right)$ are mapped to points with polar coordinates $\phi=-\pi a^{\prime}$ and $\phi=-\pi b^{\prime}$. On the intersection $U \cap U^{\prime}$ we can describe the map g^{\prime} in terms of the coordinate in U. Thus we get a map $f:=g^{\prime} \circ \Psi$: $(0, a) \cup(b, 1) \rightarrow S^{1}$. We have $\bar{f}(0)=g^{\prime}\left(A^{\prime}\right), f(a)=g^{\prime}(0), \bar{f}(1)=g^{\prime}\left(B^{\prime}\right), f(b)=g^{\prime}(1)$. Here we denoted by \bar{f} the continuous extension of f to $[0, a] \cup[b, 1]$. Thus $f((0, a))=\left\{-\pi a^{\prime}<\phi<0\right\}$ and $f\left((b, 1)=\left\{\pi<\phi<3 \pi-\pi b^{\prime}\right\}\right.$. Note that the diffeomorphism f is orientation preserving assuming that the circle is oriented counter-clockwise. Using Lemma 9.41 we can find a diffeomorphism F from $(0,1)$ to the arc $\left\{-\pi a^{\prime}<\phi<3 \pi-\pi b^{\prime}\right\} \subset S^{1}$ which coincides with f on $(0, \widetilde{a}) \cup(\widetilde{b}, 1)$ for any $\widetilde{a} \in(0, a)$ and $\widetilde{b} \in(b, 1)$. Denote $\widetilde{a}^{\prime}:=h(\widetilde{a}), \widetilde{b}^{\prime}=h(\widetilde{b})$. Notice that the neighborhoods U and $\widetilde{U}^{\prime}=\Psi^{\prime}((\widetilde{a}, \widetilde{b}))$ cover M. Hence, the required diffeomorphism $\widetilde{F}: M \rightarrow S^{1}$ we can define by the formula

$$
\widetilde{F}(x)= \begin{cases}g(x), & x \in \widetilde{U}^{\prime} \\ F \circ \Phi(x), & x \in U\end{cases}
$$

Similarly (and even simpler), one can prove
Lemma 9.43. Suppose that a 1-dimensional manifold M (which satisfies the Hausdorff axiom M5) is covered by two coordinate charts, $M=U \cup U^{\prime}$, with coordinate maps $\Phi: U \rightarrow(0,1), \Phi^{\prime}: U^{\prime} \rightarrow$ $(0,1)$ such that $U \cap U^{\prime}$ is connected. Then M is diffeomorphic to the open interval $(0,1)$.

Theorem 9.44. Any (Hausdorff) connected closed 1-dimensional manifold is diffeomorphic to the circle S^{1}.

Exercise 9.45. Show that the statement of the above theorem is not true without the axiom M5, i.e. the assumption that the manifold has the Hausdorff property.

Proof. Let M be a connected closed 1-dimensional manifold. Each point $x \in M$ has a coordinate neighborhood U_{x} diffeomorphic to an open interval. All open intervals are diffeomorphic, and hence we can assume that each neighborhood G_{x} is parameterized by the interval $I=(0,1)$. Let $\Psi_{x}: I \rightarrow$ G_{x} be the corresponding parameterization map. We have $\bigcup_{x \in M} U_{x}=M$, and due to compactness of M we can choose finitely many $U_{x_{1}}, \ldots, U_{x_{k}}$ such that $\bigcup_{i=1}^{k} U_{x_{i}}=M$. We can further assume that none of these neighborhoods is completrely contained inside another one. Denote $U_{1}:=U_{x_{1}}, \Psi_{1}:=$ $\Psi_{x_{1}}$. Note that $U_{1} \cap \bigcup_{2}^{k} U_{x_{k}} \neq \varnothing$. Indeed, if this were the case then due to connectedness of M we would have $\bigcup_{2}^{k} U_{x_{i}}=\varnothing$ and hence $M=U_{1}$, but this is impossible because M is compact. Thus, there exists $i=2, \ldots, k$ such that $U_{x_{i}} \cap U_{1} \neq \varnothing$. We set $U_{2}:=U_{x_{i}}, \Psi_{2}=\Psi_{x_{i}}$. Consider open sets $G_{1,2}:=\Psi_{1}^{-1}\left(U_{1} \cap U_{2}\right), G_{2,1}=\Psi_{2}^{-1}\left(U_{1} \cap U_{2}\right) \subset I$. The transition map $h_{1,2}:=\left.\Psi_{2}^{-1} \circ \Psi_{1}\right|_{G_{1,2}}: G_{1,2} \rightarrow$ $G_{2,1}$ is a diffeomorphism.

Let us show that the set $G_{1,2}$ (and hence $G_{2,1}$) cannot contain more that two connected components. Indeed, in that case one of the components of $G_{1,2}$ has to be a subinterval $I^{\prime}=(a, b) \subset$ $I=(0,1)$ where $0<a<b<1$. Denote $I^{\prime \prime}:=h_{1,2}\left(I^{\prime}\right)$. Then at least of of the boundary values of the transition diffeomorphism $\left.h_{1,2}\right|_{I^{\prime}}$, say $\bar{h}_{1,2}(a)$, which is one of the end points of $I^{\prime \prime}$, has to be an interior point $c \in I=(0,1)$. We will assume for determinacy that $I^{\prime \prime}=(c, d) \subset I$. But this contradicts the Hausdorff property M5. The argument repeats a similar argument in the proof of Lemma 9.42 .

Indeed, note that $\Psi_{1}(a) \neq \Psi_{2}(c)$. Indeed, $\Psi_{1}(a)$ belongs to $U_{1} \backslash U_{2}$ and $\Psi_{2}(c)$ is in $U_{2} \backslash U_{1}$. Take any neighborhood $\Omega \ni \Psi_{1}(a)$ in M. Then $\Psi^{-1}(\Omega)$ is an open subset of I which contains the point a. Hence $\Psi_{1}((a, a+\epsilon)) \subset \Omega$, and similarly, for any neighborhood $\Omega^{\prime} \ni \Psi_{2}(c)$ in M we have $\Psi_{2}((c, c+\epsilon)) \subset \Omega^{\prime}$ for a sufficiently small $\epsilon>0$. But $\Psi_{1}((a, a+\epsilon))=\Psi_{2}\left(h_{1,2}\left(\left(a, a_{\epsilon}\right)\right)\right)=\Psi_{2}\left(c, c+\epsilon^{\prime}\right)$, where $c+\epsilon^{\prime}=h_{1,2}(a+\epsilon)$. Hence $\Omega \cap \Omega^{\prime} \neq \varnothing$, i.e. any two neighborhoods of two distict points $\Psi_{1}(a)$ and $\Psi_{2}(c)$ have a non-empty intersection, which violates the Hausdorff axiom M5.

If $G_{1,2} \subset(0,1)$ consists of two components then the above argument shows that each of these components must be adjacent to one of the ends of the interval I, and the same is true about the
components of the set $G_{2,1} \subset I$. Hence, we can apply Lemma 9.42 to conclude that the union $U_{1} \cup U_{2}$ is diffeomorphic to S^{1}. We also notice that in this case all the remaining neighborhoods $U_{x_{j}}$ must contain in $U_{1} \cup U_{2}$. Indeed, each $U_{x_{i}}$ which intersects the circle $U_{1} \cup U_{2}$ must be completely contained in it, because otherwise we would again get a contradiction with the Hausdorff property. Hence, we can eleiminate all neighborhoods which intersect $U_{1} \cup U_{2}$. But then no other neighborhoods could be left because otherwise we would have $M=\left(U_{1} \cup U_{2}\right) \cup \underset{U_{x_{j}} \cap\left(U_{1} \cup U_{2}\right)=\varnothing}{\bigcup} U_{x_{j}}$, i.e. the manifold M could be presented as a union of two disjoint non-empty open sets which is impossible due to connectedness of M. Thus we conclude that in this case $M=U_{1} \cup U_{2}$ is diffeomorphic to S^{1}.

Finally in the case when $G_{1,2}$ consists of 1 component, i.e. when it is connected, one can Use Lemma 9.43 to show that $U_{1} \cup U_{2}$ is diffeomorphic to an open interval. Hence, we get a covering of M by $k-1$ neighborhood diffeomorphic to S^{1}. Continuing inductively this process we will either find at some step two neighborhoods which intersect each other along two components, or continue to reduce the number of neighborhoods. However, at some moment the first situation should occur because otherwise we would get that M is diffeomorphic to an interval which is impossible because by assumption M is compact.
b) Let M be a manifold, $f: M \rightarrow M$ be a diffeomorphism. Suppose that f satisfies the following property: There exists a positive integer p such that for any point $x \in M$ we have $f^{p}(x)=$ $\underbrace{f \circ f \circ \cdots \circ f}_{p}(x)=x$, but the points $x, f(x) \ldots, f^{p-1}(x)$ are all disjoint. The set $\left\{x, f(x) \ldots, f^{p-1}(x)\right\} \subset$ M is called the trajectory of the point x under the action of f. It is clear that trajectory of two different points either coincide or disjoint. Then one can consider the quotient space X / f, whose points are trajectories of points of M under the action of f. Similarly to how it was done in a) one can define on M / f a structure of an n-dimensional manifold.
c) Here is a version of the construction in a) for the case when trajectory of points are infinite. Let $f: M \rightarrow M$ be a diffeomorphism which satisfies the following property: for each point $x \in M$ there exists a neighborhood $U_{x} \ni x$ such that all sets

$$
\ldots, f^{-2}\left(U_{x}\right), f^{-1}\left(U_{x}\right), U_{x}, f\left(U_{x}\right), f^{2}\left(U_{x}\right), \ldots
$$

are mutually disjoint. In this case the trajectory $\left\{\ldots, f^{-2}(x), f^{-1}(x), x, f(x), f^{2}(x), \ldots\right\}$ of each point is infinite. As in the case b), the trajectories of two different points either coincide or disjoint.

The set M / f of all trajectories can again be endowed with a structure of a manifold of the same dimension as M.

9.8.3 Examples of manifolds

1. n-dimensional sphere S^{n}. Consider the unit sphere $S^{n}=\left\{\|x\|=\sqrt{\sum_{1}^{n+1} x_{j}^{2}}=1\right\} \subset \mathbb{R}^{n+1}$. Let introduce on S^{n} the structure of an n-dimensional manifold. Let $N=(0, \ldots, 1)$ and $S=(0, \ldots,-1)$ be the North and South poles of S^{n}, respectively.

Denote $U_{-}=S^{n} \backslash S, U_{+}=S^{n} \backslash N$ and consider the maps $p_{ \pm}: U_{ \pm} \rightarrow \mathbb{R}^{n}$ given by the formula

$$
\begin{equation*}
p_{ \pm}\left(x_{1}, \ldots, x_{n+1}\right)=\frac{1}{1 \mp x_{n+1}}\left(x_{1}, \ldots, x_{n}\right) \tag{9.8.1}
\end{equation*}
$$

The maps $p_{+}: U_{+} \rightarrow \mathbb{R}_{n}$ and $p_{-}: U_{-} \rightarrow \mathbb{R}^{n}$ are called stereographic projections from the North and South poles, respectively. It is easy to see that stereographic projections are one-to one maps. Note that $U_{+} \cap U_{-}=S^{n} \backslash\{S, N\}$ and both images, $p_{+}\left(U_{+} \cap U_{-}\right)$and $p_{-}\left(U_{+} \cap U_{-}\right)$coincide with $\mathbb{R}^{n} \backslash 0$. The map $p_{-} \circ p_{+}^{-1}: \mathbb{R}^{n} \backslash 0 \rightarrow \mathbb{R}^{n} \backslash 0$ is given by the formula

$$
\begin{equation*}
p_{-} \circ p_{+}^{-1}(x)=\frac{x}{\|x\|^{2}}, \tag{9.8.2}
\end{equation*}
$$

and therefore it is a diffeomorphism $\mathbb{R}^{n} \backslash 0 \rightarrow \mathbb{R}^{n} \backslash 0$.
Thus, the atlas which consists of two coordinate charts $\left(U_{+}, p_{+}\right)$and $\left(U_{-}, p_{-}\right)$defines on S^{n} a structure of an n-dimensional manifold. One can equivalently defines the manifold S^{n} as follows. Take two disjoint copies of \mathbb{R}^{n}, let call them \mathbb{R}_{1}^{n} and \mathbb{R}_{2}^{n}. Denote $M=\mathbb{R}_{1}^{n} \cup \mathbb{R}_{2}^{n}, U=\mathbb{R}_{1}^{n} \backslash 0$ and $U^{\prime}=\mathbb{R}_{2}^{n} \backslash 0$. Let $f: U \rightarrow U^{\prime}$ be a difeomorphism defined by the formula $f(x)=\frac{x}{\|x\|^{2}}$, as in 9.8.2). Then S^{n} can be equivalently described as the quotient manifold M / f.

Note that the 1-dimensional sphere is the circle S^{1}. It can be d as follows. Consider the map $T: \mathbb{R} \rightarrow \mathbb{R}$ given by the formula $T(x)=x+1, x \in \mathbb{R}$. It satisfies the condition from 9.8.2 and hence, one can define the manifold \mathbb{R} / T. This manifold is diffeomorphic to S^{1}.
2. Real projective space. The real projective space $\mathbb{R} P^{n}$ is the set of all lines in \mathbb{R}^{n+1} passing through the origin. One introduces on $\mathbb{R} P^{n}$ a structure of an n-dimensional manifold as follows. For each $j=1, \ldots, n+1$ let us denote by U_{j} the set of lines which are not parallel to the affine subspace $\Pi_{j}=\left\{x_{j}=1\right\}$. Clearly, $\bigcup_{1}^{n+1} U_{j}=\mathbb{R} P^{n}$. There is a natural one-to one map $\pi_{j}: U_{j} \rightarrow \Pi_{j}$
which associates with each line $\mu \in U_{j}$ the unique intersection point of μ with Π_{j}. Furthermore, each Π_{j} can be identified with \mathbb{R}^{n}, and hence pairs $\left(U_{j}, \pi_{j}\right), j=1, \ldots, n+1$ can be chosen as an atlas of coordinate charts. We leave it to the reader to check that this atlas indeed define on $\mathbb{R} P^{n}$ a structure of a smooth manifold, i.e. that the transition maps between different coordinate charts are smooth.

Exercise 9.46. Let us view S^{n} as the unit sphere in \mathbb{R}^{n+1}. Consider a map $p: S^{n} \rightarrow \mathbb{R} P^{n}$ which associates to a point of S^{n} the line passing through this point and the origin. Prove that this two-to-one map is smooth, and moreover a local diffeomorphism, i.e. that the restriction of p to a sufficiently small neighborhood of each point is a diffeomorphism. Use it to show that $\mathbb{R} P^{n}$ is diffeomorphic to the quotient space S^{n} / f, where $f: S^{n} \rightarrow S^{n}$ is the antipodal map $f(x)=-x$.
3. Products of manifolds and n-dimensional tori. Given two manifolds, M and N of dimension m and n, respectively, one can naturally endow the direct product

$$
M \times N=\{(x, y) ; x \in M, y \in N\}
$$

with a structure of a manifold of dimension $m+n$. Let $\left\{\left(U_{\lambda}, \Phi_{\lambda}\right)\right\}_{\lambda \in \Lambda}$ and $\left\{\left(V_{\gamma}, \Psi_{\gamma}\right)\right\}_{\gamma \in \Gamma}$ be atlases for M and N, so that $\Phi_{\lambda}: U_{\lambda} \rightarrow U_{\lambda}^{\prime} \subset \mathbb{R}^{m}, \Psi_{\mu}: V_{\mu} \rightarrow V_{\mu}^{\prime} \subset \mathbb{R}^{n}$ are diffeomorphisms on open subsets of \mathbb{R}^{m} and \mathbb{R}^{n}. Then the smooth structure on $M \times N$ can be defined by an atlas

$$
\left\{\left(U_{\lambda} \times V_{\gamma}, \Phi_{\lambda} \times \Psi_{\gamma}\right)\right\}_{\lambda \in \Lambda, \gamma \in \Gamma},
$$

where we denote by $\Phi_{\lambda} \times \Psi_{\gamma}: U_{\lambda} \times V_{\gamma} \rightarrow U_{\lambda}^{\prime} \times V_{\gamma}^{\prime} \subset \mathbb{R}^{m} \times \mathbb{R}^{n}=\mathbb{R}^{m+n}$ are diffeomorphisms defined by the formula $(x, y) \mapsto\left(\Phi_{\lambda}(x) \Psi_{\mu}(y)\right)$ for $x \in U_{\lambda}$ and $y \in V_{\mu}$.

One can similarly define the direct product of any finite number of smooth manifolds. In particular the n-dimensional torus T^{n} is defined as the product of n circles: $T^{n}=\underbrace{S^{1} \times \cdots \times S^{1}}_{n}$. Let us recall, that the circle S^{1} is diffeomorphic to \mathbb{R} / T, i.e. a point of S^{1} is a real number up to adding any integer. Hence, the points of the torus T^{n} can viewed as the points of \mathbb{R}^{n} up to adding any vector with all integer coordinates.

9.8.4 Submanifolds of an n-dimensional vector space

Let V be an n-dimensional vector space. A subset $A \subset V$ is called a k-dimensional submanifold of V, or simply a k-submanifold of $V, 0 \leq k \leq n$, if for any points $a \in A$ there exists a local coordinate chart $\left(U_{a}, u=\left(u_{1}, \ldots, u_{n}\right) \rightarrow \mathbb{R}^{n}\right)$ such that $u(a)=0$ (i.e. the point a is the origin in this coordinate system) and

$$
\begin{equation*}
A \cap U_{a}=\left\{u=\left(u_{1}, \ldots, u_{n}\right) \in U_{a} ; u_{k+1}=\cdots=u_{n}=0\right\} . \tag{9.8.3}
\end{equation*}
$$

We will always assume the local coordinates at least as smooth as necessary for our purposes (but at least C^{1}-smooth), but more precisely, one can talk of C^{m} - submanifolds if the implied coordinate systems are at least C^{m}-smooth.

Note that in the above we can replace the vector space V by any n-dimensional manifold, and thus will get a notion of a k-dimesional submanifold of an n-dimensional manifold V.

Example 9.47. Suppose a subset $A \subset U \subset V$ is given by equations $F_{1}=\cdots=F_{n-k}=0$ for some C^{m}-smooth functions F_{1}, \ldots, F_{n-k} on U. Suppose that for any point $a \in A$ the differentials $d_{a} F_{1}, \ldots, d_{a} F_{n-k} \in V_{a}^{*}$ are linearly independent. Then $A \subset U$ is a C^{m}-smooth submanifold.

Indeed, for each $a \in A$ one can choose a linear functions $l_{1}, \ldots, l_{k} \in V_{a}^{*}$ such that together with $d_{a} F_{1}, \ldots, d_{a} F_{n-k} \in V_{a}^{*}$ they form a basis of V^{*}. Consider functions $L_{1}, \ldots, L_{k}: V \rightarrow \mathbb{R}$, defined by $L_{j}(x)=l_{j}(x-a)$ so that $d_{a}\left(L_{j}\right)=l_{j}, j=1, \ldots, k$. Then the Jacobian det $D_{a} F$ of the $\operatorname{map} F:\left(L_{1}, \ldots, L_{k}, F_{1}, \ldots, F_{n-k}\right): U \rightarrow \mathbb{R}^{n}$ does not vanish at a, and hence the inverse function theorem implies that this map is invertible in a smaller neighborhood $U_{a} \subset U$ of the point $a \in A$. Hence, the functions $u_{1}=L_{1}, \ldots, u_{k}=L_{k}, u_{k+1}=F_{1}, \ldots, u_{n}=F_{n-k}$ can be chosen as a local coordinate system in U_{a}, and thus $A \cap U_{a}=\left\{u_{k+1}=\cdots=u_{n}=0\right\}$.

Note that the map $u^{\prime}=\left(u_{1}, \ldots, u_{k}\right)$ maps $U_{a}^{A}=U_{a} \cap A$ onto an open neighborhood $\widetilde{U}=$ $u\left(U_{a}\right) \cap \mathbb{R}^{k}$ of the origin in $\mathbb{R}^{k} \subset \mathbb{R}^{n}$, and therefore $u^{\prime}=\left(u_{1}, \ldots u_{k}\right)$ defines a local coordinates, so that the pair $\left(U_{a}^{A}, u^{\prime}\right)$ is a coordinate chart. The restriction $\widetilde{\phi}=\left.\phi\right|_{\tilde{U}}$ of the parameterization $\operatorname{map} \phi=u^{-1}$ maps \widetilde{U} onto U_{a}^{A}. Thus $\widetilde{\phi}$ a parameterization map for the neighborhood U_{a}^{A}. The atlas $\left\{\left(U_{a}^{A}, u^{\prime}\right)\right\} a \in A$ defines on a a structure of a k-dimensional manifold. The complementary dimension $n-k$ is called the codimension of the submanifold A. We will denote dimension and codimension of A by $\operatorname{dim} A$ and $\operatorname{codim} A$, respectively.

As we already mentioned above in Section 9.3 1-dimensional submanifolds are usually called curves. We will also call 2-dimensional submanifolds surfaces and codimension 1 submanifolds hypersurfaces. Sometimes k-dimensional submanifolds are called k-surfaces. Submanifolds of codimension 0 are open domains in V.

An important class form graphical k-submanifolds. Let us recall that given a map $f: B \rightarrow \mathbb{R}^{n-k}$, where B is a subset $B \subset \mathbb{R}^{k}$, then graph is the set

$$
\Gamma_{f}=\left\{(x, y) \in \mathbb{R}^{k} \times \mathbb{R}^{n-k}=\mathbb{R}^{n} ; x \in B, y=f(x)\right\}
$$

A $\left(C^{m}\right)$-submanifold $A \subset V$ is called graphical with respect to a splitting $\Phi: \mathbb{R}^{k} \times \mathbb{R}^{n-k} \rightarrow V$, if there exist an open set $U \subset \mathbb{R}^{k}$ and a $\left(C^{m}\right)$-smooth map $f: U \rightarrow \mathbb{R}^{n-k}$ such that

$$
A=\Phi\left(\Gamma_{f}\right) .
$$

In other words, A is graphical if there exists a coordinate system in V such that

$$
A=\left\{x=\left(x_{1}, \ldots, x_{n}\right) ;\left(x_{1}, \ldots x_{k}\right) \in U, x_{j}=f_{j}\left(x_{1}, \ldots, x_{k}\right), j=k+1, \ldots, n\right\} .
$$

for some open set $U \subset \mathbb{R}^{k}$ and smooth functions, $f_{k+1}, \ldots, f_{n}: U \rightarrow \mathbb{R}$.
For a graphical submanifold there is a global coordinate system given by the projection of the submanifold to \mathbb{R}^{k}.

It turns out that that any submanifold locally is graphical.

Proposition 9.48. Let $A \subset V$ be a submanifold. Then for any point $a \in A$ there is a neighborhood $U_{a} \ni a$ such that $U_{a} \cap A$ is graphical with respect to a splitting of V. (The splitting may depend on the point $a \in A)$.

We leave it to the reader to prove this proposition using the implicit function theorem.
One can generalize the discussion in this section and define submanifolds of any manifold M, and not just the vector space V. In fact, the definition (9.8.3) can be used without any changes to define submanifolds of an arbitrary smooth manifold.

A map $f: M \rightarrow Q$ is called an embedding of a manifold M into another manifold Q if it is a diffeomorphism of M onto a submanifold $A \subset Q$. In other words, f is an embedding if the image $A=f(M)$ is a submanifold of Q and the map f viewed as a map $M \rightarrow A$ is a diffeomorphism.

One can prove that any n-dimensional manifold can be embedded into \mathbb{R}^{N} with a sufficiently large N (in fact $N=2 n+1$ is always sufficient).

Hence, one can think of manifold as submanifold of some \mathbb{R}^{n} given up to a diffeomorphism, i.e. ignoring how this submanifold is embedded in the ambient space.

In the exposition below we mostly restrict our discussion to submanifolds of \mathbb{R}^{n} rather than general abstract manifolds.

9.8.5 Submanifolds with boundary

A slightly different notion is of a submanifold with boundary. A subset $A \subset V$ is called a k dimensional submanifold with boundary, or simply a k-submanifold of V with boundary, $0 \leq k<n$, if for any points $a \in A$ there is a neighborhood $U_{a} \ni a$ in V and local (curvi-linear) coordinates $\left(u_{1}, \ldots, u_{n}\right)$ in U_{a} with the origin at a if one of two conditions is satisfied: condition 9.8.3), or the following condition

$$
\begin{equation*}
A \cap U_{a}=\left\{u=\left(u_{1}, \ldots, u_{n}\right) \in U_{a} ; u_{1} \geq 0, u_{k+1}=\cdots=u_{n}=0\right\} . \tag{9.8.4}
\end{equation*}
$$

In the latter case the point a is called a boundary point of A, and the set of all boundary points is called the boundary of A and is denoted by ∂A.

As in the case of submanifolds without boundary, any submanifold with boundary has a structure of a manifold with boundary.

Exercise 9.49. Prove that if A is k-submanifold with boundary then ∂A is a $(k-1)$-dimensional submanifold (without boundary).

Remark 9.50. 1. As we already pointed out when we discussed manifolds with boundary, a submanifold with boundary is not a submanifold!
2. As it was already pointed out when we discussed 1-dimensional submanifolds with boundary, the boundary of a k-submanifold with boundary is not the same as its set-theoretic boundary, though traditionally the same notation ∂A is used. Usually this should be clear from the context, what the notation ∂A stands for in each concrete case. We will explicitly point this difference out when it could be confusing.

Figure 9.5: The parameterization ϕ introducing local coordinates near an interior point a and a boundary point b.

A compact manifold (without boundary) is called closed. The boundary of any compact manifold with boundary is closed, i.e. $\partial(\partial A)=\varnothing$.

Example 9.51. An open ball $B_{r}^{n}=B_{R}^{n}(0)=\left\{\sum_{1}^{n} x_{j}^{2}<1\right\} \subset \mathbb{R}^{n}$ is a codimension 0 submanifold, A closed ball $D_{r}^{n}=D_{R}^{n}(0)=\left\{\sum_{1}^{n} x_{j}^{2} \leq 1\right\} \subset \mathbb{R}^{n}$ ia codimension 0 submanifold with boundary. Its boundary ∂D_{R}^{n} is an $(n-1)$-dimensional sphere $S_{R}^{n-1}=\left\{\sum_{1}^{n} x_{j}^{2}=1\right\} \subset \mathbb{R}^{n}$. It is a closed hypersurface. For $k=0,1 \ldots n-1$ let us denote by L^{k} the subspace $L_{k}=\left\{x_{k+1}=\cdots=x_{n}=0\right\} \subset$ \mathbb{R}^{n}. Then the intersections

$$
B_{R}^{k}=B_{R}^{n} \cap L^{k}, D_{R}^{k}=D_{R}^{n} \cap L^{k}, \text { and } S_{R}^{k-1}=S_{R}^{n-1} \cap L^{k} \subset \mathbb{R}^{n}
$$

are, respectively a k-dimensional submanifold, a k-dimensional submanifold with boundary and a closed ($k-1$)-dimensional submanifold of \mathbb{R}^{n}. Among all above examples there is only one (which one?) for which the manifold boundary is the same as the set-theoretic boundary.

A neighborhood of a boundary point $a \in \partial A$ can be always locally parameterized by the semi-
open upper-half ball

$$
B_{+}(0)=\left\{x=\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{R}^{k} ; x_{1} \geq 0, \sum_{1}^{n} x_{j}^{2}<1\right\} .
$$

We will finish this section by defining submanifolds with piece-wise smooth boundary. A subset $A \subset V$ is called a k-dimensional submanifold of V with piecewise smooth boundary or with boundary with corners, $0 \leq k<n$, if for any points $a \in A$ there is a neighborhood $U_{a} \ni a$ in V and local (curvi-linear) coordinates $\left(u_{1}, \ldots, u_{n}\right)$ in U_{a} with the origin at a if one of three condittions satisfied: conditions 9.8.3 , 9.8.4 or the following condition

$$
\begin{equation*}
A \cap U_{a}=\left\{u=\left(u_{1}, \ldots, u_{n}\right) \in U_{a} ; l_{1}(u) \geq 0, \ldots, l_{m}(u) \geq 0, u_{k+1}=\cdots=u_{n}=0\right\} \tag{9.8.5}
\end{equation*}
$$

where $m>1$ and $l_{1}, \ldots, l_{m} \in\left(\mathbb{R}^{k}\right)^{*}$ are linear functions In the latter case the point a is called a corner point of ∂A.

Note that the system of linear inequalities $l_{1}(u) \geq 0, \ldots, l_{m}(u) \geq 0$ defines a convex cone in \mathbb{R}^{k}. Hence, near a corner point of its boundary the manifold is diffeomorphic to a convex cone. Thus convex polyhedra and their diffeomorphic images are important examples of submanifolds with boundary with corners.

9.9 Tangent spaces and differential

Suppose we are given two local parameterizations $\phi: G \rightarrow A$ and $\widetilde{\phi}: \widetilde{G} \rightarrow A$. Suppose that $0 \in G \cap \widetilde{G}$ and $\phi(0)=\widetilde{\phi}(0)=a \in A$. Then there exists a neighborhood $U \ni a$ in A such that $U \subset \phi(G) \cap \widetilde{\phi}(\widetilde{G})$.

Denote $G_{1}:=\phi^{-1}(U), \widetilde{G}_{1}:=\widetilde{\phi}^{-1}(\widetilde{U})$. Then one has two coordinate charts on $U: u=\left(u_{1}, \ldots, u_{k}\right)=$ $\left(\left.\phi\right|_{G_{1}}\right)^{-1}: U \rightarrow G_{1}$, and $\widetilde{u}=\left(\widetilde{u}_{1}, \ldots, \widetilde{u}_{k}\right)=\left(\left.\widetilde{\phi}\right|_{\widetilde{G}_{1}}\right)^{-1}: U \rightarrow \widetilde{G}_{1}$.

Denote $h:=\left.u \circ \widetilde{\phi}\right|_{\widetilde{G}_{1}}=\widetilde{G}_{1} \rightarrow G_{1}$. We have

$$
\widetilde{\phi}=\phi \circ u \circ \widetilde{\phi}=\phi \circ h,
$$

and hence the differentials $d \phi_{0}$ and $d \widetilde{\phi}_{0}$ of parameterizations ϕ and $\widetilde{\phi}$ at the origin map \mathbb{R}_{0}^{k} isomorphically onto the same k-dimensional linear subspace $T \subset V_{a}$. Indeed, $d_{0} \widetilde{\phi}=d_{0} \phi \circ d_{0} h$. Thus the space $T=d_{0} \phi\left(\mathbb{R}_{0}^{k}\right) \subset V_{a}$ is independent of the choice of parameterization. It is called the tangent
space to the submanifold A at the point $a \in A$ and will be denoted by $T_{a} A$. If A is a submanifold with boundary and $a \in \partial A$ then there are defined both the k-dimensional tangent space $T_{a} A$ and its $(k-1)$-dimensional subspace $T_{a}(\partial A) \subset T_{a} A$ tangent to the boundary.

Example 9.52. 1. Suppose a submanifold $A \subset V$ is globally parameterized by an embedding $\phi: G \rightarrow A \hookrightarrow V, G \subset \mathbb{R}^{k}$. Suppose the coordinates in \mathbb{R}^{k} are denoted by $\left(u_{1}, \ldots, u_{k}\right)$. Then the tangent space $T_{a} A$ at a point $a=\phi(b), b \in G$ is equal to the span

$$
\operatorname{Span}\left(\frac{\partial \phi}{\partial u_{1}}(a), \ldots, \frac{\partial \phi}{\partial u_{k}}(a)\right) .
$$

2. In particular, suppose a submanifold A is graphical and given by equations

$$
x_{k+1}=g_{1}\left(x_{1}, \ldots, x_{k}\right), \ldots, x_{n}=g_{n-k}\left(x_{1}, \ldots, x_{k}\right), \quad\left(x_{1}, \ldots, x_{k}\right) \in G \subset \mathbb{R}^{k}
$$

Take points $b=\left(b_{1}, \ldots b_{k}\right) \in G$ and $a=\left(b_{1}, \ldots, b_{k}, g_{1}(b), \ldots, g_{n-k}(b)\right) \in A$. Then $T_{a} A=$ $\operatorname{Span}\left(T_{1}, \ldots T_{k}\right)$, where

$$
\begin{aligned}
T_{1} & =(\underbrace{1,0, \ldots, 0}_{k}, \frac{\partial g_{1}}{\partial x_{1}}(b), \ldots, \frac{\partial g_{n-k}}{\partial x_{1}}(b)), \\
T_{1} & =(\underbrace{0,1, \ldots, 0}_{k}, \frac{\partial g_{1}}{\partial x_{2}}(b), \ldots, \frac{\partial g_{n-k}}{\partial x_{2}}(b)), \\
& \ldots \\
T_{1} & =(\underbrace{0,0, \ldots, 1}_{k}, \frac{\partial g_{1}}{\partial x_{k}}(b), \ldots, \frac{\partial g_{n-k}}{\partial x_{k}}(b)) .
\end{aligned}
$$

3. Suppose a hypersurface $\Sigma \subset \mathbb{R}^{n}$ is given by an equation $\Sigma=\{F=0\}$ for a smooth function F defined on an neighborhood of Σ and such that $d_{a} F \neq 0$ for any $a \in \Sigma$. In other words, the function F has no critical points on Σ. Take a point $a \in \Sigma$. Then $T_{a} \Sigma \subset \mathbb{R}_{a}^{n}$ is given by a linear equation

$$
\sum_{1}^{n} \frac{\partial F}{\partial x_{j}}(a) h_{j}=0, \quad h=\left(h_{1}, \ldots, h_{n}\right) \in \mathbb{R}_{a}^{n} .
$$

Note that sometimes one is interested to define $T_{a} \Sigma$ as an affine subspace of $\mathbb{R}^{n}=\mathbb{R}_{0}^{n}$ and not as a linear subspace of \mathbb{R}_{a}^{n}. We get the required equation by shifting the origin:

$$
T_{a} \Sigma=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \subset \mathbb{R}^{n} ; \sum_{1}^{n} \frac{\partial F}{\partial x_{j}}(a)\left(x_{j}-a_{j}\right)=0\right\} .
$$

If for some parameterization $\phi: G \rightarrow A$ with $\phi(0)=a$ the composition $f \circ \phi$ is differentiable at 0 , and the linear map

$$
d_{0}(f \circ \phi) \circ\left(d_{0} \phi\right)^{-1}: T_{a} A \rightarrow W_{f(a)}
$$

is called the differential of f at the point a and denoted, as usual, by $d_{a} f$. Similarly one can define C^{m}-smooth maps $A \rightarrow W$.

Exercise 9.53. Show that a map $f: A \rightarrow W$ is differentiable at a point $a \in A$ iff for some neighborhood U of a in V there exists a map $F: U \rightarrow W$ that is differentiable at a and such that $\left.F\right|_{U \cap A}=\left.f\right|_{U \cap A}$, and we have $\left.d F\right|_{T_{a} A}=d_{a} f$. As it follows from the above discussion the map $\left.d F\right|_{T_{a} A}$ is independent of this extension. Similarly, any C^{m}-smooth map of A locally extends to a C^{m}-smooth map of a neighborhood of A in V.

Suppose that the image $f(A)$ of a smooth map $f: A \rightarrow W$ is contained in a submanifold $B \subset W$. In this case the image $d_{a} f\left(T_{a} A\right)$ is contained in $T_{f(a)} B$. Hence, given a smooth map $f: A \rightarrow B$ between two submanifolds $A \subset V$ and $B \subset W$ its differential at a point a can be viewed as a linear $\operatorname{map} d_{a} f: T_{a} A \rightarrow T_{f(a)} B$.

Let us recall, that given two submanifolds $A \subset V$ and $B \subset W$ (with or without boundary), a smooth map $f: A \rightarrow B$ is called a diffeomorphism if there exists a smooth inverse map : $B \rightarrow A$, i.e. $f \circ g: B \rightarrow B$ and $g \circ f: A \rightarrow A$ are both identity map. The submanifolds A and B are called in this case diffeomorphic.

Exercise 9.54. 1. Let A, B be two diffeomorphic submanifolds. Prove that
(a) if A is path-connected then so is B;
(b) if A is compact then so is B;
(c) if $\partial A=\varnothing$ then $\partial B=\varnothing$;
(d) $\operatorname{dim} A=\operatorname{dim} B ;{ }^{5}$
2. Give an example of two diffeomorphic submanifolds, such that one is bounded and the other is not.

[^7]3. Prove that any closed connected 1-dimensional submanifold is diffeomorphic to the unit circle $S^{1}=\left\{x_{1}^{2}+x_{2}^{2}=1\right\} \subset \mathbb{R}^{2}$.

9.10 Vector bundles and their homomorphisms

Let us put the above discussion in a bit more global and general setup.
A collection of all tangent spaces $\left\{T_{a} A\right\}_{a \in A}$ to a submanifold A is called its tangent bundle and denoted by $T A$ or $T(A)$. This is an example of a more general notion of a vector bundle of rank r over a set $A \subset V$. One understands by this a family of r-dimensional vector subspaces $L_{a} \subset V_{a}$, parameterized by points of A and continuously (or C^{m}-smoothly) depending on a. More precisely one requires that each point $a \in A$ has a neighborhood $U \subset A$ such that there exist linear independent vector fields $v_{1}(a), \ldots, v_{r}(a) \in L_{a}$ which continuously (smoothly, etc.) depend on a.

Besides the tangent bundle $T(A)$ over a k-submanifold A an important example of a vector bundle over a submanifold A is its normal bundle $N A=N(A)$, which is a vector bundle of rank $n-k$ formed by orthogonal complements $N_{a} A=T_{a}^{\perp} A \subset V_{a}$ of the tangent spaces $T_{a} A$ of A. We assume here that V is Euclidean space.

A vector bundle L of rank k over A is called trivial if one can find k continuous linearly independent vector fields $v_{1}(a), \ldots, v_{k}(a) \in L_{a}$ defined for all $a \in A$. The set A is called the base of the bundle L.

An important example of a trivial bundle is the bundle $T V=\left\{V_{a}\right\}_{a \in V}$.
Exercise 9.55. Prove that the tangent bundle to the unit circle $S^{1} \subset \mathbb{R}^{2}$ is trivial. Prove that the tangent bundle to $S^{2} \subset \mathbb{R}^{3}$ is not trivial, but the tangent bundle to the unit sphere $S^{3} \subset \mathbb{R}^{4}$ is trivial. (The case of S^{1} is easy, of S^{3} is a bit more difficult, and of S^{2} even more difficult. It turns out that the tangent bundle $T S^{n-1}$ to the unit sphere $S^{n-1} \subset \mathbb{R}^{n}$ is trivial if and only if $n=2,4$ and 8. The only if part is a very deep topological fact which was proved by F. Adams in 1960.

Suppose we are given two vector bundles, L over A and \widetilde{L} over \widetilde{A} and a continuous (resp. smooth) $\operatorname{map} \phi: A \rightarrow \widetilde{A}$. By a continuous (resp. smooth) homomorphism $\Phi: L \rightarrow \widetilde{L}$ which covers the map $\phi: A \rightarrow \widetilde{A}$ we understand a continuous (resp. smooth) family of linear maps $\Phi_{a}: L_{a} \rightarrow \widetilde{L}_{\phi(a)}$. For instance, a C^{m}-smooth map $f: A \rightarrow B$ defines a C^{m-1}-smooth homomorphism $d f: T A \rightarrow T B$
which covers $f: A \rightarrow B$. Here $d f=\left\{d_{a} f\right\}_{a \in A}$ is the family of linear maps $d_{a} f: T_{a} A \rightarrow T_{f(a)} B$, $a \in A$.

9.11 Orientation

By an orientation of a vector bundle $L=\left\{L_{a}\right\}_{a \in A}$ over A we understand continuously depending on a orientation of all vector spaces L_{a}. An orientation of a submanifold k is the same as an orientation of its tangent bundle $T(A)$. A co-orientation of a k - submanifold A is an orientation of its normal bundle $N(A)=T^{\perp} A$ in V. Note that not all bundles are orientable, i.e. some bundles admit no orientation. But if L is orientable and the base A is connected, then L admits exactly two orientations. Here is a simplest example of a non-orientable rank 1 bundle of the circle $S^{1} \subset \mathbb{R}^{2}$. Let us identify a point $a \in S^{1}$ with a complex number $a=e^{i \phi}$, and consider a line $l_{a} \in \mathbb{R}_{a}^{2}$ directed by the vector $e^{\frac{i \phi}{2}}$. Hence, when the point completes a turn around S^{1} the line l_{a} rotates by the angle π. We leave it to the reader to make a precise argument why this bundle is not orientable . In fact, rank 1 bundles are orientable if and only if they are trivial.

If the ambient space V is oriented then co-orientation and orientation of a submanifold A determine each other according to the following rule. For each point a, let us choose any basis v_{1}, \ldots, v_{k} of $T_{a}(A)$ and any basis w_{1}, \ldots, w_{n-k} of $N_{a}(A)$. Then $w_{1}, \ldots, w_{n-k}, v_{1}, \ldots, v_{k}$ is a basis of $V_{a}=V$. Suppose one of the bundles, say $N(A)$, is oriented. Let us assume that the basis w_{1}, \ldots, w_{n-k} defines this orientation. Then we orient $T_{a} A$ by the basis v_{1}, \ldots, v_{k} if the basis $w_{1}, \ldots, w_{n-k}, v_{1}, \ldots, v_{k}$ defines the given orientation of V, and we pick the opposite orientation of $T_{a} A$ otherwise.

Example 9.56. (Induced orientation of the boundary of a submanifold.) Suppose A is an oriented manifold with boundary. Let us co-orient the boundary ∂A by orienting the rank 1 normal bundle to $T(\partial A)$ in $T(A)$ by the unit ourtward normal to $T(\partial A)$ in $T(A)$ vector field. Then the above rule determine an orientation of $T(\partial A)$, and hence of ∂A.

9.12 Integration of differential k-forms over k-dimensional submanifolds

Let α be a differential k-form defined on an open set $U \subset V$.

Figure 9.6: The orientation of the surface is induced by its co-orientation by the normal vector \mathbf{n}. The orientation of the boundary us induced by the orientation of the surface.

Consider first a k-dimensional compact submanifold with boundary $A \subset U$ defined parametrically by an embedding $\phi: G \rightarrow A \hookrightarrow U$, where $G \subset \mathbb{R}^{k}$ is possibly with boundary. Suppose that A is oriented by this embedding. Then we define

$$
\int_{A} \alpha:=\int_{G} \phi^{*} \alpha .
$$

Note that if we define A by a different embedding $\widetilde{\phi}: \widetilde{G} \rightarrow A$, then we have $\widetilde{\phi}=\phi \circ h$, where $h=\phi^{-1} \circ \widetilde{\phi}: \widetilde{G} \rightarrow G$ is a diffeomorphism. Hence, using Theorem 9.32 we get

$$
\int_{\widetilde{G}} \widetilde{\phi}^{*} \alpha=\int_{\widetilde{G}} h^{*}\left(\phi^{*} \alpha\right)=\int_{G} \phi^{*} \alpha,
$$

and hence $\int_{A} \alpha$ is independent of a choice of parameterization, provided that the orientation is preserved.

Let now A be any compact oriented submanifold with boundary. Let us choose a partition of unity $1=\sum_{1}^{K} \theta_{j}$ in a neighborhood of A such that each function is supported in some coordinate neighborhood of A. Denote $\alpha_{j}=\theta_{j} \alpha$. Then $\alpha=\sum_{1}^{K} \alpha_{j}$, where each form α_{j} is supported in one of coordinate neighborhoods. Hence there exist orientation preserving embeddings $\phi_{j}: G_{j} \rightarrow A$ of domains with boundary $G_{j} \subset \mathbb{R}^{k}$, such that $\phi_{j}\left(G_{j}\right) \supset \operatorname{Supp}\left(\alpha_{j}\right), j=1, \ldots, K$. Hence, we can define

$$
\int_{A} \alpha_{j}:=\int_{G_{j}} \phi_{j}^{*} \alpha_{j} \text { and } \int_{A} \alpha:=\sum_{1}^{K} \int_{A} \alpha_{j} .
$$

Lemma 9.57. The above definition of $\int_{A} \alpha$ is independent of a choice of a partition of unity.
Proof. Consider two different partitions of unity $1=\sum_{1}^{K} \theta_{j}$ and $1=\sum_{1}^{\widetilde{K}} \widetilde{\theta}_{j}$ subordinated to coverings U_{1}, \ldots, U_{K} and $\widetilde{U}_{1}, \ldots, \widetilde{U}_{\widetilde{K}}$, respectively. Taking the product of two partitions we get another partition $1=\sum_{i=1}^{K} \sum_{j=1}^{\widetilde{K}} \theta_{i j}$, where $\theta_{i j}:=\theta_{i} \theta_{j}$, which is subordinated to the covering by intersections $U_{i} \cap U_{j}, i=1, \ldots, K, j=1, \ldots, \widetilde{K}$. Denote $\alpha_{i}:=\theta_{i} \alpha, \widetilde{\alpha}_{j}:=\tilde{\theta}_{j} \alpha$ and $\alpha_{i j}=\theta_{i j} \alpha$. Then $\sum_{i=1}^{K} \alpha_{i j}=\widetilde{\alpha}_{j}$,

$$
\begin{aligned}
\sum_{j=1}^{\widetilde{K}} \alpha_{i j}=\alpha_{i} \text { and } \alpha=\sum_{1}^{K} \alpha_{i}= & \sum_{1}^{\widetilde{K}} \widetilde{\alpha}_{j} \text {. Then, using the linearity of the integral we get } \\
& \sum_{1}^{K} \int_{A} \alpha_{i}=\sum_{i=1}^{K} \sum_{j=1}^{\widetilde{K}} \int_{A} \alpha_{i j}=\sum_{1}^{\widetilde{K}} \int_{A} \widetilde{\alpha}_{j} .
\end{aligned}
$$

When $k=1$ the above definition of the integral coincides with the definition of the integral of a 1-form over an oriented curve which was given above in Section 9.2 ,

Let us extend the definition of integration of differential forms to an important case of integration of 0 -form over oriented 0 -dimensional submanifolds. Let us recall a compact oriented 0 -dimensional submanifold of V is just a finite set of points $a_{1}, \ldots, a_{m} \in V$ with assigned signs to every point. So in view of the additivity of the integral it is sufficient to define integration over 1 point with a sign. On the other hand, a 0 -form is just a function $f: V \rightarrow \mathbb{R}$. So we define

$$
\int_{ \pm a} f:= \pm f(a) .
$$

A partition of unity is a convenient tool for studying integrals, but not so convenient for practical computations. The following proposition provides a more practical method for computations.

Proposition 9.58. Let A be a compact oriented submanifold of V and α a differential k-form given on a neighborhood of A. Suppose that A presented as a union $A=\bigcup_{1}^{N} A_{j}$, where A_{j} are codimension 0 submanifolds of A with boundary with corners. Suppose that A_{i} and A_{j} for any $i \neq j$ intersect only along pieces of their boundaries. Then

$$
\int_{A} \alpha=\sum_{1}^{N} \int_{A_{j}} \alpha
$$

In particular, if each A_{j} is parameterized by an orientation preserving embedding $\phi_{j}: G_{j} \rightarrow A$, where $G_{j} \subset \mathbb{R}^{k}$ is a domain with boundary with corners. Then

$$
\int_{A} \alpha=\sum_{1}^{N} \int_{G_{j}} \phi_{j}^{*} \alpha
$$

We leave the proof to the reader as an exercise.

Exercise 9.59. Compute the integral

$$
\int_{S} 1 / 3\left(x_{1} d x_{2} \wedge d x_{3}+x_{2} d x_{3} \wedge d x_{1}+x_{3} d x_{1} \wedge d x_{2}\right)
$$

where S is the sphere

$$
\left\{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\},
$$

cooriented by its exterior normal vector.

Solution. Let us present the sphere as the union of northern and southern hemispheres:

$$
S=S_{-} \cup S_{+}, \text {where } S_{-}=S \cap\left\{x_{3} \leq 0\right\}, S_{+}=S \cap\left\{x_{3} \geq 0\right\}
$$

Then $\int_{S} \omega=\int_{S^{+}} \omega+\int_{S_{-}} \omega$. Let us first compute $\int_{S^{+}} \omega$.
We can parametrize S_{+}by the map $(u, v) \rightarrow\left(u, v, \sqrt{R^{2}-u^{2}-v^{2}}\right),(u, v) \in\left\{u^{2}+v^{2} \leq R^{2}\right\}=$ \mathcal{D}_{R}. One can check that this parametrization agrees with the prescribed coorientation of S. Thus, we have

$$
\int_{S_{+}} \omega=1 / 3 \int_{\mathcal{D}_{R}}\left(u d v \wedge d \sqrt{R^{2}-u^{2}-v^{2}}+v d \sqrt{R^{2}-u^{2}-v^{2}} \wedge d u+\sqrt{R^{2}-u^{2}-v^{2}} d u \wedge d v\right) .
$$

Passing to polar coordinates (r, φ) in the plane (u, v) we get

$$
\begin{gathered}
\int_{S_{+}} \omega=1 / 3 \int_{P} r \cos \varphi d(r \sin \varphi) \wedge d \sqrt{R^{2}-r^{2}}+r \sin \varphi d \sqrt{R^{2}-r^{2}} \wedge d(r \cos \varphi) \\
+\sqrt{R^{2}-r^{2}} d(r \cos \varphi) \wedge d(r \sin \varphi)
\end{gathered}
$$

where $P=\{0 \leq r \leq R, 0 \leq \varphi \leq 2 \pi\}$. Computing this integral we get

$$
\begin{aligned}
\int_{S_{+}} \omega & =\frac{1}{3} \int_{P}-\frac{r^{3} \cos ^{2} \varphi d \varphi \wedge d r}{\sqrt{R^{2}-r^{2}}}+\frac{r^{3} \sin ^{2} \varphi d r \wedge d \varphi}{\sqrt{R^{2}-r^{2}}}+\sqrt{R^{2}-r^{2}} d r \wedge d \varphi \\
& =\frac{1}{3} \int_{P}\left(\frac{r^{3}}{\sqrt{R^{2}-r^{2}}}+r \sqrt{R^{2}-r^{2}}\right) d r \wedge d \varphi \\
& =\frac{2 \pi}{3} \int_{0}^{R} \frac{r R^{2}}{\sqrt{R^{2}-r^{2}}} d r=-\frac{2 \pi R^{2}}{3} \sqrt{R^{2}-r^{2}} \int_{0}^{R}=\frac{2 \pi R^{3}}{3}
\end{aligned}
$$

Similarly, one can compute that

$$
\int_{S_{-}} \omega=\frac{2 \pi R^{3}}{3} .
$$

Computing this last integral, one should notice the fact that the parametrization

$$
(u, v) \mapsto\left(u, v,-\sqrt{R^{2}-u^{2}-v^{2}}\right)
$$

defines the wrong orientation of S_{-}. Thus one should use instead the parametrization

$$
(u, v) \mapsto\left(v, u,-\sqrt{R^{2}-u^{2}-v^{2}}\right)
$$

and we get the answer

$$
\int_{S} \omega=\frac{4 \pi R^{3}}{3}
$$

This is just the volume of the ball bounded by the sphere. The reason for such an answer will be clear below from Stokes' theorem.

Part III

Stokes' theorem and its applications

Chapter 10

Stokes' theorem

10.1 Statement of Stokes' theorem

Theorem 10.1. Let $A \subset V$ be a compact oriented submanifold with boundary (and possibly with corners). Let ω be a C^{2}-smooth differential form defined on a neighborhood $U \supset A$. Then

$$
\int_{\partial A} \omega=\int_{A} d \omega .
$$

Here $d \omega$ is the exterior differential of the form ω and ∂A is the oriented boundary of A.
We will discuss below what exactly Stokes' theorem means for the case $k \leq 3$ and $n=\operatorname{dim} V \leq 3$.
Let us begin with the case $k=1, n=2$. Thus $V=\mathbb{R}^{2}$. Let x_{1}, x_{2} be coordinates in \mathbb{R}^{2} and U a domain in \mathbb{R}^{2} bounded by a smooth curve $\Gamma=\partial U$. Let us co-orient Γ with the outward normal ν to the boundary of U. This defines a counter-clockwise orientation of Γ.

Let $\omega=P_{1}\left(x_{1}, x_{2}\right) d x_{1}+P_{2}\left(x_{1}, x_{2}\right) d x_{2}$ be a differential 1-form. Then the above Stokes' formula asserts

$$
\int_{U} d \omega=\int_{\Gamma} \omega,
$$

or

$$
\int_{U}\left(\frac{\partial P_{2}}{\partial x_{1}}-\frac{\partial P_{1}}{\partial x_{2}}\right) d x_{1} \wedge d x_{2}=\int_{\Gamma} P_{1} d x_{1}+P_{2} d x_{2}
$$

Figure 10.1: George Stokes (1819-1903)

This is called Green's formula. In particular, when $d \omega=d x_{1} \wedge d x_{2}$, e.g. $\omega=x d y$ or $\omega=$ $\frac{1}{2}(x d y-y d x)$, the integral $\int_{\Gamma} \omega$ computes the area of the domain U.

Consider now the case $n=3, k=2$. Thus

$$
V=\mathbb{R}^{3}, \omega=P_{1} d x_{2} \wedge d x_{3}+P_{2} d x_{3} \wedge d x_{1}+P_{3} d x_{1} \wedge d x_{2}
$$

Let $U \subset \mathbb{R}^{3}$ be a domain bounded by a smooth surface S. We co-orient S with the exterior normal ν. Then

$$
d \omega=\left(\frac{\partial P_{1}}{\partial x_{1}}+\frac{\partial P_{2}}{\partial x_{2}}+\frac{\partial P_{3}}{\partial x_{3}}\right) d x_{1} \wedge d x_{2} \wedge d x_{3} .
$$

Thus, Stokes' formula

$$
\int_{S} \omega=\int_{U} d \omega
$$

gives in this case

$$
\int_{S} P_{1} d x_{2} \wedge d x_{3}+P_{2} d x_{3} \wedge d x_{1}+P_{3} d x_{1} \wedge d x_{2}=\int_{U}\left(\frac{\partial P_{1}}{\partial x_{1}}+\frac{\partial P_{2}}{\partial x_{2}}+\frac{\partial P_{3}}{\partial x_{3}}\right) d x_{1} \wedge d x_{2} \wedge d x_{3}
$$

This is called the divergence theorem or Gauss-Ostrogradski's formula.

Figure 10.2: George Green (1793-1841)

Consider the case $k=0, n=1$. Thus ω is just a function f on an interval $I=[a, b]$. The boundary ∂I consists of 2 points: $\partial I=\{a, b\}$. One should orient the point a with the sign - and the point b with the sign + .

Thus, Stokes' formula in this case gives

$$
\int_{[a, b]} d f=\int_{\{-a,+b\}} f
$$

or

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)
$$

This is Newton-Leibnitz' formula. More generally, for a 1-dimensional oriented connected curve $\Gamma \subset \mathbb{R}^{3}$ with boundary $\partial \Gamma=B \cup(-A)$ and any smooth function f we get the formula

$$
\int_{\Gamma} d f=\int_{B \cup(-A)} f=f(B)-f(A),
$$

which we already proved earlier, see Theorem 9.11 .
Consider now the case $n=3, k=1$.
Thus $V=\mathbb{R}^{3}$ and $\omega=P_{1} d x_{1}+P_{2} d x_{2}+P_{3} d x_{3}$. Let $S \subset \mathbb{R}^{3}$ be an oriented surface with boundary

Figure 10.3: Carl Friedrich Gauss (1777-1855) Mikhail Ostrogradski (1801-1862)
Γ. We orient Γ in the same way, as in Green's theorem. Then Stokes' formula

$$
\int_{S} d \omega=\int_{\Gamma} \omega
$$

gives in this case

$$
\begin{gathered}
\int_{S}\left(\frac{\partial P_{3}}{\partial x_{2}}-\frac{\partial P_{2}}{\partial x_{3}}\right) d x_{2} \wedge d x_{3}+\left(\frac{\partial P_{1}}{\partial x_{3}}-\frac{\partial P_{3}}{\partial x_{1}}\right) d x_{3} \wedge d x_{1}+\left(\frac{\partial P_{2}}{\partial x_{1}}-\frac{\partial P_{1}}{\partial x_{2}}\right) d x_{1} \wedge d x_{2} \\
=\int_{\Gamma} P_{1} d x_{1}+P_{2} d x_{2}+P_{3} d x_{3}
\end{gathered}
$$

This is the original Stokes' theorem.
Stokes' theorem allows one to clarify the geometric meaning of the exterior differential.
Lemma 10.2. Let β be a differential k-form in a domain $U \subset V$. Take any point $a \in U$ and vectors $X_{1}, \ldots, X_{k+1} \in V_{a}$. Given $\epsilon>0$ let us consider the parallelepiped $P\left(\epsilon X_{1}, \ldots, \epsilon X_{k+1}\right)$ as a subset of V with vertices at points $a_{i_{1} \ldots i_{k+1}}=a+\epsilon \sum_{1}^{k+1} i_{j} X_{j}$, where each index i_{j} takes values 0,1 . Then

$$
d \beta_{a}\left(X_{1}, \ldots X_{k+1}\right)=\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon^{k+1}} \int_{\partial P\left(\epsilon X_{1}, \ldots, \epsilon X_{k+1}\right)} \beta .
$$

Proof. First, it follows from the definition of integral of a differential form that

$$
\begin{equation*}
d \beta_{a}\left(X_{1}, \ldots, X_{k+1}\right)=\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon^{k+1}} \int_{P\left(\epsilon X_{1}, \ldots, \epsilon X_{k+1}\right)} d \beta \tag{10.1.1}
\end{equation*}
$$

Then we can continue using Stokes' formula

$$
\begin{equation*}
d \beta_{a}\left(X_{1}, \ldots, X_{k+1}\right)=\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon^{k+1}} \int_{P\left(\epsilon X_{1}, \ldots, \epsilon X_{k+1}\right)} d \beta=\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon^{k+1}} \int_{\partial P\left(\epsilon X_{1}, \ldots, \epsilon X_{k+1}\right)} \beta \tag{10.1.2}
\end{equation*}
$$

10.2 Proof of Stokes' theorem

We prove in this section Theorem 10.1. We will consider only the case when A is a manifold with boundary without corners and leave the corner case as an exercise to the reader.

Let us cover A by coordinate neighborhoods such that in each neighborhood A is given either by (9.8.3) or 9.8 .4 . First we observe that it is sufficient to prove the theorem for the case of a form supported in one of these coordinate neighborhoods. Indeed, let us choose finitely many such neighborhoods covering A. Let $1=\sum_{1}^{N} \theta_{j}$ be a partition of unity subordinated to this covering. We set $\omega_{j}=\theta_{j} \omega$, so that $\omega=\sum_{1}^{N} \omega_{j}$, and each of ω_{j} is supported in one of coordinate neighborhoods. Hence, if formula 10.1 holds for each ω_{j} it also holds for ω.

Let us now assume that ω is supported in one of coordinate neighborhoods. Consider the corresponding parameterization $\phi: G \rightarrow U \subset V, G \subset \mathbb{R}^{n}$, introducing coordinates u_{1}, \ldots, u_{n}. Then $A \cap U=\phi(G \cap L)$, where L is equal to the subspace $\mathbb{R}^{k}=\left\{u_{k+1}=\ldots u_{n}=0\right\}$ in the case 9.8.3 and the upper-half space $\mathbb{R}^{k} \cap\left\{u_{1} \geq 0\right\}$. By definition, we have $\int_{A} d \omega=\int_{U} d \omega=\int_{G \cap L} \phi^{*} d \omega=\int_{G \cap L} d \phi^{*} \omega \underbrace{1}$ Though the form $\widetilde{\omega}=\left.\phi^{*} \omega\right|_{G \cap L}$ is defined only on $G \cap L$, it is supported in this neighborhood, and hence we can extend it to a smooth form on the whole L by setting it equal to 0 outside the neighborhood. With this extension we have $\int_{G \cap L} d \widetilde{\omega}=\int_{L} d \widetilde{\omega}$. The $(k-1)$-form $\widetilde{\omega}$ can be written in coordinates u_{1}, \ldots, u_{k} as

$$
\widetilde{\omega}=\sum_{1}^{j} f_{j}(u) d u_{1} \wedge \ldots{ }^{j} \cdots \wedge d u_{k}
$$

[^8]Then

$$
\int_{G \cap L} d \widetilde{\omega}=\int_{L}\left(\sum_{1}^{k} \frac{\partial f_{j}}{\partial u_{j}}\right) d u_{1} \wedge \cdots \wedge d u_{k} .
$$

Let us choose a sufficiently $R>0$ so that the cube $I=\left\{\left|u_{i}\right| \leq R, i=1, \ldots, k\right\}$ contains $\operatorname{Supp}(\widetilde{\omega})$. Thus in the case (9.8.3) we have

$$
\begin{align*}
& \int_{G \cap L} d \widetilde{\omega}=\sum_{1}^{k} \int_{\mathbb{R}^{k}} \frac{\partial f_{j}}{\partial u_{j}} d V=\sum_{1}^{k} \int_{-R}^{R} \ldots \int_{-R}^{R} \frac{\partial f_{j}}{\partial u_{j}} d u_{1} \ldots d u_{n}= \\
& \sum_{1}^{k} \int_{-R}^{R} \ldots\left(\int_{-R}^{R} \frac{\partial f_{j}}{\partial u_{j}} d u_{j}\right) d u_{1} \ldots d u_{j-1} d u_{j+1} \ldots d u_{n}=0 \tag{10.2.1}
\end{align*}
$$

because

$$
\left.\int_{-R}^{R} \frac{\partial f_{j}}{\partial u_{j}} d u_{j}=f_{j}\left(u_{1}, \ldots, u_{i-1}, R, u_{i}, \ldots, u_{n}\right)-f_{j}\left(u_{1}, \ldots, u_{i-1},-R, u_{i}, \ldots, u_{n}\right)\right)=0
$$

On the other hand, in this case $\iint_{\partial A} \omega=0$, because the support of ω does not intersect the boundary of A. Hence, Stokes' formula holds in this case. In case (9.8.4 we similarly get

$$
\begin{align*}
& \int_{G \cap L} d \widetilde{\omega}=\sum_{1}^{k} \int_{\left\{u_{1} \geq 0\right\}} \frac{\partial f_{j}}{\partial u_{j}} d V= \\
& \sum_{1}^{k} \int_{0}^{R}\left(\int_{-R}^{R} \ldots \int_{-R}^{R} \frac{\partial f_{j}}{\partial u_{j}} d u_{n} \ldots d u_{2}\right) d u_{1}=\int_{-R}^{R}\left(\int_{-R}^{R} \ldots \int_{0}^{R} \frac{\partial f_{1}}{\partial u_{1}} d u_{1} \ldots d u_{n-1}\right) d u_{n}= \\
& -\int_{-R}^{R} \ldots \int_{-R}^{R} f_{1}\left(0, u_{2}, \ldots, u_{n}\right) d u_{2} \ldots d u_{n} . \tag{10.2.2}
\end{align*}
$$

because all terms in the sum with $j>1$ are equal to 0 by the same argument as in 10.2 .1 . On the other hand, in this case

$$
\begin{align*}
& \int_{\partial A} \omega=\int_{\left\{u_{1}=0\right\}} \phi^{*} \omega=\iint_{\left\{u_{1}=0\right\}} f_{1}\left(0, u_{2}, \ldots, u_{n}\right) d u_{2} \wedge \cdots \wedge d u_{n}= \\
& -\int_{-R}^{R} \cdots \int_{-R}^{R} f_{1}\left(0, u_{2}, \ldots, u_{n}\right) d u_{2} \ldots d u_{n} . \tag{10.2.3}
\end{align*}
$$

The sign minus appears in the last equality in front of the integral because the induced orientation on the space $\left\{u_{1}=0\right\}$ as the boundary of the upper-half space $\left\{u_{1} \geq 0\right\}$ is opposite to the orientation defined by the volume form $d u_{2} \wedge \cdots \wedge d u_{n}$. Comparing the expressions (10.2.2) and 10.2.3) we conclude that $\int_{A} d \omega=\int_{\partial A} \omega$, as required.

10.3 Integration of functions over submanifolds

In order to integrate functions over a submanifold we need a notion of volume for subsets of the submanifold.

Let $A \subset V$ be an oriented k-dimensional submanifold, $0 \leq k \leq n$. By definition, the volume form $\sigma=\sigma_{A}$ of A (or the area form if $k=2$, or the length form if $k=1$) is a differential k-form on A whose value on any k tangent vectors $v_{1}, \ldots, v_{k} \in T_{x} A$ equals the oriented volume of the parallelepiped generated by these vectors.

Given a function $f: A \rightarrow \mathbb{R}$ we define its integral over A by the formula

$$
\begin{equation*}
\int_{A} f d V=\int_{A} f \sigma_{A}, \tag{10.3.1}
\end{equation*}
$$

and, in particular,

$$
\mathrm{Vol} A=\int_{A} \sigma_{A}
$$

Notice that the integral $\int_{A} f d V$ is independent of the orientation of A. Indeed, changing the orientation we also change the sign of the form σ_{A}, and hence the integral remains unchanged. This allows us to define the integral $\int_{A} f d V$ even for a non-orientable A. Indeed, we can cover A by coordinate charts, find a subordinated partition of unity and split correspondingly the function $f=\sum_{1}^{N} f_{j}$ in such a way that each function f_{j} is supported in a coordinate neighborhood. By orienting in arbitrary ways each of the coordinate neighborhoods we can compute each of the integrals $\int_{A} f_{j} d V$, $j=1, \ldots, N$. It is straightforward to see that the integral $\int_{A} f d V=\sum_{j} \int_{A} f_{j} d V$ is independent of the choice of the partition of unity.

Let us study in some examples how the form σ_{A} can be effectively computed.

Example 10.3. Volume form of a hypersurface. Let us fix a Cartesian coordiantes in V. Let $A \subset V$ is given by the equation

$$
A=\{F=0\}
$$

for some function $F: V \rightarrow \mathbb{R}$ which has no critical points on A. The vector field ∇F is orthogonal to A, and

$$
\mathbf{n}=\frac{\nabla F}{\|\nabla F\|}
$$

is the unit normal vector field to A. Assuming A to be co-oriented by \mathbf{n} we can write down the volume form of A as the contraction of \mathbf{n} with the volume form $\Omega=d x_{1} \wedge \cdots \wedge d x_{n}$ of \mathbb{R}^{n}, i.e.

$$
\left.\sigma_{A}=\mathbf{n}\right\lrcorner \Omega=\frac{1}{\|\nabla F\|} \sum_{1}^{n}(-1)^{i-1} \frac{\partial F}{\partial x_{i}} d x_{1} \wedge . \stackrel{i}{.} . \wedge d x_{n} .
$$

In particular, if $n=3$ we get the following formula for the area form of an implicitely given 2-dimensional surface $A=\{F=0\} \subset \mathbb{R}^{3}$:

$$
\begin{equation*}
\sigma_{A}=\frac{1}{\sqrt{\left(\frac{\partial F}{\partial x_{1}}\right)^{2}+\left(\frac{\partial F}{\partial x_{2}}\right)^{2}+\left(\frac{\partial F}{\partial x_{3}}\right)^{2}}}\left(\frac{\partial F}{\partial x_{1}} d x_{2} \wedge d x_{3}+\frac{\partial F}{\partial x_{2}} d x_{3} \wedge d x_{1}+\frac{\partial F}{\partial x_{3}} d x_{1} \wedge d x_{2}\right) . \tag{10.3.2}
\end{equation*}
$$

Example 10.4. Length form of a curve.
Let $\Gamma \subset \mathbb{R}^{n}$ be an oriented curve given parametrically by a map $\gamma:[a, b] \rightarrow \mathbb{R}^{n}$. Let $\sigma=\sigma_{\Gamma}$ be the length form. Let us compute the form $\gamma^{*} \sigma_{\Gamma}$. Denoting the coordinate in $[a, b]$ by t and the unit vector field on $[a, b]$ by e we have

$$
\gamma^{*} \sigma_{\Gamma}=f(t) d t
$$

where

$$
f(t)=\gamma^{*} \sigma_{\Gamma}(e)=\sigma_{\Gamma}\left(\gamma^{\prime}(t)\right)=\left\|\gamma^{\prime}(t)\right\| .
$$

In particular the length of Γ is equal to

$$
\int_{\Gamma} \sigma_{\Gamma}=\int_{a}^{b}\left\|\gamma^{\prime}(t)\right\| d t=\int_{a}^{b} \sqrt{\sum_{i=1}^{n}\left(x_{i}^{\prime}(t)\right)^{2}} d t
$$

where

$$
\gamma(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)
$$

Similarly, given any function $f: \Gamma \rightarrow \mathbb{R}$ we have

$$
\int_{\Gamma} f d s=\int_{a}^{b} f(\gamma(t))\left\|\gamma^{\prime}(t)\right\| d t
$$

Example 10.5. Area form of a surface given parametrically.
Suppose a surface $S \subset \mathbb{R}^{n}$ is given parametrically by a map $\Phi: U \rightarrow \mathbb{R}^{n}$ where U in the plane \mathbb{R}^{2} with coordinates (u, v).

Let us compute the pull-back form $\Phi^{*} \sigma_{S}$. In other words, we want to express σ_{S} in coordinates u, v. We have

$$
\Phi^{*} \sigma_{S}=f(u, v) d u \wedge d v
$$

To determine $f(u, v)$ take a point $z=(u, v) \in \mathbb{R}^{2}$ and the standard basis $e_{1}, e_{2} \in \mathbb{R}_{z}^{2}$. Then

$$
\begin{equation*}
\left(\Phi^{*} \sigma_{S}\right)_{z}\left(e_{1}, e_{2}\right)=f(u, v) d u \wedge d v\left(e_{1}, e_{2}\right) \tag{10.3.3}
\end{equation*}
$$

On the other hand, by the definition of the pull-back form we have

$$
\begin{equation*}
\left(\Phi^{*} \sigma_{S}\right)_{z}\left(e_{1}, e_{2}\right)=\left(\sigma_{S}\right)_{\Phi(z)}\left(d_{z} \Phi\left(e_{1}\right), d_{z} \Phi\left(e_{2}\right)\right) \tag{10.3.4}
\end{equation*}
$$

But $d_{z} \Phi\left(e_{1}\right)=\frac{\partial \Phi}{\partial u}(z)=\Phi_{u}(z)$ and $d_{z} \Phi\left(e_{2}\right)=\frac{\partial \Phi}{\partial v}(z)=\Phi_{v}(z)$. Hence from 10.3.3 and 10.3.4 we get

$$
\begin{equation*}
f(u, v)=\sigma_{S}\left(\Phi_{u}, \Phi_{v}\right) \tag{10.3.5}
\end{equation*}
$$

The value of the form σ_{S} on the vectors Φ_{u}, Φ_{v} is equal to the area of the parallelogram generated by these vectors, because the surface is assumed to be oriented by these vectors, and hence $\sigma_{S}\left(\Phi_{u}, \Phi_{v}\right)>0$. Denoting the angle between Φ_{u} and Φ_{v} by α we get ${ }^{2} \sigma_{S}\left(\Phi_{u}, \Phi_{v}\right)=\left\|\Phi_{u}\right\|\left\|\Phi_{v}\right\| \sin \alpha$. Hence

$$
\sigma_{S}\left(\Phi_{u}, \Phi_{v}\right)^{2}=\left\|\Phi_{u}\right\|^{2}\left\|\Phi_{v}\right\|^{2} \sin ^{2} \alpha=\left\|\Phi_{u}\right\|^{2}\left\|\Phi_{v}\right\|^{2}\left(1-\cos ^{2} \alpha\right)=\left\|\Phi_{u}\right\|^{2}\left\|\Phi_{v}\right\|^{2}-\left(\Phi_{u} \cdot \Phi_{v}\right)^{2}
$$

and therefore,

$$
f(u, v)=\sigma_{S}\left(\Phi_{u}, \Phi_{v}\right)=\sqrt{\left\|\Phi_{u}\right\|^{2}\left\|\Phi_{v}\right\|^{2}-\left(\Phi_{u} \cdot \Phi_{v}\right)^{2}} .
$$

[^9]It is traditional to introduce the notation

$$
E=\left\|\Phi_{u}\right\|^{2}, F=\Phi_{u} \cdot \Phi_{v}, G=\left\|\Phi_{v}\right\|^{2},
$$

so that we get

$$
\Phi^{*} \sigma_{S}=\sqrt{E G-F^{2}} d u \wedge d v
$$

and hence we get for any function $f: S \rightarrow \mathbb{R}$

$$
\begin{equation*}
\int_{S} f d S=\int_{S} f \sigma_{S}=\int_{U} f(\Phi(u, v)) \sqrt{E G-F^{2}} d u \wedge d v=\iint_{U} f(\Phi(u, v)) \sqrt{E G-F^{2}} d u d v \tag{10.3.6}
\end{equation*}
$$

Consider a special case when the surface S defined as a graph of a function ϕ over a domain $D \subset \mathbb{R}^{2}$. Namely, suppose

$$
S=\left\{z=\phi(x, y), \quad(x, y) \in D \subset \mathbb{R}^{2}\right\} .
$$

The surface S as parametrized by the map

$$
(x, y) \stackrel{\Phi}{\mapsto}(x, y, \phi(x, y)) .
$$

Then

$$
E=\left\|\Phi_{x}\right\|^{2}=1+\phi_{x}^{2}, G=\left\|\Phi_{y}\right\|^{2}=1+\phi_{y}^{2}, F=\Phi_{x} \cdot \Phi_{y}=\phi_{x} \phi_{y},
$$

and hence

$$
E G-F^{2}=\left(1+\phi_{x}^{2}\right)\left(1+\phi_{y}^{2}\right)-\phi_{x}^{2} \phi_{y}^{2}=1+\phi_{x}^{2}+\phi_{y}^{2} .
$$

Therefore, the formula 10.3 .6 takes the form

$$
\begin{align*}
\int_{S} f d S= & \iint_{D} f(\Phi(x, y)) \sqrt{E G-F^{2}} d x \wedge d y= \\
& \iint_{D} f(x, y, \phi(x, y)) \sqrt{1+\phi_{x}^{2}+\phi_{y}^{2}} d x d y \tag{10.3.7}
\end{align*}
$$

Note that the formula 10.3.7) can be also deduced from 10.3.2. Indeed, the surface

$$
S=\left\{z=\phi(x, y), \quad(x, y) \in D \subset \mathbb{R}^{2}\right\},
$$

can also be defined implicitly by the equation

$$
F(x, y, z)=z-\phi(x, y)=0, \quad(x, y) \in D .
$$

We have

$$
\nabla F=\left(-\frac{\partial \phi}{\partial x},-\frac{\partial \phi}{\partial y}, 1\right)
$$

and, therefore,

$$
\begin{aligned}
\int_{S} f d S & =\int_{S} \frac{f(x, y, z)}{\|\nabla F\|}\left(\frac{\partial F}{\partial x} d y \wedge d z+\frac{\partial F}{\partial y} d z \wedge d x+\frac{\partial F}{\partial z} d x \wedge d y\right) \\
& =\iint_{D} \frac{f(x, y, \phi(x, y))}{\sqrt{1+\left(\frac{\partial \phi}{\partial x}\right)^{2}+\left(\frac{\partial \phi}{\partial y}\right)^{2}}}\left(-\frac{\partial \phi}{\partial x} d y \wedge d \phi-\frac{\partial \phi}{\partial y} d \phi \wedge d x+d x \wedge d y\right) \\
& =\iint_{D} \frac{f(x, y, \phi(x, y))}{\sqrt{1+\left(\frac{\partial \phi}{\partial x}\right)^{2}+\left(\frac{\partial \phi}{\partial y}\right)^{2}}}\left(1+\left(\frac{\partial \phi}{\partial x}\right)^{2}+\left(\frac{\partial \phi}{\partial y}\right)^{2}\right) d x d y \\
& =\iint_{D} f(x, y, \phi(x, y)) \sqrt{1+\left(\frac{\partial \phi}{\partial x}\right)^{2}+\left(\frac{\partial \phi}{\partial y}\right)^{2}} d x d y .
\end{aligned}
$$

Example 10.6. Integration over a parametrically given k-dimensional submanfold.
Consider now a more general case of a parametrically given k-submanifold A in an n-dimensional Euclidean space V. We fix a Cartersian coordinate system in V and thus identify V with \mathbb{R}^{n} with the standard dot-product.

Let $U \subset \mathbb{R}^{k}$ be a compact domain with boundary and $\phi: U \rightarrow \mathbb{R}^{n}$ be an embedding. We assume that the submanifold with boundary $A=\phi(U)$ is oriented by this parameterization. Let σ_{A} be the volume form of A. We will find an explicit expression for $\phi^{*} \sigma_{A}$. Namely. denoting coordinates in \mathbb{R}^{k} by $\left(u_{1}, \ldots, u_{k}\right)$ we have $\phi^{*} \sigma_{A}=f(u) d u_{1} \wedge \cdots \wedge d u_{k}$, and our goal is to compute the function f.

By definition, we have

$$
\begin{align*}
& f(u)=\phi^{*}\left(\sigma_{A}\right)_{u}\left(e_{1}, \ldots, e_{k}\right)=\left(\sigma_{A}\right)_{u}\left(d_{u} \phi\left(e_{1}\right), \ldots, d_{u} \phi\left(e_{k}\right)\right)= \\
& \quad\left(\sigma_{A}\right)_{u}\left(\frac{\partial \phi}{\partial u_{1}}(u), \ldots, \frac{\partial \phi}{\partial u_{k}}(u)\right)=\operatorname{Vol}_{k}\left(P\left(\frac{\partial \phi}{\partial u_{1}}(u), \ldots, \frac{\partial \phi}{\partial u_{k}}(u)\right)\right) \tag{10.3.8}
\end{align*}
$$

In Section 4.2 we proved two formulas for the volume of a parallelepiped. Using formula 4.2.1) we get

$$
\begin{equation*}
\operatorname{Vol}_{k}\left(P\left(\frac{\partial \phi}{\partial u_{1}}(u), \ldots, \frac{\partial \phi}{\partial u_{k}}(u)\right)\right)=\sqrt{\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} Z_{i_{1} \ldots i_{k}}^{2}} . \tag{10.3.9}
\end{equation*}
$$

where

$$
Z_{i_{1} \ldots i_{k}}=\left|\begin{array}{ccc}
\frac{\partial \phi_{i_{1}}}{\partial u_{1}}(u) & \ldots & \frac{\partial \phi_{i_{1}}}{\partial u_{k}}(u) \tag{10.3.10}\\
\ldots & \ldots & \ldots \\
\frac{\partial \phi_{i_{k}}}{\partial u_{1}}(u) & \ldots & \frac{\partial \phi_{i_{k}}}{\partial u_{k}}(u)
\end{array}\right| .
$$

Thus

$$
\int_{A} f d V=\int_{A} f \sigma_{A}=\int_{U} f(\phi(u)) \sqrt{\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} Z_{i_{1} \ldots i_{k}}^{2}} d u_{1} \wedge \cdots \wedge d u_{k} .
$$

Rewriting this formula for $k=2$ we get

$$
\int_{A} f d V=\left.\int_{U} f(\phi(u)) \sqrt{\sum_{1 \leq i<j \leq n}} \begin{array}{ll}
\frac{\partial \phi_{i}}{\partial u_{1}} & \frac{\partial \phi_{i}}{\partial u_{2}} \tag{10.3.11}\\
\frac{\partial \phi_{j}}{\partial u_{1}} & \frac{\partial \phi_{j}}{\partial u_{2}}
\end{array}\right|^{2} d u_{1} \wedge d u_{2} .
$$

Alternatively we can use formula (??). Then we get

$$
\begin{equation*}
\operatorname{Vol}_{k}\left(P\left(\frac{\partial \phi}{\partial u_{1}}(u), \ldots, \frac{\partial \phi}{\partial u_{k}}(u)\right)\right)=\sqrt{\operatorname{det}\left((D \phi)^{T} D \phi\right)} \tag{10.3.12}
\end{equation*}
$$

where

$$
D \phi=\left(\begin{array}{ccc}
\frac{\partial \phi_{1}}{\partial u_{1}} & \ldots & \frac{\partial \phi_{1}}{\partial u_{k}} \\
\ldots & \ldots & \ldots \\
\frac{\partial \phi_{n}}{\partial u_{1}} & \ldots & \frac{\partial \phi_{n}}{\partial u_{k}}
\end{array}\right)
$$

is the Jacobi matrix of $\phi ⿹^{3}$ Thus using this expression we get

$$
\begin{equation*}
\int_{A} f d V=\int_{A} f \sigma_{A}=\int_{U} f(\phi(u)) \sqrt{\operatorname{det}\left((D \phi)^{T} D \phi\right)} d V \tag{10.3.13}
\end{equation*}
$$

Exercise 10.7. In case $n=3, k=2$ show explicitely equivalence of formulas 10.3.6, 10.3.11) and (10.3.13).

Exercise 10.8. Integration over an implicitly defined k-dimensional submanfold. Suppose that $A=\left\{F_{1}=\cdots=F_{n-k}=0\right\}$ and the differentials of defining functions are linearly independent at points of A. Show that

$$
\sigma_{A}=\frac{*\left(d F_{1} \wedge \cdots \wedge d F_{n-k}\right)}{\left\|d F_{1} \wedge \cdots \wedge d F_{n-k}\right\|} .
$$

[^10]Example 10.9. Let us compute the volume of the unit 3-sphere $S^{3}=\left\{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=1\right\}$.
By definition, $\left.\operatorname{Vol}\left(S^{3}\right)=\int_{S^{3}} \mathbf{n}\right\lrcorner \Omega$, where $\Omega=d x_{1} \wedge d x_{2} \wedge d x_{3} \wedge d x_{4}$, and \mathbf{n} is the outward unit normal vector to the unit ball B_{4}. Here S^{3} should be co-oriented by the vector field \mathbf{n}. Then using Stokes' theorem we have

$$
\begin{align*}
& \left.\int_{S^{3}} \mathbf{n}\right\lrcorner \Omega=\int_{S^{3}}\left(x_{1} d x_{2} \wedge d x_{3} \wedge d x_{4}-x_{2} d x_{1} \wedge d x_{3} \wedge d x_{4}+x_{3} d x_{1} \wedge d x_{2} \wedge d x_{4}-x_{4} d x_{1} \wedge d x_{2} \wedge d x_{3}\right)= \\
& 4 \int_{B^{4}} d x_{1} \wedge d x_{2} \wedge d x_{3} \wedge d x_{4}=4 \int_{B^{4}} d V \tag{10.3.14}
\end{align*}
$$

Introducing polar coordinates (r, ϕ) and (ρ, θ) in the coordinate planes $\left(x_{1}, x_{2}\right)$ and $\left(x_{3}, x_{4}\right)$ and using Fubini's theorem we get

$$
\begin{align*}
& \int_{B^{4}}=\int_{0}^{2 \pi} \int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{\sqrt{1-r^{2}}} r \rho d \rho d r d \theta d \phi= \\
& 2 \pi^{2} \int_{0}^{1}\left(r-r^{3}\right) d r=\frac{\pi^{2}}{2} \tag{10.3.15}
\end{align*}
$$

Hence, $\operatorname{Vol}\left(S^{3}\right)=2 \pi^{2}$.
Exercise 10.10. Find the ratio $\frac{\operatorname{Vol}_{n}\left(B_{R}^{n}\right)}{\operatorname{Vol}_{n-1}\left(S_{R}^{n-1}\right)}$.

10.4 Work and Flux

We introduce in this section two fundamental notions of vector analysis: a work of a vector field along a curve, and a flux of a vector field through a surface. Let Γ be an oriented smooth curve in a Euclidean space V and T the unit tangent vector field to Γ. Let \mathbf{v} be another vector field, defined along Γ. The function $\langle\mathbf{v}, \mathbf{T}\rangle$ equals the projection of the vector field \mathbf{v} to the tangent directions to the curve. If the vector field \mathbf{v} is viewed as a force field, then the integral $\int_{\Gamma}\langle\mathbf{v}, \mathbf{T}\rangle d s$ has the meaning of a work $\operatorname{Work}_{\Gamma}(\mathbf{v})$ performed by the field \mathbf{v} to transport a particle of mass 1 along the curve Γ in the direction determined by the orientation. If the curve Γ is closed then this integral is sometimes called the circulation of the vector field \mathbf{v} along Γ and denoted by $\underset{\Gamma}{\oint}\langle\mathbf{v}, \mathbf{T}\rangle d s$. As we
already indicated earlier, the sign \oint in this case has precisely the same meaning as \int, and it is used only to stress the point that we are integrating along a closed curve.

Consider now a co-oriented hypersurface $\Sigma \subset V$ and denote by \mathbf{n} the unit normal vector field to Σ which determines the given co-orientation of Σ. Given a vector field \mathbf{v} along Σ we will view it as the velocity vector field of a flow of a fluid in the space. Then we can interpret the integral

$$
\int_{\Sigma}\langle\mathbf{v}, \mathbf{n}\rangle d V
$$

as the flux $\operatorname{Flux}_{\Sigma}(\mathbf{v})$ of \mathbf{v} through Σ, i.e. the volume of fluid passing through Σ in the direction of \mathbf{n} in time 1.

Lemma 10.11. 1. For any co-oriented hypersurface Σ and a vector field \mathbf{v} given in its neighborhood we have

$$
\left.\langle\mathbf{v}, \mathbf{n}\rangle \sigma_{\Sigma}=(\mathbf{v}\lrcorner \Omega\right)_{\Sigma}
$$

where Ω is the volume form in V.
2. For any oriented curve Γ and a vector field \mathbf{v} near Γ we have

$$
\langle\mathbf{v}, \mathbf{T}\rangle \sigma_{\Gamma}=\left.\mathcal{D}(\mathbf{v})\right|_{\Gamma} .
$$

Proof. 1. For any $n-1$ vectors $T_{1}, \ldots, T_{n-1} \in T_{x} \Sigma$ we have

$$
\mathbf{v}\lrcorner \Omega\left(T_{1}, \ldots, T_{n-1}\right)=\Omega\left(\mathbf{v}, T_{1}, \ldots, T_{n-1}\right)=\operatorname{Vol} P\left(\mathbf{v}, T_{1}, \ldots, T_{n-1}\right)
$$

Using (3.3.1) we get

$$
\begin{align*}
& \operatorname{Vol} P\left(\mathbf{v}, T_{1}, \ldots, T_{n-1}\right)=\langle\mathbf{v}, \mathbf{n}\rangle \operatorname{Vol}_{n-1} P\left(T_{1}, \ldots, T_{n-1}\right)= \\
& \langle\mathbf{v}, \mathbf{n}\rangle \operatorname{Vol} P\left(\mathbf{n}, T_{1}, \ldots, T_{n-1}\right)=\langle\mathbf{v}, \mathbf{n}\rangle \sigma_{\Sigma}\left(T_{1}, \ldots, T_{n-1}\right) . \tag{10.4.1}
\end{align*}
$$

2. The tangent space $T_{x} \Gamma$ is generated by the vector \mathbf{T}, and hence we just need to check that $\langle\mathbf{v}, \mathbf{T}\rangle \sigma_{\Gamma}(\mathbf{T})=\mathcal{D}(\mathbf{v})(\mathbf{T})$. But $\sigma_{\Gamma}(\mathbf{T})=\operatorname{Vol}(\mathbf{n}, \mathbf{T})=1$, and hence

$$
\mathcal{D}(\mathbf{v})(\mathbf{T})=\langle\mathbf{v}, \mathbf{T}\rangle=\langle\mathbf{v}, \mathbf{T}\rangle \sigma_{\Gamma}(\mathbf{T}) .
$$

Note that if we are given a Cartesian coordinate system in V and $\mathbf{v}=\sum_{1}^{n} a_{j} \frac{\partial}{\partial x_{j}}$, then

$$
\mathbf{v}\lrcorner \Omega=\sum_{1}^{n-1}(-1)^{i-1} a_{i} d x_{1} \stackrel{i}{\stackrel{i}{v}} d x_{n}, \quad \mathcal{D}(\mathbf{v})=\sum_{1}^{n} a_{i} d x_{i} .
$$

Thus, we have

Corollary 10.12.

$$
\begin{aligned}
& \left.\operatorname{Flux}_{\Sigma}(\mathbf{v})=\int_{\Sigma}\langle\mathbf{v}, \mathbf{n}\rangle d V=\int_{\Sigma}(\mathbf{v}\lrcorner \Omega\right)=\int_{\Sigma} \sum_{1}^{n}(-1)^{i-1} a_{i} d x_{1} . \stackrel{i}{\Sigma} \cdot d x_{n} \\
& \text { Work }_{\Gamma}(\mathbf{v})=\int_{\Gamma}\langle\mathbf{v}, \mathbf{T}\rangle=\int_{\Gamma} \mathcal{D}(\mathbf{v})=\int_{\Gamma} \sum_{1}^{n} a_{i} d x_{i} .
\end{aligned}
$$

In particular if $n=3$ we have

$$
\operatorname{Flux}_{\Sigma}(\mathbf{v})=\int_{\Sigma} a_{1} d x_{2} \wedge d x_{3}+a_{2} d x_{3} \wedge d x_{1}+a_{3} d x_{1} \wedge d x_{2}
$$

Let us also recall that in a Euclidean space V we have $v\lrcorner \Omega=* \mathcal{D}(v)$. Hence, the equation $\omega=v\lrcorner \Omega$ is equivalent to the equation

$$
v=\mathcal{D}^{1}\left(*^{-1} \omega\right)=(-1)^{n-1} \mathcal{D}^{-1}(* \omega)
$$

In particular, when $n=3$ we get $\mathbf{v}=\mathcal{D}^{-1}(* \omega)$. Thus we get
Corollary 10.13. For any differential $(n-1)$-form ω and an oriented compact hypersurface Σ we have

$$
\int_{\Sigma} \omega=\operatorname{Flux}_{\Sigma} \mathbf{v}
$$

where $\mathbf{v}=(-1)^{n-1} \mathcal{D}^{-1}(* \omega)$.
Integration of functions along curves and surfaces can be interpreted as the work and the flux of appropriate vector fields. Indeed, suppose we need to compute an integral $\int_{\Gamma} f d s$. Consider the tangent vector field $\mathbf{v}(x)=f(x) \mathbf{T}(x), \quad x \in \Gamma$, along Γ. Then $\langle\mathbf{v}, \mathbf{T}\rangle=f$ and hence the integral $\int_{\Gamma} f d s$ can be interpreted as the work $\operatorname{Work}_{\Gamma}(\mathbf{v})$. Therefore, we have

$$
\int_{\Gamma} f d s=\operatorname{Work}_{\Gamma}(\mathbf{v})=\int_{\Gamma} \mathcal{D}(\mathbf{v})
$$

Note that we can also express \mathbf{v} through ω by the formula $\mathbf{v}=\mathcal{D}^{-1} \star \omega$, see Section 8.7.

Similarly, to compute an integral $\int_{\Sigma} f d S$ let us co-orient the surface Σ with a unit normal to Σ vector field $\mathbf{n}(x), x \in \Sigma$ and set $\mathbf{v}(x)=f(x) \mathbf{n}(x)$. Then $\langle\mathbf{v}, \mathbf{n}\rangle=f$, and hence

$$
\int_{\Gamma} f d S=\int_{\Gamma}\langle\mathbf{v}, \mathbf{n}\rangle d S=\operatorname{Flux}_{\Sigma}(\mathbf{v})=\int_{\Gamma} \omega,
$$

where $\omega=\mathbf{v}\lrcorner \Omega$.

10.5 Integral formulas of vector analysis

We interpret in this section Stokes' formula in terms of integrals of functions and operations on vector fields. Let us consider again differential forms, which one can associate with a vector field \mathbf{v} in an Euclidean 3-space. Namely, this is a differential 1-form $\alpha=\mathcal{D}(\mathbf{v})$ and a differential 2-form $\omega=\mathbf{v}\lrcorner \Omega$, where $\Omega=d x \wedge d y \wedge d z$ is the volume form.

Using Corollary 10.12 we can reformulate Stokes' theorem for domains in a \mathbb{R}^{3} as follows.
Theorem 10.14. Let \mathbf{v} be a smooth vector field in a domain $U \subset \mathbb{R}^{3}$ with a smooth (or piece-wise) smooth boundary Σ. Suppose that Σ is co-oriented by an outward normal vector field. Then we have

$$
\operatorname{Flux}_{\Sigma} \mathbf{v}=\iint_{U} \int \operatorname{div} \mathbf{v} d x d y d z
$$

Indeed, $\operatorname{div} \mathbf{v}=* d \omega$. Hence we have

$$
\left.\int_{U} \operatorname{div} \mathbf{v} d V=\int_{U}(\star d \omega) d x \wedge d y \wedge d z=\int_{U} d \omega=\int_{\Sigma} \omega=\int_{\Sigma} \mathbf{v}\right\lrcorner \Omega=\text { Fluxx } \mathbf{v} .
$$

This theorem clarifies the meaning of div \mathbf{v} :
Let $B_{r}(x)$ be the ball of radius r centered at a point $x \in \mathbb{R}^{3}$, and $S_{r}(x)=\partial B_{r}(x)$ be its boundary sphere co-oriented by the outward normal vector field. Then

$$
\operatorname{div} \mathbf{v}(x)=\lim _{r \rightarrow 0} \frac{\operatorname{Flux}_{S_{r}(x)} \mathbf{v}}{\operatorname{Vol}\left(B_{r}(x)\right)}
$$

Theorem 10.15. Let Σ be a piece-wise smooth compact oriented surface in \mathbb{R}^{3} with a piece-wise smooth boundary $\Gamma=\partial \Sigma$ oriented respectively. Let \mathbf{v} be a smooth vector field defined near Σ. Then

$$
\operatorname{Flux}_{\Sigma}(\operatorname{curl} \mathbf{v})=\int_{\Sigma}\langle\operatorname{curl} \mathbf{v}, \mathbf{n}\rangle d V=\oint_{\Gamma} \mathbf{v} \cdot \mathbf{T} d s=\mathrm{Work}_{\Gamma} \mathbf{v} .
$$

To prove the theorem we again use Stokes' theorem and the connection between integrals of functions and differential forms. Set $\alpha=\mathcal{D}(\mathbf{v})$. Then $\operatorname{curl} \mathbf{v}=\mathcal{D}^{-1} \star d \alpha$. We have

$$
\oint_{\Gamma} \mathbf{v} \cdot \mathbf{T} d s=\int_{\Gamma} \alpha=\int_{\Sigma} d \alpha=\operatorname{Flux}_{\Sigma}\left(\mathcal{D}^{-1} \star(d \alpha)\right)=\operatorname{Flux}_{\Sigma}(\operatorname{curl} \mathbf{v}) .
$$

Again, similar to the previous case, this theorem clarifies the meaning of curl. Indeed, let us denote by $D_{r}(x, \mathbf{w})$ the 2-dimensional disc of radius r in \mathbb{R}^{3} centered at a point $x \in \mathbb{R}^{3}$ and orthogonal to a unit vector $\mathbf{w} \in \mathbb{R}_{x}^{3}$. Set

$$
c(x, \mathbf{w})=\lim _{r \rightarrow 0} \frac{\operatorname{Work}_{\partial D_{r}(x, \mathbf{w})} \mathbf{v}}{\pi r^{2}} .
$$

Then

$$
c(x, \mathbf{w})=\lim _{r \rightarrow 0} \frac{\operatorname{Flux}_{D_{r}(x, \mathbf{w})}(\operatorname{curl} \mathbf{v})}{\pi r^{2}}=\lim _{r \rightarrow 0} \frac{\int_{D_{r}(x, \mathbf{w})}\langle\operatorname{curl} \mathbf{v}, \mathbf{w}\rangle}{\pi r^{2}}=\langle\operatorname{curl} \mathbf{v}, \mathbf{w}\rangle
$$

Hence, $\|\operatorname{curl} \mathbf{v}(x)\|=\max _{\mathbf{w}} c(x, \mathbf{w})$ and direction of $\operatorname{curl} \mathbf{v}(x)$ coincides with the direction of the vector \mathbf{w} for which the maximum value of $c(x, \mathbf{w})$ is achieved.

10.6 Expressing div and curl in curvilinear coordinates

Let us show how to compute $\operatorname{div} \mathbf{v}$ and curlv of a vector field \mathbf{v} in \mathbb{R}^{3} given in a curvilinear coordinates u_{1}, u_{2}, u_{3}, i.e. expressed through the coordinate vector fields $\frac{\partial}{\partial u_{1}}, \frac{\partial}{\partial u_{2}}$ and $\frac{\partial}{\partial u_{3}}$. Let

$$
\Omega=f\left(u_{1}, u_{2}, u_{3}\right) d u_{1} \wedge d u_{2} \wedge d u_{3}
$$

be the volume form $d x_{1} \wedge d x_{2} \wedge d x_{3}$ expressed in coordinates u_{1}, u_{2}, u_{3}.
Let us first compute $\star\left(d u_{1} \wedge d u_{2} \wedge d u_{3}\right)$. We have

$$
\star\left(d u_{1} \wedge d u_{2} \wedge d u_{3}\right)=\star\left(\frac{1}{f} d x_{1} \wedge d x_{2} \wedge d x_{3}\right)=\frac{1}{f} .
$$

Let

$$
\mathbf{v}=a_{1} \frac{\partial}{\partial u_{1}}+a_{2} \frac{\partial}{\partial u_{2}}+a_{3} \frac{\partial}{\partial u_{3}}
$$

Then we have

$$
\begin{aligned}
\operatorname{div} \mathbf{v} & =\star d(\mathbf{v}\lrcorner \Omega) \\
& \left.=\star d\left(\left(\sum_{1}^{3} a_{i} \frac{\partial}{\partial u_{i}}\right)\right\lrcorner f d u_{1} \wedge d u_{2} \wedge d u_{3}\right) \\
& =\star d\left(f a_{1} d u_{2} \wedge d u_{3}+f a_{2} d u_{3} \wedge d u_{1}+f a_{3} d u_{1} \wedge d u_{2}\right) \\
& =\star\left(\left(\frac{\partial\left(f a_{1}\right)}{\partial u_{1}}+\frac{\partial\left(f a_{2}\right)}{\partial u_{2}}+\frac{\partial\left(f a_{3}\right)}{\partial u_{3}}\right) d u_{1} \wedge d u_{2} \wedge d u_{3}\right) \\
& =\frac{1}{f}\left(\frac{\partial\left(f a_{1}\right)}{\partial u_{1}}+\frac{\partial\left(f a_{2}\right)}{\partial u_{2}}+\frac{\partial\left(f a_{3}\right)}{\partial u_{3}}\right) \\
& =\frac{\partial a_{1}}{\partial u_{1}}+\frac{\partial a_{2}}{\partial u_{2}}+\frac{\partial a_{3}}{\partial u_{3}}+\frac{1}{f}\left(\frac{\partial f}{\partial u_{1}} a_{1}+\frac{\partial f}{\partial u_{2}} a_{2}+\frac{\partial f}{\partial u_{3}} a_{3}\right) .
\end{aligned}
$$

In particular, we see that the divergence of a vector field is expressed by the same formulas as in the cartesian case if and only if the volume form is proportional to the form $d u_{1} \wedge d u_{2} \wedge d u_{3}$ with a constant coefficient.

For instance, in the spherical coordinates the volume form can be written as

$$
\Omega=r^{2} \sin \varphi d r \wedge d \varphi \wedge d \theta, 4
$$

and hence the divergence of a vector field

$$
\mathbf{v}=a \frac{\partial}{\partial r}+b \frac{\partial}{\partial \theta}+c \frac{\partial}{\partial \varphi}
$$

can be computed by the formula

$$
\operatorname{div} \mathbf{v}=\frac{\partial a}{\partial r}+\frac{\partial b}{\partial \theta}+\frac{\partial c}{\partial \varphi}+\frac{2 a}{r}+c \cot \varphi
$$

The general formula for curlv in curvilinear coordinates looks pretty complicated. So instead of deriving the formula we will explain here how it can be obtained in the general case, and then illustrate this procedure for the spherical coordinates.

By the definition we have

[^11]$$
\operatorname{curl} \mathbf{v}=D^{-1}(\star(d(D(\mathbf{v})))) .
$$

Hence we first need to compute $D(\mathbf{v})$.
To do this we need to introduce a symmetric matrix

$$
G=\left(\begin{array}{lll}
g_{11} & g_{12} & g_{13} \\
g_{21} & g_{22} & g_{23} \\
g_{31} & g_{32} & g_{33}
\end{array}\right),
$$

where

$$
g_{i j}=\left\langle\frac{\partial}{\partial u_{i}}, \frac{\partial}{\partial u_{j}}\right\rangle, \quad i, j=1,2,3 .
$$

The matrix G is called the Gram matrix.
Notice, that if $D(\mathbf{v})=A_{1} d u_{1}+B d u_{2}+C d u_{3}$ then for any vector $h=h_{1} \frac{\partial}{\partial u_{1}}+h_{2} \frac{\partial}{\partial u_{2}}+h_{3} \frac{\partial}{\partial u_{3}}$. we have

$$
D(\mathbf{v})(h)=A_{1} h_{1}+A_{2} h_{2}+A_{3} h_{3}=\left(\begin{array}{lll}
A_{1} & A_{2} & A_{3}
\end{array}\right)\left(\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3}
\end{array}\right)=\langle\mathbf{v}, h\rangle
$$

But

$$
\langle\mathbf{v}, h\rangle=\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right) G\left(\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3}
\end{array}\right) .
$$

Hence

$$
\left(\begin{array}{lll}
A_{1} & A_{2} & A_{3}
\end{array}\right)=\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right) G,
$$

or, equivalently, because the Gram matrix G is symmetric we can write

$$
\left(\begin{array}{l}
A_{1} \\
A_{2} \\
A_{3}
\end{array}\right)=G\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)
$$

and therefore,

$$
A_{i}=\sum_{i=1}^{n} g_{i j} a_{j}, \quad i=1,2,3 .
$$

After computing

$$
\omega=d(D(\mathbf{v}))=B_{1} d u_{2} \wedge d u_{3}+B_{2} d u_{3} \wedge d u_{1}+B_{3} d u_{1} \wedge d u_{2}
$$

we compute curl \mathbf{v} by the formula $=\operatorname{curl} \mathbf{v}=D^{-1}(\star \omega)$. Let us recall (see Proposition 4.15 above) that for any vector field \mathbf{w} the equality $D \mathbf{w}=\star \omega$ is equivalent to the equality $\mathbf{w}\lrcorner \Omega=\omega$, where $\Omega=f d u_{1} \wedge d u_{2} \wedge d u_{3}$ is the volume form. Hence, if

$$
\operatorname{curl} \mathbf{v}=c_{1} \frac{\partial}{\partial u_{1}}+c_{2} \frac{\partial}{\partial u_{2}}+c_{3} \frac{\partial}{\partial u_{3}}
$$

then we have

$$
\mathbf{w}\lrcorner \Omega=f c_{1} d u_{2} \wedge d u_{3}+f c_{2} d u_{3} \wedge d u_{1}+f c_{3} d u_{1} \wedge d u_{2}
$$

and therefore,

$$
\operatorname{curl} \mathbf{v}=\frac{B_{1}}{f} \frac{\partial}{\partial u_{1}}+\frac{B_{2}}{f} \frac{\partial}{\partial u_{2}}+\frac{B_{3}}{f} \frac{\partial}{\partial u_{3}} .
$$

Let us use the above procedure to compute curl \mathbf{v} of the vector field

$$
\mathbf{v}=a \frac{\partial}{\partial r}+b \frac{\partial}{\partial \phi}+c \frac{\partial}{\partial \theta}
$$

given in the spherical coordinates. The Gram matrix in this case is the diagonal matrix

$$
G=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & r^{2} & 0 \\
0 & 0 & r^{2} \sin ^{2} \varphi
\end{array}\right)
$$

Hence,

$$
D \mathbf{v}=a d r+b r^{2} d \varphi+c r^{2} \sin ^{2} \varphi d \theta
$$

and

$$
\begin{aligned}
\omega=d(D \mathbf{v}) & =d a \wedge d r+d\left(b r^{2}\right) \wedge d \varphi+d\left(c r^{2} \sin ^{2} \varphi\right) \wedge d \theta \\
& =\left(-r \frac{\partial b}{\partial \theta}+r^{2} c \sin 2 \varphi+r^{2} \sin ^{2} \varphi \frac{\partial c}{\partial \varphi}\right) d \varphi \wedge d \theta \\
& +\left(-\frac{\partial a}{\partial \varphi}+r^{2} \frac{\partial b}{\partial r}+2 b r\right) d r \wedge d \varphi+\left(-2 r c \sin ^{2} \varphi-r^{2} \sin ^{2} \varphi \frac{\partial c}{\partial r}+\frac{\partial a}{\partial \theta}\right) d \theta \wedge d r
\end{aligned}
$$

Finally, we get the following expression for curl v:
$\operatorname{curl} \mathbf{v}=\frac{-r \frac{\partial b}{\partial \theta}+r^{2} c \sin 2 \varphi+r^{2} \sin ^{2} \varphi \frac{\partial c}{\partial \varphi}}{r^{2} \cos \phi} \frac{\partial}{\partial r}+\frac{-\frac{\partial a}{\partial \varphi}+r^{2} \frac{\partial b}{\partial r}+2 b r}{r^{2} \cos \varphi} \frac{\partial}{\partial \varphi}+\frac{-2 r c \sin ^{2} \varphi-r^{2} \sin ^{2} \varphi \frac{\partial c}{\partial r}+\frac{\partial a}{\partial \theta}}{r^{2} \cos \varphi} \frac{\partial}{\partial \theta}$.

Chapter 11

Applications of Stokes' formula

11.1 Integration of closed and exact forms

Let us recall that a differential k-form ω is called closed if $d \omega=0$, and that it is called exact if there exists a $(k-1)$-form α, called primitive of ω, such that $\omega=d \alpha$.

Any exact form is closed, because $d(d \alpha)=0$. Any n-form in a n-dimensional space is closed.
Proposition 11.1. a) For a closed k-form ω defined near a $(k+1)$-dimensional submanifold Σ with boundary $\partial \Sigma$ we have

$$
\int_{\partial \Sigma} \omega=0 .
$$

b) If ω is exact k-form defined near a closed k-dimensional submanifold S then

$$
\int_{S} \omega=0 .
$$

The proof immediately follows from Stokes' formula. Indeed, in case a) we have

$$
\int_{\partial \Sigma} \omega=\int_{\Sigma} d \omega=0 .
$$

In case b) we have $\omega=d \alpha$ and $\partial S=\varnothing$. Thus

$$
\int_{S} d \alpha=\int_{\emptyset} \alpha=0 .
$$

Proposition 11.1b) gives a necessary condition for a closed form to be exact.

Example 11.2. The differential 1-form $\alpha=\frac{1}{x^{2}+y^{2}}(x d y-y d x)$ defined on the punctured plane $\mathbb{R}^{2} \backslash 0$ is closed but not exact.

Indeed, it is straightforward to check that α is exact (one can simplify computations by passing to polar coordinates and computing that $\alpha=d \varphi$). To check that it is not exact we compute the integral $\int_{S} \alpha$, where S in the unit circle $\left\{x^{2}+y^{2}=1\right\}$. We have

$$
\int_{S} \alpha=\int_{0}^{2 \pi} d \varphi=2 \pi \neq 0
$$

More generally, an ($n-1$)-form

$$
\theta_{n}=\sum_{i=1}^{n}(-1)^{i-1} \frac{x_{i}}{r^{n}} d x_{1} \wedge \stackrel{i}{\therefore} \wedge \wedge d x_{n} \quad\left(d x_{i} \text { is missing }\right)
$$

is closed in $\mathbb{R}^{n} \backslash 0$. However, it is not exact. Indeed, let us show that $\int_{S^{n-1}} \theta_{n} \neq 0$, where S^{n-1} is the unit sphere oriented as the boundary of the unit ball. Let us recall that the volume form $\sigma_{S^{n-1}}$ on the unit sphere is defined as

$$
\left.\sigma_{S^{n-1}}=\mathbf{n}\right\lrcorner \Omega=\sum_{i=1}^{n}(-1)^{i-1} \frac{x_{i}}{r} d x_{1} \wedge \stackrel{i}{\therefore} \wedge d x_{n} .
$$

Notice that $\left.\theta_{n}\right|_{S^{n-1}}=\sigma_{S^{n-1}}$, and hence

$$
\int_{S^{n-1}} \theta_{n}=\int_{S^{n-1}} \sigma_{S^{n-1}}=\int_{S^{n-1}} d V=\operatorname{Vol}\left(S^{n-1}\right)>0
$$

11.2 Approximation of continuous functions by smooth ones

Theorem 11.3. Let $C \subset V$ be a compact domain with smooth boundary. Then any continuous function $f: C \rightarrow \mathbb{R}$ can be C^{0}-approximated by C^{∞} - smooth functions, i.e. for any $\epsilon>0$ there exists a C^{∞}-smooth function $g: C \rightarrow \mathbb{R}$ such that $|f(x)-g(x)|<\epsilon$ for any $x \in C$. Moreover, if the function f is already C^{∞}-smooth in a neighborhood of a closed subset $B \subset \operatorname{Int} C$, then one can arrange that the function g coincides with f over B.

Lemma 11.4. There is a continuous extension of f to V.

Sketch of the proof. Let \mathbf{n} be the outward normal vector field to the boundary ∂C. If the boundary is C^{∞}-smooth then so is the vector field \mathbf{n}. Consider a map $\nu: \partial C \times[0,1] \rightarrow V$ given by the formula $\nu(x, t)=x+t \mathbf{n}, x \in \partial C, t \in[0,1]$. The differential of ν at the points of $\partial C \times 0$ has rank n. (Exercise: prove this.) Hence by the inverse function theorem for a sufficiently small $\epsilon>0$ the map ν is a diffeomorphism of $\partial C \times[0, \epsilon)$ onto $U \backslash \operatorname{Int} C$ for some open neighborhood $U \supset C$. Consider a function $F: \partial C \times[0, \epsilon) \rightarrow \mathbb{R}$, defined by the formula

$$
F(x, t)=\left(1-\frac{2 t}{\epsilon}\right) f(x)
$$

if $t \in\left[0, \frac{\epsilon}{2}\right]$ and $f(x, t)=0$ if $t \in\left(\frac{\epsilon}{2}, \epsilon\right)$. Now we can extend f to U by the formula $f(y)=F \nu^{-1}(y)$ if $y \in U \backslash C$, and setting it to 0 outside U.

Consider the function

$$
\Psi_{\epsilon}=\frac{1}{\int_{D_{\epsilon}(0)} \psi_{0, \epsilon} d V} \psi_{0, \epsilon}
$$

where $\psi_{0, \sigma}$ is a bump function defined above in 9.1 .2 . It is supported in the disc $D_{\sigma}(0)$, nonnegative, and satisfies

$$
\int_{D_{\sigma}(0)} \Psi_{\sigma} d V=1 .
$$

. Given a continuous function $f: V \rightarrow \mathbb{R}$ we define a function $f_{\sigma}: V \rightarrow \mathbb{R}$ by the formula

$$
\begin{equation*}
f_{\sigma}(x)=\int f(x-y) \Psi_{\sigma}(y) d^{n} y \tag{11.2.1}
\end{equation*}
$$

Then
Lemma 11.5. 1. The function f_{σ} is C^{∞}-smooth.
2. For any $\epsilon>0$ there exists $\delta>0$ such that for all $x \in C$ we have $\left|f(x)-f_{\sigma}(x)\right|<\epsilon$ provided that $\sigma<\delta$.

Proof. 1. By the change of variable formula we have, replacing the variable y by $u=y-x$:

$$
f_{\sigma}(x)=\int_{D_{\epsilon}(0)} f(x-y) \Psi_{\sigma}(y) d^{n} y=\int_{D_{\epsilon}(-x)} f(-u) \Psi_{\sigma}(x+u) d^{n} u=\int_{V} f(-u) \Psi_{\sigma}(x+u) d^{n} u .
$$

But the expression under the latter integral depends on $x C^{\infty}$-smoothly as a parameter. Hence, by the theorem about differentiating integral over a parameter, we conclude that the function f_{ϵ} in C^{∞}-smooth.
2. Fix some $\sigma_{0}>0$. The function f is uniformly continuous in $\overline{U_{\sigma_{0}}(C)}$. Hence there exists $\delta>0$ such that $x, x^{\prime} \in \overline{U_{\sigma_{0}}(C)}$ and $\left\|x-x^{\prime}\right\|<\delta$ we have $\left|f(x)-f\left(x^{\prime}\right)\right|<\epsilon$. Hence, for $\sigma<\min \left(\sigma_{0}, \delta\right)$ and for $x \in C$ we have

$$
\begin{align*}
& \left|f_{\sigma}(x)-f(x)\right|=\left|\int_{D_{\epsilon}(0)} f(x-y) \Psi_{\sigma}(y) d^{n} y-\int_{D_{\epsilon}(0)} f(x) \Psi_{\sigma}(y) d^{n} y\right| \leq \\
& \int_{D_{\epsilon}(0)}|f(x-y)-f(x)| \Psi_{\sigma}(y) d^{n} y \leq \epsilon \int_{D_{\epsilon}(0)} \Psi_{\sigma}(y) d^{n} y=\epsilon . \tag{11.2.2}
\end{align*}
$$

Proof of Theorem 11.3. Lemma 11.5 implies that for a sufficiently small σ the function $g=f_{\sigma}$ is the required C^{∞}-smooth ϵ-approximation of the continuous function f. To prove the second part of the theorem let us assume that f is already C^{∞}-smooth on a neighborhood $U, B \subset U \subset C$. Let us choose a cut-off function $\sigma_{B, U}$ constructed in Lemma 9.2 and define the required approximation g by the formula $f_{\sigma}+\left(f-f_{\sigma}\right) \sigma_{B, U}$.

Theorem 11.3 implies a similar theorem form continuous maps $C \rightarrow \mathbb{R}^{n}$ by applying it to all coordinate functions.

11.3 Homotopy

Let A, B be any 2 subsets of vector spaces V and W, respectively. Two continuous maps $f_{0}, f_{1}: A \rightarrow$ B are called homotopic if there exists a continuous map $F: A \times[0,1] \rightarrow B$ such that $F(x, 0)=f_{0}(x)$ and $F(x, 1)=f_{1}(x)$ for all $t \in[0,1]$. Notice that the family $f_{t}: A \rightarrow B, t \in[0,1]$, defined by the formula $f_{t}(x)=F(x, t)$ is a continuous deformation connecting f_{0} and f_{1}. Conversely, any such continuous deformation $\left\{f_{t}\right\}_{t \in[0,1]}$ provides a homotopy between f_{0} and f_{1}.

Given a subset $C \subset A$, we say that a homotopy $\left\{f_{t}\right\}_{t \in[0,1]}$ is fixed over C if $f_{t}(x)=f_{0}(x)$ for all $x \in C$ and all $t \in[0,1]$.

A set A is called contractible if there exists a point $a \in A$ and a homotopy $f_{t}: A \rightarrow A, t \in[0,1]$, such that $f_{1}=\mathrm{Id}$ and f_{0} is a constant map, i.e. $f_{1}(x)=x$ for all $x \in A$ and $f_{0}(x)=a \in A$ for all $x \in A$.

Example 11.6. Any star-shaped domain A in V is contractible. Indeed, assuming that it is starshaped with respect to the origin, the required homotopy $f_{t}: A \rightarrow A, t \in[0,1]$, can be defined by the formula $f_{t}(x)=t x, x \in A$.

Remark 11.7. In what follows we will always assume all homotopies to be smooth. According to Theorem 11.3 this is not a serious constraint. Indeed, any continuous map can be C^{0}-approximated by smooth ones, and any homotopy between smooth maps can be C^{0}-approximated by a smooth homotopy between the same maps.

Lemma 11.8. Let $U \subset V$ be an open set, A a compact oriented manifold (possibly with boundary) and α a smooth closed differential k-form on U. Let $f_{0}, f_{1}: A \rightarrow U$ be two maps which are homotopic relative to the boundary ∂A. Then

$$
\int_{A} f_{0}^{*} \alpha=\int_{A} f_{1}^{*} \alpha .
$$

Proof. Let $F: A \times[0,1] \rightarrow U$ be the homotopy map between f_{0} and f_{1}. By assumption $d \alpha=0$, and hence $\underset{A \times[0,1]}{ } F^{*} d \alpha=0$. Then, using Stokes' theorem we have

$$
0=\int_{A \times[0,1]} F^{*} d \alpha=\int_{A \times[0,1]} d F^{*} \alpha=\int_{\partial(A \times[0,1])} F^{*} \alpha=\int_{\partial A \times[0,1]} F^{*} \alpha+\int_{A \times 1} F^{*} \alpha+\int_{A \times 0} F^{*} \alpha
$$

where the boundary $\partial(A \times[0,1])=(A \times 1) \cap(A \times 0) \cap(\partial A \times[0,1])$ is oriented by an outward normal vector field \mathbf{n}. Note that $\mathbf{n}=\frac{\partial}{\partial t}$ on $A \times 1$ and $\mathbf{n}=-\frac{\partial}{\partial t}$ on $A \times 0$, where we denote by t the coordinate corresponding to the factor $[0,1]$. First, we notice that $\left.F^{*} \alpha\right|_{\partial A \times[0,1]}=0$ because the map F is independent of the coordinate t, when restricted to $\partial A \times[0,1]$. Hence $\underset{\partial A \times[0,1]}{ } F^{*} \alpha=0$. Consider the inclusion maps $A \rightarrow A \times[0,1]$ defined by the formulas $j_{0}(x)=(x, 0)$ and $j_{1}(x)=(x, 1)$. Note that j_{0}, j_{1} are diffeomorphisms $A \rightarrow A \times 0$ and $A \rightarrow A \times 1$, respectively. Note that the map j_{1} preserves the orientation while j_{0} reverses it. We also have $F \circ j_{0}=f_{0}, F \circ j_{1}=f_{1}$. Hence, $\int_{A \times 1} F^{*} \alpha=\int_{A} f_{1}^{*} \alpha$ and $\int_{A \times 0} F^{*} \alpha=-\int_{A} f_{0}^{*} \alpha$. Thus,

$$
0=\int_{\partial(A \times[0,1])} F^{*} \alpha=\int_{\partial A \times[0,1]} F^{*} \alpha+\int_{A \times 1} F^{*} \alpha+\int_{A \times 0} F^{*} \alpha=\int_{A} f_{1}^{*} \alpha-\int_{A} f_{0}^{*} \alpha .
$$

Lemma 11.9. Let A be an oriented m-dimensional manifold, possibly with boundary. Let $\Omega(A)$ denote the space of differential forms on A and $\Omega(A \times[0,1])$ denote the space of differential forms on the product $A \times[0,1]$. Let $j_{0}, j_{1}: A \rightarrow A \times[0,1]$ be the inclusion maps $j_{0}(x)=(x, 0) \in A \times[0,1]$ and $j_{1}(x)=(x, 1) \in A \times[0,1]$. Then there exists a linear map $K: \Omega(A \times[0,1]) \rightarrow \Omega(A)$ such that

- If α is a k-form, $k=1, \ldots, m$ then $K(\alpha)$ is a $(k-1)$-form;
- $d \circ K+K \circ d=j_{1}^{*}-j_{0}^{*}$, i.e. for each differential k-form $\alpha \in \Omega^{k}(A \times[0,1]$ one has $d K(\alpha)+$ $K(d \alpha)=j_{1}^{*} \alpha-j_{0}^{*} \alpha$.

Remark 11.10. Note that the first d in the above formula denotes the exterior differential $\Omega^{k}(A) \rightarrow$ $\Omega^{k}(A)$, while the second one is the exterior differential $\Omega^{k}(A \times[0,1]) \rightarrow \Omega^{k}(A \times[0,1])$.

Proof. Let us write a point in $A \times[0,1]$ as $(x, t), x \in A, t \in[0,1]$. To construct $K(\alpha)$ for a given $\alpha \in \Omega^{k}\left(A \times[0,1]\right.$ we first contract α with the vector field $\frac{\partial}{\partial t}$ and then integrate the resultant form with respect to the t-coordinate. More precisely, note that any k-form α on $A \times[0,1]$ can be written as $\alpha=\beta(t)+d t \wedge \gamma(t), t \in[0,1]$, where for each $t \in[0,1]$

$$
\beta(t) \in \Omega^{k}(A), \gamma(t) \in \Omega^{k-1}(A)
$$

Then $\left.\frac{\partial}{\partial t}\right\lrcorner \alpha=\gamma(t)$ and we define $K(\alpha)=\int_{0}^{1} \gamma(t) d t$.
If we choose a local coordinate system $\left(u_{1}, \ldots, u_{m}\right)$ on A then $\gamma(t)$ can be written as $\gamma(t)=$ $\sum_{1 \leq i_{1}<\cdots<i_{\leq m}} h_{i_{1} \ldots i_{k}}(t) d u_{i_{1}} \wedge \cdots \wedge d u_{i_{k}}$, and hence

$$
K(\alpha)=\int_{0}^{1} \gamma(t) d t=\sum_{1 \leq i_{1}<\cdots<i_{\leq m}}\left(\int_{0}^{1} h_{i_{1} \ldots i_{k}}(t) d t\right) d u_{i_{1}} \wedge \cdots \wedge d u_{i_{k}}
$$

Clearly, K is a linear operator $\Omega^{k}(A \times I) \rightarrow \Omega^{k-1}(A)$.
Note that if $\alpha=\beta(t)+d t \wedge \gamma(t) \in \Omega^{k}(A \times[0,1])$ then

$$
j_{0}^{*} \alpha=\beta(0), \quad j_{1}^{*} \alpha=\beta(1)
$$

We further have

$$
\begin{aligned}
& K(\alpha)=\int_{0}^{1} \gamma(t) d t \\
& d \alpha=d_{A \times I} \alpha=d_{U} \beta(t)+d t \wedge \dot{\beta}(t)-d t \wedge d_{U} \gamma(t)=d_{A} \beta(t)+d t \wedge\left(\dot{\beta}(t)-d_{A} \gamma(t)\right)
\end{aligned}
$$

where we denoted $\dot{\beta}(t):=\frac{\partial \beta(t)}{\partial t}$ and $I=[0,1]$. Here the notation $d_{A \times I}$ stands for exterior differential on $\Omega(A \times I)$ and d_{A} denotes the exterior differential on $\Omega(A)$. In other words, when we write $d_{A} \beta(t)$ we view $\beta(t)$ as a form on A depending on t as a parameter. We do not write any subscript for d when there could not be any misunderstanding.

Hence,

$$
\begin{aligned}
& K(d \alpha)=\int_{0}^{1}\left(\dot{\beta}(t)-d_{A} \gamma(t)\right) d t=\beta(1)-\beta(0)-\int_{0}^{1} d_{A} \gamma(t) d t \\
& d(K(\alpha))=\int_{0}^{1} d_{A} \gamma(t) d t
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
d(K(\alpha))+K(d(\alpha)) & =\beta(1)-\beta(0)-\int_{0}^{1} d_{A} \gamma(t) d t+\int_{0}^{1} d_{A} \gamma(t) d t \\
& =\beta(1)-\beta(0)=j_{1}^{*}(\alpha)-j_{0}^{*}(\alpha)
\end{aligned}
$$

Theorem 11.11. (Poincaré's lemma) Let U be a contractible domain in V. Then any closed form in U is exact. More precisely, let $F: U \times[0,1] \rightarrow U$ be the contraction homotopy to a point $a \in U$, i.e. $F(x, 1)=x, F(x, 0)=a$ for all $x \in U$. Then if ω a closed k-form in U then

$$
\omega=d K\left(F^{*} \omega\right)
$$

where $K: \Omega^{k+1}(U \times[0,1]) \rightarrow \Omega^{k}(U)$ is an operator constructed in Lemma 11.9 .
Proof. Consider a contraction homotopy $F: U \times[0,1] \rightarrow U$. Then $F \circ j_{0}(x)=a \in U$ and $F \circ j_{1}(x)=x$ for all $x \in U$. Consider an operator $\left.K: \Omega U\right) \rightarrow \Omega(U)$ constructed above. Thus

$$
K \circ d+d \circ K=j_{1}^{*}-j_{0}^{*}
$$

Let ω be a closed k-form on U. Denote $\alpha:=F^{*} \omega$. Thus α is a k-form on $U \times[0,1]$. Note that $d \alpha=d F^{*} \omega=F^{*} d \omega=0, j_{1}^{*} \alpha=\left(F \circ j_{1}\right)^{*} \omega=\omega$ and $j_{0}^{*} \alpha=\left(F \circ j_{0}\right)^{*} \omega=0$. Then, using Lemma 11.9 we have

$$
\begin{equation*}
K(d \alpha)+d K(\alpha)=d K(\alpha)=j_{1}^{*} \alpha-j_{0}^{*} \alpha=\omega \tag{11.3.1}
\end{equation*}
$$

i.e. $\omega=d K\left(F^{*} \omega\right)$.

In particular, any closed form is locally exact.

Example 11.12. Let us work out explicitly the formula for a primitive of a closed 1 -form in a star-shaped domain $U \subset \mathbb{R}^{n}$. We can assume that U is star-shaped with respect to the origin. Let $\alpha=\sum_{1}^{n} f_{i} d x_{i}$ be a closed 1-form. Then according to Theorem 11.11 we have $\alpha=d F$, where $F=K\left(\Phi^{*} \alpha\right)$, where $\Phi: U \times[0,1] \rightarrow U$ is a contraction homotopy, i.e. $\Phi(x, 1)=x, \Phi(x, 1)=0$ for $x \in U . \Phi$ can be defined by the formula $\Phi(x, t)=t x, x \in U, t \in[0,1]$. Then

$$
\Phi^{*} \alpha=\sum_{1}^{n} f_{i}(t x) d\left(t x_{i}\right)=\sum_{1}^{n} t f_{i}(t x) d x_{i}+\sum_{1}^{n} x_{i} f_{i}(t x) d t
$$

Hence,

$$
\left.K(\alpha)=\int_{0}^{1} \frac{\partial}{\partial t}\right\lrcorner \Phi^{*} \alpha=\int_{0}^{1}\left(\sum_{1}^{n} x_{i} f_{i}(t x)\right) d t .
$$

Note that this expression coincides with the expression in formula 9.4.1) in Section 9.4
Exercise 11.13. Work out an explicit expression for a primitive of a closed 2-form $\alpha=P d y \wedge d z+$ $Q d z \wedge d x+R d x \wedge d y$ on a star-shaped domain $U \subset \mathbb{R}^{3}$.

Example 11.14. 1. $\mathbb{R}_{+}^{n}=\left\{x_{1} \geq 0\right\} \subset \mathbb{R}^{n}$ is not diffeomorphic to \mathbb{R}^{n}. Indeed, suppose there exists such a diffeomorphism $f: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}^{n}$. Denote $a:=f(0)$. Without loss of generality we can assume that $a=0$. Then $\tilde{f}=\left.f\right|_{\mathbb{R}_{+}^{n} \backslash 0}$ is a diffeomorphism $\mathbb{R}_{+}^{n} \backslash 0 \rightarrow \mathbb{R}^{n} \backslash 0$. But $\mathbb{R}_{+}^{n} \backslash 0$ is star-shaped with respect to any point with positive coordinate x_{1}, and hence it is contractible. In particular any closed form on $\mathbb{R}_{+}^{n} \backslash 0$ is exact. On the other hand, we exhibited above in 11.2 a closed $(n-1)$-form on $\mathbb{R}^{n} \backslash 0$ which is not exact.
2. Borsuk's theorem: There is no continuous map $D^{n} \rightarrow \partial D^{n}$ which is the identity on ∂D^{n}. We denote here by D^{n} the unit disc in \mathbb{R}^{n} and by ∂D^{n} its boundary ($n-1$)-sphere.
Proof. Suppose that there is such a map $f: D^{n} \rightarrow \partial D^{n}$. One can assume that f is smooth. Indeed, according to Theorem 11.3 one can approximate f by a smooth map, keeping it fixed on the boundary where it is the identity map, and hence smooth. Take the closed non-exact form θ_{n} from Example 11.2 on ∂D^{n}. Then $\Theta_{n}=f^{*} \theta_{n}$ is a closed $(n-1)$-form on D^{n} which coincides with
θ_{n} on $\partial D^{n} . D^{n}$ is star-shaped, and therefore Θ_{n} is exact, $\Theta_{n}=d \omega$. But then $\theta_{n}=d\left(\left.\omega\right|_{\partial D^{n}}\right)$ which is a contradiction.
3. Brouwer's fixed point theorem: Any continuous map $f: D^{n} \rightarrow D^{n}$ has at least 1 fixed point. Proof. Suppose $f: D^{n} \rightarrow D^{n}$ has no fixed points. Let us define a map $F: D^{n} \rightarrow \partial D^{n}$ as follows. For each $x \in D^{n}$ take a ray r_{x} from the point $f(x)$ which goes through x till it intersects ∂D^{n} at a point which we will denote $F(x)$. The map is well defined because for any x the points x and $f(x)$ are distinct. Note also that if $x \in \partial D^{n}$ then the ray r_{x} intersects ∂D^{n} at the point x, and hence $F(x)=x$ in this case. But existence of such F is ruled out by Borsuk' theorem.

k-connected manifolds

A subset $A \subset V$ is called k-connected, $k=0,1, \ldots$, if for any $m \leq k$ any two continuous maps of discs $f_{0}, f_{1}: D^{m} \rightarrow A$ which coincide along ∂D^{m} are homotopic relative to ∂D^{m}. Thus, 0 connectedness is equivalent to path-connectedness. 1-connected submanifolds are also called simply connected.

Exercise 11.15. Prove that k-connectedness can be equivalently defined as follows: A is k-connected if any map $f: S^{m} \rightarrow A, m \leq k$ is homotopic to a constant map.

Example 11.16. 1. If A is contractible then it is k-connected for any k. For some classes of subsets, e.g. submanifolds, the converse is also true (J.H.C Whitehead's theorem) but this is a quite deep and non-trivial fact.
2. The n-sphere S^{n} is ($n-1$)-connected but not n-connected. Indeed, to prove that S^{n-1} simply connected we will use the second definition. Consider a map $f: S^{k} \rightarrow S^{n}$. We first notice that according to Theorem 11.3 we can assume that the map f is smooth. Hence, according to Corollary $9.21 \operatorname{Vol}_{n} f\left(S^{k}\right)=0$ provided that $k<n$. In particular, there exists a point $p \in S^{n} \backslash f\left(S^{k}\right)$. But the complement of a point p in S^{n} is diffeomorphic to S^{n} vis the stereographic projection from the point p. But R^{n} is contractible, and hence f is homotopic to a constant map. On the other hand, the identity map Id : $S^{n} \rightarrow S^{n}$ is not homotopic to a constant map. Indeed, we know that there exists a closed n-form on S^{n}, say the form θ_{n}
from Example 11.2 , such that $\int_{S^{n}} \theta_{n} \neq 0$. Hence, $\int_{S^{n}} \operatorname{Id}^{*} \theta_{n} \neq 0$. On the other hand if Id were homotopic to a constant map this integral would vanish.

Exercise 11.17. Prove that $\mathbb{R}^{n+1} \backslash 0$ is $(n-1)$ - connected but not n-connected.

Proposition 11.18. Let $U \subset V$ be a m-connected domain. Then for any $k \leq m$ any closed differential k-form α in U is exact.

Proof. We will prove here only the case $m=1$. Though the general case is not difficult, it requires developing certain additional tools. Let α be a closed differential 1-form. Choose a reference point $b \in U$. By assumption, U is path-connected. Hence, any other point x can be connected to b by a path $\gamma_{x}:[0,1] \rightarrow U$, i.e. $\gamma_{x}(0)=b, \gamma_{x}(1)=x$. Let us define the function $F: U \rightarrow \mathbb{R}$ by the formula $F(x)=\int \alpha$. Note that due to the simply-connectedness of the domain U, any $\delta:[0,1] \rightarrow U$ connecting b and x is homotopic to γ_{x} relative its ends, and hence according to Lemma 11.8 we have $\int_{\gamma_{x}} \alpha=\int_{\delta} \alpha$. Thus the above definition of the function F is independent of the choice of paths γ_{x}. We claim that the function F is differentiable and $d F=\alpha$. Note that if the primitive of α exists than it has to be equal to F up to an additive constant. But we know that in a sufficiently small ball $B_{\epsilon}(a)$ centered at any point $a \in U$ there exists a primitive G of α. Hence, $G(x)=F(x)+$ const, and the the differentiability of G implies differentiablity of F and we have $d F=d G=\alpha$.

11.4 Winding and linking numbers

Given a loop $\gamma: S^{1} \rightarrow \mathbb{R}^{2} \backslash 0$ we define its winding number around 0 as the integral

$$
w(\gamma)=\frac{1}{2 \pi} \int_{S}^{1} \theta_{2}=\frac{1}{2 \pi} \int_{S^{1}} \frac{x d y-y d x}{x^{2}+y^{2}},
$$

where we orient S^{1} as the boundary of the unit disc in \mathbb{R}^{2}. For instance, if $j: S^{1} \hookrightarrow \mathbb{R}^{2}$ is the inclusion map then $w(j)=1$. For the loop γ_{n} parameterized by the map $t \mapsto(\cos n t, \sin n t), t \in$ $[0,2 \pi]$ we have $w\left(\gamma_{n}\right)=n$.

Proposition 11.19. 1. For any loop γ the number $w(\gamma)$ is an integer.
2. If loops $\gamma_{0}, \gamma_{1}: S^{1} \rightarrow \mathbb{R}^{2} \backslash 0$ are homotopic in $\mathbb{R}^{2} \backslash 0$ then $w\left(\gamma_{0}\right)=w\left(\gamma_{1}\right)$.

Figure 11.1: $w(\Gamma)=2$.
3. $w(\gamma)=n$ then the loop γ is homotopic (as a loop in $\mathbb{R}^{2} \backslash 0$) to the loop $\zeta_{n}:[0,1] \rightarrow \mathbb{R}^{2} \backslash 0$ given by the formula $\zeta_{n}(t)=(\cos 2 \pi n t, \sin 2 \pi n t)$.

Proof. 1. Let us define the loop γ parametrically in polar coordinates:

$$
r=r(s), \phi=\phi(s), s \in[0,1]
$$

where $r(0)=r(1)$ and $\phi(1)=\phi(0)+2 n \pi$. The form θ_{2} in polar coordinates is equal to $d \phi$, and hence

$$
\int_{\gamma} \alpha=\frac{1}{2 \pi} \int_{0}^{1} \phi^{\prime}(s) d s=\frac{\phi(1)-\phi(0)}{2 \pi}=n .
$$

2. This is an immediate corollary of Proposition 11.8.
3. Let us write both loops γ and ζ_{n} in polar coordinates. Respectively, we have $r=r(t), \phi=\phi(s)$ for γ and $r=1, \phi=2 \pi n s$ for $\zeta_{n}, s \in[0,1]$. The condition $w(\gamma)=n$ implies, in view of part 1 , that $\phi(1)=\phi(0)+2 n \pi$. Then the required homotopy $\gamma_{t}, t \in[0,1]$, connecting the loops $\gamma_{0}=\gamma$ and $\gamma_{1}=\zeta_{n}$ can be defined by the parametric equations $r=(1-t) r(s)+t, \phi=\phi_{t}(s)=(1-t) \phi(s)+2 n \pi s t$. Note that for all $t \in[0,1]$ we have $\phi_{t}(1)=\phi_{t}(0)+2 n \pi$. Therefore, γ_{t} is a loop for all $t \in[0,1]$.

Figure 11.2: $l\left(\gamma_{1}, \gamma_{2}\right)=1$.

Given two disjoint loops $\gamma, \delta: S^{1} \rightarrow \mathbb{R}^{3}$ (i.e. $\gamma(s) \neq \delta(t)$ for any $s, t \in S^{1}$) consider a map $F_{\gamma, \delta}: T^{2} \rightarrow \mathbb{R}^{3} \backslash 0$, where $T^{2}=S^{1} \times S^{1}$ is the 2-torus, defined by the formula

$$
F_{\gamma, \delta}(s, t)=\gamma(s)-\delta(t) .
$$

Then the number

$$
l(\gamma, \delta):=\frac{1}{4 \pi} \int_{T}^{2} F_{\gamma, \delta}^{*} \theta_{3}=\frac{1}{4 \pi} \int_{T}^{2} F_{\gamma, \delta}^{*}\left(\frac{x d y \wedge d z+y d z \wedge d x+z d x \wedge d y}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}\right)
$$

is called the linking number of loops γ, δ ?

Exercise 11.20. Prove that

1. The number $l(\gamma, \delta)$ remains unchanged if one continuously deforms the loops γ, δ keeping them disjoint;
2. The number $l(\gamma, \delta)$ is an integer for any disjoint loops γ, δ;

[^12]3. $l(\gamma, \delta)=l(\delta, \gamma)$;
4. Let $\gamma(s)=(\cos s, \sin s, 0), s \in[0,2 \pi]$ and $\delta(t)=\left(-1+\frac{1}{2} \cos t, 0, \frac{1}{2} \sin t\right), t \in[0,2 \pi]$. Then $l(\gamma, \delta)=1$.

11.5 Properties of k-forms on k-dimensional manifolds

A k-form α on k-dimensional submanifold is always closed. Indeed, $d \alpha$ is a $(k+1)$-form and hence it is identically 0 on a k-dimensional manifold.

Remark 11.21. Given a k-dimensional submanifold $A \subset V$, and a k-form α on V, the differential $d_{x} \alpha$ does not need to vanish at a point $x \in A$. However, $\left.d \alpha_{x}\right|_{T_{x}(A)}$ does vanish.

The following theorem is the main result of this section.

Theorem 11.22. Let $A \subset V$ be an orientable compact connected k-dimensional submanifold, possibly with boundary, and α a differential k-form on A.

1. Suppose that $\partial A \neq \varnothing$. Then α is exact, i.e. there exists $a(k-1)$-form β on A such that $d \beta=\alpha$.
2. Suppose that A is closed, i.e. $\partial A=\varnothing$. Then α is exact if and only if $\int_{A} \alpha=0$.

To prove Theorem 11.22 we will need a few lemmas.

Lemma 11.23. Let I^{k} be the k-dimensional cube $\left\{-1 \leq x_{j} \leq 1, j=1, \ldots, k\right\}$.

1. Let α be a differential k-form on I^{k} such that

$$
\operatorname{Supp}(\alpha) \cap\left(0 \times I^{k-1} \cup[0,1] \times \partial I^{k-1}\right)=\varnothing
$$

Then there exists a $(k-1)$-form β such that $d \beta=\alpha$ and such that $\operatorname{Supp}(\beta) \cap\left(-1 \times I^{k-1} \cup[-1,1] \times \partial I^{k-1}\right)=$ \varnothing.
2. Let α be a differential k-form on I^{k} such that $\operatorname{Supp}(\alpha) \subset \operatorname{Int} I^{k}$ and $\int_{I^{k}}=0$. Then there exists $a(k-1)$-form β such that $d \beta=\alpha$ and $\operatorname{Supp}(\beta) \subset \operatorname{Int} I^{k}$.

Proof. We have

$$
\alpha=f\left(x_{1}, \ldots, x_{k}\right) d x_{1} \wedge \cdots \wedge d x_{k},
$$

In the first case of the lemma the function f vanishes on $0 \times I^{k-1} \cup[-1,1] \times \partial I^{k-1}$. We will look for β in the form

$$
\beta=g\left(x_{1}, \ldots, x_{k}\right) d x_{2} \wedge \cdots \wedge d x_{k}
$$

Then

$$
d \beta=\frac{\partial g}{\partial x_{1}}\left(x_{1}, \ldots, x_{k}\right) d x_{1} \wedge d x_{2} \wedge \cdots \wedge d x_{k}
$$

and hence the equation $d \beta=\alpha$ is equivalent to

$$
\frac{\partial g}{\partial x_{1}}\left(x_{1}, \ldots, x_{k}\right)=f\left(x_{1}, \ldots, x_{k}\right)
$$

Hence, if we define

$$
g\left(x_{1}, \ldots, x_{k}\right):=\int_{-1}^{x_{1}} f\left(u, x_{2}, \ldots, x_{k}\right) d u
$$

then the form $\beta=g\left(x_{1}, \ldots, x_{k}\right) d x_{2} \wedge \cdots \wedge d x_{k}$ has the required properties.
The second part of the lemma we will prove here only for the case $k=2$. The general case can be handled similarly by induction over k. We have in this case $\operatorname{Supp}(f) \subset \operatorname{Int} I^{2}$ and $\int_{I^{2}} f d S=0$. Let us denote $h\left(x_{2}\right):=\int_{-1}^{1} f\left(x_{1}, x_{2}\right) d x_{1}$. Note that $h(u)=0$ if u is sufficiently close to -1 or 1 . According to Fubini's theorem, $\int_{-1}^{1} h\left(x_{2}\right) d x_{2}=0$. We can assume that $f\left(x_{1}, x_{2}\right)=0$ for $x_{1} \geq 1-\epsilon$, and hence $\int_{-1}^{u} f\left(x_{1}, \ldots, x_{k-1}, t\right) d t=h\left(x_{1}, \ldots, x_{k-1}\right)$ for $u \in[1-\epsilon, 1]$. Consider any non-negative C^{∞}-function $\theta:[1-\epsilon, 1] \rightarrow \mathbb{R}$ such that $\theta(u)=1$ for $u \in\left[1-\epsilon, 1-\frac{2 \epsilon}{3}\right]$ and $\theta(u)=0$ for $u \in\left[1-\frac{\epsilon}{3}, 1\right]$. Define a function $g_{1}: I^{2} \rightarrow \mathbb{R}$ by the formula

$$
g_{1}\left(x_{1} x_{2}\right)= \begin{cases}\int_{-1}^{x_{1}} f\left(u, x_{2}\right) d u, & x_{1} \in[-1,1-\epsilon], \\ h\left(x_{2}\right) \theta\left(x_{1}\right), & x_{1} \in(1-\epsilon, 1] .\end{cases}
$$

Denote $\beta_{1}=g_{1}\left(x_{1}, x_{2}\right) d x_{2}$. Then $d \beta=\alpha$ on $[-1,1-\epsilon] \times[0,1]$ and $d \beta_{1}=h\left(x_{2}\right) \theta^{\prime}\left(x_{1}\right) d x_{1} \wedge d x_{2}$ on $[1-\epsilon, 1] \times[0,1]$. Note that $\operatorname{Supp}\left(\beta_{1}\right) \subset \operatorname{Int} I^{2}$.

Let us define

$$
g_{2}\left(x_{1}, x_{2}\right):= \begin{cases}0, & x_{1} \in[-1,1-\epsilon] \\ \theta^{\prime}\left(x_{1}\right) \int_{-1}^{x_{2}} h(u) d u, & x_{1} \in(1-\epsilon, 1]\end{cases}
$$

and denote $\beta_{2}=g_{2}\left(x_{1}, x_{2}\right) d x_{1}$. Then $d \beta_{2}=0$ on $[-1,1-\epsilon] \times[-1,1]$ and

$$
d \beta_{2}=-h\left(x_{2}\right) \theta^{\prime}\left(x_{1}\right) d x_{1} \wedge d x_{2}
$$

on $[1-\epsilon, 1] \times[-1,1]$. Note that $g_{2}\left(x_{1}, 1\right)=-\theta^{\prime}\left(x_{1}\right) \int_{-1}^{1} h(u) d u=0$. Taking into account that $h(u)=0$ when u is sufficiently close to -1 or 1 we conclude that $h\left(x_{1}, x_{2}\right)=0$ near ∂I^{2}, i.e. $\operatorname{Supp}\left(\beta_{2}\right) \subset \operatorname{Int} I^{2}$. Finally, if we define $\beta=\beta_{1}+\beta_{2}$ then we have $d \beta=\alpha$ and $\operatorname{Supp}(\beta) \subset \operatorname{Int} I^{2}$.

The following lemma is a special case of the, so-called, tubular neighborhood theorem.
Lemma 11.24. Let $A \subset V$ be a compact k-dimensional submanifold with boundary. Let ϕ : $[-1,1] \rightarrow A$ be an embedding such that $\phi(1) \in \partial A, \phi^{\prime}(1) \perp T_{\phi(1)}(\partial A)$ and $\phi([0,1)) \subset \operatorname{Int} A$. Then the embedding ϕ can be extended to an embedding $\Phi:[-1,1] \times I^{k-1} \rightarrow A$ such that

- $\Phi(t, 0)=\phi(t)$, for $t \in[-1,1], 0 \in I^{k-1}$;
- $\Phi\left(1 \times I^{k-1}\right) \subset \partial A, \Phi\left([-1,1) \times I^{k-1}\right) \subset \operatorname{Int} A ;$
- $\frac{\partial \Phi}{\partial t}(1, x) \notin T(\partial A)$ for all $x \in I^{k-1}$.

There are many ways to prove this lemma. We will explain below one of the arguments.
Proof. Step 1. We first construct $k-1$ ortonormal vector fields ν_{1}, \ldots, ν_{k} along $\Gamma=\phi([-1,1])$ which are tangent to A and normal to Γ. To do that let us denote by N_{u} the normal ($k-1$)dimensional space N_{u} to $T_{u} \Gamma$ in $T_{u} A$. Let us observe that in view of compactness of Γ there is an $\epsilon>0$ with the following property: for any two points $u=\phi(t), u^{\prime}=\phi\left(t^{\prime}\right) \in \Gamma, t, t^{\prime} \in[-1,1]$, such that $\left|t-t^{\prime}\right| \leq \epsilon$ the orthogonal projection $N_{u} \rightarrow N_{u^{\prime}}$ is non-degenerate (i.e. is an isomorphism). Choose $N<\frac{1}{2 \epsilon}$ and consider points $u_{j}=\phi\left(t_{j}\right)$, where $t_{j}=-1+\frac{2 j}{N}, j=1, \ldots N$. Choose any orthonormal basis $\nu_{1}(0), \ldots, \nu_{k}(0) \in N_{u_{0}}$, parallel transport these vectors to all points of the arc $\Gamma_{1}=\phi\left(\left[-1, t_{1}\right]\right)$, project them orthogonally to the normal spaces N_{u} in these points, and then orthonormalize the resulted bases via the Gram-Schmidt process. Thus we constructed orthonormal vector fields $\nu_{1}(t), \ldots \nu_{k}(t) \in N_{\phi(t)}, t \in\left[-1, t_{1}\right]$. Now we repeat this procedure beginning with the
basis $\nu_{1}\left(t_{1}\right), \ldots \nu_{k}\left(t_{1}\right) \in N_{\phi\left(t_{1}\right)}=N_{u_{1}}$ and extend the vector fields ν_{1}, \ldots, ν_{k} to $\Gamma_{2}=\phi\left(\left[t_{1}, t_{2}\right]\right)$. Continuing this process we will construct the orhonormal vector fields ν_{1}, \ldots, ν_{k} along the whole curve Γ, ${ }^{2}$

Step 2. Consider a map $\Psi:[-1,1] \times I^{k-1} \rightarrow V$ given by the formula

$$
\Psi\left(t, x_{1}, \ldots, x_{k-1}\right)=\phi(t)+\sigma \sum_{1}^{k-1} x_{j} \nu_{j}(t), t, x_{1}, \ldots, x_{k-1} \in[-1,1]
$$

where a small positive number σ will be chosen later. The map Ψ is an embedding if σ is chosen small enough $]^{3}$ Unfortunately the image $\Psi\left([-1,1] \times I^{k-1}\right)$ is not contained in A. We will correct this in the next step.

Step 3. Take any point $a \in A$ and denote by π_{a} the orthogonal projection $V \rightarrow T_{a} A$. Let us make the following additional assumption (in the next step we will show how to get rid of it): there exists a neighborhood $U \ni a=\phi(1)$ in ∂A such that $\pi_{a}(U) \subset N_{a} \subset T_{a} A$. Given $\epsilon>0$ let us denote by $B_{\epsilon}(a)$ the $(k-1)$-dimensional ball of radius ϵ in the space $N_{\alpha} \subset T_{a} A$. In view of compactness of A one can choose an $\epsilon>0$ such that for all points $a \in \Gamma$ there exists an embedding $e_{a}: B_{\epsilon}(a) \rightarrow A$ such that $\pi_{a} \circ e_{a}=\mathrm{Id}$. Then for a sufficiently small $\sigma<\frac{\epsilon}{\sqrt{k-1}}$ the map $\widetilde{\Psi}:[-1,1] \times I^{k-1} \rightarrow A$ defined by the formula

$$
\widetilde{\Psi}(t, x)=e_{\phi(t)} \circ \Psi(t, x), t \in[-1,1], x \in I^{k-1}
$$

is an embedding with the required properties.
Step 4 It remains to show how to satisfy the additional condition at the boundary point $\phi(1) \in$ $\Gamma \cap \partial A$ which were imposed above in Step 3 . Take the point $a=\phi(1) \in \Gamma \cap \partial A$. Without loss of generality we can assume that $a=0 \in V$. Choose an orthonormal basis v_{1}, \ldots, v_{n} of V such that $v_{1}, \ldots, v_{k} \in N_{a}$ and v_{k} is tangent to Γ and pointing inward Γ. Let $\left(y_{1}, \ldots, y_{n}\right)$ be the corresponding cartesian coordinates in V. Then there exists a neighborhood $U \ni a$ in A which is graphical in these coordinates and can be given by

$$
y_{j}=\theta_{j}\left(y_{1}, \ldots, y_{k}\right), j=k+1, \ldots, n, \epsilon \geq y_{k} \geq \theta_{k}\left(y_{1}, \ldots, y_{k-1}\right),\left|y_{i}\right| \leq \epsilon, i=1, \ldots, k-1,
$$

[^13]where all the first partial derivatives of the functions $\theta_{k}, \ldots, \theta_{n}$ vanish at the origin. Take a C^{∞} cut-off function $\sigma:[0, \infty)] \rightarrow \mathbb{R}$ which is equal to 1 on $\left[0, \frac{1}{2}\right]$ and which is supported in $[0,1]$ (see Lemma 9.2). Consider a map F given by the formula
$$
F\left(y_{1}, \ldots, y_{n}\right)=\left(y_{1}, \ldots, y_{k-1}, y_{k}-\theta_{k}\left(y_{1}, \ldots, y_{k-1}\right) \sigma\left(\frac{\|y\|}{\epsilon}\right), y_{k+1}, \ldots, y_{n}\right)
$$

For a sufficiently small $\epsilon>0$ this is a diffeomorphism supported in an ϵ-ball in V centered in the origin. On the other hand, the manifold $\widetilde{A}=F(A)$ satisfies the extra condition of Step 3.

Lemma 11.25. Let $A \subset V$ be a (path)-connected submanifold with a non-empty boundary. Then for any point $a \in A$ there exists an embedding $\phi_{a}:[-1,1] \rightarrow A$ such that $\phi_{a}(0)=a, \phi_{a}(1) \in \partial A$ and $\phi_{a}^{\prime}(1) \perp T_{\phi_{a}(1)}(\partial A)$.

Sketch of the proof. Because A is path-connected with non-empty boundary, any interior point can be connected by a path with a boundary point. However, this path need not be an embedding. First, we perturb this path to make it an immersion $\psi:[-1,1] \rightarrow A$, i.e. a map with non-vanising derivative. This can be done as follows. As in the proof of the previous lemma we consider a sufficiently small partition of the path, so that two neighboring subdivision points lie in a coordinate neighborhood. Then we can connect these points by a straight segment in these coordinate neighborhoods. Finally we can smooth the corners via the standard smoothing procedure. Unfortunately the constructed immersed path ψ may have self-intersection points. First, one can arrange that there are only finitely many intersections, and then "cut-out the loops", i.e. if $\psi\left(t_{1}\right)=\psi\left(t_{2}\right)$ for $t_{1}<t_{2}$ we can consider a new piece-wise smooth path which consists of $\left.\psi\right|_{\left[-1, t_{1}\right]}$ and $\left.\psi\right|_{\left[t_{2}, 1\right]}$ The new path has less self-intersection points, and thus continuing by induction we will end with a piece-wise smooth embedding. It remains to smooth again the corners.

Proof of Theorem 11.22. 1. For every point $a \in A$ choose an embedding $\phi_{a}:[-1,1] \rightarrow A$, as in Lemma 11.25 , and using Lemma 11.24 extend ϕ_{a} to an embedding $\Phi_{a}:[-1,1] \times I^{k-1} \rightarrow A$ such that

$$
\begin{aligned}
& -\Phi_{a}(t, 0)=\phi(t), \text { for } t \in[-1,1], 0 \in I^{k-1} ; \\
& -\Phi_{a}\left(1 \times I^{k-1}\right) \subset \partial A, \Phi_{a}\left([-1,1) \times I^{k-1}\right) \subset \operatorname{Int} A ; \\
& -\frac{\partial \Phi_{a}}{\partial t}(1, x) \notin T(\partial A) \text { for all } x \in I^{k-1} .
\end{aligned}
$$

Due to compactness of A we can choose finitely many such embeddings $\Phi_{j}=\Phi_{a_{j}}, j=1, \ldots, N$, such that $\bigcup_{1}^{N} \Phi_{j}\left((-1,1] \times \operatorname{Int}\left(I^{k-1}\right)=A\right.$. Choose a partition of unity subordinated to this covering and split the k-form α as a sum $\alpha=\sum_{1}^{K} \alpha_{j}$, where each α_{i} is supported in $\Phi_{j}\left((-1,1] \times \operatorname{Int}\left(I^{k-1}\right)\right)$ for some $j=1, \ldots, N$. To simplify the notation we will assume that $N=K$ and each α_{j} is supported in $\Phi_{j}\left((-1,1] \times \operatorname{Int}\left(I^{k-1}\right)\right), j=1, \ldots, N$. Consider the pull-back form $\widetilde{\alpha}_{j}=\Phi_{j}^{*} \alpha_{j}$ on $I^{k}=[-1,1] \times I^{k-1}$. According to Lemma 11.23 . 1 there exists a $(k-1)$-form $\widetilde{\beta}_{j}$ such that $\operatorname{Supp}\left(\widetilde{\beta}_{j}\right) \subset$ $(-1,1] \times \operatorname{Int}\left(I^{k-1}\right)$ and $d \widetilde{\beta}_{j}=\widetilde{\alpha}_{j}$. Let us transport the form $\widetilde{\beta}_{j}$ back to A. Namely, set β_{j} equal to $\left(\Phi_{j}^{-1}\right)^{*} \widetilde{\beta}_{j}$ on $\Phi_{j}\left((-1,1] \times \operatorname{Int}\left(I^{k-1}\right)\right) \subset A$ and extend it as 0 elsewhere on A. Then $d \beta_{j}=\alpha_{j}$, and hence $d\left(\sum_{1}^{N} \beta_{j}\right)=\sum_{1}^{N} \alpha_{j}=\alpha$.
2. Choose a point $a \in A$ and parameterize a coordinate neighborhood $U \subset A$ by an embedding $\Phi: I^{k} \rightarrow A$ such that $\Phi(0)=a$. Take a small closed ball $D_{\epsilon}(0) \subset I^{k} \subset \mathbb{R}^{k}$ and denote $\widetilde{D}=\Phi\left(D_{\epsilon}(0)\right)$. Then $\widetilde{A}=A \backslash \operatorname{Int} \widetilde{D}$ is a submanifold with non-empty boundary, and $\partial \widetilde{A}=\partial \widetilde{D}$. Let us use part 1 of the theorem to construct a form $\widetilde{\beta}$ on \widetilde{A} such that $d \widetilde{\beta}=\left.\alpha\right|_{\widetilde{A}}$. Let us extent the form $\widetilde{\beta}$ in any way to a form, still denoted by $\widetilde{\beta}$ on the whole submanifold A. Then $d \widetilde{\beta}=\alpha+\eta$ where $\operatorname{Supp}(\eta) \subset \widetilde{D} \subset \operatorname{Int} \Phi\left(I^{k}\right)$. Note that

$$
\int_{\Phi\left(I^{k}\right)} \eta=\int_{A} \eta=\int_{A} \alpha-\int_{A} d \widetilde{\beta}=0
$$

because $\int_{A} \alpha=0$ by our assumption, and $\int_{A} d \widetilde{\beta}=0$ by Stokes' theorem. Thus, $\int_{I}^{k} \Phi^{*} \eta=0$, and hence, we can apply Lemma 11.23 .2 to the form $\Phi^{*} \eta$ on I^{k} and construct a $(k-1)$-form λ on I^{k-1} such that $d \lambda=\Phi^{*} \eta$ and $\operatorname{Supp}(\lambda) \subset \operatorname{Int} I^{k}$. Now we push-forward the form λ to A, i.e. take the form $\tilde{\lambda}$ on A which is equal to $\left(\Phi^{-1}\right)^{*} \lambda$ on $\Phi\left(I_{k}\right)$ and equal to 0 elsewhere. Finally, we have $d(\widetilde{\beta}+\widetilde{\lambda})=d \widetilde{\beta}+\eta=\alpha$, and hence $\beta=\widetilde{\beta}+\widetilde{\lambda}$ is the required primitive of α on A.

Corollary 11.26. Let A be an oriented compact connected k-dimensional submanifold with nonempty boundary and α a differential k-form on A from Theorem 11.22. Then for any smooth map $f: A \rightarrow A$ such that $\left.f\right|_{\partial A}=\operatorname{Id}$ we have

$$
\int_{A} f^{*} \alpha=\int_{A} \alpha
$$

Proof. According to Theorem 11.22. 1 there exists a form β such that $\alpha=d \beta$. Then

$$
\int_{A} f^{*} \alpha=\int_{A} f^{*} d \beta=\int_{A} d f^{*} \beta=\int_{\partial A} f^{*} \beta=\int_{\partial A} \beta=\int_{A} \alpha .
$$

Degree of a map

Consider two closed connected oriented submanifolds $A \subset V, B \subset W$ of the same dimension k. Let ω be an n-form on B such that $\int_{B} \omega=1$. Given a smooth map $f: A \rightarrow B$ the integer $\operatorname{deg}(f):=\int_{A} f^{*} \omega$ is called the degree of the map f.

Proposition 11.27. 1. Given any two k-forms on B such $\int_{B} \omega=\int_{B} \widetilde{\omega}$ we have $\int_{A} f^{*} \omega=\int_{A} f^{*} \widetilde{\omega}$, for any smooth map $f: A \rightarrow B$, and thus $\operatorname{deg}(f)$ is independent of the choice of the form ω on B with the property $\int_{A} \omega=1$.
2. If the maps $f, g: A \rightarrow B$ are homotopic then $\operatorname{deg}(f)=\operatorname{deg}(g)$.
3. Let $b \in B$ be a regular value of the map f. Let $f^{-1}(b)=\left\{a_{1}, \ldots, a_{d}\right\}$. Then

$$
\operatorname{deg}(f)=\sum_{1}^{d} \operatorname{sign}\left(\operatorname{det} D f\left(a_{j}\right)\right) .
$$

In particular, $\operatorname{deg}(f)$ is an integer number.
Proof. The second part follows from Lemma 11.8. To prove the first part, let us write $\widetilde{\omega}=\omega+\eta$, where $\int_{B} \eta=0$. Using Theorem 11.22 , we conclude that $\eta=d \beta$ for some $(k-1)$-form β on B. Then

$$
\int_{A} f^{*} \widetilde{\omega}=\int_{A} f^{*} \omega+\int_{A} f^{*} \eta=\int_{A} f^{*} \omega+\int_{A} d f^{*} \beta=\int_{A} f^{*} \omega .
$$

Let us prove the last statement of the theorem. By the inverse function theorem there exists a neighborhood $U \ni b$ in B and neighborhoods $U_{1} \ni a_{1}, \ldots, U_{d} \ni a_{d}$ in A such that the restrictions of the map f to the neighborhoods U_{1}, \ldots, U_{d} are diffeomorphisms $\left.f\right|_{U_{j}}: U_{j} \rightarrow U, j=1, \ldots, d$. Let us consider a form ω on B such that $\operatorname{Supp} \omega \subset U$ and $\int_{B} \omega=\int_{U} \omega=1$. Then

$$
\operatorname{deg}(f)=\int_{A} f^{*} \omega=\sum_{1}^{d} \int_{U_{j}} f^{*} \omega=\sum_{1}^{d} \operatorname{sign}\left(\operatorname{det} D f\left(a_{j}\right)\right),
$$

because according to Theorem ?? we have

$$
\int_{U_{j}} f^{*} \omega=\operatorname{sign}\left(\operatorname{det} D f\left(a_{j}\right)\right) \int_{U} \omega=\operatorname{sign}\left(\operatorname{det} D f\left(a_{j}\right)\right) .
$$

for each $j=1, \ldots, d$.
Remark 11.28. Any continuous map $f: A \rightarrow B$ can be approximated by a homotopic to f smooth map $A \rightarrow B$, and any two such smooth approximations of f are homotopic. Hence this allows us to define the degree of any continuous map $f: A \rightarrow B$.

Exercise 11.29. 1. Let us view \mathbb{R}^{2} as \mathbb{C}. In particular, we view the unit sphere $S^{1}=S_{1}^{1}(0)$ as the set of complex numbers of modulus 1 :

$$
S^{1}=\{z \in \mathbb{C} ;|z|=1\} .
$$

Consider a map $h_{n}: S^{1} \rightarrow S^{1}$ given by the formula $h_{n}(z)=z^{n}, z \in S^{1}$. Then $\operatorname{deg}\left(h_{n}\right)=n$.
2. Let $f: S^{n-1} \rightarrow S^{n-1}$ be a map of degree d. Let $p_{ \pm}$be the north and south poles of S^{n+1}, i.e. $p_{ \pm}=(0, \ldots, 0, \pm 1)$. Given any point $x=\left(x_{1}, \ldots, x_{n+1}\right) \in S^{n} \backslash\left\{p_{+}, p_{-}\right\}$we denote by $\pi(x)$ the point

$$
\frac{1}{\sqrt{\sum_{1}^{n} x_{j}^{2}}}\left(x_{1}, \ldots, x_{n}\right) \in S^{n-1}
$$

and define a map $\Sigma f: S^{n} \rightarrow S^{n}$ by the formula

$$
\Sigma f(x)= \begin{cases}p_{ \pm}, & \text {if } x=p_{ \pm} \\ \left(\sqrt{\sum_{1}^{n} x_{j}^{2}} f(\pi(x)), x_{n+1}\right), & \text { if } x \neq p_{ \pm}\end{cases}
$$

Prove that $\operatorname{deg}(\Sigma(f))=d \|^{4}$
3. Prove that two maps $f, g: S^{n} \rightarrow S^{n}$ are homotopic if and only if they have the same degree. In particular, any map of degree n is homotopic to the map h_{n}. (Hint: For $n=1$ this follows from Proposition 11.19. For $n>1$ first prove that any map is homotopic to a suspension.)
4. Give an example of two non-homotopic orientation preserving diffeomorphisms $T^{2} \rightarrow T^{2}$. Note that the degree of both these maps is 1 . Hence, for manifolds, other than spheres, having the same degree is not sufficient for their homotopy.

[^14]5. Let $\gamma, \delta: S^{1} \rightarrow \mathbb{R}^{3}$ be two disjoint loops in \mathbb{R}^{3}. Consider a map $\widetilde{F}_{\gamma, \delta}: T^{2} \rightarrow S^{2}$ defined by the formula
$$
\widetilde{F}_{\gamma, \delta}(s, t)=\frac{\gamma(s)-\delta(t)}{\|\gamma(s)-\delta(t)\|}, s, t \in S^{1}
$$

Prove that $l(\gamma, \delta)=\operatorname{deg}\left(\widetilde{F}_{\gamma, \delta}\right)$. Use this to solve Exercise 11.20. 4 above.

[^0]: ${ }^{1}$ It is sometimes customary to denote dual bases in V and V^{*} by the same letters but using lower indices for V and upper indices for V^{*}, e.g. v_{1}, \ldots, v_{n} and v^{1}, \ldots, v^{n}. However, in these notes we do not follow this convention.

[^1]: ${ }^{2}$ In fact, the above formula makes sense in much more general situation. Given any map $\Phi: X \rightarrow Y$ between two sets X and Y the formula $\Phi^{*}(h)=h \circ \Phi$ defines a map $\Phi^{*}: F(Y) \rightarrow F(X)$ between the spaces of functions on Y and X. Notice that this map goes in the direction opposite to the direction of the map Φ.

[^2]: ${ }^{1}$ i.e. a coordinate system with respect to an orthonormal basis

[^3]: ${ }^{1}$ Here we parallel transported the vector T_{j} from the point t_{j} to the point $c_{j} \in\left[t_{j}, t_{j+1}\right]$.

[^4]: ${ }^{2}$ If only the former property is satisfied that γ is called an immersion.

[^5]: ${ }^{3}$ There exists a more general and more common notion of measurability in the sense of Lebesgue. Any Riemann measurable set is also measurable in the sense of Lebesgue, but not the other way around. Historically an attribution

[^6]: ${ }^{4}$ Here is an example when this condition is not satisfied: $M=(0,2), U=(0,1), U^{\prime}=(1,2)$. In this case any neighborhood of the point 1 intersect both sets, U and U^{\prime}.

[^7]: ${ }^{5}$ In fact, we will prove later that even homeomorphic manifolds should have the same dimension.

[^8]: ${ }^{1}$ We assume here that the coordinates u_{1}, \ldots, u_{k} define the given orientation of A.

[^9]: ${ }^{2}$ See a computation in a more general case below in Example 10.6

[^10]: ${ }^{3}$ The symmetric matrix $(D \phi)^{T} D \phi$ is the Gram matrix of vectors $\frac{\partial \phi}{\partial u_{1}}(u), \ldots, \frac{\partial \phi}{\partial u_{k}}(u)$, and its entrees are pairwise scalar products of these vectors, see Remark ??

[^11]: ${ }^{4}$ Note that the spherical coordinates ordered as (r, ϕ, θ) determine the same orientation of \mathbb{R}^{3} as the cartesian coordinates (x, y, z).

[^12]: ${ }^{1}$ This definition of the linking number is due to Carl Friedrich Gauss.

[^13]: ${ }^{2}$ Strictly speaking, the constructed vector fields only piece-wise smooth, because we did not make any special precautions to ensure smoothness at the points $u_{j}, j=1, \ldots, N-1$. This could be corrected via a standard smoothing procedure.
 ${ }^{3}$ Exercise: prove it!

[^14]: ${ }^{4}$ The map Σf is called the suspension of the map f.

