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Multilinear Algebra






Chapter 1

Linear and multilinear functions

1.1 Dual space

Let V be a finite-dimensional real vector space. The set of all linear functions on V' will be denoted

by V*.
Proposition 1.1. V* is a vector space of the same dimension as V.

Proof. One can add linear functions and multiply them by real numbers:

(h+B)(x) = hLz)+l(z)

(A)(z) = MN(z) forl,li,lbeV* , z€V, \eR

It is straightforward to check that all axioms of a vector space are satisfied for V*. Let us now

check that dimV = dim V'*.

Z1
Choose a basis v1 ...v, of V. For any z € V let : be its coordinates in the basis vy ... v,.
In
Notice that each coordinate x1,...,x, can be viewed as a linear function on V. Indeed,

1) the coordinates of the sum of two vectors are equal to the sum of the corresponding coordinates;
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2) when a vector is multiplied by a number, its coordinates are being multiplied by the same

number.

Thus 1, ..., x, are vectors from the space V*. Let us show now that they form a basis of V*.
Indeed, any linear function [ € V* can be written in the form [(x) = ajz1+ ...+ apz, which means
that [ is a linear combination of x ...x, with coefficients a1, ..., a,. Thus x1,...,x, generate V*.
On the other hand, if a1z +. ..+ a,x, is the O-function, then all the coefficients must be equal to 0;
i.e. functions x1,...,x, are linearly independent. Hence x1, ..., x, form a basis of V' and therefore

dimV* =n=dimV. |
The space V* is called dual to V' and the basis z1,...,x, dual to vy .. .vnH

Exercise 1.2. Prove the converse: given any basis ly,...,l, of V* we can construct a dual basis

w1, ..., w, of V so that the functions lq,...,l, serve as coordinate functions for this basis.

Recall that vector spaces of the same dimension are isomorphic. For instance, if we fix bases in
both spaces, we can map vectors of the first basis into the corresponding vectors of the second basis,
and extend this map by linearity to an isomorphism between the spaces. In particular, sending a
basis S = {vi1,...,v,} of a space V into the dual basis z1,...,z, of the dual space V* we can
establish an isomorphism ig : V' — V*. However, this isomorphism s not canonical, i.e. it depends
on the choice of the basis v1,...,v,.

If V is a Euclidean space, i.e. a space with a scalar product (z,y), then this allows us to define
another isomorphism V' — V*, different from the one described above. This isomorphism associates
with a vector v € V' a linear function [/, (z) = (v, z). We will denote the corresponding map V" — V*

by D. Thus we have D(v) = [, for any vector v € V.

Exercise 1.3. Prove that D :V — V* is an isomorphism. Show that D = ig for any orthonormal

basis S.

The isomorphism D is independent of a choice of an orthonormal basis, but is still not completely
canonical: it depends on a choice of a scalar product. However, when talking about Euclidean spaces,

this isomorphism is canonical.

Tt is sometimes customary to denote dual bases in V and V* by the same letters but using lower indices for V'

and upper indices for V*, e.g. v1, ..., v, and v', ..., v". However, in these notes we do not follow this convention.

10



Remark 1.4. The definition of the dual space V* also works in the infinite-dimensional case.

Exercise 1.5. Show that both maps is and D are injective in the infinite case as well. However,

neither one is surjective if V' is infinite-dimensional.

1.2 Canonical isomorphism between (V*)* and V

The space (V*)*, dual to the dual space V', is canonically isomorphic in the finite-dimensional case
to V. The word canonically means that the isomorphism is “god-given”, i.e. it is independent of

any additional choices.

When we write f(x) we usually mean that the function f is fixed but the argument = can vary.
However, we can also take the opposite point of view, that x is fixed but f can vary. Hence, we can

view the point x as a function on the vector space of functions.

If £ € V and f € V* then the above argument allows us to consider vectors of the space V as

linear functions on the dual space V*. Thus we can define a map I : V' — V** by the formula
x = I(x) € (V*)*, where I(z)(l)=1I(x) forany [e€V™.

Exercise 1.6. Prove that if V is finite-dimensional then I is an isomorphism. What can go wrong

in the infinite-dimensional case?

1.3 The map A*

Given a map A : V — W one can define a dual map A* : W* — V* as follows. For any linear
function [ € W* we define the function A*(l) € V* by the formula A*(I)(z) = [(A(x)), x € V. In
other words, A*(l) =1o AEI

2 In fact, the above formula makes sense in much more general situation. Given any map ® : X — Y between two
sets X and Y the formula ®*(h) = ho ® defines a map ®* : F(Y) — F(X) between the spaces of functions on Y and

X. Notice that this map goes in the direction opposite to the direction of the map .
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Given bases B, = {v1,...,v,} and B, = {w1,...,w,} in the vector spaces V and W one can
associate with the map A a matrix A = Mg, g, (A). Its columns are coordinates of the vectors
A(vj),j = 1,...,n, in the basis B,. Dual spaces V* and W* have dual bases X = {z1,...2z,}
and Y = {y1,...,yx} which consist of coordinate functions corresponding to the basis B, and B,,.
Let us denote by A* the matrix of the dual map A* with respect to the bases ¥ and X, i. e.
A* = My x (A*).

Proposition 1.7. The matrices A and A* are transpose to each other, i.e. A* = AT

Proof. By the definition of the matrix of a linear map we should take vectors of the basis ¥ =
{y1,...,yx}, apply to them the map A*, expand the images in the basis X = {z1,...x,} and write
the components of these vectors as columns of the matrix A*. Set y; = A*(y;), i = 1,..., k. For
any vector u = i ujv; € V, we have ;(u) = y;(A(u)). The coordinates of the vector A(u) in the
j=i
Uy
basis w1, ..., w, may be obtained by multiplying the matrix A by the column : . Hence,

Unp,

Ji(u) = yi(Aw) = aiju;.
j=1

But we also have

n n
D agai(u) =) aiju;.
=1 i=1

n
Hence, the linear function g; € V* has an expansion ) a;jz; in the basis X = {z1,...x,} of the

7j=1
a1
space V*. Hence the i-th column of the matrix A* equals : , so that the whole matrix A*
Qin
has the form
ail o Okl
A* = _ AT
Qlp - Qkn

12



Exercise 1.8. Given a linear map A:V — W with a matriz A, find A*(y;).

n
Answer. The map A* sends the coordinate function y; on W to the function ) a;jz; on V, i.e. to
Jj=1
its expression in coordinates x;.

Proposition 1.9. Consider linear maps

Then (Bo A)* = A* o B*.
Proof. For any linear function | € W* we have
(Bo A)*(1)(z) = l(B(A(x)) = A*(B"(1))(«)

for any z € U. |

Exercise 1.10. Suppose that V is a Fuclidean space and A is a linear map V. — V. Prove that

for any two vectors X, Y € V we have
(AX),Y)=(X, D o A* o D(Y)). (1.3.1)
Solution. By definition of the operator D we have
(X,D71(2)) = Z(X)

for any vector Z € V*. Applying this to Z = A*oD(Y') we see that the right-hand send of is
equal to to A* o D(Y)(X). On the other hand, the left-hand side can be rewritten as D(Y)(A(X)).
But A* o D(Y)(X) =D(Y)(A(X)). [

Let us recall that if V is an Euclidean space, then operator B : V' — V is called adjoint to

AV — V if for any two vectors X,Y € V one has
(A(X),Y) = (X, B(Y)).

The adjoint operator always exist and unique. It is denoted by A*. Clearly, (A*)* = A. In any

orthonormal basis the matrices of an operator and its adjoint are transpose to each other. An
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operator A : V — V is called self-adjoint if A* = A, or equivalently, if for any two vectors
X,Y €V one has
(A(X),Y) = (X, A(Y)).

The statement of Exercise can be otherwise expressed by saying that the adjoint operator
A* is equal to D' o A* o D : V — V. In particular, an operator A : V — V is self-adjoint if and
only if A*o D =Do A.

Remark 1.11. As it follows from Proposition and Exercise the matrix of a self-adjoint

operator in any orthonormal basis is symmetric. This is not true in an arbitrrary basis.

1.4 Multilinear functions

A function (X1, Xs,..., Xg) of k vector arguments X1,..., X € V is called k-linear (or multi-
linear) if it is linear with respect to each argument when all other arguments are fixed. We say
bilinear instead of 2-linear. Multilinear functions are also called tensors. Sometimes, one may also
say a “k-linear form”, or simply k-form instead of a “k-linear functions”. However, we will reserve
the term k-form for a skew-symmetric tensors which will be defined in Section below.

If one fixes a basis v; ... v, in the space V' then with each bilinear function f(X,Y’) one can
associate a square n X n matrix as follows. Set a;; = f(v;,v;). Then A = (ai;)i j=1,..n is called the

matriz of the function f in the basis v1,...,v,. For any 2 vectors

n n
X:Z ZT;U4, Y:Z Y;U;5
1 1

we have

n

n n n
FCY) =Y wwn Yy | = D @i f(vivy) = Y amiy; = XTAY
i=1 j=1

ij=1 ig=1
Exercise 1.12. How does the matriz of a bilinear function depend on the choice of a basis?

Answer. The matrices A and A of the bilinear form f(z,y) in the bases v1,...,v, and 01,...,0,

are related by the formula A=CcTAC , where C' is the matrix of transition from the basis v; ... v,
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to the basis 91 ...7,, i.e the matrix whose columns are the coordinates of the basis 7y ... 7, in the
basis v1 ... vy.

Similarly, with a k-linear function f(Xi,..., X)) on V and a basis vy, ..., v, one can associate
a “k-dimensional” matrix

A= {ailig...ik; 1< il, e 7ik < n},

where
Uirig..iy = f(Wiys- -5 05,) -

n
IfXZ: injvja izl,...,k,then
j=1

n

(X1, Xk) = Z Qivig...ip 10y L2 - - - Thiy, »

i1,09,..0=1

see Proposition below.

1.5 Quotient space

Let V be a vector space and L C V be its linear subspace. Given a vector a € V' let us denote byL,
the affine subspace a + L = {a + z; = € L}. Note that two affine subspaces L, and Ly, a,b € V
concide if a — b € L and are disjoint if a — b ¢ L. Consider the set, denoted by V/L of all affine
subspaces parallel to L. The set can be made into a vector space by defining the operations by the
formulas

L, + Ly := La—i—ba ALy, :==Lyg; a,beV, XeR

If a’ and V' are other vectors in V such that o’ —a,b/ — b € L then (a/ +b') — (a +b) € L and
Aa’ — Xa € L, and hence Ly 1y = Latp, Lag = L.

The vector space V/L is called the quotient space of V by L.

In other words, we can say that V/L is obtained from V by identifying vectors which differ by
a vector in L. The operations in V' then naturally descend to the opertions on the quotient space.

If N C V be any linear subspace such that dim L + dim N = dimV and L N N = 0 then the
map N — V/L given by the formula x € N — L, € V/L is an isomorphism (why?). In particular,
dim(V/L) = dimV — dim L = codimy L.
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If V is a Euclidean space then we can choose as N the orthogonal complement L+ of L in V,
and thus L/V is isomorphic to L. The advantage of the quotient construction that it is canonical

while L depends on a choice of the Euclidean structure (scalar product).

1.6 Symmetric bilinear functions and quadratic forms

A function @ : V — R on a vector space V is called quadratic if there exists a bilinear function
f(X,Y) such that

QX)=f(X,X), XeV. (1.6.1)
One also uses the term quadratic form. The bilinear function f(X,Y’) is not uniquely determined
by the equation . For instance, all the bilinear functions x1ys, 2y and %(xlyg + z2y1) on
R? define the same quadratic form z1zs.

On the other hand, there is a 1-1 corerspondence between quadratic form and symmetric bilinear

functions. A bilinear function f(X,Y) is called symmetric if f(X,Y) = f(Y,X) for all X, Y € V.

Lemma 1.13. Given a quadratic form @ : V — R there exists a unique symmetric bilinear form

F(X,Y) such that Q(X) = f(X,X),X e V.
Proof. If Q(X) = f(X, X) for a symmetric f then

QIX+Y)=f(X+Y, X+Y) = f(X,X)+ f(X,)Y) + (Y, X) + f(V,Y)

= QX) +2f(X,Y) +Q(Y),

and hence

FXY) = (@ +Y) - Q(X) - Q(Y)). (162)

I leave it as an exercise to check that the formula always defines a symmetric bilinear
function. |
Let S = {v1,...,v,} is a basis of V. The matrix A = (a;;) of a symmetric bilinear form f(X,Y)
in the basis S is called also the matrix of the corresponding quadratic form Q(X) = f(X, X). This
matrix is symmetric, and
QRX) = Z ATk = anx% 4+ 4 annwi +2 Z AijTiTj.
ij i<j
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Thus the matrix A is diagonal if and only if the quadratic form @ is the sum of squares (with
coefficients). Let us recall that if one changes the basis S to a basis S = {21,...,0,} then the

matrix of a bilinear form f changes to C=CTAC.

Exercise 1.14. (Sylvester’s inertia law) Prove that there is always exists a basis S = {1, ..., 0n}
in which a quadratic form @ is reduced to a sum of squares. The number of positive, negative and

zero coefficients with the squares is independent of the choice of the basis.

Thus, in some coordinate system a quadratic form can always be written as

k+1

k
—Zx?—i—Zx?, k+1<n.
1

k+1

The number k of negative squares is called the negative index or simply the index of the quadratic
form @, the total number of k + [ of non-zero squares is called the rank of the form. It coincides
with the rank of the matrix of the form in any basis. A bilinear (and quadratic) form is called
non-degenerate if its rank is maximal possible, i.e. equal to n. For a non-degenerate quadratic for
@ the difference | — k between the number of positive and negative squares is called the signature.

A quadratic form @ is called positive definite if Q(X) > 0 and if Q(X) = 0 then X = 0.
Equivalently, one can say that a form is positive definite if it is non-degenerate and its negative

index is equal to 0.
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Chapter 2

Tensor and exterior products

2.1 Tensor product

Given a k-linear function ¢ and a [-linear function v, one can form a (k + [)-linear function, which

will be denoted by ¢ ® 1 and called the tensor product of the functions ¢ and . By definition

¢®1/)(X1, .. ,Xk,Xk+1, - 7Xk+l> = ¢<X1; .. ,Xk> . w(Xk-+1, o 7Xk+l)-

For instance, the tensor product two linear functions /1 and [y is a bilinear function /7 ® ls defined

by the formula
L @ L(U,V)=L(U)l(V).

Let v1...v, be a basis in V and x1,...,x, a dual basis in V*, i.e. x1,...,x, are coordinates of a
vector with respect to the basis vy, ..., v,.

The tensor product z; ® x; is a bilinear function z; ® x;(Y, Z) = y;2;. Thus a bilinear function
f with a matrix A can be written as a linear combination of the functions x; ® x; as follows:

n
f= Z g T3 @ Ty,
ij=1

where a;; is the matrix of the form f in the basis v; ... v,. Similarly any k-linear function f with
a “k-dimensional” matrix A = {a;,i,..i, } can be written (see below) as a linear combination of
functions

Tj QT Q- Q x4, 1<41,80,...,0 <N
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Namely, we have
n

[ = E irig..ipgTiy O Tijy & -+ Q T4, -
11,12,...0=1

2.2 Spaces of multilinear functions

All k-linear functions, or k-tensors, on a given n-dimensional vector space V themselves form a

vector space, which will be denoted by V*®¥. The space V*®! is, of course, just the dual space V*.

Proposition 2.1. Let vi,...v, be a basis of V, and x1,...,xx be the dual basis of V* formed
by coordinate functions with respect to the basis V. Then n® k-linear functions z; & - ® Tiy,
1 <i1,...,i5 <n, form a basis of the space V*®F.
Proof. Take a k-linear function F from V*®F and evaluate it on vectors Vigyenos Uiyt

F(Uil, e 7’Uik> = ailmik .

We claim that we have

F= Z iy .if Ty ® -+ @ Ty

1<i1,.ig<n

Indeed, the functions on the both sides of this equality being evaluated on any set of k basic vectors
Uiy, ..., V4, give the same value a;,. ;.. The same argument shows that if > Qiy..i, Ty D
1<it,.ip<n

- ®x;, =0, then all coefficients a;, . ;, should be equal to 0. Hence the functions z;, ® --- ® x;,,

1 <'i1,...,i; <n, are linearly independent, and therefore form a basis of the space V*®@* |

Similar to the case of spaces of linear functions, a linear map A : V' — W induces a linear map
A* W@k %@k which sends a k-linear function F' € W*®* to a k-linear function A*(F) € V*®F,

defined by the formula
A (F)(X1,...,Xk) = F(A(X1),..., A(Xg)) for any vectors Xi,...Xp€eV.

Exercise 2.2. Suppose V' is provided with a basis vi,...,v, and x;, @---Qwx;,, 1 < i1, ...,0, < n, s
the corresponding basis of the space V*®F. Suppose that the map A :V — V has a matrizc A = (asj)

in the basis v1,. .., v,. Find the matriz of the map A* : V*®F — V*@k in the basis Ti @ @ Xy

20



2.3 Symmetric and skew-symmetric tensors

A multilinear function (tensor) is called symmetric if it remains unchanged under the transposition

of any two of its arguments:

F X, X X, X)) = f(X, L X X X
Equivalently, one can say that a k-tensor f is symmetric if
(X, X)) = f( Xy, .., Xy)
for any permutation 41, ..., of indices 1,..., k.

Exercise 2.3. Show that a bilinear function f(X,Y) is symmetric if and only if its matriz (in any

basis) is symmetric.
Notice that the tensor product of two symmetric tensors usually is not symmetric.

Example 2.4. Any linear function is (trivially) symmetric. However, the tensor product of two
functions l1 ® la is not a symmetric bilinear function unless I is proportional to loy. On the other

hand, the function [y ® Iy + lo ® 1 is symmelric.

A tensor is called skew-symmetric (or anti-symmetric) if it changes its sign when one transposes

any two of its arguments:

FOX0 X X X)) = — (X X X X,

Equivalently, one can say that a k-tensor f is anti-symmetric if

f(Xilv v 7X7«k) - (_1)inV(ilmik)f(X17 ceey Xk)
for any permutation iy, ..., of indices 1,...,k, where inv(ij ...ix) is the number of inversions in
the permutation i1, ...,%;. Recall that two indices iy, 4; form an inversion if k <1 but ig > 1.

The matrix A of a bilinear skew-symmetric function is skew-symmetric, i.e.

AT = A

21



Example 2.5. The determinant det(Xy,...,X,,) (considered as a function of columns X1,..., X,

of a matriz) is a skew-symmetric n-linear function.

Exercise 2.6. Prove that any n-linear skew-symmetric function on R™ is proportional to the de-

terminant.

Linear functions are trivially anti-symmetric (as well as symmetric).
As in the symmetric case, the tensor product of two skew-symmetric functions is not skew-
symmetric. We will define below in Section [2.5] a new product, called an exterior product of skew-

symmetric functions, which will again be a skew-symmetric function.

2.4 Symmetrization and anti-symmetrization

The following constructions allow us to create symmetric or anti-symmetric tensors from arbitrary

tensors. Let f(Xi,...,Xx) be a k-tensor. Set

YK LX) = Y f(Ky L X))

(i1...ix)
and

FEYI(Xy, LX) = Y () IV pXG L XG,)

(i1.-1)
where the sums are taken over all permutations i1, ..., of indices 1,...,k. The tensors f5Y1
and fASYM are called, respectively, symmetrization and anti-symmetrization of the tensor f. It is

now easy to see that

Proposition 2.7. The function f™ is symmetric. The function f*¥™ is skew-symmetric. If f
18 symmetric then f™ = klf and f*™ = 0. Similarly, if f is anti-symmetric then faY™ = k!f,

Y =0

Exercise 2.8. Let z1,..., %, be coordinate function in R™. Find (x1 @ 19 @ ... ® x,) Y,

Answer. The determinant.
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2.5 Exterior product

For our purposes skew-symmetric functions will be more important. Thus we will concentrate on
studying operations on them.
Skew-symmetric k-linear functions are also called exterior k-forms. Let ¢ be an exterior k-form

and v an exterior [-form. We define an exterior (k + [)-form ¢ A 1), the exterior product of ¢ and

1, as
1
ONY = T (¢ ® w)asym‘

In other words,

1 s
ONY(Xy, o Xy Xyt Xigr) = oy D (FDIVO o (X X (X Xi),

U1y Bhtl

where the sum is taken over all permutations of indices 1,...,k +[.

Note that because the anti-symmetrization of an anti-symmetric k-tensor amounts to its mul-

tiplication by k!, we can also write

¢A¢(X1,...,Xk+l) = Z (71)1nV(i1’m’ik+l)¢(Xi1a" . 7Xik)w(Xik+17"' 7Xik+l)7

i1<...<ik,ik+1<...<ik+l

where the sum is taken over all permutations 1, ..., ig; of indices 1,...,k+1[.
Exercise 2.9. The exterior product operation has the following properties:
e For any exterior k-form ¢ and exterior l-form ¢ we have ¢ A = (—1)Flap A ¢.

e FExterior product is linear with respect to each factor:

(D1 +P2)ANY = 1 AY+ P2 NY
AP)AY = MoAY)

for k-forms ¢, ¢1, ¢2, I-form ¢ and a real number X.
e Euxterior product is associative: (¢ A1) Aw = ¢ A (Y Aw).
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First two properties are fairly obvious. To prove associativity one can check that both sides of

the equality (¢ A1) Aw = ¢ A (Y Aw) are equal to

1
Ellm!

(¢ @9 @ w)*™.
In particular, if ¢, and w are 1-forms, i.e. if Kk =1 =m =1 then
YASAW = (@YD W)™,

This formula can be generalized for computing the exterior product of any number of 1-forms:

LA ANpp= (1 @+ @ )™, (2.5.1)
Ul V1
Example 2.10. 21 Axo = 21 ® T3 — x2 ® x1. For 2 vectors, U = : V= : , we have
Uy, Un
uy Vi

xr1 N JIQ(U, V) = U1V2 — UV =
Uz V2

For 3 vectors U, V, W we have

x1 N\ T2 /\l’g(U, V, W) =
=21 N\ .%'Q(U, V).CL‘g(W) + 1 A .’EQ(V, W)l‘g(U) + 21 A Z'Q(W, U)l'g(V) =

up v wi
(u1v2 — ugvy)ws + (Viwe — vowi )us + (Wiug — WaUL)V3 = | uy ve wo
us vV3 w3

The last equality is just the expansion formula of the determinant according to the last row.

Proposition 2.11. Any exterior 2-form f can be written as

f= Z Q5 Ti N\ Tj

1<i<j<n
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Proof. We had seen above that any bilinear form can be written as f = > a;jz; ® x;. If f is
]

skew-symmetric then the matrix A = (a;;) is skew-symmetric, i.e. a;; = 0, a;; = —aj; for i # j.
Thus, f = Z aij(xi Qx; —r; ® xz) = Z a5 T; N\ Tj. [ |
1<i<j<n 1<i<j<n

Exercise 2.12. Prove that any exterior k-form f can be written as

f= E iy ..y Tiy N Tijog N oo Ty,
1<, <. <ip<n

The following proposition can be proven by induction over k, similar to what has been done in

Example for the case k = 3.

Proposition 2.13. For any k 1-forms ly,...,l; and k vectors X1, ..., X we have
L(Xy) ... 1(Xk)
DN AN Xy X)) =L . (2.5.2)
l(X1) oo k(Xk)

Corollary 2.14. The 1-forms ly,...,l; are linearly dependent as wvectors of V* if and only if
WA...ANl=0. In particular, L A ... ANl =0 if k >n=dimV.

Proof. Iflq,...,[; are dependent then for any vectors Xi,..., X € V the rows of the determinant
in the equation are linearly dependent. Therefore, this determinant is equal to 0, and hence
I1 A ... N = 0. In particular, when k& > n then the forms li,...,l; are dependent (because
dimV* = dimV = n).

On the other hand, if I, ...,[; are linearly independent, then the vectors l1,...,l; € V* can be

completed to form a basis I, ..., g, lg11, . . -, ln of V*. According to Exercise [1.2] there exists a basis

w1, ..., W, of V that is dual to the basis l1,...,1, of V*. In other words, I1,...,l, can be viewed as
coordinate functions with respect to the basis wy, ..., wy. In particular, we have [;(w;) =0if i # j
and l;(w;) =1 for all 4,5 = 1,...,n. Hence we have
li(wy) ... Ip(wg) 1 ... 0
LA ANg(wr,cow) =1 ... ... ... |=]... 1 ...|=1,
le(wy) ... lg(wg) 0o ... 1
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ie. gy Ao ANl # 0. |

Proposition can be also deduced from formula ([2.5.1)).
Corollary and Exercise [2.12] imply that there are no non-zero k-forms on an n-dimensional

space for k > n.

2.6 Spaces of symmetric and skew-symmetric tensors

As was mentioned above, k-tensors on a vector space V form a vector space under the operation of
addition of functions and multiplication by real numbers. We denoted this space by V*®*. Symmet-
ric and skew-symmetric tensors form subspaces of this space V*®*, which we denote, respectively,

by S*¥(V*) and A*(V*). In particular, we have

Exercise 2.15. What is the dimension of the spaces S*(V*) and AF(V*)?

Answer.
dim A" (V™) = i = W=k
dim S*(V*) = e

The basis of A¥(V*) is formed by exterior k-forms z;, Az, A ... A xip, 1 <ip <idpg <...<ik<n.

2.7 Operator A* on spaces of tensors

For any linear operator A : V' — W we introduced above in Section the notion of a dual linear
operator A* : W* — V*. Namely A*(l) = [ o A for any element [ € V*, which is just a linear
function on V. In this section we extend this construction to k-tensors for £ > 1, i.e. we will define

a map A* : W*®F _ 1@k,
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Given a k-tensor ¢ € W*®* and k vectors X1,..., X, € V we define

Note that if ¢ is symmetric, or anti-symmetric, so is A*(¢). Hence, the map A* also induces the
maps S*(W*) — S*¥(V*) and A¥(W*) — A¥(V*). We will keep the same notation A* for both of

these maps as well.
Proposition 2.16. Let A:V — W be a linear map. Then

1. A* (o @) = A*(¢) @ A*(¥) for any ¢ € W*®F o) € WL,

2. A (P = (A*(9))"YH A% (M) = (A*(9)) ™

3. A*(p Np) = A* (o) A A* (V) for any ¢ € AF(W*), ¢ € AL(W*).
If B: W — U is another linear map then (Bo A)* = A* o B*.

Proof.

1. Take any k + [ vectors Xi,..., Xg1; € V. Then by definition of the operator A* we have

AP @) (X1, Xpt) =0 @ Y(A(X), - A X k) =
PAXL), - AXR)P(A(X41) - AlX ) =
AN () (X1, X)) AT () (Xps 1, -, Xn) =
A (9) ® A" () (X1, - ., Xpt)-

2. Given k vectors Xq,..., X, € V we get

A*(¢asym)(X17 SRR Xk) - ¢asym(A(X1)7 BRI A(Xk)) = Z (_1)inV(i1’m’ik)¢('A(Xi1)7 s 7A(Xlk)) =

(i1...ix)

Z (_1)1nv (A A*(Qf))( e 7Xik) _ (A*(¢))asym (X17‘ ' ';Xk);

(i1...i)
where the sum is taken over all permutations i1, ..., % of indices 1,..., k. Similarly one proves that
A (PY) = (A" (9))™ ™
3. A (¢ A ) = g A" (¢ @ )*U™)) = i (A"(9 @ 9)™™™ = A*(9) A A* ().
The last statement of Proposition [2.10] is straightforward and its proof is left to the reader.
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Let us now discuss how to compute A*(¢) in coordinates. Let us fix bases v1,...,v, and

wi, ..., W, in spaces V and W. Let xy,...,x,, and y1,...,y, be coordinates and
air ... A1m
A=
Anl -+ Qpm

be the matrix of a linear map A : V — W in these bases. Note that the map A in these coordinates

is given by n linear coordinate functions:

1 = lh(x,...,x;m) =a1121 + a1222 + ... + ATy
y2 = bz, ..., 2m) = an1z1 + azers + ... + a2mTm
Yn = Iln(T1,..., %K) = an1x1 + apa®o + ... + ApmTn

m

We have already computed in Section that A*(yx) =l = Y agjxj, k= 1,...,n. Indeed, the
j=1

coefficients of the function Iy = A*(yy) form the k-th column of the transpose matrix A. Hence,

using Proposition [2.16] we compute:

.A*(yji ®®yjk) :ljl ®®l3k
and

Ay A ANyg) =L A Ny

Consider now the case when V = W, n = m, and we use the same basis vy, ..., v, in the source

and target spaces.

Proposition 2.17.

A (@1 A ANap) =det Axy A+ Az

Note that the determinant det A is independent of the choice of the basis. Indeed, the matrix
of a linear map changes to a similar matrix C~'AC in a different basis, and det C~'AC = det A.
Hence, we can write det A instead of det A, i.e. attribute the determinant to the linear operator A

rather than to its matrix A.
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Proof. We have

n n
A*(Il/\"'/\l‘n) =LA ANl = E 147 Tip N+ A E i, Ti,, =
i1=1 in=1
n
E Ay + - Ay Tig N N T4, .
i17...,in:1

Note that the in the latter sum all terms with repeating indices vanish, and hence we can replace

this sum by a sum over all permutations of indices 1, ...,n. Thus, we can continue

A*(mA---/\xn): Z Aliy - - - Api Tiy N N X, =

11 5eeeyin

Z (—1)in"(il""’i")ali1 coilpg, |1 A AN =det Azyp A Az,

ilv---vin

Exercise 2.18. Apply the equality
A (@1 AN AN ANTgpr Ao Axg) = A (@ Ao ANag) NA (Tpp1 A A xy)

for a map A :R™ — R" to deduce the formula for expansion of a determinant according to its first

k rows:

Ay - Ol | @kl - Gkl g
det A = E (_l)lnv(llv---a]n—k)

i1 <o, J1< <Gk} Im AL
akzil cte ak:”ﬁ: a”:jl st anmjnfk
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Chapter 3

Orientation and Volume

3.1 Orientation

We say that two bases v1,...,v; and wi, ..., ws of a vector space V define the same orientation of
V if the matrix of transition from one of these bases to the other has a positive determinant. Clearly,
if we have 3 bases, and the first and the second define the same orientation, and the second and the
third define the same orientation then the first and the third also define the same orientation. Thus,
one can subdivide the set of all bases of V into the two classes. All bases in each of these classes
define the same orientation; two bases chosen from different classes define opposite orientation of
the space. To choose an orientation of the space simply means to choose one of these two classes of
bases.

There is no way to say which orientation is “positive” or which is “negative”—it is a question
of convention. For instance, the so-called counter-clockwise orientation of the plane depends from
which side we look at the plane. The positive orientation of our physical 3-space is a physical, not
mathematical, notion.

Suppose we are given two oriented spaces V, W of the same dimension. An invertible linear map
(= isomorphism) A : V. — W is called orientation preserving if it maps a basis which defines the
given orientation of V' to a basis which defines the given orientation of W.

Any non-zero exterior n-form n on V induces an orientation of the space V. Indeed, the preferred

set of bases is characterized by the property n(vi,...,v,) > 0.
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3.2 Orthogonal transformations

Let V be a Euclidean vector space. Recall that a linear operator U : V — V is called orthogonal if

it preserves the scalar product, i.e. if
UX).UY)) = (X,Y), (3.2.1)
for any vectors X,Y € V. Recall that we have
UX),UY)) = (XU UY))),

where U* : V' — V is the adjoint operator to U, see Section [1.3| above.
Hence, the orthogonality of an operator I is equivalent to the identity U*olf = Id, or U* = U~
Here we denoted by Id the identity operator, i.e. Id(X) = X for any X € V.
Let us recall, see Exercise that the adjoint operator U* is related to the dual operator
U*:V* = V* by the formula
U =D 'oU*oD.

Hence, for an orthogonal operator U, we have D~ o U* oD =U"", i.e.
U*oD=Dold". (3.2.2)

Let vy, ...,v, be an orthonormal basis in V' and U be the matrix of ¢/ in this basis. The matrix
of the adjoint operator in an orthonormal basis is the transpose of the matrix of this operator.
Hence, the equation U* olf = Id translates into the equation UTU = E, or equivalently UUT = E,

or U=t = UT for its matrix. Matrices, which satisfy this equation are called orthogonal. If we write

uilp ... Uln

Unpl .. Unpn

then the equation UTU = E can be rewritten as

1, ifk=1j,
Zukiuji =
i

0, ifk#J,
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Similarly, the equation UUT = E can be rewritten as

1, ifk=y,

Z UikUij = .
‘ 0, ifk#J,

The above identities mean that columns (and rows) of an orthogonal matrix U form an or-

thonormal basis of R™ with respect to the dot-product.

In particular, we have
1 =det(UTU) = det(UT) det U = (det U)?,

and hence det U = £1. In other words, the determinant of any orthogonal matrix is equal +1. We
can also say that the determinant of an orthogonal operator is equal to £1 because the determinant
of the matrix of an operator is independent of the choice of a basis. Orthogonal transformations
with det = 1 preserve the orientation of the space, while those with det = —1 reverse it.
Composition of two orthogonal transformations, or the inverse of an orthogonal transformation
is again an orthogonal transformation. The set of all orthogonal transformations of an n-dimensional
Euclidean space is denoted by O(n). Orientation preserving orthogonal transformations sometimes
called special, and the set of special orthogonal transformations is denoted by SO(n). For instance
O(1) consists of two elements and SO(1) of one: O(1) = {1, -1}, SO(1) = {1}. SO(2) consists of

rotations of the plane, while O(2) consists of rotations and reflections with respect to lines.

3.3 Determinant and Volume

We begin by recalling some facts from Linear Algebra. Let V' be an n-dimensional Euclidean space
with an inner product ( , ). Given a linear subspace L C V and a point x € V, the projection
proj ;(x) is a vector y € L which is uniquely characterized by the property z —y L L, i.e.
(x —y,z) = 0 for any z € L. The length ||z — proj j(x)|| is called the distance from x to L; we
denote it by dist(z, L).

Let Uy,...,U; € V be linearly independent vectors. The k-dimensional parallelepiped spanned

by vectors Uy, ..., Uy is, by definition, the set

k
PUy,...,Uy) = {ZA]-UJ-; 0<A,..., 4 < 1} C Span(Uy, ..., Ug).
1
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Given a k-dimensional parallelepiped P = P(Uy,...,Uy) we will define its k-dimensional volume

by the formula
VolP = ||Uy]|dist(Us, Span(Uy ))dist(Us, Span(Uy, Uz)) . . . dist(Uy, Span(Uy, . .., Ug—1)).  (3.3.1)

Of course we can write dist(Uy,0) instead of ||Uy||. This definition agrees with the definition of the

area of a parallelogram, or the volume of a 3-dimensional parallelepiped in the elementary geometry.

Proposition 3.1. Let vy,...,v, be an orthonormal basis in V. Given n vectors Uy, ..., Uy, let us
denote by U the matriz whose columns are coordinates of these vectors in the basis vi,...,v,:
Uyl ... Uln
U :=
Un1 Unn
Then

Vol P(Uy,...,U,) = |detU]|.

Proof. If the vectors Uj,...,U, are linearly dependent then Vol P(Uy,...,U,) = detU = 0.
Suppose now that the vectors Uy, ..., U, are linearly independent, i.e. form a basis. Consider first
the case where this basis is orthonormal. Then the matrix U is orthogonal. i.e. UUT = E, and
hence det U = £1. But in this case Vol P(Uy,...,U,) = 1, and hence Vol P(Uy,...,U,) = |det U|.

Now let the basis Uy, ..., U, be arbitrary. Let us apply to it the Gram-Schmidt orthonormaliza-
tion process. Recall that this process consists of the following steps. First, we normalize the vector
Ui, then subtract from Us its projection to Span(U;), Next, we normalize the new vector Usa, then
subtract from Uj its projection to Span(Uj, Us), and so on. At the end of this process we obtain
an orthonormal basis. It remains to notice that each of these steps affected Vol P(Uy,...,U,) and
|det U| in a similar way. Indeed, when we multiplied the vectors by a positive number, both the

volume and the determinant were multiplied by the same number. When we subtracted from a vec-

tor Uy, its projection to Span(Uy, ..., Uk_1), this affected neither the volume nor the determinant.
[ |
Corollary 3.2. 1. Let x1,...,xy, be a Cartesian coordinate systemﬂ Then

VOIP(Ul,...,Un> = ’{L‘l/\...l'n(Ul,...,Un)‘.

j.e. a coordinate system with respect to an orthonormal basis
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2. Let A:V — V be a linear map. Then
Vol P(A(Uy), ..., A(U,)) = |det A|Vol P(Uy,...,U,).

Proof.

1. According to2.13] z1 A ...z, (Uy,...,Up) = detU.

2. N (AL, A(UR)) = A (g A+ - Aay)(Uy, .. Uy) =det Az Aoy (U, ..., Uy). B
In view of Proposition and the first part of Corollary the value

1‘1/\...$n(U1,...,Un):detU

is called sometimes the signed volume of the parallelepiped P(Uy,...,U,). It is positive when the
basis Uy, ..., U, defines the given orientation of the space V, and it is negative otherwise.

Note that 1 A ...xg(Uy,...,Ug) for 0 < k < n is the signed k-dimensional volume of the
orthogonal projection of the parallelepiped P(Ui,...,Uy) to the coordinate subspace {zyi; =
o=z, = 0}

For instance, let w be the 2-form z1 A 2 + 23 A 24 on R*. Then for any two vectors Uy, Us € R?
the value w(Uj, Uz) is the sum of signed areas of projections of the parallelogram P (U, Us) to the

coordinate planes spanned by the two first and two last basic vectors.

3.4 Volume and Gram matrix

In this section we will compute the VolgP(v1,...,vx) in the case when the number & of vectors is

less than the dimension n of the space.

Let V be an Euclidean space. Given vectors vy, ...,v € V we can form a k X k-matrix
(vi,v1) ... (v1,vk)
G(vl,...,vk): s (3.4.1)
<Uk,1)1> <'Uk,1)k>
which is called the Gram matriz of vectors vy, ..., vg.

Suppose we are given Cartesian coordinate system in V' and let us form a matrix C whose

columns are coordinates of vectors v, ..., v;. Thus the matrix C' has n rows and k columns. Then
G(viy...,v) = cre,
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because in Cartesian coordinates the scalar product looks like the dot-product.
We also point out that if & = n and vectors vy, ..., v, form a basis of V', then G(vy,...,vx) is
just the matrix of the bilinear function (X,Y’) in the basis vy,...,v,. It is important to point out

that while the matrix C' depends on the choice of the basis, the matrix G does not.

Proposition 3.3. Given any k vectors vy, ..., vy in an Euclidean space V' the volume Vol P(v1, ..., vg)

can be computed by the formula

Vol P(v1, ..., u)? = det G(vy, ..., v) = det CTC, (3.4.2)
where G(vi,...,v) is the Gram matriz and C is the matriz whose columns are coordinates of
vectors vy, ...,V in some orthonormal basis.

Proof. Suppose first that £ = n. Then according to Proposition we have VolpP(vy,...,vg) =
|det C|. But det CT'C = det C?, and the claim follows.

Let us denote vectors of our orthonormal basis by wy, ..., w,. Consider now the case when
Span(vy,...,vx) C Span(wi, ..., wy). (3.4.3)

In this case the elements in the j-th row of the matrix C' are zero if j > k. Hence, if we denote
by C the square k x k matrix formed by the first k rows of the matrix C, then CTC = CTC and
thus det CTC = det CTC. But det CTC = Vol P(vy, .. .,v) in view of our above argument in the

equi-dimensional case applied to the subspace Span(wy,...,wg) C V, and hence
Vol2P(vy,...,v) = det CTC = det G(vy, ..., vp).

But neither VolyP(vy,...,vx), nor the Gram matrix G(vi,...,v;) depends on the choice of an
orthonormal basis. On the other hand, using Gram-Schmidt process one can always find an or-

thonormal basis which satisfies condition (3.4.3)).

Remark 3.4. Note that det G(vi,...,vx) > 0 and det G(vy,...,vr) = 0 if an and only if the

vectors vy, ..., v, are linearly dependent.
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Chapter 4

Dualities

4.1 Duality between k-forms and (n — k)-forms on a n-dimensional

Euclidean space V

Let V be an n-dimensional vector space. As we have seen above, the space A¥(V*) of k-forms, and

the space A"~*(V*) of (n — k)-forms have the same dimension ;; these spaces are therefore

n!
kl(n—k)
isomorphic. Suppose that V is an oriented Euclidean space, i.e. it is supplied with an orientation

and an inner product (, ). It turns out that in this case there is a canonical way to establish this

isomorphism which will be denoted by
*: ARV = AR (v

Definition 4.1. Let « be a k-form. Then given any vectors Uy, ..., U, _g, the value xa(Uy, . .., Up_)
can be computed as follows. If Uy, ... ,U,_y are linearly dependent then xa(Uy, ..., U,_x) = 0. Oth-
erwise, let S denote the orthogonal complement to the space S = Span(Uy,...,U,_1). Choose a

basis Z1, ..., 2 of S* such that
Vol (Zy, ..., Zk) = Vol (U, ..., Up_i)
and the basis Z1, ..., 2, Ui, ..., Uy_ defines the given orientation of the space V. Then
*a(Uy,...,Uy—k) = a(Z1,...,Zy). (4.1.1)
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Let us first show that
Lemma 4.2. x« is a (n — k)-form, i.e. xa is skew-symmetric and multilinear.

Proof. To verify that x« is skew-symmetric we note that for any 1 < i < j < n — ¢ the bases
21,29, L, Uy oo Uy o UG U

and

—Z1,22,..., L, U,y U, o U o U
define the same orientation of the space V', and hence
*O[(Ul,...,Uj,...,Ui,...,Un_k):a(—Zl,ZQ,...,Zk)

:—a(Zl,ZQ,...,Zk):—*Oé(Ul,...,Ui,...,Uj,...,Un_k).

Hence, in order to check the multi-linearity it is sufficient to prove the linearity of « with respect

to the first argument only. It is also clear that
*Oz()\Ul,...,Un_k) :*)\Oé(Ul,...,Un_k). (4.1.2)

Indeed, multiplication by A # 0 does not change the span of the vectors Uy, ...,U,—, , and hence
if *Oz(Ul, ey Un—k’) = Oé(Zl, ey Zk) then *Oz()\Ul, ey Un—k) = Oé()\Zl, ceey Zk) = )\Oé(Zl, ceey Zk)

Thus it remains to check that
*Oz(Ul + [71, Us,..., Unfk) = *a(Ul, Us,..., Unfk) + *Oz(ﬁl, Us,..., Unfk:))

Let us denote L := Span(Us, ..., U,_j) and observe that proj ;(Uy + Uy) = proj (Ur) +
proj 1 (U1). Denote N := U — proj (Uy) and N := Uy — proj ;(Uy). The vectors N and N are
normal components of U; and U, with respect to the subspace L, and the vector N + N is the

normal component of Uy + (71 with respect to L. Hence, we have
*Oz(Ul, ceey Un—k) = *a(N, ceey Un—k)a *04(61, ceey Un—k) = *a(N, ceey Un—k)a

and

*a(Ul + [71, RN Un—k) = *oz(N + N,..., Un—k:)-
Indeed, in each of these three cases,
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- vectors on both side of the equality span the same space;
- the parallelepiped which they generate have the same volume, and

- the orientation which these vectors define together with a basis of the complementary space

remains unchanged.

Hence, it is sufficient to prove that
*x (N + N,Us, ..., Uy_p) = *a(N,Us, ..., Up_p) + *xa(N,Us, ..., Up_p). (4.1.3)

If the vectors N and N are linearly dependent, i.e. one of them is a multiple of the other, then

(4.1.3)) follows from (4.1.2)).

Suppose now that N and N are linearly independent. Let L denote the orthogonal complement
of L = Span(Us,...,U,_;). Then dim L+ = k 4 1 and we have N,N € L'. Let us denote by M
the plane in L spanned by the vectors N and N , and by M* its orthogonal complement in L.
Note that dim M+ =k — 1.

Choose any orientation of M so that we can talk about counter-clockwise rotation of this plane.

Let Y,)N/ € M be vectors obtained by rotating N and N in M counter-clockwise by the angle 7.

Then Y +Y can be obtained by rotating N + N in M counter-clockwise by the same angle 7. Let

us choose in M a basis Zo, ..., Z}, such that
VOlk_lp(ZQ, ceey Zk) = VOln_k_lp(UQ, ey Un—k)

Note that the orthogonal complements to Span(N,Us,...,U,_k), Span(ﬁ7 Us,...,Up_k), and to
Span(N +N ,Ua, ..., Up_k) in V coincide, respectively, with the orthogonal complements to the the

vectors IV, N and to N + N in LL. In other words, we have
(Span(N, U, ..., Un—k))é = Span(Y, Zs, ..., Zy),
(Span(]v, Us,..., Un_k))i = Span(f/, Zy, ..., Z) and
<Span(N + N, Us,..., Un,k))‘t = Span(Y + 57, Zay. oy ).
Next, we observe that
Vol,,_x P(N,Us,...,Uy_) = Vol P(Y, Za, ..., Zy),
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Vol,_1P(N,Us, ..., Up_1) = Vol P(Y, Zs,...,Z;) and
Vol,_,P(N 4+ N,Us, ..., Up_i) = Vol P(Y + Y, Zs,.... 7).

Consider the following 3 bases of V:
KZ27'-->Z7€’N7U2""aUn—k’y
?7227'"aZ/m]v?UZ?"'aUn—k’a

Y+Y.Z9 ..., 2, N+ N,Us, ..., Up_p,

and observe that all three of them define the same a priori given orientation of V. Thus, by definition

of the operator x we have:

*xa(N+N,Us,....Up_i)=aY +Y,Z,...,2)

=Y, Zay ..., 23+ (Y, Za, ..., Z) = *a(N,Us, ..., Up_p) + *xa(N,Us, ..., Up_p).
This completes the proof that x« is an (n — k)-form. [

Thus the map a ~— %a defines a map x : A¥(V*) — A"=F(V*). Clearly, this map is linear. In
order to check that x is an isomorphism let us choose an orthonormal basis in V' and consider the
coordinates x1,...,x, € V* corresponding to that basis.

Let us recall that the forms z;; Az, A--- Ay, 1 <ip <ig <--- <1, <n, form a basis of the

space AF(V*).

Lemma 4.3.

* iy Nig A - A gy, = (=1) 0V O0sfodlsdnei) g A s Ao A (4.1.4)
where j1 < - -+ < Jn_k 18 the set of indices, complementary to i1, ... ,i,. In other words, i1,...,0k, J1,. ..
s a permutation of indices 1,...,n.

Proof. Evaluating *(x;, A---Ax;,) on basic vectors vj,,...,v;, ,, 1 <ji1 <+ <jn—q <n, we get
0 unless all the indices j1, ..., j,_ are all different from i1, ..., 4k, while in the latter case we get
My Ao A )05, ) = ()bt
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Hence,

. . ... P— inv(ilr'wikujly"':j 7k) . . e .
*Tiy N Tig A+ AN, = (—1) ki Nxjy N AN,

[
Thus * establishes a 1 to 1 correspondence between the bases of the spaces A*(V*) and
the space A" *(V*), and hence it is an isomorphism. Note that by linearity for any form o =

> @iy, iy N - AN 2g,) we have
1<in < <ig<n

*Q = E iy ..ip ¥ (.’Eil VANREIWAN l‘lk) .
1<ip < <ig<n

Examples.

1. xC = Cx1 A -+ Ay ; in other words the isomorphism x acts on constants (= 0-forms) by

multiplying them by the volume form.

2. In R? we have

*T1 =T NT3,*%Tp = —T1 NT3 =3 \NT1,*T3 =21 \ T2,
*(11 ANxg) =23, %x(x3 A1) = 29, *(T2 A 233) = 27 .
3. More generally, given a 1-form [ = a1x1 + - - - + anz, We have
xl=a1zo A ANy — @y Azg A Ay + -+ (=1)" Lapzy A Azp_y.
In particular for n = 3 we have

*(alxl + asxo + a3$3) =a1x2 \Nx3 +asx3 Nxr1 +azxr;1 Nxy.

Proposition 4.4.
*2 = (—l)k(”_k)ld, ie.  *(xw) = (—l)k(”_k)w for any k-form w.

In particular, if dimension n = dimV is odd then x> = Id. If n is even and w is a k-form then

*(*xw) = w if k is even, and *(*w) = —w if k is odd.
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Proof. It is sufficient to verify the equality
*(xw) = (—1)FM=k)y,
for the case when w is a basic form, i.e.
w=Ty N ANxgy, 1<0 << <n.

We have

*($i1 ARERNA xuc) = (_1)inv(i1’m’ik,jl’m’jnik)le A Ljy AR L

and

*(le Azjy Ao A $jn—k) _ (_1)i1’1V(j17..~,jn7k77:17.--/ik) * Tiy A AT

But the permutations ij ...4j1 ... jn—k and ji ... Jjn—gi1 ... differ by k(n — k) transpositions of

pairs of its elements. Hence, we get

(_1)inv(i17-'-77;k7j11~~-,jn—k) — (_1)k(n—k)(_1)iHV(j1,~--7jn—k,i1,--~,ik) 7
and, therefore,

*( * ($i1 ANRERA xlk)) = *((_1)inv(ilw’ik’jhm’jnik)le A Ljy ARERNA ‘rjnfk)
_ (_1)inv(i17~~7ik7j1u-~~,jn—k) * (:le A Tj, A A xjn—k)

= (=1)"™Otdtesdn k) HV (i lt) g AL A,

= (—1)k(n_k).7}7;1 ANCERIVAN (7

Exercise 4.5. (a) For any special orthogonal operator A the operators A* and x commute, i.e.
A*ox =x0 A*.

(b) Let A be an orthogonal matriz of order n with det A = 1. Prove that for any k € {1,...,n}
the absolute value of each k-minor M of A is equal to the absolute value of its complementary

minor of order (n — k). (Hint: Apply (a) to the form x; N--- N, ).
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(c) Let V' be an oriented 3-dimensional Euclidean space. Prove that for any two vectors X,Y € V,

their cross-product can be written in the form

X xY =D 1 (x(D(X) AD(Y))).

4.2 FEuclidean structure on the space of exterior forms

Suppose that the space V is oriented and Euclidean, i.e. it is endowed with an inner product (, )
and an orientation.

Given two forms a, B € A¥(V*), k =0,...,n, let us define

{(a, B)) = *(a AxB).
Note that a A %3 is an n-form for every k, and hence, ({(«, 3)) is a 0-form, i.e. a real number.

Proposition 4.6. 1. The operation ({,)) defines an inner product on AF*(V*) for each k =

0,...,n.

2. If A:V — V is a special orthogonal operator then the operator A* : A¥(V*) — AF(V*) is

orthogonal with respect to the inner product ((, )).

Proof. 1. We need to check that ((a, 3)) is a symmetric bilinear function on A*(V*) and ({a, a)) > 0
unless a = 0. Bilinearity is straightforward. Hence, it is sufficient to verify the remaining properties
for basic vectors av = 3, A---Awj,B=xj A---ANxj,, where 1l <ip <---<ip,<n,1<j1<---<
Jk < n. Here (x1,...,2,) is any Cartersian coordinates in V' which define its given orientation.
Note that ({(a, 8)) =0 = ({8, «)) unless i, = jp, for all m = 1,... k, and in the the latter case

we have a = . Furthermore, we have
{({a,a)) = x(aA*a) =*(x1 A Axp) =1>0.

2. The inner product ((, )) is defined only in terms of the Euclidean structure and the orientation
of V. Hence, for any special orthogonal operator A (which preserves these structures) the induced

operator A* : A¥(V*) — A¥(V*) preserves the inner product ((, )). [

Note that we also proved that the basis of k-forms x;; A~ - Az, 1 < i3 < -+ < < n,is

orthonormal with respect to the scalar product ((,)). Hence, we get
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Corollary 4.7. Suppose that a k-form « can be written in Cartesian coordinates as

o= E Qi...i Tiq FANERIIVAN M
1<i1 < <ip<n

Then
o lP= (o)) = > af .

1<ii << <n

Corollary 4.8. For any two exterior k-forms we have
*a A B = (—1)FFa AxB.
Exercise 4.9. 1. Show that for any k-forms we have

{{a, ) = {{xa,; %))

2. Show that if a, B are 1-forms on an Fuclidean space V. Then

i.e the scalar product ((, )) on V* is the push-forward by D of the scalar product (, ) on V.

Corollary 4.10. Let V be a FEuclidean n-dimensional space. Choose an orthonormal basis eq,. .., en
in V.. Then for any vectors Zy = (211, -+, 2n1)s -+ Zk = (Z1ky - - -, 2nk) € V we have
(VoleP(Z1,.... Z))2 = > Zi i (4.2.1)
1<i1 <<, <n

where

Z’i11 e Ziﬂc

Zih--wik =
Zigl e Zigk

n
Proof. Consider linear functions l; = D(Z;) = > zijz; € V*, j=1,...,k. Then
i=1
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n n
ll/\--~/\lk:Zziljxil/\---/\Zzimxik:

i1=1 ip=1
E Zig - Zip iy N Xqy, = E Zil,-~~7ikxil AP 7 (4.2.2)
Bl yeenyik 1<t << <n

In particular, if one has Z3,... Z; € Span(ey,...,ex) then Z;_ = Vol P(Zy,..., Z;) and hence
LA N :Zlmkxl/\'--/\:ﬂk:Volp(Zl,...,Zk):L‘l/\---/\l‘k,

which yields the claim in this case.

In the general case, according to Proposition [£.7] we have

NhAAlP= > 22 . (4.2.3)

1<iy <--<ip<n

which coincides with the right-hand side of . Thus it remains to check to that
| li A Alg ||= Volg P(Z1, ..., Z).
Given any orthogonal transformation A : V' — V we have, according to Proposition the equality
A ANl ||=]] A A AN AT ] (4.2.4)

We also note that any orthogonal transformation B : V' — V preserves k-dimensional volume of all

k-dimensional parallelepipeds:
|V01kP(Zl, ey Zk)‘ = ’VOlkP(B(Zl), - ,B(Zk))‘ (4.2.5)

On the other hand, there exists an orthogonal transformation A : V — V such that A=1(Z1),..., A"} (Z) €

Span(eq,...,ex). Denote Zj = A"1(Z;), j=1,...,k. Then, according to (3.2.2) we have
lj = D(Z;) = D(A™(Z;)) = A"(D(Z;)) = A'l;.

As was pointed out above we then have

Vol P(Zu, ..., Z)| =I Ty A= AT =l AT A A AT | (4.2.6)
and hence, the claim follows from (4.2.4) and (4.2.5) applied to B = A~1. [
We recall that an alternative formula for computing VolyP(Zy,...,Z;) was given earlier in

Proposition [3.3]
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Remark 4.11. Note that the above proof also shows that for any k vectors vy, ..., vr we have
Volp P(vi, ..., vk) = |[la A= Algll,

where l; = D(v;), i =1,...,k.

4.3 Contraction

Let V be a vector space and ¢ € A¥(V*) a k-form. Define a (k — 1)-form ¢ = v 1¢ by the formula
w(Xl, e ,Xk_l) = qb('U,Xl, e 7Xk:—1)

for any vectors Xi,...,Xr_1 € V. We say that the form ¢ is obtained by a contraction of ¢ with
the vector v. Sometimes, this operation is called also an interior product of ¢ with v and denoted

by i(v)¢ instead of v J1). In these notes we will not use this notation.

Proposition 4.12. Contraction J is a bilinear operation, i.e.

(vi4+wv2)ld = vidp+vade
(A)dp = Avlo)
vi(1+d2) = vidr+vlde
vl(Ap) = Avlg).

Here v,v1,v9 € V; ¢, ¢1, 0 € AF(V*); X € R.

The proof is straightforward.

Let ¢ be a non-zero n-form. Then we have

Proposition 4.13. The map 1: V — A" 1(V*), defined by the formula J(v) = v 1¢ is an isomor-

phism between the vector spaces V. and A"~1(V*).
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Proof. Take a basis vy, ...,v,. Let x1,...,2, € V* be the dual basis, i.e. the corresponding coor-

dinate system. Then ¢ = ax; A ... A x,, where a # 0. To simplify the notation let us assume that

a =1, so that
p=x1N...\Tp.
Let us compute the images v; 1¢, i =1, ...,k of the basic vectors. Let us write
n
v; 1o = Zajasl N NZja NTjpr N ANy,

1

Then

U J¢(U1, <oy Ul—15, V41, - - - a'Un)

n
= Zajxl N NZj g NTjpr A A ."L‘n(Ul, ey U1, Vg ,Un) = aqay, (4.3.1)
1
but on the other hand,

T)Z'J(ﬁ(?)l, ey U1, VLT, e - ,'Un) = gb(vi,vl,. ey V=1, U415 - - - ,'I}n)

= (=) (1, .. V1, Uiy Vig1s - - Up) = (4.3.2)
0 , otherwise

Thus,

v; Jg = (_1)7;711:1/\"'/\xi—l/\ﬂfi—&—l/\"'/\xn‘

Hence, the map _ sends a basis of V* into a basis of A»~1(V*), and therefore it is an isomorphism.

n
Take a vector v = ) ajvj. Then we have
1

n
vl(zi AN Aay) = Z(—l)iilaixl AN ANt ATigpg Avv o A Xy (4.3.3)
1

This formula can be interpreted as the formula of expansion of a determinant according to the first

column (or the first row). Indeed, for any vectors Uy, ..., U,_1 we have

ar  Ur1 ... Upp—1l

,UJd)(UlaaUnfl):det(v,UlyvUnfl): 3

ap  Upl ... Upn-—1

47



Ul,i

where : are coordinates of the vector U; € V in the basis v1, ...

Un,i

)

n

vdo(U, ..., Up—1) = Z(—l)i_laixl Ao ANy Axip1 A Aap (U, - ..

1

U1 ... U2p—1
Uzl ... U3p—1

= ai + . e
Un,1 .- Unn—1

+ (_1)n71an

Uyl

U2,1

Unp—1,1

Ul n—1

U2 n—1

Up—1,n—1

Suppose that dim V' = 3. Then the formula (4.3.3) can be rewritten as

vd(r1 Axg Ax3) = a1xa A x3 + agxs A x1 + asry A xa,

a

, Un. On the other hand,

(4.3.4)

where | @, | are coordinates of the vector V. Let us describe the geometric meaning of the

as

operation J. Set w = v J(x1 A 2 A z3). Then w(Uy, Us) is the volume of the parallelogram defined

by the vectors Uy, Uy and v. Let v be the unit normal vector to the plane L(U;,Usz) C V. Then we

have

w(Uy,Us) = Area P(Uy,Us) - (v,v) .

If we interpret v as the velocity of a fluid flow in the space V' then w(Uy,Uz) is just an amount

of fluid flown through the parallelogram II generated by vectors U; and Us for the unit time. It is

called the flux of v through the parallelogram II.

Let us return back to the case dimV = n.

Exercise 4.14. Let

a=xy N ANwg, 1< <~ < <n

and v = (ai,...,a,). Show that
k

i+1
vl = 2:(—1)3Jr Qi Tig Noo Ty N Ty N Ty

j=1

48



The next proposition establishes a relation between the isomorphisms x, J and D.

Proposition 4.15. Let V' be a Euclidean space, and x1,...,x, be coordinates in an orthonormal

basis. Then for any vector v € V we have
*Dv=vl(xy A - Axyp).
Proof. Let v = (aj,...,ay). Then Dv = a1 + - -+ + apzy, and
*DU:alxg/\o--/\$n—agml/\ng--~/\:Un/\x1+---+(—1)"_1anx1/\-~-/\:L"n,1.

But according to Proposition the (n—1)-form v_J(z1 A--- Az, is defined by the same formula.
|
We finish this section by the proposition which shows how the contraction operation interacts

with the exterior product.
Proposition 4.16. Let o, 8 be forms of order k and [, respectively, and v a vector. Then
vi(aAB)=(wla)AB+ (=DFan (vip).

Proof. Note that given any indices ki, . . . kp, (not necessarily ordered) we have e; Jxg, A---Axy,, =0
ifi ¢ {ki,....,km}and e; Jog, A---Axg, = (1) zp, /\...\Z/‘--/\:ckm, where J = inv(i; k1, ..., k)
is the number of variables ahead of x;.

By linearity it is sufficient to consider the case when v, , 8 are basic vector and forms, i.e.
v=ej =2 A ANxy, B=xp T,
We have v Ja # 0 if and only if the index ¢ is among the indices 41, ...,%;. In that case
via=(-1)7x; /\\z//\%

and if v 18 # 0 then

UJB:(—I)J/%/\...\/---/\le,

where J = inv(i;41,. .., i), J = inv(i;j1,..., 7).

If it enters « bot not S8 then
vi(aAB)=(-1)"z; /\...\Z/-‘-/\mik/\:L‘j1 N ANxj = (vda)AB,
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while a A (v13) = 0.

Similarly, if it enters 8 but not « then

%

vJ(a/\ﬂ):(—1)‘7/+mxi1/\~--/\a:ik/\le/\...\/-~-/\le = (—D*a A (wip),

while v Ja A 8 = 0. Hence, in both these cases the formula holds.
If x; enters both products then a A 5 =0, and hence v I (a A 8) = 0.
On the other hand,

(vJa)/\B—i—(—l)ka/\(vJB):(—1)Jati1/\...\l/'--/\xik/\le---/\wjl

’ %
+(_1)k+‘]$i1/\"'/\xik/\mﬁ/\---\/"'/\le:0,

i i
because the products x;; A...V---Axy Axj - Axj and x, A--- Az, Axjy AL V- Ay, differ

only in the position of z;. In the first product it is at the (k + J’)-s position, and in the second

at (J + 1)-st position. Hence, the difference in signs is (—1)7/+/**+1 which leads to the required

cancellation.

50



Chapter 5

Complex vector spaces

5.1 Complex numbers

The space R? can be endowed with an associative and commutative multiplication operation. This

operation is uniquely determined by three properties:
e it is a bilinear operation;
e the vector (1,0) is the unit;
e the vector (0,1) satisfies (0,1)% = (0, —1).

The vector (0,1) is usually denoted by ¢, and we will simply write 1 instead of the vector (1,0).
Hence, any point (a,b) € R? can be written as a + bi, where a,b € R, and the product of a + bi and

¢+ di is given by the formula
(a+bi)(c+ di) = ac — bd + (ad + be)i.

The plane R? endowed with this multiplication is denoted by C and called the set of complex
numbers. The real line generated by 1 is called the real azis, the line generated by ¢ is called the
imaginary axis. The set of real numbers R can be viewed as embedded into C as the real axis.
Given a complex number z = x + iy, the numbers x and y are called its real and imaginary parts,

respectively, and denoted by Rez and Imz, so that z = Rez + ilmz.
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For any non-zero complex number z = a + bi there exists an inverse z~! such that z7'z = 1.

Indeed, we can set
-1 a b

o :a2—|—b2_a2+b2i'

The commutativity, associativity and existence of the inverse is easy to check, but it should not
be taken for granted: it is impossible to define a similar operation any R™ for n > 2.

Given z = a + bi € C its conjugate is defined as Z = a — bi. The conjugation operation z + Z is
the reflection of C with respect to the real axis R € C. Note that

1 1
Rez = 5(2 +2), Imz = Z(Z - 2).

Let us introduce the polar coordinates (r,¢) in R? = C. Then a complex number z = = + yi
can be written as rcos¢ + irsin¢ = r(cos¢ + isin¢). This form of writing a complex number
is called, sometimes, ttrigonometric. The number r = \/aﬁy2 is called the modulus of z and
denoted by |z| and ¢ is called the argument of ¢ and denoted by arg z. Note that the argument is
defined only mod 27. The value of the argument in [0, 27) is sometimes called the principal value
of the argument. When z is real than its modulus |z| is just the absolute value. We also not that
2| = Vzz.

An important role plays the triangle inequality

|121] = |22] | < |21+ 22| < |21] + |22].

Exponential function of a complex variable

Recall that the exponential function e® has a Taylor expansion
2 .3

v ixn l+o+= 4+ 4
et = — = T+ —4+—=4....
5 n! 2 6

We then define for a complex the exponential function by the same formula

2 n

z._ Z .
e =14+z+ + -+ 4+ ....
2! n!

One can check that this power series absolutely converging for all z and satisfies the formula

efltze — pR1%2
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Figure 5.1: Leonhard Euler (1707-1783)

In particular, we have

2 3 4
gy Y
e =141y 2' 13' + 1 +- . (5.1.1)
o0 2kt
= — 5.1.2
" + ZZ 2k kIO (5.12)
k:O
But E( 1)kY k, = cosy and Z( 1) (g:f:)! = siny, and hence we get Euler’s formula

k=0

e =cosy + isiny,

and furthermore,

"W = e%e™W = ¢ (cosy + isiny),

ie. [e*TW| = e arg(e?) = y. In particular, any complex number z = 7(cos¢ + isin$) can be

rewritten in the form z = re®. This is called the exponential form of the complex number z.

(eiqb) " in®

and hence if z = re® then 2" = r"e™?® = r"(cosn¢ + isinng).

Note that

Note that the operation z + iz is the rotation of C counterclockwise by the angle 7. More
generally a multiplication operation z — zw, where w = pe'® is the composition of a rotation by

the angle 6 and a radial dilatation (homothety) in p times.
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n n
Exercise 5.1. 1. Compute ) coskf and ) sin k6.
0 1

2. Compute 1 + (Z) + (g’) + (1"2) +....

5.2 Complex vector space

In a real vector space one knows how to multiply a vector by a real number. In a complex vector
space there is defined an operation of multiplication by a complex number. Example is the space
C™ whose vectors are n-tuples z = (z1,...,2,) of complex numbers, and multiplication by any
complex number A = a + i3 is defined component-wise: \(z1,...,2,) = (Az1,...,Az,). Complex
vector space can be viewed as an upgrade of a real vector space, or better to say as a real vector
space with an additional structure.

In order to make a real vector space V into a complex vector space, one just needs to define how
to multiply a vector by 4. This operation must be a linear map J : V — V which should satisfy

the condition J2 = —Id, i.e J(J(v)) = i(iv) = —v.

Example 5.2. Consider R with coordinates (x1,y1,...,%n,yn). Consider a 2n x 2n-matriz
0 -1 0 0
1 0 0 O

0 0 0 -1
J=10 0 1 0

Then J? = —I. Consider a linear operator J : R?" — R?"™ with this matriz, i.e. J(Z) = JZ for
any vector Z € R?™ which we view as a column-vector. Then J? = —Id, and hence we can define

on R?" a complex structure (i.e.the multiplication by i by the formula
iZ =J(Z), Z € R*".

This complex vector space is canonically isomorphic to C", where we identify the real vector

(1, Y1, -+, Ty Yn) € R2 with a complex vector (z1 = T1 + Y1, - - ., 2nTn + iYn).
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On the other hand, any complex vector space can be viewed as a real vector space. In order to
do that we just need to “forget” how to multiply by i. This procedure is called the realification of
a complex vector space. For example, the realification of C" is R?”. Sometimes to emphasize the
realification operation we will denote the realification of a complex vector space V by Vg. As the
sets these to objects coincide.

Given a complex vector space V' we can define linear combinations ) A\;v;, where \; € C are
complex numbers, and thus similarly to the real case talk about really dependent, really independent

vectors. Given vectors vy, ...v, € V we define its complex span Spanc(Vi,...,v,) by the formula

Spang(vi, ..., v) = {Z Aivi, A € (C.}
1

. A basis of a complex vector space is a system of complex linear independent vectors vi,...,v,
such that Spanc(vy,...,v,) = V. The number of vectors in a complex basis is called the complex
dimension of V and denoted dim¢ V.

For instance dim C® = n. On the other hand, its realification R?" has real dimension 2n. In
particular, C is a complex vector space of dimension 1, and therefore it is called a complex line

rather than a plane.

Exercise 5.3. Let vy,...,v, be a complex basis of a complex vector space V. Find the real basis of

its realification V.

Answer. vy, vy, V2,109, . .., Uy, iUn.

There is another important operation which associates with a real vector space V of real dimen-
sion n a complex vector space V¢ of complex dimension n. It is done in a way similar to how we
made complex numbers out of real numbers. As a real vector space the space V¢ is just the direct
sum V @V = {(v,w); v,w € V}. This is a real space of dimension 2n. We then make V & V' into

a complex vector space by defining the multiplication by 7 by the formula:
’i('U, ’UJ) = (_wv U)‘

We will write vector (v,0) simply by v and (0,v) = i(v,0) by iv. Hence, every vector of V¢ can be
written as v + tw, where v,w € V. If v1,...,v, is a real basis of V, then the same vectors form a

complex basis of V.
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Complexification of a real vector space

Given a real space V one can associate with it a complex vector space V¢, called the complezification
of V', as follows. It is made of vectors of V' in exactly the same way as complex numbers made of
reals. Namely, Vi consists of expressions X + 1Y, where X,Y € V. We define a multiplication of a

complex number a + ib by a vector X + 7Y by a formula
(a+1ib)(X +1iY) = aX — bY +i(aY + bX).

For instance, C™ is canonically isomorphic to (R™)c, because any vector Z = (23 = z1 +
WYLy .-y 2n = Ty +1yy) € C™ can be uniquely written as Z = X +1iY, where X = (z1,...,2,),Y =
(y1,---,Yn) € R™ Note that the realification of the space V¢, i.e. the space (V¢)r is canonically is
just Ve vV ={(X,Y), X,Y € R".

If vy,...,v, is a basis of a V over R, then the same vectors form a basis of the complexified

space V¢ over C. Thus dimg V' = dim¢ V.

5.3 Complex linear maps

Complex linear maps and their realifications

Given two complex vector spaces V,W a map A : V — W is called complez linear (or C-linear)
if AX+Y)=AX)+ A(Y) and A(NX) = MA(X) for any vectors X,Y € V and any complex
number A € C. Thus complex linearity is stronger condition than the real linearity. The difference is
in the additional requirement that A(iX) = iA(X). In other words, the operator A must commute
with the operation of multiplication by 1.

Any linear map A : C — C is a multiplication by a complex number a = ¢ + id. If we view C

c —d

as R? and right the real matrix of this map in the standard basis 1,7 we get the matrix
d c

Indeed, A(1) = a = ¢+ di and A(i) = ai = —d + ci, so the first column of the matrix is equal to

) —d
and the second one is equal to
d c
If we have bases v1,...,v, of V and wq,...w, of W then one can associate with A an m x n

complexr matrix A by the same rule as in the real case.
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Recall (see Exercise [5.3)) that vectors vi,v] = vy, va, vy = iva, ..., vp, v, = v, and wy,w] =
w1, Wy, Wy = Wa, . .. Wy, Wh, = iwy,) form real bases of the realifications Vg and Wk of the spaces

V and W. if

aAml .- Amn,

is the complex matrix of A then the real matrix Ag of the map A is the real basis has order 2n x 2n

and is obtained from A by replacing each complex element ap; = cg; + idy; by a 2 X 2 matrix
el —dki
dii cl

Exercise 5.4. Prove that

det Ag = | det A

Complexification of real linear maps

Given a real linear map A : V — W one can define a complex linear map Ac : Vo — W by the

formula

Ac(v +iw) = A(v) + i A(w).

. If A is the matrix of A in a basis vy, ..., v, then Ac has the same matrix in the same basis viewed
as a complex basis of V. The operator Ac is called the complexification of the operator A.

In particular, one can consider C-linear functions V' — C on a complex vector space V. Complex
coordinates 21, ..., 2, in a complex basis are examples of C-linear functions, and any other C-linear

function on V has a form c¢1z1 + ... cpzn, Where cq, ..., ¢, € C are complex numbers.

Complex-valued R-linear functions

It is sometimes useful to consider also C-valued R-linear functions on a complex vector space V,
i.e. R-linear maps V — C (i.e. a linear map Vg — R?). Such a C-valued function has the form
A = a + i, where «, 8 are usual real linear functions. For instance the function zZ on C is a

C-valued R-linear function which is not C-linear.
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If z1,..., 2z, are complex coordinates on a complex vector space V then any R-linear complex-

n
valued function can be written as Y a;z; + b;Z;, where a;, b; € C are complex numbers.
1

We can furthermore consider complex-valued tensors and, in particular complex-valued exterior

forms. A C-valued k-form A can be written as « + i3 where « and S are usual R-valued k-forms.

n

For instance, we can consider on C™ the 2-form w = %Ezk A Zi. It can be rewritten as w =
1

. n n
5> (xk Fiyr) A (Tr —iyr) = D T A g
1 1
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Part 11

Calculus of differential forms
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Chapter 6
Topological preliminaries

6.1 Elements of topology in a vector space

We recall in this section some basic topological notions in a finite-dimensional vector space and
elements of the theory of continuous functions. The proofs of most statements are straightforward
and we omit them.

Let us choose in V a scalar product.

Notation B,(p) := {z € V;||z — p|| < r}, Dy(p) :={z € V;||z — p|| < r} and S,.(p) := {z €

V; ||z — p|| = r} stand for open, closed balls and the sphere of radius r centered at a point p € V.

Open and closed sets

A set U C V is called open if for any x € U there exists € > 0 such that B.(z) C U.

A set A C V is called closed if its complement V' \ A is open. Equivalently,

Lemma 6.1. The set A is closed if and only if for any sequence x, € A, n = 1,2,... which

converges to a point a € V', the limit point a belongs to A.

Remark 6.2. It is important to note that the notion of open and closed sets are independent of

the choice of the auxiliary Euclidean structure in the space V.

Points which appear as limits of sequences of points x,, € A are called limit points of A.

There are only two subsets of V' which are simultaneously open and closed: V' and &.
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Lemma 6.3. 1. For any family Ux,\ € A of open sets the union |J Uy is open.
AEA

2. For any family Ax, X € A of closed sets the intersection () Ay is closed.
AEA

3. The union | J A; of a finite family of closed sets is closed.
1

n
4. The intersection (\U; of a finite family of open sets is open.
1

By a neighborhood of a point a € V' we understand any open set U > p.

Given any subset X C V a point a € V is called
e interior point for A if there is a neighborhood U > p such that U C A;
e boundary point if it is not an interior point neither for A nor for its complement V' \ A.

We emphasize that a boundary point of A may or may not belong to A. Equivalently, a point a € V
is a boundary point of A if it is a limit point both for A and V \ A.

The set of all interior points of A is called the interior of A and denoted Int A. The set of all
boundary points of A is called the boundary of A and denoted OA. The union of all limit points of
A is called the closure of A and denoted A.

Lemma 6.4. 1. We have A= AUJA, Int A= A\ 9A.
2. A is equal to the intersection of all closed sets containg A
3. Int U is the union of all open sets contained in A.
Given a subset X C V

- a subset Y C X is called relatively open in Y if there exists an open set U C V such that
Y=XnNnU.

- a subset Y C X is called relatively closed in Y if there exists a closed set A C V such that
Y =XnA.

One also call relatively and open and closed subsets of X just open and closed in X.

Exercise 6.5. Prove that though we defined open sets using a Fuclidean structure on the vector

space V' the definition of open and closed sets is independent of this choice.
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Figure 6.1: Bernard Bolzano (1781-1848)

6.2 Everywhere and nowhere dense sets

A closed set A is called nowhere dense if Int A = &. For instance any finite set is nowhere dense.
Any linear subspace L C V is nowhere dense in V if dim . < dim V. Here is a more interesting
example of a nowhere dense set.

Fix some number € < 1. For any interval A = [a, b] we denote by A, the open interval centered
at the point ¢ = “T"'b, the middle point of A, of the total length equal to ¢(b — a). We denote by
C(A) := A\ A.. Thus C(A) consists of two disjoint smaller closed intervals. Let I = [0, 1]. Take
C(I) = I, U Iy. Take again C(I;) U C(I2) then again apply the operation C' to four new closed
intervals. Continue the process, and take the intersection of all sets arising on all steps of this
construction. The resulted closed set K. C I is nowhere dense. It is called a Cantor set.

A subset B C A is called everywhere dense in A if B O A. For instance the the set Q N I of

rational points in the interval I = [0, 1] is everywhere dense in I.

6.3 Compactness and connectedness

A set A C V is called compact if one of the following equivalent conditions is satisfied:

COMP1. A is closed and bounded.
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Figure 6.2: Karl Weierstrass (1815-1897)

COMP2. from any infinite sequence of points x,, € A one can choose a subsequence x,,, converging
to a point a € A.
COMP3. from any family Uy, A € A of open sets covering A, i.e. |J Uy D A, one can choose
AEA

k
finitely many sets Uy,, ..., Uy, which cover A, i.e. [JU,, D A.
1

k

The equivalence of these definitions is a combination of theorems of Bolzano-Weierstrass and
Emile Borel.

A set A is called path-connected if for any two points ag,a; € A there is a continuous path
v :[0,1] — A such that v(0) = ap and v(1) = a;.

A set A is called connected if one cannot present A as a union A = A;UAs such that AjNAs = &,

Ay, Ay # @ and both A; and Ay are simultaneously relatively closed and open in A.
Lemma 6.6. Any path-connected set is connected.

Proof. Suppose that A is disconnected. Then it can be presented as a union A = Ay U Ay of two
non-empty relatively open (and hence relatively closed) subsets. Consider the function ¢ : A — R
defined by the formula

0, x € Ay,

¢(r) =
1, xze€A;.
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Figure 6.3: Emile Borel (1871-1956)

We claim that the function ¢ is is continuous. Indeed, For each ¢ = 0,1 and any point a € A;
there exists € > 0 such that Bc(x) N A C A;. Hence the function ¢ is constant on B(x) N A,
and hence continuous at the point z. Now take points xy € Ag and z1 € Ay and connect them
by a path v : [0,1] — A (this path exists because A is path-connected). Consider the function
¥ = ¢ o~ :][0,1] — R. This function is continuous (as a composition of two continuous maps).
Furthermore, 1(0) = 0,4 (1) = 1. Hence, by an intermediate value theorem of Cauchy the function
1 must take all values in the interval [0, 1]. But this is a contradiction because by construction the

function 1 takes no other values except 0 and 1. ]
Lemma 6.7. Any open connected subset U C R™ is path connected.

Proof. Take any point a € U. Denote by C, the set of all points in U which can be connected with
a by a path. We need to prove that C, = U.

First, we note that C, is open. Indeed, if b € C, then using openness of U we can find € > 0
such the ball B.(b) € U. Any point of ¢ € B.(b) can be connected by a straight interval Iy. C B¢(b)
with b, and hence it can be connected by a path with a, i.e. ¢ € C,. Thus B((b) C Cy, and hence
C, is open. Similarly we prove that the complement U \ C, is open. Indeed, take b ¢ C,. As above,
there exists an open ball B.(b) C U. Then B.(b) C U \ C,. Indeed, if it were possible to connect a
point ¢ € B(b) with a by a path, then the same would be true for b, because b and ¢ are connected

by the interval Ij.. Thus, we have U = C, U (U \ C,), both sets C, and U \ C, are open and C, is
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non-empty. Hence, U \ C, is to be empty in view of connectedness of U. Thus, C, = U, i.e. U is

path-connected. [

Exercise 6.8. In general a connected set need not to be path-connected. A canonical example is

the closure of the graph of the function sin %, x € R\ 0.. Prove it.

Exercise 6.9. Prove that any non-empty connected (= path-connected) open subset of R is equal
to an interval (a,b) (we allow here a = —oo and b = 00). If one drops the condition of openness,

then one needs to add a closed and semi-closed intervals and a point.

Remark 6.10. One of the corollaries of this exercise is that in R any connected set is path-

connected.

Solution. Let A C R be a non-empty connected subset. Let a < b be two points of A. Suppose
that a point ¢ € (a,b) does not belong to A. Then we can write A = Ay U A;, where Ay =
AN (—00,0),A1 = AN (0,00). Both sets Ay and A; are relatively open and non-empty, which
contradicts connectedness of A. Hence if two points @ and b, a < b, are in A, then the whole
interval [a, b] is also contained in A. Denote m := inf A and M := sup A (we assume that m = —oo
if A is unbounded from below and M = 400 if A is unbounded from above). Then the above

argument shows that the open interval (m, M) is contained in A. Thus, there could be 5 cases:

e m,M ¢ A; in this case A = (m, M);

m € A, M ¢ A; in this case A = [m, M);

m ¢ A, M € A; in this case A = (m, M|;

m, M € A and m < M; in this case A = [m, M];

m, M € A and m = M; in this case A consists of one point.

6.4 Connected and path-connected components

Lemma 6.11. Let Ay, X\ € A be any family of connected (resp. path-connected) subsets of a vector

space V. Suppose (| Ax # @. Then |J Ay is also connected (resp. path-connected)
AEA A€A
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Proof. Pick a point a € (] A). Consider first the case when A, are path connected. Pick a point
a € () Ay . Then a can l;\:[éonnected by path with all points in Ay for any points in A € A. Hence,
all pAoeigts of Ay and Ay can be connected with each other for any A\, \' € A.

Suppose now that A, are connected. Denote A := |J Ay. Suppose A can be presented as a
union A = UUU’ of disjoint relatively open subsets, Whe)l\“EAwe denoted by U the set which contains
the point a € () A). Then for each A\ € A the intersections Uy := U N Ay and U} := U’ N A, are
relatively operf\eiﬁ Ay. We have Ay = Uy UUJ. By assumption, Uy 3 a, and hence Uy # @. Hence,
connectedness of Ay implies that U = @. But then U’ = |J U} = &, and therefore A is connected.

AEA m

Given any set A C V and a point a € A the connected component (resp. path-connected com-
ponent C, C A of the point a € A is the union of all connected (resp. path-connected) subsets
of A which contains the point a. Due to Lemma the (path-)connected component C,, is itself
(path-)connected, and hence it is the biggest (path-)connected subset of A which contains the point
a. The path-connected component of a can be equivalently defined as the set of all points of A one
can connect with a by a path in A.

Note that (path-)connected components of different points either coincide or do not intersect,
and hence the set A can be presented as a disjoint union of (path-)-connected components.

Lemma shows that for open sets in a vector space V' the notions of connected and path-
connected components coincide, and due to Exercise the same is true for any subsets in R. In
particular, any open set U C R can be presented as a union of disjoint open intervals, which are its

connected (= path-connected) components. Note that the number of these intervals can be infinite,

but always countable.

6.5 Continuous maps and functions

Let V, W be two Euclidean spaces and A is a subset of V. A map f: A — W is called continuous

if one of the three equivalent properties hold:
1. For any € > 0 and any point 2 € A there exists 6 > 0 such that f(Bs(z) N A) C B(f(z)).

2. If for a sequence x,, € A there exists limz, = x € A then the sequence f(z,) € W converges
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to f(x).
3. For any open set U C W the pre-image f~1(U) is relatively open in A.
4. For any closed set B C W the pre-image f~!(B) is relatively closed in A.

Let us verify equivalence of 3 and 4. For any open set U C W its complement B = W\ U is closed
and we have f~1(U) = A\ f~1(B). Hence, if f~1(U) is relatively open, i.e. f~1(U) = U’ N A for
an open set U’ C V, then f~1(B) = AN (V \U’), i.e. f~1(B) is relatively closed. The converse is
similar.

Let us deduce 1 from 3. The ball B.(f(z)) is open. Hence f~1(B(f(x))) is relatively open in
A. Hence, there exists 6 > 0 such that Bs(z) N A C f~1(B(f(z))), i.e. f(Bs(x) N A) C B(f(x)).

We leave the converse and the equivalence of definition 2 to the reader.

Remark 6.12. Consider a map f : A — W and denote B := f(A). Then definition 3 can be

equivalently stated as follows:
3'. For any set U C B relatively open in B its pre-image f~'(U) is relatively open in A.
Definition 4 can be reformulated in a similar way.
Indeed, we have U = U’ N A for an open set U’ € W, while f~1(U) = f~1(U").
The following theorem summarize properties of continuous maps.
Theorem 6.13. Let f: A — W be a continuous map. Then
1. if A is compact then f(A) is compact;
2. if A is connected then f(A) is connected;
3. if A is path connected then f(A) is path-connected.

Proof. 1. Take any infinite sequence y,, € f(A). Then there exist points x, € A such that y, =
f(zn),n = 1,.... Then there exists a converging subsequence z,, — a € A. Then by continuity
limk — ocof(xn,) = f(a) € f(A), i.e. f(A) is compact.

2. Suppose that f(A) can be presented as a union By U By of simultaneously relatively open

and closed disjoint non-empty sets. Then f~1(By), f~1(Bz2) C A are simultaneously relatively open
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Figure 6.4: George Cantor (1845-1918)

and closed in A, disjoint and non-empty. We also have f~1(B1) U f~1(By) = f~4(B1 U By) =
F71(f(A)) = A. Hence A is disconnected which is a contradiction.
3. Take any two points yo, y1 € f(A). Then there exist zg,z1 € A such that f(xg) = yo, f(x1) =
y1. But A is path-connected. Hence the points xp,x; can be connected by a path v : [0,1] — A.
Then the path fo~:[0,1] — f(A) connects yo and yi, i.e. f(A) is path-connected. [ |
Note that in the case W = R Theorem [6.13]1 is just the Weierstrass theorem: a continuos
function on a compact set is bounded and achieves its maximal and minimal values.

We finish this section by a theorem of George Cantor about uniform continuity.

Theorem 6.14. Let A be compact and f : A — W a continuous map. Then for any € > 0 there
exists § > 0 such that for any x € A we have f(Bs(x)) C Be(f(x)).

Proof. Choose € > 0. By continuity of f for every point z € A there exists d(x) > 0 such that

f(Bs@)(z)) C Be(f(2)).

We need to prove that ingé(a:) > 0. Note that for any point in y € Bsw) () we have Bsw (y) C
ze 5 3

Bjs(z)(x), and hence f(Bsw) (y)) C Be(f(y)). By compactness, from the covering |J Bsw (7) we
2 zeEA 2
can choose a finite number of balls Bse) (x;),7 = 1,..., N which still cover A. Then ¢ = mkin %

2
satisfy the condition of the theorem, i.e. f(Bs(z)) C Be(f(z)) for any = € A.
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Chapter 7

Vector fields and differential forms

7.1 Differential and gradient

Given a vector space V we will denote by V. the vector space V' with the origin translated to the
point x € V. One can think of V, as that tangent space to V' at the point x. Though the parallel
transport allows one to identify spaces V and V, it will be important for us to think about them
as different spaces.

Let f: U — R be a function on a domain U C V in a vector space V. The function f is called

differentiable at a point x € U if there exists a linear function [ : V; — R such that

f(@+h) = f(z) = U(h) + o(||A]])

for any sufficiently small vector h, where the notation o(¢) stands for any function such that

@t—%o. The linear function [ is called the differential of the function f at the point x and
%

is denoted by d. f. In other words, f is differentiable at = € U if for any h € V. there exists a limit

t—0 t

)

and the limit [(h) linearly depends on h. The value [(h) = d, f(h) is called the directional derivative
of f at the point x in the direction h. The function f is called differentiable on the whole domain
U if it is differentiable at each point of U.

Simply speaking, the differentiability of a function means that at a small scale near a point x

the function behaves approximately like a linear function, the differential of the function at the

71



point x. However this linear function varies from point to point, and we call the family {d, f},cv of
all these linear functions the differential of the function f, and denote it by df (without a reference
to a particular point x).

Let us summarize the above discussion. Let f : U — R be a differentiable function. Then for
each point x € U there exists a linear function d, f : V;, — R, the differential of f at the point x
defined by the formula

) = i 10+ 10

,xelUheV,.

We recall that existence of partial derivatives at a point a € U does not guarantee the differen-
tiability of f at the point a. On the other hand if partial derivatives exists in a neighborhood of a
and continuous at the point a then f is differentiable at this point. The functions whose first partial
derivatives are continuous in u are called C'-smooth, or sometimes just smooth. Equivalently, we

can say that f is smooth if the differential d, f continuously depends on the point x € U.

If v1,...,v, are vectors of a basis of V', parallel transported to the point x, then we have
of
def(vi) = =—(x),z€U,i=1,...,n,
F(0) = 52(@)
where x1,...,x, are coordinates with respect to the chosen basis vy, ..., v,.

Notice that if f is a linear function,
f(x)=a1z1+ -+ apzy,
then for each z € V' we have
dyf(h) =aihi + -+ anhy ,h = (h1,...,hy) € V,.

Thus the differential of a linear function f at any point « € V coincides with this function, parallel
transported to the space V.. This observation, in particular, can be applied to linear coordinate

functions z1,...,x, with respect to a chosen basis of V.

In Section [7.7] below we will define the differential for maps f : U — W, where W is a vector

space and not just the real line R.
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7.2 Smooth functions

We recall that existence of partial derivatives at a point a € U does not guarantee the differentia-
bility of f at the point a. On the other hand if partial derivatives exists in a neighborhood of a and
continuous at the point a then f is differentiable at this point. The functions whose first partial
derivatives are continuous in u are called C'-smooth. Equivalently, we can say that f is smooth if
the differential d,. f continuously depends on the point x € U.

More generally, for k > 1 a function f : U — R is called C*-smooth all its partial derivatives
up to order k are continuous in U. The space of C*-smooth functions is denoted by C*(U'). We will
also use the notation C°(U) and C°°(U) which stands, respectively, for the spaces of continuous
functions and functions with continuous derivatives of all orders. In this notes we will often speak
of smooth functions without specifying the class of smoothness, assuming that functions have as

many continuous derivatives as necessary to justify our computations.

Remark 7.1. We will often need to consider smooth maps, functions, vectors fields, differential
forms, etc. defined on a closed subset A of a vector space V. We will always mean by that the these
objects are defined on some open neighborhood U D A. It will be not important for us how exactly
these objects are extended to U but to make sense of differentiability we need to assume that they
are extended. In fact, one can define what differentiability means without any extension, but this
would go beyond the goals of these lecture notes.

Moreover, a theorem of Hassler Whitney asserts that any function smooth on a closed subset

A C V can be extended to a smooth function to a neighborhood U D A.

7.3 Gradient vector field

If V is an Euclidean space, i.e. a vector space with an inner product (, ), then there exists a
canonical isomorphism D : V' — V*, defined by the formula D(v)(z) = (v,z) for v,z € V. Of

course, D defines an isomorphism V, — V* for each = € V. Set

Vi) =D (duf).
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The vector V f(z) is called the gradient of the function f at the point z € U. We will also use
the notation gradf(z).

By definition we have
(Vf(z),h) =d,f(h) for any vector heV.

If ||h|| = 1 then dy f(h) = ||V f(x)|| cos p, where ¢ is the angle between the vectors V f(z) and h. In
particular, the directional derivative d f(h) has its maximal value when ¢ = 0. Thus the direction
of the gradient is the direction of the maximal growth of the function and the length of the gradient
equals this maximal value.

As in the case of a differential, the gradient varies from point to point, and the family of vectors
{Vf(z)}zev is called the gradient vector field V f.

We discuss the general notion of a vector field in Section [7.4] below.

7.4 Vector fields

A wvector field v on a domain U C V is a function which associates to each point z € U a vector
v(x) € Vy, i.e. a vector originated at the point x.

A gradient vector field V f of a function f provides us with an example of a vector field, but as
we shall see, gradient vector fields form only a small very special class of vector fields.

Let v be a vector field on a domain U € V. If we fix a basis in V, and parallel transport this

basis to all spaces V;,x € V, then for any point x € V the vector v(z) € V, is described by its

coordinates (vi(x),va(x),...,v,(x)). Therefore, to define a vector field on U is the same as to define
n functions vy, ...,v, on U, i.e. to define a map (v1,...,v,) : U — R™. We call a vector field v
C*-smooth if the functions v1,..., v, are smooth on U.

Thus, if a basis of V' is fixed, then the difference between the maps U — R™ and vector fields
on U is just a matter of geometric interpretation. When we speak about a vector field v we view
v(z) as a vector in V,, i.e. originated at the point 2z € U. When we speak about a map v : U — R"
we view v(z) as a point of the space V', or as a vector with its origin at 0 € V.

Vector fields naturally arise in a context of Physics, Mechanics, Hydrodynamics, etc. as force,

velocity and other physical fields.
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There is another very important interpretation of vector fields as first order differential opera-
tors.
Let C*°(U) denote the wvector space of infinitely differentiable functions on a domain U C V.

Let v be a C*°-smooth vector field on V. We associate with v a linear operator
D, :C®(U) = C>*(U),

given by the formula
Dy(f) = df (v), f € C=(U).

In other words, we compute at any point « € U the directional derivative of f in the direction of
the vector v(z). Clearly, the operator D, is linear: D, (af+bg) = aD,(f)+bD,(g) for any functions

fyg € C*°(U) and any real numbers a,b € R. It also satisfies the Leibniz rule:

Dy(fg) = Dy(f)g + fDu(9)

In view of the above correspondence between vector fields and first order differential operators
it is sometimes convenient just to view a vector field as a differential operator. Hence, when it will
not be confusing we may drop the notation D, and just directly apply the vector v to a function
f (i.e. write v(f) instead of Dy(f)).

Let v1,...,v, be a basis of V, and z1,...,r, be the coordinate functions in this basis. We
would like to introduce the notation for the vector field obtained from vectors vy, ..., v, by parallel

transporting them to all points of the domain U. To motivate the notation which we are going

to introduce, let us temporarily denote these vector fields by vi,...,vn. Observe that Dy, (f) =
ga{i’ t = 1,...,n. Thus the operator Dy, is just the operator 8%1 of taking i-th partial derivative.
0

Hence, viewing the vector field v; as a differential operator we will just use the notation - instead

of v;. Given any vector field v with coordinate functions ai,as,...,a, : U — R we have

D)) = i) oL (@), for any [ € C*(U),

o0x;
i=1 ¢

n
and hence we can write v = > ai%. Note that the coefficients a; here are functions and not
i=1 ‘

constants.
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7.4.1 GGradient vector field

Suppose that V,(, ) is a Euclidean vector space. Choose a (not necessarily orthonormal) basis
V1,...,Un. Let us find the coordinate description of the gradient vector field Vf, i.e. find the

n
coefficients a; in the expansion V f(z) = ; ai(:z:)a%i. By definition we have

(Vf(x),h) = dyf(h) = Z By (O (7.4.1)

for any vector h € V,, with coordinates (hi,...,hy) in the basis v1,...,v, parallel transported to
Ve Let us denote g;; = (v;,v;). Thus G = (gi;) is a symmetric n x n matrix, which is called the

Gram matriz of the basis vy, ..., v,. Then the equation (7.4.1)) can be rewritten as

Z g]zazh = Z al’J

i,7=1

Because h; are arbitrarily numbers it implies that the coefficients with h; in the right and left sides

should coincide for all j = 1,...,n. Hence we get the following system of linear equations:
n
of :
> gijai= 5 (x), j=1,....n, (7.4.2)
i=1 J

or in matrix form

al %(1:)
G| :|= : )
an %(z)
aj
=gt :

and thus
oL ()
) (7.4.3)
2L ()
i.e.
~ 0
R (744

ij=1
where we denote by g% the entries of the inverse matrix G~ = (g9i5)~ 1

If the basis vy, ..., v, is orthonormal then G is the unit matrix, and thus in this case
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V= Z o 8x (7.4.5)

J
i.e. Vf has coordinates (%, ey %). However, simple expression ((7.4.5) for the gradient holds
only in the orthonormal basis. In the general case one has a more complicated expression

[7-4.4).

7.5 Differential forms

Similarly to vector fields, we can consider fields of exterior forms, i.e. functions on U C V which
associate to each point x € U a k-form from A¥(V;*). These fields of exterior k-forms are called
differential k-forms.

Thus the relation between k-forms and differential k-forms is exactly the same as the relation
between vectors and vector-fields. For instance, a differential 1-form « associates with each point
x € U a linear function a(x) on the space V,. Sometimes we will write o, instead of a(x) to leave

space for the arguments of the function a(z).

Example 7.2. 1. Let f: V — R be a smooth function. Then the differential df is a differential
1-form. Indeed, with each point x € V it associates a linear function d,f on the space V.
As we shall see, most differential 1-form are not differentials of functions (just as most vector

fields are not gradient vector fields).

2. A differential 0-form f on U associates with each point z € U a 0-form on V, i. e. a number

f(z) € R. Thus differential 0-forms on U are just functions U — R.

7.6 Coordinate description of differential forms

Let z1,...,x, be coordinate linear functions on V', which form the basis of V* dual to a chosen
basis v1,...,v, of V. For each ¢ = 1,...,n the differential dx; defines a linear function on each

space V,,x € V. Namely, if h = (hq,...,hy) € V,, then dz;(h) = h;. Indeed

dyi(h) = hmw = h;,

t—0 t
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independently of the base point x € V. Thus differentials dx1, ..., dz, form a basis of the space V*

for each z € V. In particular, any differential 1-form o« on v can be written as

a = fidry + ...+ fodz,,

where f1,..., f, are functions on V. In particular,
of of
df = —d e+ ——dxy,. 6.1
f u ot g de (7.6.1)

Let us point out that this simple expression of the differential of a function holds in an arbitrary
coordinate system, while an analogous simple expression for the gradient vector field
is valid only in the case of Cartesian coordinates. This reflects the fact that while the notion of
differential is intrinsic and independent of any extra choices, one needs to have a background inner

product to define the gradient.

Similarly, any differential 2-form w on a 3-dimensional space can be written as
w = by (z)dxe N\ dxs + by(x)dxs A dxy + bg(x)dxy A dxs

where b1, bs, and b3 are functions on V. Any differential 3-form §2 on a 3-dimensional space V has
the form

Q = c(z)dzy A dxe A dxs
for a function ¢ on V.

More generally, any differential k-form a can be expressed as

o= Z ail_,,ikdacil A A d.%'ik

1<i1 <ig-<ip<n

for some functions a;, . ;, on V.

7.7 Smooth maps and their differentials

Let V,W be two vector spaces of arbitary (not, necessarily, equal) dimensions and U C V be an

open domain in V.
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Recall that a map f : U — W is called differentiable if for each x € U there exists a linear map
1:Ve— Wf(z)

such that

) = iy L2 0 S0

for any h € V. In other words,

f(z+th) — f(z) =ti(h) + o(t), where O(tt) = 0.
The map [ is denoted by d, f and is called the differential of the map f at the point x € U. Thus,
d f is a linear map Vi — Wy(,).
The space Wy, can be identified with W via a parallel transport, and hence sometimes it is
convenient to think about the differential as a map V;, — W, In particular, in the case of a linear
function. i.e. when W = R it is customary to do that, and hence we defined earlier in Section [7.1

the differential of a function f : U — R at a point x € U as a linear function V, — R, i.e. an

element of V', rather than a linear map V; — Wy ().

Let us pick bases in V and W and let (z1,...,2¢) and (y1,...,y,) be the corresponding coor-
dinate functions. Then each of the spaces V, and W, x € V, y € W inherits a basis obtained by
parallel transport of the bases of V' and W. In terms of these bases, the differential d, f is given by

the Jacobi matrix

oh of1
o0z te oxy,
Ofn Ofn
611 T 8:Ek

In what follows we will consider only sufficiently smooth maps, i.e. we assume that all maps

and their coordinate functions are differentiable as many times as we need it.

7.8 Operator f*

Let U be a domain in a vector space V and f : U — W a smooth map. Then the differential df

defines a linear map
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dof : Ve — Wf(x)
for each x € V.

Let w be a differential k-form on W. Thus w defines an exterior k-form on the space W, for

each y e W.

Let us define the differential k-form f*w on U by the formula

(Fwllv, = (@ f) @y,
Here the notation wly, stands for the exterior k-form defined by the differential form w on the

space W,,.
In other words, for any k vectors, Hy,..., H € V, we have
ffw(Hy, ..., Hy) = w(da f(H1), ..., da f(Hk)).

We say that the differential form f*w is induced from w by the map f, or that f*w is the pull-back
of w by f.

Example 7.3. Let Q = h(x)dx; A --- A dzy. Then formula (3.2) implies

" Q=ho fdet Dfdxy A --- N\ dx,.

Here
of1 of
or1 OTn
detDf =|. ..
Ofn Ofn
Ox1 te OTn
is the determinant of the Jacobian matrix of f = (f1,..., fn)-
Similarly to Proposition [L.9) we get
Proposition 7.4. Given 2 maps
U, LU, S U,

and a differential k form w on Us we have
(go ) (w) = f(g"w).
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An important special case of the pull-back operator f* is the restriction operator. Namely Let
L C V be an affine subspace. Let j : L < V be the inclusion map. Then given a differential k-form
a on a domain U C V we can consider the form j*a on the domain U’ := LNU. This form is called
the restriction of the form o to U’ and it is usually denoted by a|;;. Thus the restricted form «l;

is the same form «a but viewed as function of a point a € U’ and vectors T4, ..., Ty € L,.

7.9 Coordinate description of the operator f*

Consider first the linear case. Let A be a linear map V' — W and w € AP(W™*). Let us fix coordinate
systems x1,...,2, in V and yq,...,y, in W. If A is the matrix of the map A then we already have

seen in Section 2.7 that
A*yj = lj(xl, c.. ,xk) = a;171 + a2 + ... + a2y, j=1...,n,
and that for any exterior k-form

w = Z Ail,...,ip Yig N oot A Yi,

1<i1<..<ip<n

we have

Afw = Z Ai1...ipli1 A N

ip-
1<i,<..<ip<n

Now consider the non-linear situation. Let w be a differential p-form on W. Thus it can be

written in the form

w= Z Ay iy (W) dyiy A - dyi,
for some functions A;,..;, on W .
Let U be a domain in V and f : U — W a smooth map.

Proposition 7.5. f*w =" Ay, (f(2))dfi, A...Adfi,, where fi,..., fn are coordinate functions
of the map f.
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Proof. For each point x € U we have, by definition,

frolv, = (def)" (wlwy,)

But the coordinate functions of the linear map d, f are just the differentials d,. f; of the coordinate
functions of the map f. Hence the desired formula follows from the linear case proven in the previous

proposition. |

7.10 Examples

1. Consider the domain U = {r > 0,0 < ¢ < 27} on the plane V = R? with cartesian coordinates
(r,). Let W = R? be another copy of R? with cartesian coordinates (z,y). Consider a map

P :V — W given by the formula

P(r,¢) = (rcosp,rsiny).

This map introduces (r, @) as polar coordinates on the plane W. Set w = dx A dy. It is called

the area form on W. Then
P*w =d(rcosp) Ad(rsing) = (cos edr + rd(cos ¢)) A (sin dr + rd(sin ) =
(cos pdr — rsin pdp) A (sin edr + 7 cos pdy) =
cos ¢ - sin@dr A dr — rsin® odp A dr + rcos? pdr A de — 12 sin p cos pdp A de =

rcos? odr A dp + rsin® dr A de = rdr A de.

2. Let f : R? = R be a smooth function and the map F : R? — R3 be given by the formula

F(z,y) = (z,y, f(z,y))

Let
w= P(x,y,z)dy Ndz+ Q(z,y,2)dz Ndx + R(z,y, z)dz A\ dy
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Figure 7.1: Johann Friedrich Pfaff (1765-1825)

be a differential 2-form on R3. Then

F'v = P(z,y, f(z,y))dy N df +
+ Q(z,y, f(x,y))df Adz + R(z,y, f(z,y))dx A dy
= Plz,y, f(z,y))dy A (fedx + fydy) +
+ Qz,y, f(z,y)(fadz + fydy) Ndz +
+ R(x,y, f(z,y))dz Ndy =
= (R(z,y, f(z,y)) — Pz, y, f(@,9) fa — Qz,y, f(z,y)) fy)dz N dy

where f, f, are partial derivatives of f.

3. If p > k then the pull-back f*w of a p-form w on U to a k-dimensional space V is equal to 0.

7.11 Pfaffian equations

Given a non-zero linear function [ on an n-dimensional vector space V' the equation [ = 0 defines

a hyperplane, i.e. an (n — 1)-dimensional subspace of V.
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Figure 7.2: Contact structure

Suppose we are given a differential 1-form A on a domain U C V. Suppose that A\, # 0 for each
zel.
Then the equation
A=0 (7.11.1)

defines a hyperplane field £ on U, i.e. a family of of hyperplanes {, = {\, =0} C V,, x € U.
The equation of this type is called Pfaffian in honor of a German mathematician Johann

Friedrich Pfaff (1765-1825).

Example 7.6. Let V = R? with coordinates (z,y, z)

1. Let A = dz. Then £ = {dz = 0} is the horizontal plane field which is equal to Span(a%, 8%)
2. Let A = dz—ydx. Then the plane field dz —ydz is shown on Fig. This plane is non-integrable
in the following sense. There are no surfaces in R? tangent to &. This plane field is called a contact

structure. It plays an important role in symplectic and contact geometry, which is, in turn, the

geometric language for Mechanics and Geometric Optics.
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Chapter 8

Exterior differential

8.1 Coordinate definition of the exterior differential

Let us denote by by QF(U) the space of all differential k-forms on U. When we will need to specify
the class of smoothness of coefficients of the form we will use the notation Qf(U ) for the space of
differential k-forms with C'-smooth coefficients, i.e. which depend C'-smoothly on a point of U.

We will define a map
d: QFU) —» QM (D),
or more precisely
d: Qi (U) — QHHU),

(thus assuming that [ > 1), which is called the exterior differential. In the current form it was
introduced by Elie Cartan, but essentially it was known already to Henri Poincaré.

We first define it in coordinates and then prove that the result is independent of the choice

of the coordinate system. Let us fix a coordinate system x1,...,x, in V D U. As a reminder, a
differential k-form w € QF(U) has the form w = > ai,. ;. dxiy, A ... Adv;, where a;, _;, are
11 <...<ip

functions on the domain U. Define

dw = Z dag, .., Ndxi, N A dxg,.
11 <...<tp
n
Examples. 1. Let w € QY(U), i.e. w = Y a;dx;. Then
i=1
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Figure 8.1: Elie Cartan (1869-1951)

dw:zn:dai/\d:cl Z z”: i Adx; = Z (8%—g%)dasz/\dﬂr:J

0x; T
i=1 = = 1<i<j<n v J

For instance, when n = 2 we have

o 8a2 6@1

d(ar1dzy + agdzs) = <8x1 — 3$2) dx1 N dzo

For n = 3, we get
8&3 6(12 8&1 8a3 8(12 8&1
d(ard d drs) = | =— — =—= | dzo/d — — — | dz3Ad —= — — | dziA\dxs.
(a1dz14asdrs+azdes) ((%2 83:3) ToNAT3+ (8303 921 T3Nax+ 921 O T1NAT

2. Let n =3 and w € Q2(U). Then

w = a1dxs A dxs + asdxs A dxy + azdxy A dxs
and

dw = dag ANdxro Ndxs+ das N dxs A dxy + dag A dzy A dxg

o ( 8(11 8a2 aa3

— 4+ — dri Ndxo N d
8x1+8:1:2+8x3) T X9 T3
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Figure 8.2: Henri Poincaré (1854-1912)
3. For O-forms, i.e. functions the exterior differential coincides with the usual differential of a
function.
8.2 Properties of the operator d

Proposition 8.1. For any two differential forms, a € Q¥(U), B € QYU) we have

daAB) =dan B+ (—1)Fa A dB.

Proof. We have

a = Z ailmikdxil VANAN da:ik
11 <...<i
g = Z bji...jzdle VANPIAN diL‘jl
J1<...<Ji
aNp = Z ail...ikdxil VANPAN da:ik A Z bjl...jldle VANPIRAN d.ilfjl
11 <...<ig 7i<...<J1

= Z @iy iy bjy g dxs, AL AN dag, Ndxg, AN dxy,

i1 <...<ip
J1<...<gi
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d(a VAN B) = Z (bjl---jldail---ik + ail---ikdbjl---jl) A d.’L‘il VANPIRAN d(L‘ik A dl‘jl VANAN dle

7i1<"'<ilp
J1<..<J1

= Z bj1--.jzdai1-..ik VAN dl‘il VANPIRAN dl‘lk VAN d.’L’jl VANV dﬂ?jl

i <...<ig
J1<...<J1

+ Z ailmikdbjlmjz A d.%'il VANAN d.%'ik A diﬁjl VANPIAN d:Ejl

i1<...<ip,
<<t

= Z dailmik VAN dZCilm A dl’ik A (Z bjl...jld$j1 VANAN d.%'jl)

11 <...<i

+ (—1)k Z ail.,,,-kdzvil VANPIAN d$ik A Z dbjl...jz A dl’jl VANPIAN diL’jl

11<...<0f 7i<...<Ji

= daAB+(=1)*andp.

Notice that the sign (—1)* appeared because we had to make k transposition to move dbj, .. j, to its

place. |

Proposition 8.2. For any differential k-form w we have

ddw = 0.

Proof. Let w= Y @ . dzy A...Adz; . Then we have
11<...<ip

dw = Z dail,_ik ANdxi, Ao A dl'ik-

11 <...<i

Applying Proposition [8.1] we get

ddw= Y ddai, i, Ndzi, A Ndzi, — dag, i, Addg, AN da, S+
11<...<tp

+ (—1)kdai1mik A d.%'il VANPIAN ddxik.
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But ddf = 0 for any function f as was shown above. Hence all terms in this sum are equal to 0, i.e.

ddw = 0. [ |

Definition. A k-form w is called closed if dw = 0. It is called ezact if there exists a (k — 1)-form 6
such that df = w. The form @ is called the primitive of the form w. The previous theorem can be

reformulated as follows:
Corollary 8.3. Every exact form is closed.

The converse is not true in general. For instance, take a differential 1-form

xdy — ydx
2+ y?

on the punctured plane U = R?\ 0 (i.e the plane R? with the deleted origin). It is easy to calculate
that dw = 0, i.e w is closed. On the other hand it is not exact. Indeed, let us write down this form

in polar coordinates (r, ). We have
T =1TCcosp, Yy =7rsinep.

Hence,

1
w = — (rcos p(sin pdr + rcos pdp) — rsinp(cospdr — rsinpdyp)) = dp .
r

If there were a function H on U such that dH = w, then we would have to have H = ¢ + const,
but this is impossible because the polar coordinate ¢ is not a continuous univalent function on U.

Hence w is not exact.

However, as we will see later, a closed form is exact if it is defined on the whole vector space V.

Proposition 8.4. Operators f* and d commute, i.e. for any differential k-form w € Q¥(W), and
a smooth map f:U — W we have

df*w = f*dw

Proof. Suppose first that £ = 0, i.e. w is a function ¢ : W — R. Then f*¢ = ¢ o f. Then
d(po f) = f*de. Indeed, for any point x € U and a vector X € V, we have
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d(p o f)(X) = de(ds f(X))

(chain rule)

But dp(d. (X)) = f*(dp(X)).

Consider now the case of arbitrary k-form w,

w = Z ai1...ikdxi1 VAN dﬂ?ik.

11 <...<if
Then
frw= 3" ai o fdfi A Adfy,
11<...<ig
where f1,..., f, are coordinate functions of the map f. Using the previous theorem and taking into

account that d(df;) =0, we get

d(ffw)= Y dlay.q, o f) Ndfi, A Ndfs,.

11 <...<ip

On the other hand

dw = Z dailmik A dCL‘il VANIRAN dfl?zk
11<...<0g
and therefore

frdw=">" f*(dai i) Adfiy Ao Adfy
11<...<tp
But according to what is proven above, we have

f*dail---ik- = d(ah--.ik o f)

Thus,

fraw= > d(ai.q 0 f)Ndfiy Ao Adfy, = df*w
11 <...<ig
|
The above theorem shows, in particular, that the definition of the exterior differential is in-

dependent of the choice of the coordinate. Moreover, one can even use non-linear (curvilinear)

coordinate systems, like polar coordinates on the plane.
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8.3 Curvilinear coordinate systems

A (non-linear) coordinate system on a domain U in an n-dimensional space V' is a smooth map

f="(f1,.-., fn) : U= R" such that

1. For each point x € U the differentials d, fi,...,d; f, € (V;)* are linearly independent.

2. f is injective, i.e. f(z) # f(y) for x # y.

Thus a coordinate map f associates n coordinates y1 = fi(z),..., yn = fn(z) with each point
x € U. The inverse map f~! : U’ — U is called the parameterization. Here U’ = f(U) C R®
is the image of U under the map f. If one already has another set of coordinates z; ...z, on
U, then the coordinate map f expresses new coordinates y; ...¥y, through the old one, while the

parametrization map expresses the old coordinate through the new one. Thus the statement

g dw = dg*w

applied to the parametrization map g just tells us that the formula for the exterior differential is

the same in the new coordinates and in the old one.

Consider a space R™ with coordinates (uy, ..., uy). The j-th coordinate line is given by equations
u; = ¢t = 1,...,m;1 # j. Given a domain U’ C R" consider a parameterization map g : U’ —
U C V. The images g{u; = ¢;,i # j}) C U of coordinates lines {u; = ¢;,7 # j} C U’ are called
coordinate lines in U with respect to the curvilinear coordinate system (ui,...,uy). For instance,
coordinate lines for polar coordinates in R? are concentric circles and rays, while coordinate lines
for spherical coordinates in R3 are rays from the origin, and latitudes and meridians on concentric

spheres.

8.4 Geometric definition of the exterior differential

We will show later (see Lemma|10.2) that one can give another equivalent definition of the operator
d) without using any coordinates at all. But as a first step we give below an equivalent definition

of the exterior differential which is manifestly invariant of a choice of affine coordinates.
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Given a point a € V and vectors hy,...,h; € V, we will denote by P,(h1,...,hs) the k-

dimensional parallelepiped

k
1
{a+ 2;%%; uals .., Jug| < 1}

centered at the point a with its sides parallel to the vectors hq, ..., hg, see Fig. ?7. For instance,

for k = 1 the parallelepiped P,(h) is an interval centered at a of length |al.

As it was explained above in Section for a O-form f € Q°(U), i.e. a function f: U — R its
exterior differential is just its usual differential, and hence it can be defined by the formula

(df)a(h) = daf(h) zlim% (f (a—i—th) iy <a t;)) teRheVyacl

t—0 2

Proposition 8.5. Let o € Q¥~1(U) be a differential (k — 1)-form on a domain U C R™. Then for

any point a € U and any vectors hy,...,hy € V, we have

k
1 ) )
(da)a(hl,..., —11 sz (Oz J(thl,... ],...,thk)—a thy (thl,... ] ...,thk)>
— 2

k

1 _ J J
:}g%tz;(l)k I(Oéathhzj(hla"'?\/v"'vhk)a thj(hl,...,\/,...,hk)>
]:

(8.4.1)

For instance, for a 1-form o € QY (U), we have

1
(da)a(ha, h2) := lim <O‘a+“% (the) + 0, (<ths) + @, s (<thy) + oy (thl))

1
= lim (aale(hQ) —a,_u (h2) =, g (1) + aa_thTz(hl))

Proof. First we observe that for a C'-smooth form « the limit in the right-hand side of formula
(8.4.1) exists and define a k-form (i.e. for each a it is a multilinear skewsymmetric function of
vectors hi,...,hy € R?). We can also assume that the vectors hi, ..., hy are linearly independent.
Otherwise, both definitions give 0. Denote L, = Span(hy, ..., h;) C V, and consider the restriction

o = alau. Let (y1,...,yk) be coordinates in L, corresponding to the basis hq, ..., hi. Then we
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j=1
k k ths th A
=>_ D lim et 3) = Bl 2)dy1/\-..\/---/\dyk(hl,...,\]/,...,hk) (8.4.2)
- - t—0 t
7j=1 =1
k k
OP; i
:Zzij(a)dyl/\ \//\dyk(hl7 AV )hk)
j=1i=1 0y;

But

dyl/\...\Z/'-'/\dyk(hl,...,\]/,...,hk):

k y .
Hence, the expression in (8.4.2)) is equal to ;(_1)171%(@' But

k
1 0P,
do! = (Z(_l)zlay> dy1 A /\dyk,

k .
and therefore (da/)q(hq,. .., hg) = Z(—l)’_lg—gl’(a), i.e. the two definitions of the exterior differen-
1 2

tial coincide.

8.5 More about vector fields

Similarly to the case of linear coordinates, given any curvilinear coordinate system (uq,...,u,) in

U, one denotes by

0 0
Ouy’ " Ouy,
the vector fields which correspond to the partial derivatives with respect to the coordinates u1, ..., uy.

In other words, the vector field % is tangent to the u;-coordinate lines and represents the the ve-
locity vector of the curves w; = consty,...,u;—1 = const;_1,u;+1 = const;t1,...,u, = const,,
parameterized by the coordinate wu;.

For instance, suppose we are given spherical coordinates (r,0,¢), r > 0,¢ € [0,7],0 € [0,27) in
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R3. The spherical coordinates are related to the cartesian coordinates (z,y, z) by the formulas

x = rsingcosd, (8.5.1)
y =rsinpsinf, (8.5.2)
Z=TCcosy. (8.5.3)
Then the vector fields
9 9 a2
ar’ oy’ a0

are mutually orthogonal and define the same orientation of the space as the standard Cartesian
coordinates in R3. We also have ||%|| = 1. However the length of vector fields % and % vary. When
r and 6 are fixed and ¢ varies, then the corresponding point (r, 8, ¢) is moving along a meridian of

radius r with a constant angular speed 1. Hence,
) =r
dp''

When r and ¢ are fixed and 6 varies, then the point (7, ¢, ) is moving along a latitude of radius

rsin ¢ with a constant angular speed 1. Hence,
H gll = rsing.

Note that it is customary to introduce unit vector fields in the direction of 2 B % and 77

o 10 19

— e, = —— €= ————
or’ f rop b rsin @ 00

e, =

which form an orthonormal basis at every point. The vector fields e,, ey and e, are not defined at
the origin and at the poles ¢ = 0, 7.
The chain rule allows us to express the vector fields 8%1, cees % through the vector fields

0 ...,%. Indeed, for any function f: U — R we have

oz’
of Oxj
8uz Z 8% ou;’

and, therefore,

Ox; 0
8uz Z ou; 8:13]
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For instance, spherical coordinates (r, 6, ¢) are related to the cartesian coordinates (z,y, z) by
the formulas (8.5.1), and hence we derive the following expression of the vector fields %, %, %

through the vector fields 2, 2,2 .

Oz’ Oy’ 0z -

3, . o) .0
i SIDQOCOSQ%—F smgpsm@a—y—i— oS
0 . ., 0 :
20 —rsmgpsme%+rsmcpcosc98—y,

d 0 ., 0 .0
% = rcosgpcosﬁ%—i—rcosgpsm@a—y—rsmgpa.

8.6 Case n = 3. Summary of isomorphisms

Let U be a domain in the 3-dimensional space V. We will consider 5 spaces associated with U.
O%(U) = C>°(U)—the space of 0-forms, i.e. the space of smooth functions;
QF(U) for k = 1,2,3—the spaces of differential k-forms on U;
Vect(U)—the space of vector fields on U.

Let us fix a volume form w € Q3(U) that is any nowhere vanishing differential 3-form. In coordinates

w can be written as

w = f(x)dxy Adxg A dxs

where the function f : U — R is never equal to 0. The choice of the form w allows us to define the

following isomorphisms.
1. Ay : C®(U) = Q3(U), Ay(h) = hw for any function h € C*®(U).
2. 1y : Vect(U) — Q*(U)  Jy(v) = vJw.

Sometimes we will omit the subscript w an write just A and _.
Our third isomorphism depends on a choice of a scalar product <,> in V. Let us fix a scalar

product. This enables us to define an isomorphism
D =D.~ : Vect(U) — Q1(U)
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which associates with a vector field v on U a differential 1-form D(v) = (v,.). Let us write down the
coordinate expressions for all these isomorphisms. Fix a cartesian coordinate system (x1,x2,x3) in
V' so that the scalar product (z,y) in these coordinates equals x1y; + x2y2 + x3y3. Suppose also

that w = dx1 A dzg A dxs. Then A(h) = hdzy A dxa A dxs.

I(v) = vidxg A dxsg + vadxs A dxy + vsdxy A dxg

where v1, v9, v3 are coordinate functions of the vector field v.

D(v) = vidzy + vadxa + v3dzs.

If V is an oriented Euclidean space then one also has isomorphisms
*: QR V) = 3RV, k=0,1,2,3.

If w is the volume form on V for which the unit cube has volume 1 and which define the given

orientation of V' (equivalently, if w = x1 A 29 A x3 for any Cartesian positive coordinate system on
V), then
Jw(v) =+D(v), and A, =*:Q%(V) = Q3(V).

8.7 Gradient, curl and divergence of a vector field

The above isomorphism, combined with the operation of exterior differentiation, allows us to define

the following operations on the vector fields. First recall that for a function f € C*(U),
gradf = D Y(df).

Now let v € Vect (U) be a vector field. Then its divergence div v is the function defined by the
formula

div v = A~ H(d(w))

In other words, we take the 2-form v Jw (w is the volume form) and compute its exterior differential

d(vJw). The result is a 3-form, and, therefore is proportional to the volume form w, i.e. d(viw) = hw.
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This proportionality coefficient (which is a function; it varies from point to point) is simply the
divergence: div v = h.

Given a vector field v, its curl is as another vector field curl v defined by the formula
curl v := 17 'd(Dv) = D! % d(Dv).

If one fixes a cartesian coordinate system in V such that w = dz; A dza A dxs and (x,y) =

T1Yy1 + Toy2 + T3y3 then we get the following formulas

rad f of of of
& 81’1 ’ 8:62 ’ 81’3
dive = 81)1 81)2 87)3

Ory " Owy | Oy

1 — P e A it At A
curt v (83:2 81‘3’ 8373 (9.%'17 81'1 81‘2)

where v = (v1,v2,v3).

We will discuss the geometric meaning of these operations later in Section ?7.

8.8 Example: expressing vector analysis operations in spherical

coordinates

Given spherical coordinates (r,6, ) in R3, consider orthonormal vector fields

o 19 19

er:57 e@—;% and ey =

rsin @ a0
tangent to the coordinate lines and which form orthonormal basis at every point.

Operator D.

Given a vector field v = a1e, + aze, + azey we compute D v. For any vector field h = hie;, +

hoeg + hse, we have (v, h) = Dv(h). Let us write Dv = c1dr + cadyp + c3df. Then
<V, h> = a1h1 + a2h2 + (13]13
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and

Dv(h) = (cldT + codp + c3df) (hie, + hae, + hgeg)

c cs
= clhldr(er) + Cthdgo(e(p) + C3h3d9(eg) =c1hy + jhg + .3 hs.
r rsin
Hence, ¢y = a1, co = rag, c3 = rasgsinp, i.e.
Dv = aydr + rasdy + rassin pdf. (8.8.1)

Operator *. First we express the volume form Q = dx A dy A dz in spherical coordinates. One
way to do that is just to plug into the form the expression of x,y, z through spherical coordinates.
But we can also argue as follows. We have Q = cdr A dp A df. Let us evaluate both sides of this
equality on vectors e,, e,, ep. Then Q(e,, ey, ey) = 1 because these vectors fields are at every point

orthonormal and define the standard orientation of the space. On the other hand,

(dr Ndp N df)(er, e, ep)

g o0 0 1
o2 sinap(dr/\d@/\de)(g’%’ %) ~ r2sing’

2

and therefore ¢ = r~sin ¢, i.e.

Q = r2sinedr Adp A db.

a
r2sing”

In particular, given a 3-form n = adr A dp A df we get xn =

Let us now compute *dr, *dp and *df. We argue that
xdr = Adp A df, xdf = Bdr Adp, *dp = Cdf A dr.

Indeed, suppose that xdr = Adp A df + A'dO N dr + A”dr A dp and compute the value of both
sides on vectors eg, €;.:

xdr(eg,e,) = dr(es) =0,

because the 2-dimensional volume (i.e the area) of the 2-dimensional parallelepiped P(ey,e;,) and
the 1-dimensional volume (i.e. the length) of the 1-dimensional parallelepiped P(eyp) are both equal
to 1. On the other hand,

(Adp A d6 + A'd0 A dr + A"dr A dip)(eg, e,) = —— A,

7 sin @
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and therefore A’ = 0. Similarly, A” = 0. The argument for *df and *dy is also similar.

It remains to compute the coefficients A, B, C. We have

A
d =dr(e,) = 1= Adp N df(ep, = —,
* dr(ep, eg) r(er) 2 (ep,eq) r2sin g
B
df(e,, =db = — = Bdr N dp(e,, = —,
* df)(e eso) (ep) rsin g r o(e eso) r

1 C
*dp(eg,e,) = do(ey) = o= Cdp Ndr(eg,e;) = rsng

Thus, i.e.
1
A=r’sing, B=——, C =singy,
sin @
1
sdr = r?sindp A df, *df = —— dr A de, *dp = sinpdd A dr. (8.8.2)
sin ¢
Hence we also have
1
*dp A\ df = —dr,
r
x dr A\ dp = sin pdf, (8.8.3)
1
xdd Ndr = ——dp.
sin

Now we are ready to express the vector analysis operations in spherical coordinates.

Exercise 8.6. (Gradient) Given a function f(r,0,¢) expressed in cylindrical coordinates, com-

pute Vf.

Solution. We have

Vf:Dil(frdT+f<ﬂdSO+f0d0):frer"i'fie@"’_ f¢ €p-
r rsin @

Here we denote by f,, f, and fy the respective partial derivatives of the function f.
Exercise 8.7. Given a vector field v = ae, + be, + ceyp compute divv and curlv.

Solution.
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a) Divergence. We have

v 1Q = (ae, + be, + cep) 172 sin pdr A dp A df

= ar?singdp A df + crdr A dp + brsinpdd A dr

and
d(viQ)= ((r2a7« + 2ra) sing + reg + by sing + rbeos @) dr A dp A df
2a ¢ b b
=(ar+ =4+ —2 4+ 224 Zcoty) Q.
r rsing 1 T
Hence,

2 b b
diVV:ar+£+ 0 + -2 4+ —cotop. (8.8.4)
r  rsing r 1

b) Curl. We have
curlv =D '« dDv = D™ % d(adr + rbdp + resin pdb)
=D 1« ((aw —b—rby)dr ANdp + (csinp + repsinp — ag)df A dr

+ (rbyp — regsing — recos p)dp A df)

_1,Tbg —rcy,sinp —reccos csinp 4+ repsing — ag
_p-1 ©
( > dr+ g dip (8.8.5)

+ (ap — b —rby) sin pdf)
rbg — rCyp Sin Y — 1 cos @ n csiny 4+ repsinp — ag
e

- T
r2

- e
rsin ¢ v

a, —b—r1b
- 7 reg.
r

8.9 Complex-valued differential k-forms

One can consider complex-valued differential k-forms. A C-valued differential 1-form is a field of
C-valued k-forms, or simply it is an expression a+ i3, where «, 8 are usual real-valued k-forms. All
operations on complex valued k-forms ( exterior multiplication, pull-back and exterior differential)

are defined in a natural way:
(cr +if1) A (ag +if2) = an Ay — Br A Ba +i(or A B2+ Bi A aa),
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ffla+if) = ffa+if* B, dla+iB) = da +1idfS.

We will be in particular interested in complex valued on C. Note that a complex-valued function
(or 0-form) is on a domain U C C is just a map f = u+iv : U — C. Its differential df is the same as

the differntial of this map, but it also can be viewed as a C-valued differential 1-form df = du+ idv.
Example 8.8.
dz = dzx + idy,dz = dx — idy, zdz = (z + iy)(dzx + idy) = xdx — ydy + i(zdy + ydz),
dz N\ dz = (dz +idy) A (dx — idy) = —2idzx A dy.
Exercise 8.9. Prove that d(z") = nz""!dz for any integer n # 0.

Solution. Let us do the computation in polar coordinates. Then 2" = 7"e™® and assuming

that n # 0 we have
d(z") = " e dr 4 inr"e™dg = nr e (dr + idd).
On the other hand,
nz""ldz = nr" e D0 (rei?) = ppnlein e (ei¢dr + ieid’dqb) = nr"LeM?(dr 4 idg).

Comparing the two expressions we conclude that d(z") = nz""1dz.

It follows that the 1-form ‘Zi—i is exact on C\ 0 for n > 1. Indeed,

ii:d(w@w)

On the other hand the form % is closed on C \ 0 but not exact. Indeed,

dz _ d(r§i¢) _ edr + ?'Teiqﬁdqb _dr 4 ido,
z ret ret® r

and hence d (%) =0.

On the other hand, we already had seen that the form d¢, and hence %, is not exact.
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Chapter 9

Integration of differential forms and

functions

9.1 Useful technical tools: partition of unity and cut-off functions

Let us recall that the support of a function 6 is the closure of the set of points where it is not
equal to 0. We denote the support by Supp(f). We say that 6 is supported in an open set U if
Supp(#) C U.

Lemma 9.1. There exists a C™ function p : R — [0, 00) with the following properties:

o p(x) =0, |z| = 1;

e p(z) >0 for|z| < 1.

Proof. There are a lot of functions with this property. For instance, one can be constructed as

follows. Take the function

e_:%? , >0
h(z) = (9.1.1)
0 , ¢<0.

1
The function e =2 has the property that all its derivatives at 0 are equal to 0, and hence the

function h is C*°-smooth. Then the function p(z) := h(1 + z)h(1 — x) has the required properties.
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Lemma 9.2. EXISTENCE OF CUT-OFF FUNCTIONS Let C' C V' be compact set and U D C' its open
neighborhood. Then there exists a C*°-smooth function ocy @V — [0,00) with its support in U

which is equal to 1 on C

Proof. Let us fix a Euclidean structure in V and a Cartesian coordinate system. Thus we can
identify V with R™ with the standard dot-product. Given a point a € V and § > 0 let us denote

by 14, the bump function on V' defined by

Yas(x) :=p (W) : (9.1.2)

where p : R7[0,00) is the function constructed in Lemma Note that 1, s(x) is a C*°-function

with Supp (¢4,5) = Ds := Bs(a) and such that ¢, s(x) > 0 for € Bs(a).
Let us denote by U.(C) the e-neighborhood of C, i.e.

U(C)={z e Vi3y e C,lly — x|l <e}

There exists € > 0 such that U.(C') C U. Using compactness of C' we can find finitely many points

- . N
21,...,2n € C such that the balls Be(z1), ..., Be(2n) C U cover Ug(C), ie. U<(C) C U Be(z)).
1
Consider a function

'V —> R

N
g1 = Zd}zi,
1

The function ) is positive on Ué(C) and has Supp(¢1) C U.

[SILY

The complement E =V \ Ug(C) is a closed but unbounded set. Take a large R > 0 such that
Bgr(0) D U. Then Eg = Dg(0) \ U< (C) is compact. Choose finitely many points z1,...,zy € ER

M M
such that |J B<(z;) O Eg. Notice that (J B (z;) N C' = @. Denote
1 1

o

M
02 = Zd}ajz,
1

Then the function o5 is positive on Vi and vanishes on C'. Note that the function o1 + o9 is positive

on Br(0) and it coincides with o on C. Finally, define the function o¢ i by the formula

01

ocU =
’ o1+ 02
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on B(R)(0) and extend it to the whole space V' as equal to 0 outside the ball Br(0). Then ocy = 1

on C and Supp(oc,y) C U, as required. [}
Let C C V be a compact set. Consider its finite covering by open sets Uy, ..., Uy, i.e.
N
U U j 2 C.
1
We say that a finite sequence 61, ..., 0k of C'°°-functions defined on some open neighborhood U of

C in V forms a partition of unity over C subordinated to the covering {U;} =1, n if

0j(x) =1 for all z € C;

HMN

e Each function 6;, j = 1,..., K is supported in one of the sets U;, i = 1,..., K.

Lemma 9.3. For any compact set C and its open covering {U;};=1,.. N there exists a partition of

unity over C subordinated to this covering.

Proof. In view of compactness of there exists e > 0 and finitely many balls B.(z;) centered at

K
points z; € C, j =1,..., K, such that | J Bc(z;) D C and each of these balls is contained in one of
1

K
the open sets Uj, j = 1,..., N. Consider the functions 1.,  defined in (9.1.2). We have > Vzie >0
1
on some neighborhood U O C. Let o¢ be the cut-off function constructed in Lemma For
j=1,..., K we define

Yz ,e(@)oc,u ()

= , ifzxel,
(9](17) = ;¢Zj’€(x)
0, otherwise
Each of the functions is supported in one of the open sets U;, j = 1,..., N, and we have for every
zel
K

K ; wz]-,e ()

S0 = f =t

1 ; ¢2j76 (z)
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Figure 9.1: Bernhard Riemann (1826-1866)

9.2 One-dimensional Riemann integral for functions and differen-

tial 1-forms

A partition P of an interval [a,b] is a finite sequence a = ty < t; < -+ < ty = b. We will
denote by 7,7 = 0,..., N the vector t;11 —t; € Ry, and by A; the interval [t;,¢;11]. The length
ti+1 —t; = ||T}|| of the interval A; will be denoted by ¢;. The number [ max d; is called the
fineness or the size of the partition P and will be denoted by §(P). Let us first recall the definition

of (Riemann) integral of a function of one variable. Given a function f : [a,b] — R we will form a

lower and upper integral sums corresponding to the partition P:

N—-1

Z lIlf f ]Jrl — t]’) N
0 tJ7tJ+1

N-1

Z sup  f)(tjq1 —t5), (9.2.1)
0 [titi+l

The function is called Riemann integrable if
sup L(f;P) = inf U(f;P),
P P

and in this case this number is called the (Riemann) integral of the function f over the interval

[a,b]. The integrability of f can be equivalently reformulated as follows. Let us choose a set C' =
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{c1,...,en—1}, ¢ € Aj, and consider an integral sum

N-1

I(f;P,C) = > flej)(tip1 —t)), ¢j € A (9.2.2)
0

Then the function f is integrable if there exists a limit 5(%& OI (f,P,C). In this case this limit is
equal to the integral of f over the interval [a, b]. Let us emphasize that if we already know that the
function is integrable, then to compute the integral one can choose any sequence of integral sum,
provided that their fineness goes to 0. In particular, sometimes it is convenient to choose ¢; = t;,
and in this case we will write I(f;P) instead of I(f;P,C).

The integral has different notations. It can be denoted sometimes by [ f, but the most common
[a,0]

notation for this integral is [ f(z)dz. This notation hints that we are integrating here the differential

form f(x)dz rather than a function f. Indeed, given a differential form o = f(z)dz we have

Jej)(tjpr —tj) = ae, (T])H and hence
I(o;P,C) =I(f;P,C) = Z% ), ¢j € A (9.2.3)

We say that a differential 1-form « is integrable if there exists a limit (lign I(c, P, C), which is
P)—0

called in this case the integral of the differential 1-form « over the oriented interval [a,b] and will

be denoted by f a, or simply f «. By definition, we say that f o= — f a. This agrees with the
[a b] [a b] [a b]
N-1 b
definition f a= 6(%1)&1 > ac;(—=Tj), and with the standard calculus rule f f(z)dz = — [ f(z)dz.
—0 1 b a
[avb]

Let us recall that a map ¢ : [a,b] — [c,d] is called a diffeomorphism if it is smooth and has a

smooth inverse map ¢! : [¢,d] — [a,b]. This is equivalent to one of the following:

e $(a) = c;p(b) = d and ¢’ > 0 everywhere on [a,b]. In this case we say that ¢ preserves

orientation.

e ¢(a) = d;p(b) = ¢ and ¢/ < 0 everywhere on [a,b]. In this case we say that ¢ reverses

orientation.

"Here we parallel transported the vector T from the point t; to the point ¢; € [t;,t;41].
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Theorem 9.4. Let ¢ : [a,b] — [c,d] be a diffeomorphism. Then if a 1-form o = f(x)dx is integrable

over [c,d] then its pull-back f*a is integrable over [a,b], and we have

/qs*a: /a, (9.2.4)

[ab] le,d]

o= fa==[a
lo.d] -

(] le.d]

if ¢ preserves the orientation and

if ¢ reverses the orientation.

Remark 9.5. We will show later a stronger result:
/ P'a= / !
fa.t] o)

for any ¢ : [a,b] — [c,d] with ¢(a) = ¢, ¢(b) = d, which is not necessarily a diffeomorphism.

Proof. We consider only the orientation preserving case, and leave the orientation reversing one
to the reader. Choose any partition P = {a =ty < --- < ty_1 < tny = b} of the interval [a, b] and
choose any set C' = {cg, ..., cn—1} such that ¢; € A;. Then the points £; = ¢(t;) € [¢,d],j =0,... N
form a partition of [¢, d]. Denote this partition by P, and denote Zj = [t,tj41) C [, d], T = ¢(c;)),
C= »(C) ={co,...,cn-1}. Then we have

N-—1 N-—1
10", P,C) = > ¢ ae,(Tj) = Y ag, (dg(Ty)) =
0 0
N-—1

> ag (¢(c))5;). (9.2.5)
0

Recall that according to the mean value theorem there exists a point d; € Aj, such that

Tj =tit1 —tj = d(tjs1) — o(t;) = ¢/ (dj)(tjt1 — t;).

Note also that the function ¢ is uniformly continuous, i.e. for any € > 0 there exists § > 0 such

that for any ¢,t' € [a,b] such that |t — /| < § we have |¢/(t) — ¢/(t')] < €. Besides, the function ¢’
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is bounded above and below by some positive constants: m < ¢’ < M. Hence md; < ’5; < Mo; for

all j=1,..., N — 1. Hence, if 6(P) < § then we have

N-1

I(¢*a,P,C) — I(a; P, 5)‘ =1 ag ((¢(c) = ¢(d;)5) | =
06 N-1 N . o
< SIS @] = = ‘I(a;P,C)‘. (9.2.6)
1
d

When §(P) — 0 we have 6(P) = 0, and hence by assumption I(c; P,C) — J c, but this implies

that I(¢*a, P,C) — I(a; P, C) — 0, and thus ¢*« is integrable over [a,b] and
d

b
[¢a= lim 16°0,P.0)= lm HaP.0)= [a
6(P)—0 5(P)—0
|
If we write o = f(x)dz, then ¢*a = f(p(t))¢'(t)dt and the formula (9.4) takes a familiar form

of the change of variables formula from the 1-variable calculus:

d b
/ f(x)dz = / F(6(0) (1)t

9.3 Integration of differential 1-forms along curves

Curves as paths

A path, or parametrically given curve in a domain U in a vector space V' is a map 7 : [a,b] — U. We
will assume in what follows that all considered paths are differentiable. Given a differential 1-form
« in U we define the integral of a over v by the formula

!a:/’y*a.

[a,b]

Example 9.6. Consider the form o = dz — ydx + xdy on R3. Let v : [0,27] — R? be a heliz given

by parametric equations z = Rcost,y = Rsint, z = Ct. Then

2m 2
/a = /(C’dt + R*(sin*tdt + cos® tdt)) = /(C + R?)dt = 27(C + R?).
v 0 0
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Note that [« =0 when C = —R?. One can observe that in this case the curve v is tangent to the

v
plane field £ given by the Pfaffian equation o = 0.

Proposition 9.7. Let a path 7 be obtained from v : [a,b] — U by a reparameterization, i.e.

3y =~v0¢, where ¢ : [¢,d] — [a,b] is an orientation preserving diffeomorphism. Then [a = [ a.
v Y

Indeed, applying Theorem [9.4] we get

d d b
[a=[7a= [0 [va= [a
5 c c a Y
A vector 7/(t) € V) is called the velocity vector of the path .

Curves as 1-dimensional submanifolds

A subset I' C U is called a 1-dimensional submanifold of U if for any point x € I there is a
neighborhood U, C U and a diffeomorphism ®, : U, — Q, C R", such that ®,(z) = 0 € R™ and
¢, (I'NU,) either coincides with {2 = ... 2, = 0} NQy,, or with {zo =...2, =0, 21 >0} NQ,. In
the latter case the point x is called a boundary point of I'. In the former case it is called an interior
point of I'.

A 1-dimensional submanifold is called closed if it is compact and has no boundary. An example
of a closed 1-dimensional manifold is the circle S' = {22 + 4% = 1} C R2.

WARNING. The word closed is used here in a different sense than when one speaks about closed
subsets. For instance, a circle in R? is both, a closed subset and a closed 1-dimensional submanifold,
while a closed interval is a closed subset but not a closed submanifold: it has 2 boundary points.
An open interval in R (or any R™) is a submanifold without boundary but it is not closed because
it is not compact. A line in a vector space is a 1-dimensional submanifold which is a closed subset

of the ambient vector space. However, it is not compact, and hence not a closed submanifold.

Proposition 9.8. 1. Suppose that a path v : [a,b] — U is an embedding. This means that
Y(t) # 0 for all t € [a,b] and v(t) # ~v(t') if t # t’E| Then T' = ~([a,b]) is 1-dimensional

compact submanifold with boundary.

2If only the former property is satisfied that - is called an immersion.
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2. Suppose I' C U is given by equations F1 =0,...,F,_1 =0 where Fy,...,F,_1: U — R are
smooth functions such that for each point x € I" the differential d, F1,...,d.F,_1 are linearly

independent. Then I' is a 1-dimensional submanifold of U.

3. Any compact connected 1-dimensional submanifold T' C U can be parameterized either by an
embedding v : [a,b] — T < U if it has non-empty boundary, or by an embedding v : S* —
I' = U if it is closed.

Proof. 1. Take a point ¢ € [a,b]. By assumption 7'(c) # 0. Let us choose an affine coordinate
system (y1,...,y,) in V centered at the point C' = v(¢) such that the vector 7/(¢) € Vi coincide
with the first basic vector. In these coordinates the map gamma can be written as (y1,...,7n)
where v} (c) = 1, 7;-(0) =0 for j > 1 and 7;(c) = 0 for all j = 1,...,n. By the inverse function
theorem the function ~; is a diffeomorphism of a neighborhood of ¢ onto a neighborhood of 0 in
R (if ¢ is one of the end points of the interval, then it is a diffeomorphism onto the corresponding
one-sided neighborhood of 0). Let o be the inverse function defined on the interval A equal to
(—0,90), [0,0) and (—4, 0], respectively, depending on whether ¢ is an interior point, ¢ = a or ¢ = b).

so that v (o(u)) = u for any v € A. Denote A = o(A) C [a,b]. Then v(A) C U can be given by

the equations:

Y2 =Y2(u) == y2(0(y1))s -y Yn = Tu(u) = vm(o(y1)); y1 € A.

Let us denote

0 =0(0) = max max|y;(u)|.

Denote
Bs = {lya| <61yl < 0(9)}-
We have v(A) C Py.

We will show now that for a sufficiently small § we have ([a,b]) N Ps = y(A). For every
point ¢ € [a,b] \ Int A denote d(t) = ||v(¢t) — v(c)||- Recall now the condition that ~(t) # ~(t')
for t # t'. Hence d(t) > 0 for all ¢ € [a,b] \ Int A. The function d(t) is continuous and hence
achieve the minimum value on the compact set [a,b] \ Int A. Denote d :=  min  d(¢) > 0. Chose

t€[a,b]\Int A
§’ < min(d,d) and such that #(¢') = max max, [¥j(u)] < d. Let A’ = AN {|u] <§'}|. Then
— < !

=20 [u—]

’Y([avb]) NPy = {y2 = ﬁQ(u% sy Yn = ;?n(u); Y1 € A/}
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2. Take a point ¢ € I'. The linear independent 1-forms d.Fi,...,d.F,,—1 € V. can be completed
by a 1-form [ € V' to a basis of V. We can choose an affine coordinate system in V' with c as its
origin and such that the function x,, coincides with [. Then the Jacobian matrix of the functions
Py, ..., F,_1,x, is non-degenerate at ¢ = 0, and hence by the inverse function theorem the map

F = (F,...,Fo-1,2) : V. — R”™ is invertible in the neighborhood of ¢ = 0, and hence these

functions can be chosen as new curvilinear coordinates y; = Fi,...,yn—1 = Fn_1,yn = x5 near the
point ¢ = 0. In these coordinates the curve I' is given near ¢ by the equations y; =--- = y,—1 = 0.
3. See Exercise 77. [ ]

In the case where I' is closed we will usually parameterize it by a path v : [a,b] - T C U
with (a) = ~(b). For instance, we parameterize the circle S! = {22 + 4> = 1} C R? by a path
[0, 27] +— (cost,sint). Such v, of course, cannot be an embedding, but we will require that 7/(t) # 0
and that for ¢t # t' we have v(t) # v(t') unless one of these points is a and the other one is b. We
will refer to 1-dimensional submanifolds simply as curves, respectively closed, with boundary etc.

Given a curve I its tangent line at a point = € I' is a subspace of V, generated by the velocity
vector /(t) for any local parameterization v : [a,b] — T with «(¢) = x. If T is given implicitly, as in
@2, then the tangent line is defined in V. by the system of linear equations d, F1 =0, ...,dF,,—1 =
0.

Orientation of a curve I' is the continuously depending on points orientation of all its tangent
lines. If the curve is given as a path v : [a,b] — I' C U such that /(¢) # 0 for all ¢ € [a,b] than
it is canonically oriented. Indeed, the orientation of its tangent line [, at a point x = (t) € I" is
defined by the velocity vector 7/(t) € I,.

It turns out that one can define an integral of a differential form « over an oriented compact
curve directly without referring to its parameterization. For simplicity we will restrict our discussion
to the case when the form « is continuous.

Let T' be a compact connected oriented curve. A partition of T is a sequence of points P =
{20,21,...,2n} ordered according to the orientation of the curve and such that the boundary
points of the curve (if they exist) are included into this sequence. If I' is closed we assume that
zn = zp. The fineness 6(P) of P is by definition is max dist(zj, zj+1) (we assume here that V

7=0,...,.N
a Euclidean space).
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Definition 9.9. Let o be a differential 1-form and I' a compact connected oriented curve. Let

P ={z0,...,2n} be its partition. Then we define

6(P)—0

/a— lim I(a,P),
r

N-1
where I(a, P) = Y ., (Z;), Zj=zj11— 2 € V.
0

When T is a closed submanifold then one sometimes uses the notation f « instead of f Q.
T r

Proposition 9.10. If one chooses a parameterization v : [a,b] — T' which respects the given

b
/a:/v*a:/a.
vy a T

Proof. Indeed, let P = {to,...,tn} be a partition of [a, b] such that v(¢;) = 2z, j =0,...,N.

orientation of I' then

N-1

N-1
I(y'a,P)= Y 7o, (Tj) = Y as,(U)),
1

1
where U; = dy;y(Tj)) € V2, is a tangent vector to I' at the point z;. Let us evaluate the difference
Uj—Zj. Choosing some Cartesian coordinates in V' we denote by 71, ... ,7, the coordinate functions
of the path . Then using the mean value theorem for each of the coordinate functions we get

Yi(tjs1) —vi(t;) = vg(cé-)dj for some c;'. €eAj,i=1,...,n; j=0,...,N — 1. Thus
Zj = (tj) = () = (11(c5)s -, 7i(E]))d;

On the other hand, U; = dy;+(T})) € V., = +'(t;)0;. Hence,

n

12; = Ujll = 65| (i) = 7i(t;))?-
1

Note that if 6(P) — 0 then we also have 6(P) — 0, and hence using smoothness of the path v we

conclude that for any € > 0 there exists § > 0 such that ||Z; — U;|| < ed; for all j =1,...,N. Thus

N—1 N N—1
2 (1) — 2 (Z; 07
;0‘](]) ;04]( ])6(—>7?)
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and therefore

§(P)—=0 5(P)—0

Se—_

va = lim I(v*a,P)= lim I(a,P):/a.
Tr

9.4 Integrals of closed and exact differential 1-forms

Theorem 9.11. Let o = df be an exact 1-form in a domain U C V. Then for any path~ : [a,b] — U

which connects points A = ~y(a) and B = ~(b) we have

[a=1®)- s,

~

In particular, if v is a loop then fa = 0.
¥

Similarly for an oriented curve I' C U with boundary ' = B — A we have

[a=1m)- s,

r

Proof. We have [ df = [+df = [ d(f o) = F(1(5)) — F(3(a)) = F(B) — F(A) .
o4 a

a

It turns out that closed forms are locally exact. A domain U C V is called star-shaped with
respect to a point a € V' if with any point x € U it contains the whole interval I, ; connecting a

and z, i.e. I, = {a+t(x —a); t € [0,1]}. In particular, any convex domain is star-shaped.
Proposition 9.12. Let a be a closed 1-form in a star-shaped domain U C V. Then it is exact.

Proof. Define a function F': U — R by the formula

F(x) = /a, zeU,
—
Ia,,z
where the intervals I, , are oriented from 0 to x.

We claim that dF = «. Let us identify V' with the R™ choosing a as the origin a = 0. Then «

n
can be written as o = ) Py(x)dzy, and Iy, can be parameterized by
1
t—tx, t €[0,1].
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Hence,

n

1
a= /ZPk(t:E)xkdt. (9.4.1)
o1

»q
"
l—

I

o

, T

Differentiating the integral over x; as parameters, we get

1
8:5] /Z ;Ukt:cdt—F/P] (tx)d
0

But da = 0 implies that BP = gf , and using this we can further write

Thus

dF = d ;=Y _ Pi(z)dz =

9.5 Integration of functions over domains in high-dimensional spaces

Riemann integral over a domain in R".

In this section we will discuss integration of bounded functions over bounded sets in a vector space
V. We will fix a basis ej, ..., e, and the corresponding coordinate system zi,...,x, in the space
and thus will identify V with R™. Let n denote the volume form x1 A ...x,. As it will be clear
below, the definition of an integral will not depend on the choice of a coordinate system but only
on the background volume form, or rather its absolute value because the orientation of V will be
irrelevant.

We will need a special class of parallelepipeds in V', namely those which are generated by vectors
proportional to basic vectors, or in other words, parallelepipeds with edges parallel to the coordinate
axes. We will also allow these parallelepipeds to be parallel transported anywhere in the space. Let
us denote

P(ay,by;a,be;...5an,b,) i ={a; <x; <bj; i=1,...,n} CR"™
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We will refer to P(a1,b1;az2,b2;...5an,by,) as a special parallelepiped, or rectangle.

Let us fix one rectangle P := P(aq,b1;ag,bo;. . .;an,by). Following the same scheme as we used
in the 1-dimensional case, we define a partition P of P as a product of partitions a; = t(lJ <<
tzlvl =b1, ... ap =15 <. <t} = by, of intervals [a1,b1], ..., [an, by]. For simplicity of notation

we will always assume that each of the coordinate intervals is partitioned into the same number

of intervals, i.e. Ny = --- = N, = N. This defines a partition of P into N" smaller rectangles
P, = {t}1 <r < tjl-l+1, sty <@, <7 4}, where j = (ji,...,jn) and each index jj takes

values between 0 and N — 1. Let us define
n
Vol(Py) == [ (5 11— th). (9.5.1)
k=1

This agrees with the definition of the volume of a parallelepiped which we introduced earlier (see

formula (3.3.1) in Section . We will also denote 6 := max (ﬁkJrl - tfk) and §(P) := max(d;).
= 7” J

goon

Let us fix a point ¢; € P; and denote by C' the set of all such ¢j. Given a function f : P — R we
form an integral sum

I(f;P,C)=>_ f(¢)Vol(Py) (9.5.2)

J

where the sum is taken over all elements of the partition. If there exists a limit 0(17131)2 . I(f;P,C)
then the function f: P — R is called integrable (in the sense of Riemann) over P, and this limit is
called the integral of f over P. There exist several different notations for this integral: [ f, [ fdV/,
[ fdVol, etc. In the particular case of n = 2 one often uses notation [ fdA, or [[ fdA. Sogletir};e, the
Ifjunctions we integrate may depend on a parameter, and in these casgs itis imp](;rtant to indicate with
respect to which variable we integrate. Hence, one also uses the notation like [ f(z,y)dz", where
the index n refers to the dimension of the space over which we integrate. One alleo use the notation

/. . ./f(ml, ... Zp)dzy ... dz,, which is reminiscent both of the integral [, f(z1,...2n)dz1 A~ - A

P
bn b1
dx;, which will be defined later in Section [9.7| and the notation [ ... [ f(z1,...z,)dz1 ... dx, for
an al

n interated integral which will be discussed In Section

Alternatively and equivalently the integrability can be defined via upper and lower integral sum,
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similar to the 1-dimensional case. Namely, we define

Z M;(f)Vol(Py), L(f ZmJ f)Vol(P;

where M;(f) = sup f,m;(f) = 1Ef f, and say that the function f is integrable over P if i%f U(f;P)=
P, )

i
sup L(f, P).
P
Note that i%f U(f;P) and sup L(f,P) are sometimes called upper and lower integrals, respec-
P

tively, and denoted by T f and [ f. Thus a function f: P — R is integrable iff T r=_r.
P P P P
Let us list some properties of Riemann integrable functions and integrals.

Proposition 9.13. Let f,g: P — R be integrable functions. Then

1. af +bg, where a,b € R, is integrable and [af +bg=a [ f+b [ g;
P P P

2. If f<gthen [ f< [g;
P P

3. h = max(f, g) is integrable; in particular the functions fy := max(f,0) and f— := max(—f,0)

and |f| = fy+ + f— are integrable;

4. fg is integrable.

Proof. Parts 1 and 2 are straightforward and we leave them to the reader as an exercise. Let us
check properties 3 and 4.
3. Take any partition P of P. Note that

Mj(h) —mjs(h) < max(M;(f) —m;(f), M;(g) —m;(g)) - (9.5.3)

Indeed, we have Mj(h) = max(M;(f), M;(g)) and m;(h) > max(m;(f), mj(g)). Suppose for deter-
minacy that max(M;(f), Mj(g)) = Mj(f). We also have mj(h) > m;(f). Thus

Mj(h) —mj(h) < Mj(f) —my(f) < max(M;(f) —m;(f), M;(g) —m;(g))-
Then using we have
U(hP) = L(h:; P) =y _(Mj(h) — my(h))Vol(Py) <

> “max (Mj(f) — m;(f), Mj(g) — m;(g)) Vol(P}) =

max (U(f;P) — L(f;P),U(f;P) — L(f;P)).



By assumption the right-hand side can be made arbitrarily small for an appropriate choice of the
partition P, and hence h is integrable.

4. We have f = fr — f-, g = g+ —g- and fg = frg9+ + f-g- — f+9- — f-g+. Hence, using 1
and 3 we can assume that the functions f, g are non-negative. Let us recall that the functions f, g

are by assumption bounded, i.e. there exists a constant C > 0 such that f,g < C. We also have

M;(fg) < M;(f)M;j(g) and m;(fg) = m;(f)m;(g). Hence

U(fg;P) = L(fg;P) = Y (Mj(fg) — m;(fg)) Vol(F;) <
j
Z(Mj(f)Mj(g) —m;(f)mj(g))Vol(F}) =
J
Z (M;(f)M;(g) — m;(f)M;(g) + my(f)M;(g) — m;(f)m;(g)) Vol(Py) <
Z (M;(f) —my(f))M;(g) +m;(f)(M;(g) —m;j(g))) Vol(Fy) <
J

CU(f;P) = L(f;P)+U(g; P) — L(g; P))-

By assumption the right-hand side can be made arbitrarily small for an appropriate choice of the

partition P, and hence fg is integrable. |

Consider now a bounded subset K C R™ and choose a rectangle P O K. Given any function
f: K — R one can always extend it to P as equal to 0. A function f : K — R is called integrable
over K if this trivial extension f is integrable over P, and we define [ fdV := [ fdV. When this

K
will not be confusing we will usually keep the notation f for the above extension.

Volume

We further define the volume

Vol(K) = /1dV = /XKdV,
K P

provided that this integral exists. In this case we call the set K measurable in the sense of Riemann,

or just measurableﬂ Here x i is the characteristic or indicator function of K, i.e. the function which

3There exists a more general and more common notion of measurability in the sense of Lebesgue. Any Riemann

measurable set is also measurable in the sense of Lebesgue, but not the other way around. Historically an attribution
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is equal to 1 on K and 0 elsewhere. In the 2-dimensional case the volume is called the area, and in

the 1-dimensional case the length.

Remark 9.14. For any bounded set A there is defined a lower and upper volumes,

Vol(A) = / xadV < Vol(A) = / XadV.

The set is measurable iff Vol(A) = Vol(A). If Vol(A) = 0 then Vol(A) = 0, and hence A is
measurable and Vol(A4) = 0.

Exercise 9.15. Prove that for the rectangles this definition of the volume coincides with the one

given by the formula (9.5.1]).

The next proposition lists some properties of the volume.

Proposition 9.16. 1. Volume is monotone, i.e. if A, B C P are measurable and A C B then
Vol(A4) < Vol(B).

2. If sets A, B C P are measurable then AN B, A\ B and AU B are measurable as well and we
have

Vol(A U B) = Vol(A) + Vol(B) — Vol(AN B).

3. If A can be covered by a measurable set of arbitrarily small total volume then Vol(A) = 0.
Conwversely, if Vol(A) = 0 then for any € > 0 there exists a 6 > 0 such that for any partition
P with §(P) < § the elements of the partition which intersect A have arbitrarily small total

volume.
4. A is measurable iff Vol (0A) = 0.

Proof. The first statement is obvious. To prove the second one, we observe that x aup = max(x4, xB),
XANB = XAXB, Max(XA, XB) = XA + XB — XAXB, XA\B = XA — Xans and then apply Proposition
To prove [0.16]3 we first observe that if a set B is measurable and VolB < e then then for a
sufficiently fine partition P we have U(xp;P) < VolB + € < 2¢. Since A C B then x4 < xp, and

of this notion to Riemann is incorrect. It was defined by Camille Jordan and Giuseppe Peano before Riemann integral

was introduced. What we call in these notes volume is also known by the name Jordan content.
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therefore U(xa,P) < U(xn,P) < 2¢. Thus, infp U(xa,P) = 0 and therefore A is measurable and
Vol(A4) = 0. Conversely, if Vol(A) = 0 then for any € > 0 for a sufficiently fine partition P we have
U(xa;P) < e. But U(xa;P) is equal to the sum of volumes of elements of the partition which have
non-empty intersection with A.

Finally, let us prove [0.16/4. Consider any partition P of P and form lower and upper integral
sums for x 4. Denote Mj := Mj(x4) and mj = m;(xa). Then all numbers Mj, m; are equal to either
0or 1. We have Mj =m; =1if P, C A; Mj=m; =0if N A =@ and M; = 1,m; = 0 if P} has
non-empty intersection with both A and P\ A. In particular,

B(P):= |J BooA
JiMj—m;=1
Hence, we have
U(xa; P) = L(xa; P) = Y _(Mj — m;)Vol(P;) = VolB(P).
j
Suppose that A is measurable. Then there exists a partition such that U(xa;P) — L(xa;P) < ¢,
and hence 0A is can be covered by the set B(P) of volume < e. Thus applying part 3 we conclude
that Vol(0A) = 0. Conversely, we had seen below that if Vol(0A) = 0 then there exists a partition

such that the total volume of the elements intersecting 0A is < €. Hence, for this partition we have

L(xa;P) <U(xa;P) < ¢, which implies the integrability of x 4, and hence measurability of A. W

Corollary 9.17. If a bounded set A C V is measurable then its interior Int A and its closure A

are also measurable and we have in this case
VolA = VolInt A = VolA.

Proof. 1. We have 94 C 0A and 9(Int A) C OA. Therefore, VolOA = VoldInt A = 0, and
therefore the sets A and Int A are measurable. Also Int AUOA = A and Int ANOA = &. Hence, the
additivity of the volume implies that VolA = Vol 9 Int A+ Vol A = Vol 9 Int A. On the other hand,
Int A C A C A. and hence the monotonicity of the volume implies that Vol Int A < Vol A < Vol A.
Hence, Vol A = Vol Int A = Vol A. |

Exercise 9.18. If Int A or A are measurable then this does not imply that A is measurable. For
instance, if A is the set of rational points in interval I = [0,1] C R then Int A = @ and A = I.

However, show that A is not Riemann measurable.
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2. A set A is called nowhere dense if Int A = @. Prove that if A is nowhere dense then either
VolA = 0, or A is not measurable in the sense of Riemann. Find an example of a non-measurable

nowhere dense set.

Lipshitz maps

Let V, W be two Euclidean spaces. Recall the definition of the norm of a linear operator A : V — W

Thus we have A(BRr(0)) C B,r(0) C W, where we denoted a := ||All.
Given a subset A C V amap f: A — W is called Lipshitz if there exists a constant C' > 0 such

that for any x,y € A we have

1f(y) = f(@)]| < Clly — =]
Lemma 9.19. Let A C V be a compact set. Then any C'-smooth map A — W is Lipshitz.

Let us recall that given a compact set C' C V', we say that a map f : C — W is smooth if it
extends to a smooth map defined on an open neighborhood U O C.

Proof. Let K : A — R be the function defined by K(x) = ||d,f||,z € A. The function K is
continuous because f is C'-smooth. Hence it is bounded: there exists a constant E > 0 such that
K(x) < E for all x € A.

Let us first consider the case when A is a convex set, i.e. with any two points x,y € A the interval
connecting them is also contained in A. Given two points z,y € A at a distance d = ||z — y|| > 0
consider a path ¢(s) =z + 5(y — x), s € [0,d] which connects them. Note that the velocity vector
¢'(s) = Y5% has the unit length. Denote f(s) = f(¢(s)),s € [0,d]. Note that f(s) = df p(s) (¢ (5))

by the chain rule. In particular,

LI < dfao 1|6 (s)]] < E.

We also have f(y) — f(z) = f(d) — f(0). Let f = (f1,...,fm) be the coordinate functions of f

in some Cartesian coordinates in W. By the intermediate value theorem, for each £k =1,...,n we
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have fj,(d) — fr(0) = Ji(ck)d for some ¢ € [0,d]. Hence, | fr(d) — f(0)| < Cd and therefore

n

1/ () = F@) = 1£(@) = FOl = | D (fr(d) = [x(0)? < Ev/nd = B|ly — =], (9-5.4)
1
where we denoted E := E\/n.
For a general bounded set A choose an open neighborhood U O A to which the map f extends
C'-smoothly. Let U’ C U be a smaller open neighborhood of A such that U c U. We will also
assume that U is bounded, and hence compact.

For every point = € A there is ¢(x) > 0 such that the closed ball B(,)(z) is contained in U’. We

have |J Bew (z) D A, and hence by compactness of A there are finitely many balls B; := B, (),
x€EA 2 2

N
i=1,...,N, such that | JB; D A. Denote € := IlninN 6(:2”). Then for any two points z,y € A with
1 i=1,...,

lly — z|| < € belong to one of the balls B; := Be(z,)(w;) which is convex, and hence according to
(9:54) we have ||f(y) — f(x)|| < Elly — =l.
Denote by D the diameter of the compact set f(A), i.e. D := max ||f(y) — f(z)||- Then if for
I?y

the distance between two points x,y € A is > € we have ||f(y) — f(z)|| < %Hy — z||. Finally, if we

denote C := max(E, £) we get

I|f(y) — f(2)|| < C|ly — z|| for any z,y € A.

Volume and smooth maps

Lemma 9.20. Let A C V be a compact set of volume 0 and f : V — W a Lipshitz map, where
dim W > dim V. Then Volf(A) = 0.

Proof. According to Lemma [9.19| there is a constant C' > 0 such that ||f(y) — f(z)]| < C|ly — ||
for any x,y € A. In particular, the image f(P) of a cube P of size § in V,,, x € A, centered at z, is
contained in a cube of size K¢ in Wy (,) centered at f(z).

The volume 0 assumption implies that for any € > 0 there exists a partition of some size § > 0

of a larger cube containing A such that the total volume N&™ of cubes Py, ..., Py intersecting A
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N .
is < e. But then |J f(P;) D f(A) while Vol,,,(f(P;)) < KM§™, and hence
1

Vol f(A) < N6"K™5™™™ < eK™6™ ™ to — 0.

e—0

Corollary 9.21. Let A C V be any compact set and f : A — W a C'-smooth map. Suppose that
n=dmV <m=dimW. Then Vol(f(A)) = 0.

Indeed, f can be extended to a smooth map defined on a neighborhood of A x 0 in V xR (e.g.
as independent of the new coordinate ¢ € R). But Vol,;11(A x 0) = 0 and m > n + 1. Hence, the

required statement follows from Lemma [9.20

Remark 9.22. The statement of Corollary is wrong for continuous maps. For instance, there
exists a continuous map h : [0,1] — R? such that A([0,1]) is the square {0 < 21,21 < 1}. (This is

a famous Peano curve passing through every point of the square.)

Corollary is a simplest special case of Sard’s theorem which asserts that the set of critical

values of a sufficiently smooth map has volume 0. More precisely,

Proposition 9.23. (A. SARD, 1942) Given a C*-smooth map f: A — W (where A is a compact
subset of V, dimV = n,dim W = m) let us denote by

Y(f) : {z € A; rankd, f < m}.
Then if k > max(n —m + 1,1) then Vol,,,(f(X(f)) = 0.

If m > n then 3(f) = A, and hence the statement is equivalent to Corollary
Proof. We prove the proposition only for the case m = n.

To clarify the main idea we first consider the case when n = 1 and A = [0,1], i.e. f is a
function f: A — R with a continuous derivative f’. According to Cantor’s theorem f’ is uniformly

continuous and hence for any € there exists § > 0 such that
|f'(z) — f'(y)| < e when |z — y| < 6. (9.5.5)

Let us take a partition of the interval of the size < §. Let Iy, ..., Iy be the interval of the partition

which contain critical points, i.e. points where the derivative is 0. Then for any point ¢ in on
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of these intervals |f’(c)| < €, and hence by the intermidiate value theorem for any two points
z,y €1, j=1,...,N we have |f(z) — f(y)| = |f(¢)||x — y| < €I, i.e. the image f(I;) is contained
in an interval of length ed. But total length of theintrvals I; is < 1, and thus f(X)(f) is covered by
the union of intervals of the total length < e. Hence Vol; (f(3(f))) = 0.

Consider now the case of a general n. Again the C''-smoothness of f implies that d, f is uniformly

continuous, i.e. for every € > 0 there exists § > 0 such that
|dsf — dyf|| < € when ||z —y|| <. (9.5.6)

The inequality ||d,f — dy f|| < € means that for any unit vector i in V'

lde f(h) = dy f(R)]| < e, (9.5.7)

where we parallel transport the vector A to points x and y.

Consider a partition of a cube () containing A by cubes of size < %, so that the ball sur-
rounding each of the cubes and centered at any point of the cube has radius < 4.

Let Q1,...,Qn be the cubes of the partition intersecting ¥(f). The total volume 2" =3 N§™
of these cubes is bounded by VolP, where P is a fixed cube containing A.

Choose a point ¢; € Q;NE(f) foreach j =1,..., N Let By,..., By be balls of radius ¢ centered
at ¢j. As we already pointed out, B; D @) for each j =1,..., N.

The differential d, f is degenerate, and hence the image d., f(V;) C Wi(c;) is contained in a
codimension 1 subspace L;j C Wy(.,). Let us choose a Cartesian coordinate system (Y1,---,Yn) in
Wi(c,) such that L; = {yn = 0} we can view y; as coordinates in V with the origin shifted to
f(cj). Let (fi,..., fn) be the coordinate functions of f with respect to these coordinates. Then
de; fn. = 0, i.e. the directional derivatives of the function f at ¢; at every direction are equal to 0.
But then according to inequality the (absolute value of the) directional derivatives of f,, at
any point of B; are < e. Hence, using our above 1-dimensional argument along each radius of Bj,
we conclude that |f, ()| < €4, i.e. the image f(B;) is contained in an ed-neighborhood Ues of the
hyperplane L; viewed as an affine hyperplane in V. We also recall that the map f is Lipshitz, and
hence the image f(Bj;) is contained in a ball Bg;(f(c;)) C W of radius K6 centered at f(c;) for
some constant K > 0. Hence, f(B;) C Uess N Bis(f(cj)), so f(B;) is contained in a rectangular P;
with all sides equal to 2K§ and one side of size 2¢§. In particular, Vol(P;) = K"~12"§".
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Therefore, f(X(f) can be covered by N such rectangular of total volume

K" 19" N§"e = (K" 'nzVolP)e — 0.

e—0

Hence, Volf(X(f)) = 0. [

Corollary 9.24. Let A C R" be a measurable set and f : A — RY, where ¢ > n, be a C-smooth

map. Then the image f(A) C RY is also measurable.

Proof. If ¢ > n then Vol,f(A) = 0 according to Corollary and hence f(A) is measurable.
Suppose that ¢ = n. Then for any interior point a € A such that rankd, f = n the image f(a) is an
interior point of f(A) according to the implicit function theorem. Hence, the boundary 9(f(A)) C
FOA)U f(X(f)), where X(f) is the set critical points of f (i.e. points a € A where rankd,f < n).
But Vol0A = 0 and hence, according to Lemma Vol(f(0A)) = 0. On the other hand, Sard’s
theorem implies that Volf(3(f)) = 0, and therefore Vol(0f(A)) = 0, which means that f(A)

is measurable.

Properties which hold almost everywhere

We say that some property holds almost everywhere (we will abbreviate a.e.) if it holds in the
complement of a set of volume 0. For instance, we say that a bounded function f : P — R is almost
everywhere continuous (or a.e. continuous) if it is continuous in the complement of a set A C P of
volume 0. For instance, a characteristic function of any measurable set is a.e. continuous. Indeed,

it is constant away from the set A which according to Proposition 4 has volume 0.

Proposition 9.25. Suppose that the bounded functions f,g : P — R coincide a.e. Then if f is

integrable, then so is g and we have [ f = [g.
P P

Proof. Denote A = {z € P : f(z) # g(x)}. By our assumption, VolA = 0. Hence, for any ¢ there
exists a 6 > 0 such that for every partition P with 6(P) < § the union Bj of all rectangles of
the partition which have non-empty intersection with A has volume < e. The functions f,g are
bounded, i.e. there exists C' > 0 such —C < |f(z)],|g(z)| < C for all x € P. Due to integrability of
f we can choose § small enough so that |U(f,P) — L(f,P)| < € when §(P) < ¢. Then we have

U(g,P) - U(f,P)l=| Y_ supg—supf)| <2CVolB; < 2Ce.
J: PycBy b7 Py

125



Similarly, |L(g, P) — L(f,P)| < 2Ce, and hence

‘U(gv,P) - L(g77))| < |U(g>7)) - U(f,P)| + |U(f773) - L(fvp)’ + |L(f77)) - L(g,P)‘

<e+4Ce—0,
6—0

and hence g is integrable and

Jo=im UGP) = 1w v(.P) = [ £

)—0
P P

Proposition 9.26. 1. Suppose that a function f : P — R is a.e. continuous. Then f is inte-

grable.

2. Let A CV be compact and measurable, f : U — W a C'-smooth map defined on a neighbor-
hood U D A. Suppose that dim W = dim V. Then f(A) is measurable.

Proof. 1. Let us begin with a
WARNING. One could think that in view of Proposition [9.25]it is sufficient to consider only the case
when the function f is continuous. However, this is not the case, because for a given a.e. continuos

function one cannot, in general, find a continuos function g which coincides with f a.e.

Let us proceed with the proof. Given a partition P we denote by J4 the set of multi-indices j such

that Int PyN A # @, and by J 4 the complementary set of multi-indices, i.e. for each j € J 4 we have

P;NA=a. Let us denote C := |J Pj. According to Proposition [9.16|3 for any € > 0 there exists

j€Ja
a partition P such that Vol(C) = ) Vol(F;) < e. By assumption the function f is continuous
Jj€Ja
over a compact set B = |J P, and hence it is uniformly continuous over it. Thus there exists

j€Ja
d > 0 such that |f(z) — f(2')| < € provided that z,2’ € B and ||z — 2/|| < §. Thus we can further

subdivide our partition, so that for the new finer partition P’ we have §(P’) < §. By assumption

the function f is bounded, i.e. there exists a constant K > 0 such that M;j(f) —m;(f) < K for all
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indices j. Then we have

Uf;P") = LU P =Y (Mj(f) — my(f)) Vol(B) =

J

> (M5(f) = my())Vol(By) + D (Mj(f) —my(f)Vol(B) <

3PCB iBcC

€VolB 4+ KVolC' < ¢(VolP + K).

Hence i%f U(f;P) = S17l)p L(f;P), i.e. the function f is integrable.

2. If x is an interior point of A and detDf(x) # 0 then the inverse function theorem implies
that f(z) € Int f(A). Denote C = {x € A;det Df(xz) = 0}. Hence, 0f(A) C f(OA) U f(C).
But Vol(0A) = 0 because A is measurable and Vol f(C) = 0 by Sard’s theorem Therefore,
Vol9f(A) =0 and thus f(A) is measurable. [

Orthogonal invariance of the volume and volume of a parallelepiped

The following lemma provides a way of computing the volume via packing by balls rather then

cubes. An admissible set of balls in A is any finite set of disjoint balls By,...,Bg C A

Lemma 9.27. Let A be a measurable set. Then VolA is the supremum of the total volume of

admissible sets of balls in A. Here the supremum is taken over all admissible sets of balls in A.

Proof. Let us denote this supremum by /. The monotonicity of volume implies that 5 < VolA.
Suppose that § < VolA. Let us denote by pu, the volume of an n-dimensional ball of radius 1 (we
will compute this number later on). This ball is contained in a cube of volume 2". It follows then
that the ratio of the volume of any ball to the volume of the cube to which it is inscribed is equal
to 5. Choose an € < §%(VolA — j3). Then there exists a finite set of disjoint balls By,...,Bx C A

K K
such that Vol(|J B;j) > 8 — e. The volume of the complement C' = A \ | B; satisfies
1 1

K
VolC' = VolA — Vol <U Bj) > VolA — 3.
1

Hence there exists a partition P of P by cubes such that the total volume of cubes Q1, ..., Q con-

tained in C'is > VolA—f. Let us inscribe in each of the cubes @); a ball Ej. Then By, ..., Bk, El, ..., By,
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is an admissible set of balls in A. Indeed, all these balls are disjoint and contained in A. The total

volume of this admissible set is equal to
K L N 4
> VolBj+ Y VolB; > 8 — €+ 27:(\/0114 —B) > 8,
1 1

in view of our choice of €, but this contradicts to our assumption S < VolA. Hence, we have

B = VolA. (]

Lemma 9.28. Let A C V be any measurable set in a Fuclidean space V. Then for any linear
orthogonal transformation F : V' — V the set F(A) is also measurable and we have Vol(F(A)) =
Vol(A).

Proof. First note that if VolA = 0 then the claim follows from Lemma Indeed, an orthogonal
transformation is, of course a smooth map.

Let now A be an arbitrary measurable set. Note that 0F(A) = F(0A). Measurability of A
implies Vol(0A) = 0. Hence, as we just have explained, Vol(0F(A)) = Vol(F(0A)) = 0, and hence
F(A) is measurable. According to Lemma the volume of a measurable set can be computed
as a supremum of the total volume of disjoint inscribed balls. But the orthogonal transformation
F moves disjoint balls to disjoint balls of the same size, and hence VolA = VolF'(A). n

Next proposition shows that the volume of a parallelepiped can be computed by formula
from Section [3.31

Proposition 9.29. Let vy,...,v, € V be linearly independent vectors. Then
Vol P(vy,...,vn) = |1 A  Axp(v1...,0p)|. (9.5.8)

Proof. The formula holds for rectangles, i.e. when v; = c;e; for some non-zero numbers c;,
j=1,...n. Using Lemma[9.28 we conclude that it also holds for any orthogonal basis. Indeed, any
such basis can be moved by an orthogonal transformation to a basis of the above form cje;, j =
1,...n. Lemma/(9.28| ensures that the volume does not change under the orthogonal transformation,
while Proposition implies the same about |z1 A -+ A xp(vy ..., 0,)|.

The Gram-Schmidt orthogonalization process shows that one can pass from any basis to an

orthogonal basis by a sequence of following elementary operations:
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e - reordering of basic vectors, and

e shears, i.e. an addition to the last vector a linear combination of the other ones:

n—1
VlyevoyUp_1,Up = U1y...,Un—1,0n + Z )\j’Uj.
1
Note that the reordering of vectors vy, ..., v, changes neither VolP(v1,...,v,), nor the absolute
value
|z1 A - Axp(vr...,v,)|. On the other hand, a shear does not change

TN Axp(vr...,0n).

It remains to be shown that a shear does not change the volume of a parallelepiped. We will consider
here only the case n = 2 and will leave to the reader the extension of the argument to the general
case.

Let v1,v2 be two orthogonal vectors in R?. We can assume that v; = (a,0), vo = (0,b) for
a,b > 0, because we already proved the invariance of volume under orthogonal transformations.
Let v, = vg + Avy = (a’,b), where a’ = a + Ab. Let us partition the rectangle P = P(v;,v2) into N?
smaller rectangles P; ;, 7,7 = 0,..., N — 1, of equal size. We number the rectangles in such a way
that the first index corresponds to the first coordinate, so that the rectangles Py, ..., Py_10 form
the lower layer, Py, ..., Py—1,1 the second layer, etc. Let us now shift the rectangles in k-th layer
horizontally by the vector (%, 0). Then the total volume of the rectangles, denoted ]Sij remains
the same, while when N — oo the volume of part of the parallelogram P(v1,v}) that is not covered

by rectangles .FN’iyj, 1,7 =0,...,N —1 converges to 0.

|
9.6 Fubini’s Theorem
Let us consider R” as a direct product of R¥ and R** for some k = 1,...,n — 1. We will denote
coordinates in R¥ by x = (x1,...,2;) and coordinates in R"™* by y = (y1,...,¥n_#), S0 the
coordinates in R™ are denoted by (x1,...,Zk, Y1, ..., Yn—i). Given rectangles P C R¥ and P, C

R % their product P = P; x P; is a rectangle in R”.
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Figure 9.2: Guido Fubini (1879-1943)
The following theorem provides us with a basic tool for computing multiple integrals.

Theorem 9.30 (Guido Fubini). Suppose that a function f : P — R is integrable over P. Given a
point x € Py let us define a function f, : Po — R by the formula f.(y) = f(z,y), y € P. Then

/ fav, = / / fodV o | dvi = / / fodVi s | dvi.
P Py ?2

Py Py

In particular, if the function f, is integrable for all (or almost all) x € Py then one has

!m _ / Q/ v

Here by writing dVj, dV,,_. and dV,, we emphasize the integration with respect to the k-, (n—k)-
and n-dimensional volumes, respectively.
Proof. Choose any partition P; of P; and Ps of P». We will denote elements of the partition P;
by Pf and elements of the partition Py by P2i. Then products of Pl = Pf X P2i form a partition P
of P = P; x P5. Let us denote

1w)i= [ fo 1) = [ o2 e P

Py P
Let us show that
L(f,P) < L(L,P) <UL, P1) <U(f,P). (9.6.1)
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Indeed, we have
= E E mj,i(f)VolnPj’i.
j i

Here the first sum is taken over all multi-indices j of the partition P;, and the second sum is taken

over all multi-indices i of the partition Ps. On the other hand,

L(I,P) =) inf /fden_k Vol P,

F zEPf

Note that for every x € Pf we have

/ fodViog > L(fo; P2) = mi(fe) Vol (P3) = > mi(f)Vol, x(P3),

Py
and hence

inf,/fxdvnk > mi(f) Vol 1(P3).

zeP]J

Therefore,
L(Lpl)z§ § mij(f)Vol,_r(PY) Vol (P) = §j§ “mj;i(f)Vol,(P¥) = L(f,P).
j i

Similarly, one can check that U(I,P1) < U(f,P). Together with an obvious inequality L(I,P;) <
U(I,Py) this completes the proof of (9.6.1)). Thus we have

maX(U(Ta 731) - L(T¢ Pl)v U(l, 731) - L(l, 731)) < U(Ta Pl) - L(l, Pl) < U(fa P) - L(fv P)
By assumption for appropriate choices of partitions, the right-hand side can be made < ¢ for any
a priori given € > 0. This implies the integrability of the function I(x) and I(x) over P;. But then

we can write

/ L@V, = Jm L(LP)
Py

and

J1@dk = im TP
Py
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We also have

lim L(f;P)= lim U(f:P)= [ fdv,.
. (f;P) s (f;P) /f
P

Hence, the inequality (9.6.1]) implies that

F/den:/ /fdenk de:/ ZQfa;ank dVi.

P \p, Py
[
Corollary 9.31. Suppose f: P — R is a continuous function. Then
fr=][s=] ]
P P P P Py
Thus if we switch back to the notation x1, ..., z, for coordinates in R", and if P = {a; < z; <
bi,...,an < x5, < by} then we can write
bn by
/f:/ /f(acl,...,a:n)dxl oo | day, . (9.6.2)
P an a1

The integral in the right-hand side of (9.6.2) is called an iterated integral. Note that the order
of integration is irrelevant there. In particular, for continuous functions one can change the order

of integration in the iterated integrals.

9.7 Integration of n-forms over domains in n-dimensional space

Differential forms are much better suited to be integrated than functions. For integrating a function,
one needs a measure. To integrate a differential form, one needs nothing except an orientation of
the domain of integration.

Let us start with the integration of a n-form over a domain in a n-dimensional space. Let w be
a n-form on a domain U C V, dimV = n.

Let us fix now an orientation of the space V. Pick any coordinate system (x ...x,) that agrees

with the chosen orientation.
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We proceed similar to the way we defined an integral of a function. Let us fix a rectangle
P = P(ay,bi;a2,b9;...5an,b,) = {a; < x; < bj; i = 1,...,n}. Choose its partition P by N™

smaller rectangles P} = {tjl.n <z < tjl.nﬂ, ot < < t?l_H}, where j = (j1,...,Jn) and each

J
index jj, takes values between 0 and N — 1. Let us fix a point ¢; € Pj and denote by C the set of all
such c;. We also denote by ¢; the point with coordinates tjl-l, . ,t?n and by Tjm € Vg, m=1,...,n
the vector tj;1,, — tj, parallel-transported to the point c;. Here we use the notation j + 1,, for the
multi-index j1,...,5m—1,Jm + 1, jm+1, ..., Jn. Thus the vector Tj,, is parallel to the m-th basic

vector and has the length [t 11 —t;,.]-

Given a differential n-form a on P we form an integral sum

Iy P,C) =Y o(T],T3,..., Tj), (9.7.1)
Jj
where the sum is taken over all elements of the partition. We call an n-form « integrable if there

exists a limit lim I(a;P,C) which we denote by [« and call the integral of a over P. Note

I
(5(’;)—)0 P

that if « = f(z)dz1 A -+ A dzy, then the integral sum I(a, P,C) from (9.7.1)) coincides with the
integral sum I(f;P,C) from (9.5.2) for the function f. Thus the integrability of « is the same as

integrability of f and we have
/f(:c)d:nl A ANdxy, = /de. (9.7.2)
P P

Note, however, that the equality holds only if the coordinate system (x1,...,x,) defines the
given orientation of the space V. The integral [ f(z)dzy A--- A dz, changes its sign with a change
of the orientation while the integral [ fdV is IIIDOt sensitive to the orientation of the space V.

It is not clear from the above degnition whether the integral of a differential form depends on
our choice of the coordinate system. It turns out that it does not, as the following theorem, which
is the main result of this section, shows. Moreover, we will see that one even can use arbitrarty
curvilinear coordinates.

In what follows we use the convention introduced at the end of Section Namely by a

diffeomorphism between two closed subsets of vector spaces we mean a diffeomorphism between

their neighborhoods.
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Theorem 9.32. Let A, B C R" be two measurable compact subsets. Let f : A — B be an orientation
preserving diffeomorphism. Let n be a differential n-form defined on B. Then if n is integrable over

B then f*« is integrable over A and we have

/ Py = / 0. (9.7.3)
A B

For an orientation reversing diffeomorphism f we have [ f*n=— [n.
A B

Let o = g(x)dxzy A -+ Adxy. Then f*a = go fdet Dfdxy A -+ A dxy,, and hence the formula
(19.7.3) can be rewritten as

/g(:nl,...,a:n)dxl/\---/\d:vn:/gofdethdxl/\---/\dxn.

P P

Here
9f ofL
ox1 " OTn

det Df = ...

Ofn Ofn
or1 OTn

is the determinant of the Jacobian matrix of f = (f1,..., fn)-

Hence, in view of formula (9.7.2)) we get the following change of variables formula for multiple

integrals of functions.

Corollary 9.33. [CHANGE OF VARIABLES IN A MULTIPLE INTEGRAL] Let g : B — R be an integrable

function and f : A — B a diffeomorphism. Then the function g o f is also integrable and

/ng: /gof|deth|dV. (9.7.4)
B A

We begin the proof with the following special case of Theorem [9.32

Proposition 9.34. The statement of[9.39 holds when n = dxy A--- Adx, and the set A is the unit

cube I = I™. In other words,

Volf(I) = [ f™n|.
/
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Figure 9.3: Image of a cube under a diffeomorphism and its linearization

We will use below the following notation.
For any set A C V' and any positive number A\ > 0 we denote by AA the set {A\z,z € A}. For
any linear operator F' : V' — W between two Euclidean spaces V and W we define its norm ||F||

by the formula

F|| = max ||F(v)|| = max
||| |\v|\=1H ()| W

Equivalently, we can define ||F|| as follows. The linear map F’ maps the unit sphere in the space V'
onto an ellipsoid in the space W. Then ||F|| is the biggest semi-axis of this ellipsoid.

Let us begin by observing the following geometric fact:

Lemma 9.35. Let I = {|z;| < 1,i=1,...,n} C R" be the unit cube centered at 0 and F : R" — R"

€

F=Hl

a non-degenerate linear map. Take any € € (0,1) and set o = Then for any boundary point
z € 0l we have

B,(F(2)) C (1+e)F(I)\ (1 — ) F(I), (9.7.5)

135



see Fig.[9.7

Proof. Inclusion (9.7.5)) can be rewritten as
F1 (B, (F()) € (14+ T\ (1- 1.

But the set F~1(B,(F(z)) is an ellipsoid centered at z whose greatest semi-axis is equal to o||F~!||.
Hence, if o||F~1|| < e then F~1(B,(F(2)) C (1+e)I\ (1 —¢€)l. [ |
Recall that we denote by dI the cube I scaled with the coefficient ¢, i.e. 01 = {|z;| < %,i =

1,...,n} C R™. We will also need

Lemma 9.36. Let U C R"™ is an open set, f : U — R"™ such that f(0) = 0. Suppose that f is
differentiable at 0 and its differential F = dof : R® — R"™ at 0 is non-degenerate. Then for any
€ (0,1) there exists 6 > 0 such that

(1—€e)F(0I) C f(6I) C (14 €)F(d1), (9.7.6)
see Fig.[9.7

Proof. First, we note that inclusion (9.7.5)) implies, using linearity of F', that for any 6 > 0 we

have

Bso(F(2)) C (14 €)F(3I)\ (1 — ¢)F(5I), (9.7.7)

where z € 9(6I) and, as in Lemma we assume that ¢ = o||[F~1].

According to the definition of differentiability we have

f(h) = F(h) + o([[Al])-

Denote ¢ := Tn = ZE There exists p > 0 such that if ||h|| < p then

[f(h) = F(h)|| < al|h]| < ap.

Denote § := ﬁ. Then 61 C B,(0), and hence ||f(z) — F(z)|| < op for any z € §1. In particular,
for any point z € 9(d1) we have

f(2) € B5p(F(2)) = B mzs(F(2)) = Bos(F(2)),
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and therefore in view of (9.7.7))
fOI) Cc (1+eF(0I)\ (1 —e)F(5I).
But this is equivalent to inclusion (9.7.6)). [

Lemma 9.37. Let F : R™ — R" be a non-degenerate orientation preserving linear map, P =

P(v1,...,vs) a parallelepiped, and n = dzy A+ ANdxy,. Then [ n= [ F*n. Here we assume that
F(P) P
the orientation of P and F(P) are given by the orientation of R™.

Proof. We have [ n= [ dxiA...dx, = VolF(P) = (det F)VolP. On the other hand, F*n =
F(P) F(P)
det Fn, and hence [ F*n = det F [ n = (det F)VolP. [
P P

Proof of Proposition We have f*n = (det Df)dxy A --- A dzy,, and hence the form f*n is
integrable because f is C''-smooth, and hence det D f is continuous.
Choose a partition P of the cube I by N™ small cubes I, K =1,..., N", of the same size %

Let cx € Ix be the center of the cube Ix. Then

N™

/f*nz > /f*n-

K=17j,
Note that in view of the uniform continuity of the function det D f, for any € > 0 the number N

can be chosen so large that |det Df(x) — det Df(2’)| < € for any two points x,2’ € I and any
K =1,...,N". Let ng be the form det D f(cx)dz1 A -+ A dx, on Ix. Then

/f*n—/nK §/\deth(x)—deth(cK)]dxl/\---/\dxnSEVOI(IK)—]\in.
K [K IK
Thus
Nn

> /nK <e (9.7.8)

K=1 Ik

/f*n
I

Next, let us analyze the integral [ nx. Denote Fix := d.(f). We can assume without loss of
Ik
generality that cx = 0, and f(cx) = 0, and hence F can be viewed just as a linear map R” — R".

Using Lemma [9.36] we have for a sufficiently large NV

(1-e)Fxk(Ik) C f(Ix) = (1 +€)Fr(IK).
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Again in view of compactness of I the number € can be chosen the same for all cubes Ix. Hence
(1 —¢€)"Vol(Fr(Ik)) < Volf(Ix) < (1 +€)"Vol(Fk(Ik)). (9.7.9)

Note that Volf(Ix) f 7, and hence summing up inequality (9.7.9) over K we get

f(IK)
N N N
(1—€" > Vol(Fk(Ix)) Z Volf(Ix) = / n= / n<(1+e™ ) Vol(Fg(Ik)).
K=t K=l 1 =t
(9.7.10)
Note that ng = Fjn and by Lemma [9.37| we have [ nx = f Fin= [ n=Vol(Fk(Ik)).
Ik Fr(Ix)
Hence, it follows from (9.7.10)) that
N N
1-e" > /nK < / n<(L+e™ ). /nK- (9.7.11)
K=1f, D K=1f_
Recall that from (9.7.8)) we have
N
/ e< ) /S /f*n+€-
T K=lr. 71
Combining with (9.7.11) we get
(I—¢e)" /f*n—e < [ n< (14" /f*n—i—e . (9.7.12)
1 f(1) I

Passing to the limit when € — 0 we get

/fn</n</fn, (9.7.13)

e

ie. [ f*n= [ n. [ |

I Ja)
Corollary 9.38. The statement of Theorem[9.39 holds for n = dx1 A -+ A dxy, and an arbitrary

measurable A.

Proof. Suppose for determinacy that f preserves the orientation. By assumption the diffeomor-

phism A extends to an open neighborhood U O A. Consider a cube containing P D A. Choose
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a 0 > 0 and consider a partition P of P by small cube of size < §. Denote by A;’ the union of
elements of the partition which intersect A, and by Ay the union of elements which are completely

inside A. If § is small enough then A(J{ C U. We have

/f*nﬁ/f*nS/A}f*n
A-6 A
and

[arra- [ £ 0
A=

On the other hand, each of the sets A(J{ is a union of cubes. Hence, Proposition implies that

/A;tf*n = / & = Vol(AF).

F(AF)

But f(A;) C f(A ) C f(A]), and hence Vol(f(A4;)) < Volf(A) < Vol(f(Af)) which implies when

§ — 0 that Volf(A)= [ n= [ f*n.
f(4) A

Proof of Theorem Let us recall that the diffeomorphism f is defined as a diffeomorphism
between open neighborhoods U D A and U’ > B. We also assume that the form 7 is extended to U’
as equal to 0 outside B. The form 7 can be written as hdxy A--- Adz,. Let us take a partition P of
a rectangular containg U’ by cubes I of the same size ¢. Consider forms 77j+ = Mj(h)dxi A~ Ndxy,
and 7y := mj(h)dz1 A - -+ A dxy on Ij, where mj(h) = infy; h, Mj(h) = supy,(h). Let nT be the
form on U’ equal to nji on each cube Ij. The assumption of integrability of n over B guarantees
that for any € > 0 if § is chosen small enough we have [, n™ — [ 1 < €. The forms f*n* are a.e.
continuous, and hence integrable over A and we have f frn= < J f*n < [ f*n*. Hence, if we prove

A A
that f frnt = f n* then this will imply that 7 is mtegrable and f n= f n.

On the other hand, [ n* anJ and ff* + = Z f f*ni WhereB f71(I;). But according
B
to Corollary ?? we have [ f* fnJ , and hence ff* + = fn [ ]

J I
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9.8 Manifolds and submanifolds

9.8.1 Manifolds

Manifolds of dimension n are spaces which are locally look like open subsets of R™ but globally
could be much more complicated. We give a precise definition below.

Let U,U’" C R" be open sets. A map f : U — U’ is called a homeomorpism if it is continuous
one-to-one map which has a continuous inverse f~!: U’ — U.

Amap f: U — U’ is called a C*-diffeomorpism, k = 1,..., 00, if it is C*-smooth, one-to-one
map which has a C*-smooth inverse f~! : U’ — U. Usually we will omit the reference to the class
of smoothness, and just call f a diffeomorphism, unless it will be important to emphasize the class
of smoothness.

A set M is called an n-dimensional C*-smooth (resp. topological) manifold if there exist subsets
Uy C X, A € A, where A is a finite or countable set of indices, and for every A € A a map
®, : Uy — R" such that

M1. M = | U,.
A€EA

M2. The image Gy = ®,(U,) is an open set in R™.
M3. The map @) viewed as a map Uy — G is one-to-one.

M4. For any two sets Uy, Uy, A, € A the images ®»(Ux NU,), ¥, (UxNU,) C R™ are open and
the map
hag =@, 001 1 ®\(U\NU,) = &,(UxNT,) CR"

is a C*-diffeomorphism (resp. homeomorphism).

Sets Uy are called coordinate neighborhoods and maps ®y : Uy — R" are called coordinate maps.
The pairs (Uy, ®y) are also called local coordinate charts. The maps hy,, are called transiton maps
between different coordinate charts. The inverse maps ¥y = @;1 : Gy — U, are called (local)
parameterization maps. An atlas is a collection 2 = {Uy, @)} ea of all coordinate charts.

One says that two atlases & = {Uy, ®y}rea and ' = {U, @]} er on the same manifold

X are equivalent, or that they define the same smooth structure on X if their union A U ' =

140



{(Ux, ®)), (U,/W@,/y)})\eA;yef is again an atlas on X. In other words, two atlases define the same
smooth structure if transition maps from local coordinates in one of the atlases to the local coor-
dinates in the other one are given by smooth functions.

A subset G C M is called open if for every A € A the image ®,(G N Uy) C R" is open. In
particular, coordinate charts Uy themselves are open, and we can equivalently say that a set G is
open if its intersection with every coordinate chart is open. By a neighborhood of a point a € M we
will mean any open subset U C M such that a € U.

Given two smooth manifolds M and M of dimension m and n then a map f: M — M is
called continuous if if for every point a € M there exist local coordinate charts (Uy, ®,) in M and

(ﬁk, &))\) in MA, such that a € Uy, f(Uy) C CNIA and the composition map

Gr=d\(U) B U, LU B R

is continuous.
Similarly, for k = 1,...,00 amap f: M — M is called C*-smooth if for every point a € M
there exist local coordinate charts (Uy, ®)) in M and (ﬁA, (TD)\) in M/\, such that a € Uy, f(Uy) C [7}\

and the composition map

Gy = o\(Uy) B U, Loy Bire

is C*-smooth. In other words, a map is continuous or smooth, if it is continuous or smooth when
expressed in local coordinates.
A map f: M — N is called a diffeomorphism if it is smooth, one-to-one, and the inverse map
is also smooth. One-to-one continuous maps with continuous inverses are called homeomorphisms.
Note that in view of the chain rule the C*-smoothness is independent of the choice of local
coordinate charts (Uy,®,) and ((7>\,€>>\). Note that for C*-smooth manifolds one can talk only
about C'-smooth maps for [ < k. For topological manifolds one can talk only about continuous

maps.

If one replaces condition M2 in the definition of a manifold by

M2°. The image G\ = W, (Uy) is either an open set in R™ or an intersection of an open set in R”

with R = {z1 > 0}
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then one gets a definition of a manifold with boundary.

A slightly awkward nuance in the above definition is that a manifold with boundary is not a
manifold! It would be, probably, less confusing to write this as a 1 word manifold-with-boundary,
but of course nobody does that.

The points of a manifold M with boundary which are mapped by coordinate maps ¥y to points
in R"1 = OR" are called the boundary points of M. The set of boundary points is called the
boundary of M and denoted by 0M. It is itself a manifold of dimension n — 1.

Note that any (interior) point a of an n-dimensional manifold M has a neighborhood B diffeo-
morphic to an open ball B;(0) C R", while any boundary point has a neighborhood diffeomorphic
to a semi-ball B1(0) N {z; > 0} C R™.

Exercise 9.39. Prove that a boundary point does not have a neighborhood diffeomorphic to an
open ball. In other words, the notion of boundary and interior point of a manifold with boundary

are well defined.

Next we want to introduce a notion of compactness for subsets in a manifold. Let us recall that
for subsets in a Euclidean vector space we introduced three equivalent definition of compactness,
see Section [6.1] The first definition, COMP1 is unapplicable because we cannot talk about bounded
sets in a manifold. However, definitions COMP2 and COMP3 make perfect sense in an arbitrary
manifold. For instance, we can say that a subset A C M is compact if from any infinite sequence
of points in A one can choose a subsequence converging to a point in A.

A compact manifold (without boundary) is called closed. Note that the word closed is used
here in a different sense than a closed set. For instance, a closed interval is not a closed manifold
because it has a boundary. An open interval or a real line R is not a closed manifold because it is
not compact. On the other hand, a circle, or a sphere ™ of any dimension n is a closed manifold.

The notions of connected and path connected subsets of a manifold are defined in the same way

as in an Euclidean space.

9.8.2 Gluing construction

The construction which is described in this section is called gluing or quotient construction. It

provides a rich source of examples of manifolds. We discuss here only very special cases of this
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construction.

a) Let M be a manifold and U, U’ its two open disjoint subsets. Let us moreover assume that
each point z € M has a neighborhood which does not intersect at least one of the sets U and U’ E|
Consider a diffeomorphism f: U — U’.

Let us denote by M/{f(x) ~ z} the set obtained from M by identifying each point = € U with
its image f(x) € U’. In other words, a point of M /{f(z) ~ x} is either a point from x € M\ (UUU’),
or a pair of points (z, f(x)), where x € U. Note that there exists a canonical projection 7 : M —
M/{f(x) ~ x}. Namely 7(z) =z if t ¢ UU U, w(z) = (z, f(z)) if x € U and 7(x) = (f1(x),2)
if z € U'. By our assumption each point z € M has a coordinate neighborhood G, > x such that
f(GoNU)N G, = @. In particular, the projection 7|g, : Gy — éz = m(G,) is one-to-one. We will
declare by definition that G, is a coordinate neighborhood of 7(z) € M/{f(z) ~ z} and define a
coordinate map d:G, > R by the formula ® = ®onx ! It is not difficult to check that this
construction define a structure of an n-dimensional manifold on the set M/{f(z) ~ z}. We will
call the resulted manifold the quotient manifold of M, or say that M/{f(z) ~ x} is obtained from
M by gluing U with U" with the diffeomorphism f.

Though the described above gluing construction always produce a manifold, the result could be

quite pathological, if no additional care is taken. Here is an example of such pathology.

Example 9.40. Let M = IUI’ be the union of two disjoint open intervals I = (0,2) and I’ = (3,5).
Then M is a 1-dimensional manifold. Denote U := (0,1) C I,U’ := (3,4) C I'. Consider a
diffeomorphism f : U — U’ given by the formula f(t) =t +3, t € U. Let M = M/{f(z) ~ z} be
the corresponding quotient manifold. In other words, M is the result of gluing the intervals I and
I’ along their open sub-intervals U and U’. Note that the points 1 € I and 4 € I’ are not identified,
but 1 — €,4 — € are identified for an arbitrary small € > 0. This means that any neighborhood of 1

and any neighborhood of 4 have non-empty intersection.

In order to avoid such pathological examples one usually (but not always) requires that manifolds

satisfy an additional axiom, called Hausdorff property:

M5. Any two distinct points x,y € M have non-intersecting neighborhoods U 3 z,G 3 y.

“Here is an example when this condition is not satisfied: M = (0,2),U = (0,1),U’ = (1,2). In this case any
neighborhood of the point 1 intersect both sets, U and U’.
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Figure 9.4: Felix Hausdorff (1868-1942)

In what follows we always assume that the manifolds satisfy the Hausdorff property MS5.

Let us make the following general remark about diffeomorphisms f : (a,b) — (c¢,d) between
two open intervals. Such diffeomorphism is simply a differentiable function whose derivative never
vanishes and whose range is equal to the interval (¢, d). If derivative is positive then the diffeomor-
phism is orientation preserving, and it is orientation reversing otherwise. The function f always
extends to a continuous (but necessarily differentiable function f : [a,b] — [c,d] such that f(a) = ¢
and f(b) = d in the orientation preserving case, and f(a) = d f(b) = c in the orientation reversing

case.

Lemma 9.41. Given a,b,ad’t! € (0,1) such thata < b and a’ < b’ consider an orientation preserving
diffeomorphisms f : (0,a) — (0,a’) and (b,1) — ()'1). Then for any @ € (0,a) and b € (b, 1) there
exists a diffeomorphism F : (0,1) — (0,1) which coincides with f on (0,a) and coincides with g on

(b,1).

Proof. Choose real numbers c, E,c?,d such that a < ¢ < ¢ < d < d < b. Consider a cut-off C>-
function 6 : (0,1) — (0, 1) which is equal to 1 on (0,a]U]c, 53] U [E, 1) and equal to 0 on [a, c]U[d, b].

For positive numbers € > 0 and C' > 0 (which we will choose later) consider a function h¢c on
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(0,1) defined by the formula

0(z)f'(x) + (1 = 0(x))e, x € (0,a);

€, x € [a,c]U[d,b];
he,C(x) =
CO(x) + (1 —0(x))e, x € (c,d);

O(x)g (x) + (1 —0(x))e, =€ (b1).

Note that he c(x) = f'(z) on (0,a], he,c(z) = ¢'(x) on [b,1) and equal to C on [¢, d]. Define the
function F ¢ : (0,1) — (0,1) by the formula

xT

F.co(x) :/h(u)du.
0
Note that the derivative FE’7C is positive, and hence the function F, ¢ is strictly increasing. It
coincides with f on (0,a] and coincides up to a constant with g on (g, 1). Note that when e and
C' are small we have FG,C(E) <V < g(b), and c}gréo FE’C(E) = 00. Hence, by continuity one can

choose €, C' > 0 in such a way that F, c(b) = g(b). Then the function F = F, ¢ is a diffeomorphism
(0,1) — (0,1) with the required properties. |

Lemma 9.42. Suppose that a 1-dimensional manifold M (which satisfies the Hausdorff axiom M5)
is covered by two coordinate charts, M = U U U’, with coordinate maps ® : U — (0,1),®" : U’ —
(0,1) such that (U NU") = (0,a) U (b,1),®"(UNU") = (0,a") U ('1) for some a,a’,b,b’ € (0,1)
with a < b,a’ < b'. Then M is diffeomorphic to the circle S*.

Proof. Denote by ¥ and ¥’ the parameterization maps ®~! and ()"}, and set G := (U N U’)
and G' :== ®(UNVU’'). Let h = & oW : G — G’ be the transition diffeomorphism. There could
be two cases: h((0,a)) = (0,a’),h((b,1)) = (V/,1) and h((0,a)) = (b',1),h((b,1)) = (0,a). We will
analyze the first case. The second one is similar.

Let h be the continuous extension of h to [0,a] U [b,1]. We claim that h(0) = o/, h(a) = 0,
h(b) = 1 and h(1) = . Indeed, assuming otherwise we come to a contradiction with the Hausdorff
property M5. Indeed, suppose h(a) = a’. Note the points A := ¥(a), A’ := ¥'(a’) € M are disjoint.

On the other hand, for any neighborhood €2 5 A its image ®(2) C I contains an interval (a — €, a),
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and similarly for any neighborhood €' 5 A’ its image ®'(2) C I contains an interval (a’ — €, a’). for

a sufficiently small €. But h((a —€,a)) = (a’ — €, a’) for some ¢ > 0 and hence
QU ((d,d —€) =¥ oh((a,a—€) =V o0d od((a,a—¢)) =®((a,a—¢€)) CQ,

ie. QNQ # @. In other words, any neighborhoods of the distinct points A, A’ € M intersect, which
violates axiom M5. Similarly we can check that h(b) =¥'.

Now take the unit circle S' ¢ R? and consider the polar coordinate ¢ on S'. Let us define a
map ¢ : U — S! by the formula ¢ = —7®'(z). Thus ¢’ is a diffeomorphism of U’ onto an arc
of S' given in polar coordinates by —m < ¢ < 0. The points A’ = ¥'(a/) and B’ = ¥'(V) are
mapped to points with polar coordinates ¢ = —mwa’ and ¢ = —7b’. On the intersection U N U’
we can describe the map ¢’ in terms of the coordinate in U. Thus we get a map f := g’ o W :
(0,a) U (b,1) — S*. We have f(0) = ¢'(4"), f(a) = ¢(0), f(1) = ¢'(B"), f(b) = ¢'(1). Here we
denoted by f the continuous extension of f to [0,a] U [b,1]. Thus £((0,a)) = {—ma’ < ¢ < 0} and
F((b,1) ={m < ¢ < 3w — wb'}. Note that the diffeomorphism f is orientation preserving assuming
that the circle is oriented counter-clockwise. Using Lemma we can find a diffeomorphism F
from (0,1) to the arc {—mwa’ < ¢ < 31 — xb'} C S* which coincides with f on (0,@) U (b, 1) for
any @ € (0,a) and b € (b,1). Denote @ := h(a), b’ = h(b). Notice that the neighborhoods U and
U’ = U'((@,b)) cover M. Hence, the required diffeomorphism F : M — S we can define by the
formula

~ g(z), zeU';

Fod®(z), zeU.

Similarly (and even simpler), one can prove

Lemma 9.43. Suppose that a 1-dimensional manifold M (which satisfies the Hausdorff axiom M5)
is covered by two coordinate charts, M = U UU’, with coordinate maps ® : U — (0,1),®" : U' —
(0,1) such that U NU" is connected. Then M 1is diffeomorphic to the open interval (0,1).

Theorem 9.44. Any (Hausdorff) connected closed 1-dimensional manifold is diffeomorphic to the

circle S*.

146



Exercise 9.45. Show that the statement of the above theorem is not true without the axiom M5,

i.e. the assumption that the manifold has the Hausdorff property.

Proof. Let M be a connected closed 1-dimensional manifold. Each point x € M has a coordinate
neighborhood U, diffeomorphic to an open interval. All open intervals are diffeomorphic, and hence
we can assume that each neighborhood G is parameterized by the interval I = (0,1). Let ¥, : [ —

G, be the corresponding parameterization map. We have |J U, = M, and due to compactness of
zeM

k

M we can choose finitely many Uy, ...,U,, such that |J U,, = M. We can further assume that
i=1

none of these neighborhoods is completrely contained inside another one. Denote U; := Uy, , ¥y :=

k
U,,. Note that U; N YUy, # @. Indeed, if this were the case then due to connectedness of M we
2

k
would have |JU,, = @ and hence M = Uy, but this is impossible because M is compact. Thus,
2

there exists ¢ = 2,...,k such that U,, NU; # @. We set Uy := U,,, ¥o = U,,. Consider open sets
G =V (U1 Ns),Gay = U5 (U1 NUs) C I. The transition map hyp == V5" o Uy|g,, : Gio —
Ga,1 is a diffeomorphism.

Let us show that the set G2 (and hence G 1) cannot contain more that two connected com-
ponents. Indeed, in that case one of the components of G2 has to be a subinterval I’ = (a,b) C
I = (0,1) where 0 < a < b < 1. Denote I"” := hj2(I"). Then at least of of the boundary values
of the transition diffeomorphism hi s|y/, say hia(a), which is one of the end points of I”, has to
be an interior point ¢ € I = (0,1). We will assume for determinacy that I"” = (¢,d) C I. But this
contradicts the Hausdorff property M5. The argument repeats a similar argument in the proof of
Lemma [0.42]

Indeed, note that ¥i(a) # Wa(c). Indeed, ¥;(a) belongs to U \ Uz and Wy(c) is in Us \ Uj.
Take any neighborhood € 3 ¥y (a) in M. Then ¥~1(Q) is an open subset of I which contains the
point a. Hence U1 ((a,a + €)) C €, and similarly, for any neighborhood Q' 5 Ws(c) in M we have
Uy((e,c+€)) C  for a sufficiently small € > 0. But U1 ((a,a+¢€)) = Ua(h12((a,ac))) = Ya(c,c+¢€),
where c+ € = hya(a+¢). Hence QN # &, i.e. any two neighborhoods of two distict points U1 (a)
and Uy (c) have a non-empty intersection, which violates the Hausdorff axiom M5.

If G12 C (0,1) consists of two components then the above argument shows that each of these

components must be adjacent to one of the ends of the interval I, and the same is true about the
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components of the set Go 1 C I. Hence, we can apply Lemma to conclude that the union U3 UUy
is diffeomorphic to S'. We also notice that in this case all the remaining neighborhoods Uy, must
contain in U; UUs. Indeed, each U,, which intersects the circle U; UUs must be completely contained
in it, because otherwise we would again get a contradiction with the Hausdorff property. Hence,
we can eleiminate all neighborhoods which intersect U; U Uy. But then no other neighborhoods

could be left because otherwise we would have M = (U; UUsz)U U Uy;, i.e. the manifold
Uzj m(UlUUQ):g

M could be presented as a union of two disjoint non-empty open sets which is impossible due to
connectedness of M. Thus we conclude that in this case M = U; U Us is diffeomorphic to S*.
Finally in the case when (12 consists of 1 component, i.e. when it is connected, one can Use
Lemma to show that U; U Us is diffeomorphic to an open interval. Hence, we get a covering of
M by k — 1 neighborhood diffeomorphic to S'. Continuing inductively this process we will either
find at some step two neighborhoods which intersect each other along two components, or continue
to reduce the number of neighborhoods. However, at some moment the first situation should occur
because otherwise we would get that M is diffeomorphic to an interval which is impossible because

by assumption M is compact. |

b) Let M be a manifold, f : M — M be a diffeomorphism. Suppose that f satisfies the fol-
lowing property: There exists a positive integer p such that for any point x € M we have fP(x) =

fofo---of(x)=ux, butthe pointsz, f(x) ..., fP~1(x) are all disjoint. The set {z, f(x) ..., fP~(x)} C
—_—

M is cpalled the trajectory of the point x under the action of f. It is clear that trajectory of two
different points either coincide or disjoint. Then one can consider the quotient space X/ f, whose
points are trajectories of points of M under the action of f. Similarly to how it was done in a) one
can define on M/ f a structure of an n-dimensional manifold.

c¢) Here is a version of the construction in a) for the case when trajectory of points are infinite.
Let f: M — M be a diffeomorphism which satisfies the following property: for each point x € M

there exists a neighborhood Uy > x such that all sets

o FTU) f TN Ua), Us, f(U), f2(Us), -

are mutually disjoint. In this case the trajectory {..., f~2(z), [~ (z), =, f(z), f*(x),...} of each

point is infinite. As in the case b), the trajectories of two different points either coincide or disjoint.
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The set M/ f of all trajectories can again be endowed with a structure of a manifold of the same

dimension as M.

9.8.3 Examples of manifolds

n+1
1. n-dimensional sphere S". Consider the unit sphere S™ = {||z|| =/ >_ :1:? =1} C R""L Let
1
introduce on S™ the structure of an n-dimensional manifold. Let N = (0,...,1) and S = (0,...,—1)

be the North and South poles of S™, respectively.
Denote U_ = S™\ S,Uy = S™\ N and consider the maps p1 : Uy — R™ given by the formula

1

_ - . 9.8.1
1T Tt (1'17 7'%'71) ( )

p:l:(xb cee 7xn+1) -

The maps py : Uy — R, and p_ : U_ — R"™ are called stereographic projections from the North
and South poles, respectively. It is easy to see that stereographic projections are one-to one maps.
Note that Uy NU_ = S™\ {5, N} and both images, p+(Uy NU-) and p_(U;s NU_) coincide with
R™\ 0. The map p_ opl1 :R™\ 0 — R™\ 0 is given by the formula

_ i

and therefore it is a diffeomorphism R™ \ 0 — R™ \ 0.

Thus, the atlas which consists of two coordinate charts (Uy,py) and (U_,p_) defines on S™ a
structure of an n-dimensional manifold. One can equivalently defines the manifold S™ as follows.
Take two disjoint copies of R™, let call them R} and RY. Denote M = R} URS, U = R} \ 0 and
U’ =Ry \0. Let f: U — U’ be a difeomorphism defined by the formula f(z) = %, as in (9.8.2).

I

Then S™ can be equivalently described as the quotient manifold M/ f.
Note that the 1-dimensional sphere is the circle S'. It can be d as follows. Consider the map
T : R — R given by the formula T'(z) = = + 1, x € R. It satisfies the condition from and

hence, one can define the manifold R/T. This manifold is diffeomorphic to S*.

2. Real projective space. The real projective space RP" is the set of all lines in R"*! passing
through the origin. One introduces on RP" a structure of an n-dimensional manifold as follows.
For each j = 1,...,n + 1 let us denote by U; the set of lines which are not parallel to the affine

n+1

subspace II; = {z; = 1}. Clearly, |J U; = RP". There is a natural one-to one map 7; : U; — II;
1
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which associates with each line . € U; the unique intersection point of p with II;. Furthermore,
each II; can be identified with R", and hence pairs (Uj;,7;), j = 1,...,n + 1 can be chosen as an
atlas of coordinate charts. We leave it to the reader to check that this atlas indeed define on RP"
a structure of a smooth manifold, i.e. that the transition maps between different coordinate charts

are smooth.

Exercise 9.46. Let us view S™ as the unit sphere in R"*!. Consider a map p : S — RP™ which
associates to a point of S™ the line passing through this point and the origin. Prove that this
two-to-one map is smooth, and moreover a local diffeomorphism, i.e. that the restriction of p to
a sufficiently small neighborhood of each point is a diffeomorphism. Use it to show that RP" is

diffeomorphic to the quotient space S™/f, where f : S™ — S™ is the antipodal map f(z) = —=z.

3. Products of manifolds and n-dimensional tori. Given two manifolds, M and N of

dimension m and n, respectively, one can naturally endow the direct product
M x N ={(z,y); x € M,y € N}

with a structure of a manifold of dimension m +n. Let {(Ux, ®x)}rca and {(Vy, ¥,)}yer be atlases
for M and N, so that ®y : Uy — Uy C R™, ¥, : V, — V; C R" are diffeomorphisms on open

subsets of R™ and R™. Then the smooth structure on M x N can be defined by an atlas

{(U)\ X V’ya (I))\ X \IJ’Y)})\GA,’)/EI—V

where we denote by @y x W, : Ux x V;, — Uy x V) C R™ x R™ = R™*" are diffeomorphisms defined
by the formula (z,y) — (®x(x)V,(y)) for x € Uy and y € V,.
One can similarly define the direct product of any finite number of smooth manifolds. In par-

ticular the n-dimensional torus T" is defined as the product of n circles: T" = S' x .-+ x S'. Let
N————

n
us recall, that the circle St is diffeomorphic to R/T, i.e. a point of S! is a real number up to adding

any integer. Hence, the points of the torus 7™ can viewed as the points of R"” up to adding any

vector with all integer coordinates.
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9.8.4 Submanifolds of an n-dimensional vector space

Let V' be an n-dimensional vector space. A subset A C V is called a k-dimensional submanifold
of V, or simply a k-submanifold of V, 0 < k < n, if for any points a € A there exists a local
coordinate chart (Ug,u = (u1,...,u,) — R™) such that u(a) = 0 (i.e. the point a is the origin in

this coordinate system) and
ANU, ={u= (u1,...,up) € Ug; U1 = -+ = uy = 0}. (9.8.3)

We will always assume the local coordinates at least as smooth as necessary for our purposes (but
at least C''-smooth), but more precisely, one can talk of C™- submanifolds if the implied coordinate
systems are at least C"*-smooth.

Note that in the above we can replace the vector space V' by any n-dimensional manifold, and

thus will get a notion of a k-dimesional submanifold of an n-dimensional manifold V.

Example 9.47. Suppose a subset A C U C V is given by equations Fy = --- = F,_;, = 0 for
some C™-smooth functions Fi, ..., F,_; on U. Suppose that for any point a € A the differentials
doFy,....doFy_ € V) are linearly independent. Then A C U is a C™-smooth submanifold.
Indeed, for each a € A one can choose a linear functions ly,...,l; € V* such that together
with dgF1,...,doEn— € V. they form a basis of V*. Consider functions Li,..., L : V — R,
defined by L;(z) = lj(z — a) so that d,(L;) =1;, j = 1,..., k. Then the Jacobian det D, F" of the
map F: (Ly,...,Lg, F1,...,F,_j): U — R™ does not vanish at a, and hence the inverse function
theorem implies that this map is invertible in a smaller neighborhood U, C U of the point a € A.
Hence, the functions uy = Lq,...,ux = Lg,upr1 = F1,...,u, = F,_; can be chosen as a local

coordinate system in U,, and thus ANU, = {ug41 = -+ = u, = 0}.

Note that the map u/ = (u,...,u;) maps U2 = U, N A onto an open neighborhood U =
u(U,) N R¥ of the origin in R¥ ¢ R™, and therefore ' = (uy,...u) defines a local coordinates,
so that the pair (U2, u') is a coordinate chart. The restriction 5 = |5 of the parameterization
map ¢ = u~' maps U onto Uf. Thus 5 a parameterization map for the neighborhood UZA. The
atlas {(UA,u/)}a € A defines on a a structure of a k-dimensional manifold. The complementary
dimension n — k is called the codimension of the submanifold A. We will denote dimension and

codimension of A by dim A and codimA, respectively.
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As we already mentioned above in Section 1-dimensional submanifolds are usually called
curves. We will also call 2-dimensional submanifolds surfaces and codimension 1 submanifolds hyper-
surfaces. Sometimes k-dimensional submanifolds are called k-surfaces. Submanifolds of codimension
0 are open domains in V.

An important class form graphical k-submanifolds. Let us recall that given a map f : B — R"™*,

where B is a subset B C R¥, then graph is the set
Ty ={(z,y) eRF xR =R"; z € B,y = f(z)}.

A (C™)-submanifold A C V is called graphical with respect to a splitting ® : R¥ x R*% — v/,

if there exist an open set U C R¥ and a (C™)-smooth map f : U — R"~* such that
A=d(T'y).
In other words, A is graphical if there exists a coordinate system in V' such that
A={x=(21,...,2p); (21,...2%) € U,z = fj(x1,...,28), j=k+1,...,n}.

for some open set U C R* and smooth functions, fyi1,..., fn: U — R.
For a graphical submanifold there is a global coordinate system given by the projection of the
submanifold to R”.

It turns out that that any submanifold locally is graphical.

Proposition 9.48. Let A C V be a submanifold. Then for any point a € A there is a neighborhood
Ua 2 a such that U, N A is graphical with respect to a splitting of V. (The splitting may depend on
the point a € A).

We leave it to the reader to prove this proposition using the implicit function theorem.

One can generalize the discussion in this section and define submanifolds of any manifold M,
and not just the vector space V. In fact, the definition can be used without any changes to
define submanifolds of an arbitrary smooth manifold.

A map f: M — @ is called an embedding of a manifold M into another manifold @ if it is a
diffeomorphism of M onto a submanifold A C . In other words, f is an embedding if the image

A = f(M) is a submanifold of @ and the map f viewed as a map M — A is a diffeomorphism.
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One can prove that any n-dimensional manifold can be embedded into RY with a sufficiently large
N (in fact N = 2n + 1 is always sufficient).

Hence, one can think of manifold as submanifold of some R™ given up to a diffeomorphism, i.e.
ignoring how this submanifold is embedded in the ambient space.

In the exposition below we mostly restrict our discussion to submanifolds of R™ rather than

general abstract manifolds.

9.8.5 Submanifolds with boundary

A slightly different notion is of a submanifold with boundary. A subset A C V is called a k-
dimensional submanifold with boundary, or simply a k-submanifold of V' with boundary, 0 < k < n,
if for any points a € A there is a neighborhood U, 3 a in V and local (curvi-linear) coordinates
(u1,...,uy) in U, with the origin at a if one of two conditions is satisfied: condition , or the

following condition
AN Uy = {u=(ur,. .- um) € Ui 1 > 0ty = - = uy = 0}, (9.8.4)

In the latter case the point a is called a boundary point of A, and the set of all boundary points is
called the boundary of A and is denoted by 0A.
As in the case of submanifolds without boundary, any submanifold with boundary has a struc-

ture of a manifold with boundary.

Exercise 9.49. Prove that if A is k-submanifold with boundary then 0A is a (k — 1)-dimensional

submanifold (without boundary).

Remark 9.50. 1. As we already pointed out when we discussed manifolds with boundary, a

submanifold with boundary is not a submanifold!

2. As it was already pointed out when we discussed 1-dimensional submanifolds with boundary,
the boundary of a k-submanifold with boundary is not the same as its set-theoretic boundary,
though traditionally the same notation 0A is used. Usually this should be clear from the
context, what the notation 0A stands for in each concrete case. We will explicitly point this

difference out when it could be confusing.
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Figure 9.5: The parameterization ¢ introducing local coordinates near an interior point a and a

boundary point b.

A compact manifold (without boundary) is called closed. The boundary of any compact manifold

with boundary is closed, i.e. 0(0A) = @.

n
Example 9.51. An open ball B} = Bj(0) = {27 < 1} C R™ is a codimension 0 submanifold,
1
n
A closed ball D' = D}%(0) = {3 x? < 1} C R" ia codimension 0 submanifold with boundary.
1

n

Its boundary OD?% is an (n — 1)-dimensional sphere S} = {3 x? =1} ¢ R™ It is a closed
1

hypersurface. For k = 0,1...n— 1 let us denote by L* the subspace Ly = {z}41 = --- = 2, =0} C

R™. Then the intersections
By =ByNnLF DY =DENLF and SE' =Sy 'nLF CcR”

are, respectively a k-dimensional submanifold, a k-dimensional submanifold with boundary and a
closed (k — 1)-dimensional submanifold of R"”. Among all above examples there is only one (which

one?) for which the manifold boundary is the same as the set-theoretic boundary.

A neighborhood of a boundary point a € JA can be always locally parameterized by the semi-
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open upper-half ball
n
B.(0)={z = (z1,...,7;) € R*; 21 > O,ZSU? < 1}.
1

We will finish this section by defining submanifolds with piece-wise smooth boundary. A subset
A C V is called a k-dimensional submanifold of V' with piecewise smooth boundary or with boundary
with corners, 0 < k < n, if for any points a € A there is a neighborhood U, > a in V and local

(curvi-linear) coordinates (uq, ..., uy) in U, with the origin at a if one of three condittions satisfied:

conditions (9.8.3)), (9.8.4) or the following condition
ANU, ={u= (ut,...,up) € Ug; li(u) >0,...,Lpn(u) >0,u541 =+ =u, =0}, (9.8.5)

where m > 1 and Iy, ...,l, € (R¥)* are linear functions In the latter case the point a is called a
corner point of JA.

Note that the system of linear inequalities 1(u) > 0,...,L,(u) > 0 defines a convezx cone in
R*. Hence, near a corner point of its boundary the manifold is diffeomorphic to a convex cone.
Thus convex polyhedra and their diffeomorphic images are important examples of submanifolds

with boundary with corners.

9.9 Tangent spaces and differential

Suppose we are given two local parameterizations ¢ : G — A and 5 . G > A Suppose that
0 € GNG and ¢(0) = ¢(0) = a € A. Then there exists a neighborhood U 3 a in A such that
U c é(G)Né(G).

Denote Gy := ¢L(U), Gy := ¢~ 1(U). Then one has two coordinate charts on U: u = (u1,. .., uz) =

~ -1 _
(¢le,) " U — Gy, and &= (ay, ..., k) = (‘M@) U — Gh.
Denote h ::uo%‘él = G1 — G1. We have
angouog:qﬁoh’

and hence the differentials d¢g and dgo of parameterizations ¢ and 5 at the origin map RS isomor-
phically onto the same k-dimensional linear subspace T C V,. Indeed, d0<;~5 = do¢ o dgh. Thus the

space T = d0¢>(]R]§) C V, is independent of the choice of parameterization. It is called the tangent
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space to the submanifold A at the point a € A and will be denoted by T,A. If A is a submanifold
with boundary and a € A then there are defined both the k-dimensional tangent space T, A and
its (k — 1)-dimensional subspace T,(0A) C T, A tangent to the boundary.

Example 9.52. 1. Suppose a submanifold A C V is globally parameterized by an embedding

¢:G— A=V, G CRF Suppose the coordinates in R¥ are denoted by (uy,...,u;). Then

the tangent space T, A at a point a = ¢(b),b € G is equal to the span

6U1

Span (9 @) (@)

2. In particular, suppose a submanifold A is graphical and given by equations

Tpg1 = G1(T1, o )5 e e s T = g1, s xr), (21,...,21) € G CRF.
Take points b = (by,...b;) € G and a = (by,...,bg, g1(b),...,gn—k(b)) € A. Then T,A =
Span (T1,...Ty), where
o OGn—k
Ti=110,...,0,=—(b),...,——(b
1 s Uy ) ’8.731() axl ()
k
891 8gn—k
T =10,1,...,0, =(b),... b
1 s Ly 8x2() ’ 81‘2 () ’
k
agl agn—k
7 =10,0,...,1,=—=(b),... b
1 s Uy 7’8.’L‘k()’ aaxk()
k

. Suppose a hypersurface ¥ C R" is given by an equation ¥ = {F = 0} for a smooth function
F defined on an neighborhood of ¥ and such that d,F # 0 for any a € X. In other words,
the function F' has no critical points on X. Take a point @ € ¥. Then T, C R is given by a

linear equation
oF

ax()

Note that sometimes one is 1nterested to define T, as an affine subspace of R™

hj =0, h=(hi,...,hy) € RY.
= R and

not as a linear subspace of Rl'. We get the required equation by shifting the origin:

) C R Z 895]

TaZ:{$:(.%’1,..., 3)20}
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If for some parameterization ¢ : G — A with ¢(0) = a the composition f o ¢ is differentiable at

0, and the linear map

do(f o @) o (dog) ™" : TaA = Wy(a)

is called the differential of f at the point a and denoted, as usual, by d, f. Similarly one can define
C"™-smooth maps A — W.

Exercise 9.53. Show that a map f : A — W is differentiable at a point a € A iff for some
neighborhood U of a in V there exists a map F' : U — W that is differentiable at a and such
that F|lyna = fluna, and we have dF|7, 4 = d,f. As it follows from the above discussion the map
dF|r, 4 is independent of this extension. Similarly, any C"-smooth map of A locally extends to a

C™-smooth map of a neighborhood of A in V.

Suppose that the image f(A) of a smooth map f : A — W is contained in a submanifold B C W.
In this case the image d, f(T,A) is contained in T, B. Hence, given a smooth map f : A — B
between two submanifolds A C V and B C W its differential at a point a can be viewed as a linear

map dgf : ToA — Ty(o) B.

Let us recall, that given two submanifolds A C V and B C W (with or without boundary), a
smooth map f : A — B is called a diffeomorphism if there exists a smooth inverse map : B — A,
i.e. fog: B— Bandgo f:A— A are both identity map. The submanifolds A and B are called

in this case diffeomorphic.
Exercise 9.54. 1. Let A, B be two diffeomorphic submanifolds. Prove that

(a) if A is path-connected then so is B;
(b) if A is compact then so is B;

(c) if 0A = @ then 0B = @;

(d) dim A = dim B; [

2. Give an example of two diffeomorphic submanifolds, such that one is bounded and the other

is not.

SIn fact, we will prove later that even homeomorphic manifolds should have the same dimension.
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3. Prove that any closed connected 1-dimensional submanifold is diffeomorphic to the unit circle

St = {22 + 22 =1} C R2

9.10 Vector bundles and their homomorphisms

Let us put the above discussion in a bit more global and general setup.

A collection of all tangent spaces {T,A}sca to a submanifold A is called its tangent bundle
and denoted by T'A or T'(A). This is an example of a more general notion of a vector bundle of
rank r over a set A C V. One understands by this a family of r-dimensional vector subspaces
L, C V,, parameterized by points of A and continuously (or C™-smoothly) depending on a. More
precisely one requires that each point a € A has a neighborhood U C A such that there exist linear
independent vector fields vy (a),...,v,(a) € L, which continuously (smoothly, etc.) depend on a.

Besides the tangent bundle T'(A) over a k-submanifold A an important example of a vector
bundle over a submanifold A is its normal bundle NA = N(A), which is a vector bundle of rank
n — k formed by orthogonal complements N,A = T;-A C V, of the tangent spaces T, A of A. We
assume here that V is Euclidean space.

A vector bundle L of rank k over A is called trivial if one can find k continuous linearly
independent vector fields vy (a),...,vi(a) € L, defined for all a € A. The set A is called the base of
the bundle L.

An important example of a trivial bundle is the bundle TV = {V, }4cv.

Exercise 9.55. Prove that the tangent bundle to the unit circle S' C R? is trivial. Prove that the
tangent bundle to S? C R? is not trivial, but the tangent bundle to the unit sphere S3 C R* is
trivial. (The case of S! is easy, of S is a bit more difficult, and of S? even more difficult. It turns
out that the tangent bundle TS™~! to the unit sphere S"~! C R" is trivial if and only if n = 2,4

and 8. The only if part is a very deep topological fact which was proved by F. Adams in 1960.

Suppose we are given two vector bundles, L over A and L over A and a continuous (resp. smooth)
map ¢ : A — A. By a continuous (resp. smooth) homomorphism ® : L — L which covers the map
¢:A— A we understand a continuous (resp. smooth) family of linear maps @, : L, — E¢(a). For

instance, a C™-smooth map f : A — B defines a C™ '-smooth homomorphism df : TA — TB
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which covers f : A — B. Here df = {daf}sca is the family of linear maps dof : ToA — Ty(q)B,

a€ A.

9.11 Orientation

By an orientation of a vector bundle L = {Ly}qe4 over A we understand continuously depending
on a orientation of all vector spaces L,. An orientation of a submanifold k is the same as an
orientation of its tangent bundle T'(A). A co-orientation of a k- submanifold A is an orientation of
its normal bundle N(A) = T+ A in V. Note that not all bundles are orientable, i.e. some bundles
admit no orientation. But if L is orientable and the base A is connected, then L admits exactly two
orientations. Here is a simplest example of a non-orientable rank 1 bundle of the circle S C R2.
Let us identify a point a € S with a complex number a = ¢, and consider a line I, € R? directed
by the vector e%. Hence, when the point completes a turn around S' the line I, rotates by the
angle m. We leave it to the reader to make a precise argument why this bundle is not orientable .
In fact, rank 1 bundles are orientable if and only if they are trivial.

If the ambient space V is oriented then co-orientation and orientation of a submanifold A deter-
mine each other according to the following rule. For each point a, let us choose any basis vy, ..., vg
of T (A) and any basis wy,...,w,_ of Ng(A). Then wy,...,w,_g,v1,...,0 is a basis of V, = V.
Suppose one of the bundles, say N(A), is oriented. Let us assume that the basis wy, ..., w,_j de-
fines this orientation. Then we orient T, A by the basis v1, ..., v if the basis wy, ..., Wy, V1,. .., Vg

defines the given orientation of V', and we pick the opposite orientation of T, A otherwise.

Example 9.56. (Induced orientation of the boundary of a submanifold.) Suppose A is an
oriented manifold with boundary. Let us co-orient the boundary A by orienting the rank 1 normal
bundle to T(0A) in T(A) by the unit ourtward normal to T(0A) in T'(A) vector field. Then the

above rule determine an orientation of 7(0A), and hence of JA.

9.12 Integration of differential k-forms over k-dimensional sub-

manifolds

Let a be a differential k-form defined on an open set U C V.

159



Figure 9.6: The orientation of the surface is induced by its co-orientation by the normal vector n.

The orientation of the boundary us induced by the orientation of the surface.
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Consider first a k-dimensional compact submanifold with boundary A C U defined parametri-
cally by an embedding ¢ : G — A < U, where G C R* is possibly with boundary. Suppose that A
is oriented by this embedding. Then we define

e

Note that if we define A by a different embedding 5 : G = A, then we have 5 = ¢ o h, where
h=¢ 1o q~5 G —Gisa diffeomorphism. Hence, using Theorem we get

[5a=[w@a=[ea
& G

a

and hence f « is independent of a choice of parameterization, provided that the orientation is
A
preserved.

Let now A be any compact oriented submanifold with boundary. Let us choose a partition of
K

unity 1 = )6, in a neighborhood of A such that each function is supported in some coordinate
1

K
neighborhood of A. Denote a; = 6. Then o = ) o, where each form «; is supported in one
1

of coordinate neighborhoods. Hence there exist orientation preserving embeddings ¢; : G; — A

of domains with boundary G; C R*, such that ¢j(G4) D Supp(e;), j = 1,..., K. Hence, we can

define
K
/aj ::/qﬁ;faj and /a::Z/aj.
A G, A L

Lemma 9.57. The above definition of [« is independent of a choice of a partition of unity.
A

K K
Proof. Consider two different partitions of unity 1 =) 6; and 1 = ) 6; subordinated to coverings
1 1

Ui, ..., Uk and (71,...,& 7> respectively. Taking the product of two partitions we get another

K K
partition 1 = ) > 6;;, where 60;; := 6;6;, which is subordinated to the covering by intersections

i=1j=1
~ _ K
UinU;,i=1,...,K, j=1,..., K. Denote a; := 6;cr, & := 60 and o;; = 0. Then ) a5 = a,
i=1
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K K K
Y. i =0a; and « =) oy = ) ;. Then, using the linearity of the integral we get
j=1 1 1

o fE ot

|
When k = 1 the above definition of the integral coincides with the definition of the integral of

a 1-form over an oriented curve which was given above in Section [9.2
Let us extend the definition of integration of differential forms to an important case of integration
of 0-form over oriented 0-dimensional submanifolds. Let us recall a compact oriented O-dimensional
submanifold of V' is just a finite set of points aq,...,a,, € V with assigned signs to every point.
So in view of the additivity of the integral it is sufficient to define integration over 1 point with a

sign. On the other hand, a 0-form is just a function f: V — R. So we define

i/a f = +1(a).

A partition of unity is a convenient tool for studying integrals, but not so convenient for practical

computations. The following proposition provides a more practical method for computations.

Proposition 9.58. Let A be a compact oriented submanifold of V' and a a differential k-form given
N

on a neighborhood of A. Suppose that A presented as a union A =|J A;, where A; are codimension
1

0 submanifolds of A with boundary with corners. Suppose that A; and A; for any i # j intersect

only along pieces of their boundaries. Then

3

j
In particular, if each A; is parameterized by an orientation preserving embedding ¢; : G; — A,

where G; C R* is a domain with boundary with corners. Then
N
[a=3 [ s
A er
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We leave the proof to the reader as an exercise.
Exercise 9.59. Compute the integral

/ 1/3(x1d$2 A dxs + xodxs A dxy + xsdry A dxs),
S

where S is the sphere
{af + a3 + a3 =1},

cooriented by its exterior normal vector.

Solution. Let us present the sphere as the union of northern and southern hemispheres:

S =5_US4, where S_ =S5n{x3 <0}, Sy =S5N{z3>0}.

Then [w= [ w4+ [ w. Let us first compute [ w.
S S+ S_ S+

We can parametrize S, by the map (u,v) — (u,v, VRZ — u? — v?), (u,v) € {u® +v? < R?} =
Dpgr. One can check that this parametrization agrees with the prescribed coorientation of S. Thus,

we have

/w:1/3/(udv/\d R? —u? —v?2 +vdVR? —u? —v2 Ndu+ R2—u2—v2du/\dv).

Passing to polar coordinates (7, ¢) in the plane (u,v) we get

/w: 1/3/rcos<pd(rsing0)/\d\/RQ—r2—|—rsingpd\/R2—7‘2/\d(rcosg0)

Sy P
+v/ R? — r2d(r cos ) Ad(rsinp),

where P = {0 <r < R,0 < ¢ < 2r}. Computing this integral we get
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1 r3cos? pdp Adr r3sin® pdr A de
w = - [ — + +VR2—r2drNd
S/ 3/P VR? —r? VRZ —r? 4
+

1 r3
= = —i—r\/R?—rQ)dr/\d
3/13(\/1%2—7"2 i

R 2 2 R 3
_ 2n Ldr _ _27R R 2 7”2/ _ 2R
0

3 )y VRZ- 2 3 3

Similarly, one can compute that

Computing this last integral, one should notice the fact that the parametrization
(u,v) = (u,v, —/ R? — u? — v?)
defines the wrong orientation of S_. Thus one should use instead the parametrization

(u,v) = (v,u, —V R — u? — v?),

/ AT R3
w = .
3

S

and we get the answer

This is just the volume of the ball bounded by the sphere. The reason for such an answer will be

clear below from Stokes’ theorem.
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Part 111

Stokes’ theorem and its applications
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Chapter 10

Stokes’ theorem

10.1 Statement of Stokes’ theorem

Theorem 10.1. Let A C V' be a compact oriented submanifold with boundary (and possibly with
corners). Let w be a C*-smooth differential form defined on a neighborhood U > A. Then

[o o

0A A

Here dw is the exterior differential of the form w and 0A is the oriented boundary of A.

We will discuss below what exactly Stokes’ theorem means for the case k < 3andn = dimV < 3.

Let us begin with the case k = 1, n = 2. Thus V = R?. Let x, 22 be coordinates in R? and U
a domain in R? bounded by a smooth curve I' = 9U. Let us co-orient I' with the outward normal
v to the boundary of U. This defines a counter-clockwise orientation of T'.

Let w = Py(x1, xe)dxy + Py(x1, xo)dxo be a differential 1-form. Then the above Stokes’ formula

asserts

/dw:/w,
U r

P P,
8x1 3562 r
U

or
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Figure 10.1: George Stokes (1819-1903)

This is called Green’s formula. In particular, when dw = dzx; A dxs, e.g. w = xdy or w =

%(wdy — ydx), the integral [w computes the area of the domain U.
r
Consider now the case n = 3, k = 2. Thus
V =R3, w = Pidxy A dxs + Padxs A dxy + Psdzy A dao.

Let U C R3 be a domain bounded by a smooth surface S. We co-orient S with the exterior normal

v. Then

(9P 0P, 0P
dw = (8:51 82?2 + 8:[,‘3

for fo

S U

) dx1 N\ dxo A dxs.

Thus, Stokes’ formula

gives in this case

P, P P
/Pldajg/\dxg—i-PQdIg/\dz'l + Psdxy N dzo :/ o + OF; + OFy dxi A dxo N dxg
8$1 B.IQ 8$3
S

This is called the divergence theorem or Gauss-Ostrogradski’s formula.
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Figure 10.2: George Green (1793-1841)

Consider the case k = 0, n = 1. Thus w is just a function f on an interval I = [a,b]. The
boundary 9I consists of 2 points: I = {a,b}. One should orient the point a with the sign — and
the point b with the sign +.

Thus, Stokes’ formula in this case gives

or

This is Newton-Leibnitz’ formula. More generally, for a 1-dimensional oriented connected curve

I' C R3 with boundary dI' = BU (—A) and any smooth function f we get the formula
Jar= [ 1=1m)- s,
T BU(—A)

which we already proved earlier, see Theorem [9.11].
Consider now the case n = 3, k = 1.

Thus V = R? and w = Pydz + Padxs+ Psdxs. Let S C R? be an oriented surface with boundary
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Figure 10.3: Carl Friedrich Gauss (1777-1855)  Mikhail Ostrogradski (1801-1862)

I". We orient I' in the same way, as in Green’s theorem. Then Stokes’ formula

S/dw:l/w

gives in this case

or; 0P orP, 0P or, 0P
/ <8x2 — 6%3) dro N dxrg + <8.€U3 — 8.771) drs A\ dx1 + (8331 — 81‘2> dx1 A dxo
S

= /Pldl‘l + Podxy + P3dxs.
I

This is the original Stokes’ theorem.

Stokes’ theorem allows one to clarify the geometric meaning of the exterior differential.

Lemma 10.2. Let 8 be a differential k-form in o domain U C V. Take any point a € U and

vectors Xi,..., Xp11 € Vu. Given € > 0 let us consider the parallelepiped P(eXy,...,eXky1) as a
k+1

subset of V' with vertices at points a;, i, = a+€ > 1;X;, where each index i; takes values 0,1.
1
Then
) 1
dﬁa(X17...Xk+1):llm7 / ,3

e—0 6k+1
OP(eX1,....,eXkt1)
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Proof. First, it follows from the definition of integral of a differential form that

1
dﬁa(Xl,...,Xk+1) 11_1}6 s / dﬁ (10.1.1)

P(EXl,...,eXk+1)
Then we can continue using Stokes’ formula

1
dﬂa(le-- XkJrl) *15}% k1 ap = lg% s

P(EXl,...,EXk+1) 8P(€X1,...,6Xk+1)

B. (10.1.2)

10.2 Proof of Stokes’ theorem

We prove in this section Theorem We will consider only the case when A is a manifold with
boundary without corners and leave the corner case as an exercise to the reader.

Let us cover A by coordinate neighborhoods such that in each neighborhood A is given either

by (9.8.3) or (9.8.4)). First we observe that it is sufficient to prove the theorem for the case of a

form supported in one of these coordinate neighborhoods. Indeed, let us choose finitely many such
N

neighborhoods covering A. Let 1 =) 6, be a partition of unity subordinated to this covering. We
1

N
set wj = Ojw, so that w = > wj, and each of w; is supported in one of coordinate neighborhoods.

Hence, if formula holds1 for each w; it also holds for w.

Let us now assume that w is supported in one of coordinate neighborhoods. Consider the
corresponding parameterization ¢ : G — U C V, G C R", introducing coordinates uq, . .., u,. Then
ANU = ¢(GNL), where L is equal to the subspace R* = {uy1 = ...u, = 0} in the case and
the upper-half space R¥ N {u; > 0}. By definition, we have fdw = fdw = [ ¢*dw= f do*w ﬂ
Though the form w = ¢*w|gnr, is defined only on G N L, 1t is su%portedGTrf this nelngl)Lorhood

and hence we can extend it to a smooth form on the whole L by setting it equal to 0 outside the

neighborhood. With this extension we have [ dw = f dw. The (k — 1)-form & can be written in

GNL
coordinates ui,...,u as
i .
- ]
w= g filw)duy A7 A duy.
1
1We assume here that the coordinates w1, ..., us define the given orientation of A.
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Then

/ /(Zaf]>du A A dug,.

GNL
Let us choose a sufficiently R > 0 so that the cube I = {|u;| < R,i =1,...,k} contains Supp(w).

Thus in the case (9.8.3]) we have

d et T
/d@:Z/ deV / / fﬂdul du, =
Ou; - Ou,
GNL L gk “r R
k R R
ofj o _
D 2 qu; | duy ... duj_ydujiy . .. du, =0 (10.2.1)
1 Guj
—R R

because

0
/ 81‘]:] duj fj ul,...,ui_l,R,ui,...,un) —fj(ul,...,ui_l,—R,ui,...,un)) =0.
J

On the other hand, in this case [ w = 0, because the support of w does not intersect the boundary
0A
of A. Hence, Stokes’ formula holds in this case. In case (9.8.4)) we similarly get

/dazi [ Y-

GNL {u1>0}

. R /R 5 R /R R
Z/ / / f] duy, ...dus | du; = / / /f 1...dup—1 | du, =

Ou; 0
19 R “rR 'R 0
R R

— / / f1(0,ug, ... uy)dus . .. duy,. (10.2.2)

—-R —-R

because all terms in the sum with 5 > 1 are equal to 0 by the same argument as in (10.2.1)). On

the other hand, in this case

/“: / ¢*w=/ / F1(0, g, - )i A+ A dty =

DA {u1=0} {u1=0}
R

— / /fl(O,UQ,...,un)dug...dun. (10.2.3)
—R —R
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The sign minus appears in the last equality in front of the integral because the induced orien-
tation on the space {u; = 0} as the boundary of the upper-half space {u; > 0} is opposite to the
orientation defined by the volume form dus A --- A duy,. Comparing the expressions (|10.2.2) and

(10.2.3) we conclude that [dw = [ w, as required. [
A 0A

10.3 Integration of functions over submanifolds

In order to integrate functions over a submanifold we need a notion of volume for subsets of the
submanifold.

Let A C V be an oriented k-dimensional submanifold, 0 < k& < n. By definition, the volume
form o = o4 of A (or the area form if k = 2, or the length form if k = 1) is a differential k-form
on A whose value on any k tangent vectors vy,...,v; € T, A equals the oriented volume of the
parallelepiped generated by these vectors.

Given a function f : A — R we define its integral over A by the formula

/fdvz/frm, (10.3.1)

A A

VolA:/UA.

A

and, in particular,

Notice that the integral [ fdV is independent of the orientation of A. Indeed, changing the orienta-
A
tion we also change the sign of the form ¢4, and hence the integral remains unchanged. This allows

us to define the integral [ fdV even for a non-orientable A. Indeed, we can cover A by coordinate
A

charts, find a subordinated partition of unity and split correspondingly the function f = g: fi

in such a way that each function f; is supported in a coordinate neighborhood. By orientinlg in

arbitrary ways each of the coordinate neighborhoods we can compute each of the integrals [ f;dV,

j=1,...,N.It is straightforward to see that the integral [ fdV =" [ f;dV is independerf}c of the
A A

J
choice of the partition of unity.

Let us study in some examples how the form o4 can be effectively computed.
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Example 10.3. Volume form of a hypersurface. Let us fix a Cartesian coordiantes in V. Let A C V
is given by the equation

A={F=0}

for some function F': V' — R which has no critical points on A. The vector field VF' is orthogonal

to A, and
VF

V]|
is the unit normal vector field to A. Assuming A to be co-oriented by n we can write down the

volume form of A as the contraction of n with the volume form Q = dxq A --- Adx, of R", i.e

z 16
HVFHZ

=nlQ=

Adxn

In particular, if n = 3 we get the following formula for the area form of an implicitely given

2-dimensional surface A = {F = 0} c R3:

1 oF oOF oF
—_— Ad —d Ad . (10.3.2
<8x1dx2/\dx3+ s —dxg T+ s T 372) (10.3.2)

Example 10.4. Length form of a curve.
Let I' € R™ be an oriented curve given parametrically by a map v : [a,b] — R™. Let 0 = or be
the length form. Let us compute the form v*op. Denoting the coordinate in [a, b] by ¢ and the unit

vector field on [a, b] by e we have
Yor = f(t)dt,
where

ft) =7"or(e) =or (Y1) = IV ()]

In particular the length of I' is equal to

where



Similarly, given any function f: ' — R we have

/fds—/f ) 17 ()] d .

Example 10.5. Area form of a surface given parametrically.
Suppose a surface S C R" is given parametrically by a map ® : U — R" where U in the plane R?
with coordinates (u,v).

Let us compute the pull-back form ®*og. In other words, we want to express og in coordinates
u,v. We have

*og = f(u,v)du A dv.
To determine f(u,v) take a point z = (u,v) € R? and the standard basis e1, ez € R2. Then
(P*0g):(e1,e2) = f(u,v)du A dv(er,ez) . (10.3.3)
On the other hand, by the definition of the pull-back form we have
(®*0g).(e1,e2) = (05)¢(Z)(dz<b(el),dz<I>(eg)). (10.3.4)

But d,®(e;) = g—i’(z) = ®,(2) and d,P(eq9) = %—f(z) = ®,(2). Hence from (|10.3.3)) and ((10.3.4) we

get
f(u7 U) = O'S((pu; Qv) . (1035)

The value of the form og on the vectors ®,, P, is equal to the area of the parallelogram gener-
ated by these vectors, because the surface is assumed to be oriented by these vectors, and hence
0s5(®y, ®,) > 0. Denoting the angle between ®,, and ®,, by o we getE| 05(Py, @y) = ||Pul] ||Py]| sin c.

Hence
T5(Puy Pv)? = [|Pu] |* ||®y|[* sin® o = || @y ||* ||| (1 — cos® a) = [|Pu]|* || o] — (Pu - D)%,

and therefore,

F(u,0) = 05(Pu, Bo) = V[ @4l [|@u]2 — (P - )2

2See a computation in a more general case below in Example m
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It is traditional to introduce the notation
E = [|®y|]%, F = &y - &y, G = [|D0]]?,

so that we get
®*0g = VEG — F2duNdv,

and hence we get for any function f: S5 — R

S/de:S/fog:!f(JJ(u,v))\/Wdu/\dv:/U/f@)(u,v))mdudv. (10.3.6)

Consider a special case when the surface S defined as a graph of a function ¢ over a domain
D C R2. Namely, suppose
S = {Z = qb(:z:,y), (ﬂf,y) eDC R2}

The surface S as parametrized by the map
P
(2, y) = (2, y, ¢(z,y))-

Then
E = H(I)OEHQ = 1+¢92ca G = H(I)y‘|2 = 1+¢g2/> F:(I)w'q)y:¢w¢ya

and hence
2 2 2 2,2 2
EG - F? = (14 ¢})(1+ ;) — da¢y = 1+ 6% + ¢,

Therefore, the formula (|10.3.6|) takes the form

/de ://f(q)(x,y))\/EG — F2dz Ndy =
S D
//f (z,y,0(x,y)) /1 + 2 + @2 dxdy . (10.3.7)
D

Note that the formula can be also deduced from . Indeed, the surface
S={z=¢(x,y), (z,y) € D CR?},
can also be defined implicitly by the equation
F(z,y,2) =2z —¢(z,y) =0, (z,y) € D.
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We have

09 8¢
and, therefore,
_ [ [&y,2) (OF or or
/de = HVFH 8 d /\dz+8 alz/\dac—i—8 dxr A dy
_ // xy(ﬁmy)) <6¢ Adq&—a“bqu/\da:er:cAdy)
8¢> ox
% ay>

I ) (e () (5))
_ //fﬂcy xy>\/1+<g¢) +<gf) dudy

Example 10.6. Integration over a parametrically given k-dimensional submanfold.

Consider now a more general case of a parametrically given k-submanifold A in an n-dimensional
Euclidean space V. We fix a Cartersian coordinate system in V' and thus identify V' with R™ with
the standard dot-product.

Let U C R* be a compact domain with boundary and ¢ : U — R” be an embedding. We assume
that the submanifold with boundary A = ¢(U) is oriented by this parameterization. Let o4 be the
volume form of A. We will find an explicit expression for ¢*o4. Namely. denoting coordinates in
R by (uy,...,us) we have ¢*o4 = f(u)duy A--- A dug, and our goal is to compute the function f.

By definition, we have

fu) =¢*(0a)uler,....ex) = (Ga)uldud(er), ... dupler)) =
o0 (2w 22 0) = Vol (P (2w, 220)) 1089

In Section we proved two formulas for the volume of a parallelepiped. Using formula (4.2.1))

we get

Vol (P <§i( ), . ;i( )>> = >z (10.3.9)

1<i1 << <n
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where

0¢; 0d;
Wf(“) Wkl(u)
Ziy iy = (10.3.10)
0p; 0d;
auf (u) au: (u)
Thus
[t =[foa= [ 1) | S 22 dunndo,
“2 “2 i 1<ip<-<ip<n
Rewriting this formula for k = 2 we get
2
0¢i  0di
I 8u1 8u2
/de = /f(<z>(u)) > oo | dun A duz. (10.3.11)
A U 1Si<<n [Juy  dug
Alternatively we can use formula (??). Then we get
9¢ o¢
Vol [ P | — ey = 4/det ((D¢p)TD 10.3.12
o (P (5. ) ) = yaet (Do) D). (10312
where
91 941
8u1 8uk
D¢ =
9¢n Obn
ou1 Ouy,
is the Jacobi matrix of gz5E| Thus using this expression we get
(10.3.13)

[ v = [ foa= [ o fact (Do) Do) av.
A A U

Exercise 10.7. In case n = 3, k = 2 show explicitely equivalence of formulas (10.3.6)), (10.3.11])
and ((10.3.13)).

Exercise 10.8. Integration over an implicitly defined k-dimensional submanfold. Suppose that

A={F == F,_; = 0} and the differentials of defining functions are linearly independent at

points of A. Show that
*(dFy N -+~ NdF,_g)

oA = .
TR A AdFpy |
3 The symmetric matrix (D¢)” D¢ is the Gram matrix of vectors 88#"1(11)7 e %(u), and its entrees are pairwise

scalar products of these vectors, see Remark 77?.
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Example 10.9. Let us compute the volume of the unit 3-sphere S3 = {22 + 23 + 2% + 23 = 1}.
By definition, Vol(S%) = [ n1Q, where Q = dzy A dxg A dxg A dzy, and n is the outward unit
S3
normal vector to the unit ball By. Here S® should be co-oriented by the vector field n. Then using

Stokes’ theorem we have

/ niQ = /(l‘ldxg ANdxg A dxy — xodxy N dxs N dry + x3dry A drs A dry — xadxy A dxo A d:L‘g) =
S3 S3
4/dm1/\dx2/\dx3/\d:n4 :4/dV.
B4 B4

(10.3.14)
Introducing polar coordinates (r,¢) and (p, ) in the coordinate planes (x1,z2) and (x3,x4) and

using Fubini’s theorem we get

21 21w V1—r2

[-/] / [ epipieanao-

B4 0

; 2
27 /(r —)dr = % (10.3.15)
0

Hence, Vol(S3) = 272

Vol,, (B7.)

Exercise 10.10. Find the ratio Vo1 (51T

10.4 Work and Flux

We introduce in this section two fundamental notions of vector analysis: a work of a vector field
along a curve, and a flux of a vector field through a surface. Let I' be an oriented smooth curve in
a Euclidean space V and T the unit tangent vector field to I'. Let v be another vector field, defined
along I". The function (v, T) equals the projection of the vector field v to the tangent directions
to the curve. If the vector field v is viewed as a force field, then the integral [(v,T)ds has the
meaning of a work Workp(v) performed by the field v to transport a particle ol} mass 1 along the
curve I' in the direction determined by the orientation. If the curve I' is closed then this integral is

sometimes called the circulation of the vector field v along I' and denoted by §(v,T)ds. As we
r
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already indicated earlier, the sign § in this case has precisely the same meaning as [, and it is used
only to stress the point that we are integrating along a closed curve.

Consider now a co-oriented hypersurface > C V and denote by n the unit normal vector field
to X which determines the given co-orientation of Y. Given a vector field v along ¥ we will view

it as the velocity vector field of a flow of a fluid in the space. Then we can interpret the integral

/(v, n)dV

b
as the fluz Fluxy(v) of v through ¥, i.e. the volume of fluid passing through ¥ in the direction of

n in time 1.

Lemma 10.11. 1. For any co-oriented hypersurface ¥ and a vector field v given in its neigh-
borhood we have

(v, n)oy = (v1Q)y,
where § is the volume form in V.

2. For any oriented curve I' and a vector field v near I' we have
(v,T)or =D(V)|r.
Proof. 1. For any n — 1 vectors 11,...,1,_1 € T,> we have
vIQUTh, ..., Th—1) =Qv,T1,...,Th—1) = VolP(v,T1,...,Tyh_1).

Using (3.3.1) we get

VOIP(V, Tl, ce ,Tn_l) = <V, n>v01n_1P(T1, ce 7Tn—1) =

<V, n)VolP( l’l,Tl, .. 'aTn—l) = <V, 1’1>02(T1,. .. ,Tn_1). (10.4.1)

2. The tangent space T,I' is generated by the vector T, and hence we just need to check that
(v, T)or(T) =D(v)(T). But op(T) = Vol(n, T) = 1, and hence

D(v)(T) = (v, T) = (v, T)or(T).
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n
Note that if we are given a Cartesian coordinate system in V and v =) aj%, then
1

n—1 . n
viQ = Z(—l)i_laidazl N.odz,, D(v)= Zaid:ci .
1 1
Thus, we have

Corollary 10.12.

b b
Workp(v) —/(v,T> —/D(V) —/Zaidaﬁi.
r r !
In particular if n = 3 we have

Fluxs(v) = /aldxg A dxs + asdrs N dry + azdzy N dzs.
¥

Let us also recall that in a Euclidean space V' we have v JQ = %D(v). Hence, the equation

w = v 1€} is equivalent to the equation
v="D! (*_lw) = (-1)" D (xw).
In particular, when n = 3 we get v = D~!(*w). Thus we get
Corollary 10.13. For any differential (n — 1)-form w and an oriented compact hypersurface ¥ we

/w = Fluxy v,

3

have

where v = (—1)" 1D (xw).

Integration of functions along curves and surfaces can be interpreted as the work and the flux

of appropriate vector fields. Indeed, suppose we need to compute an integral [ fds. Consider the
r

tangent vector field v(z) = f(x)T(z), x € I, along I'. Then (v, T) = f and hence the integral

Jr fds can be interpreted as the work Workp(v). Therefore, we have

F/fd:s:VVorkp(v) :F/D(v)
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Note that we can also express v through w by the formula v = D~! xw, see Section

Similarly, to compute an integral [ fdS let us co-orient the surface ¥ with a unit normal to X

5
vector field n(z), z € ¥ and set v(z) = f(z)n(z). Then (v, n) = f, and hence
/de = /(v, n)dS = Fluxy(v) = /w,
r r r

where w = v 1.

10.5 Integral formulas of vector analysis

We interpret in this section Stokes’ formula in terms of integrals of functions and operations on
vector fields. Let us consider again differential forms, which one can associate with a vector field
v in an Euclidean 3-space. Namely, this is a differential 1-form o« = D(v) and a differential 2-form
w = v 1Q, where 2 = dx A dy A dz is the volume form.

Using Corollary [10.12| we can reformulate Stokes’ theorem for domains in a R? as follows.

Theorem 10.14. Let v be a smooth vector field in a domain U C R® with a smooth (or piece-wise)

smooth boundary 3. Suppose that X3 is co-oriented by an outward normal vector field. Then we have

Fluxy v = / / / div vdxdydz .
U

Indeed, divv = *dw. Hence we have

/divvdV:/(*dw)dx/\dy/\dz:/dw:/w:/vJQ:Flquv.

U U U b b

This theorem clarifies the meaning of div v:
Let B.(z) be the ball of radius r centered at a point € R3, and S,(x) = dB,.(z) be its

boundary sphere co-oriented by the outward normal vector field. Then

Fluxg, (z) v
i =lim —————.
divv(e) = lim S )
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Theorem 10.15. Let ¥ be a piece-wise smooth compact oriented surface in R® with a piece-wise

smooth boundary I' = 0% oriented respectively. Let v be a smooth vector field defined near X. Then

Fluxy(curlv) = /(curlv, n)dV = % v - Tds = Workr v.
) r

To prove the theorem we again use Stokes’ theorem and the connection between integrals of

functions and differential forms. Set a = D(v). Then curlv = D! x da. We have

j{ v-Tds = /a = /da = Fluxs(D ™! % (da)) = Fluxg(curl v).

r r b
Again, similar to the previous case, this theorem clarifies the meaning of curl. Indeed, let us
denote by D,(z, w) the 2-dimensional disc of radius r in R3 centered at a point € R? and

orthogonal to a unit vector w € R3. Set

Work v
c(z, w) = lim 0D (@, w) *

r—0 w2
Then
[ {curlv, w)
. Fluxp, (g w)(curlv) . Dy(z,w)
c(x, w) = lim — = lim 5 = (curlv, w).

r—0 o r—0 o
Hence, ||curlv(z)|| = maxc(x, w) and direction of curl v(z) coincides with the direction of the

w

vector w for which the maximum value of ¢(z, w) is achieved.

10.6 Expressing div and curl in curvilinear coordinates

Let us show how to compute divv and curlv of a vector field v in R3 given in a curvilinear

coordinates w1, us, usz, i.e. expressed through the coordinate vector fields 0 0 and 2. Let
, U2, U3, Ou1’ Ouz Ous

Q= f(ul, U9, U3)dU1 A dus A dug

be the volume form dxq1 A dzs A dxs expressed in coordinates uq, ug, us.

Let us first compute *(duj A dug A dug). We have

1 1
*(duy A dug A dug) = * (fdxl Adzo N dac3> = ?
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Let

e O 0D
o 8u1 a2 8uQ 3 8U3 '

Then we have

divv = xd(v1Q)

3
0
= xd <<Z aiéhﬁ) 1 fdug A dug A dU3)
1

= xd (faldUQ A dus + fasdus A duy + fasduy A du2)
= () | OUar) | D) b gy A du
8u1 aUQ 8’U«3
_ L(0a)  Ofaz)  O(fas)
f 6U1 8uQ 8’U,3
8a1 6a2 8a3 1 8f Of 8f
aim + 871@ + 873 + ? < ) .

In particular, we see that the divergence of a vector field is expressed by the same formulas as in
the cartesian case if and only if the volume form is proportional to the form du; A dus A dug with
a constant coefficient.

For instance, in the spherical coordinates the volume form can be written as
Q= r2sin<pdr/\dg0/\d6

and hence the divergence of a vector field

v = 9 + b2 + 9
% %00 T oy
can be computed by the formula
divv—@+@+@+2—a+ccot
S Or 08 0dp T 7

The general formula for curl v in curvilinear coordinates looks pretty complicated. So instead
of deriving the formula we will explain here how it can be obtained in the general case, and then
illustrate this procedure for the spherical coordinates.

By the definition we have

4Note that the spherical coordinates ordered as (,¢,6) determine the same orientation of R® as the cartesian

coordinates (z,y, ).

184



curlv = D! (x (d (D(v)))) .

Hence we first need to compute D(v).

To do this we need to introduce a symmetric matrix

g1 912 913
G= g21 922 g23 | >

931 932 933

where

o 0

G=(=—, =), i,j=1,2,3.
g”Lj <auzaauj>7 7’7.7 )~y

The matrix G is called the Gram matriz.

Notice, that if D(v) = Ajdu; + Bdua + Cdus then for any vector h = hla%l + hga%2 + hga%S .

we have
h1
D(v)(h) = Aty + Ashy + Ashs = (A1 Ay As) | hy | = (V).
h3
But
hy
(v,h>:<a1 as a3>G ha
h3
Hence

(4 42 4)=(a a2 a5)G.

or, equivalently, because the Gram matrix G is symmetric we can write

Ay ap
A2 = G as )
As as

and therefore,

n
Ai = Zgijaj, 1= 1,2,3.
i=1
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After computing
w= d(D(V)) = Bidus N dus + Bodug A duy + Bsduq A dus

we compute curl v by the formula = curlv = D~! (xw). Let us recall (see Proposition above)
that for any vector field w the equality D w = *w is equivalent to the equality w 1) = w, where

Q = fdui A dug A dug is the volume form. Hence, if

0 0
curlv=ci— +co— +cs—

8’LL1 8u2 au;g
then we have

w 1Q = feydug A dug + feodusg A duy + fegdur A dus,

and therefore,
By 0 By 0 Bs 0

curlv = — — 4 = — 4 2

fou ' fOu f Oug
Let us use the above procedure to compute curl v of the vector field

V= g—i—bQﬂL 9
% T " o0

given in the spherical coordinates. The Gram matrix in this case is the diagonal matrix
1 0 0
G=10 r? 0

0 0 7r2sin¢

Hence,
Dv = adr + br?dy + cr? sin’ pd#
and
w=d(Dv) = daAdr+dbr?) Ade+ d(cr?sin® @) A do
b
= (—7‘29 + r2¢sin 2 4 72 sin? @32) do A df
b
+ <_§Z + rzgr + 2br> dr A\ do + (—2rcsin2 @ — r?sin? cpg; + ?)Z) do A dr.

Finally, we get the following expression for curl v:

b : : b . .
fr%+r2081n290+r281n2cpg—;g fg—z+r2%+2br o +—27’681n2tp—7’251n2gp%—|—%2

72 cos ¢ or 72 oS p dp r2 cos p 00
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Chapter 11

Applications of Stokes’ formula

11.1 Integration of closed and exact forms

Let us recall that a differential k-form w is called closed if dw = 0, and that it is called ezact if
there exists a (k — 1)-form «, called primitive of w, such that w = da.

Any exact form is closed, because d(da) = 0. Any n-form in a n-dimensional space is closed.

Proposition 11.1. a) For a closed k-form w defined near a (k + 1)-dimensional submanifold ¥

[e=o.

ox

with boundary 0% we have

b) If w is exact k-form defined near a closed k-dimensional submanifold S then

[u=o.

S

The proof immediately follows from Stokes’ formula. Indeed, in case a) we have

/w:z/dw:o.

ox

In case b) we have w = da and 9S = @. Thus

Jda=[a=o.

S 0

Proposition ) gives a necessary condition for a closed form to be exact.
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Example 11.2. The differential 1-form o = @(mdy — ydzx) defined on the punctured plane
R?\ 0 is closed but not exact.

Indeed, it is straightforward to check that « is exact (one can simplify computations by passing
to polar coordinates and computing that o = dyp). To check that it is not exact we compute the

integral [¢ o, where S in the unit circle {z* + y? = 1}. We have

27
/a:/d<p:27r7é0.
S
0

More generally, an (n — 1)-form

n .
0, = ;(_1)i_17ﬁdm A .%./\dacn (dz; is missing)
is closed in R™\ 0. However, it is not exact. Indeed, let us show that [ 6,, # 0, where S"! is the
n—1

unit sphere oriented as the boundary of the unit ball. Let us recall that the volume form ogn-1 on

the unit sphere is defined as

]

n
Ogn—-1 = nJQ == E (_1)1_1de1 A /\dl‘n
r
i=1

Notice that 6,|gn-1 = ogn—1, and hence

/enz / Ogn1 = / dV = Vol(S"1) > 0.
gn-1 Sn— s

1 n—1

11.2 Approximation of continuous functions by smooth ones

Theorem 11.3. Let C' C V be a compact domain with smooth boundary. Then any continuous
function f : C — R can be CO-approzimated by C>®- smooth functions, i.e. for any € > 0 there
exists a C°°-smooth function g : C — R such that |f(x) — g(x)| < € for any x € C. Moreover, if
the function f is already C°°-smooth in a neighborhood of a closed subset B C Int C, then one can

arrange that the function g coincides with f over B.

Lemma 11.4. There is a continuous extension of f to V.
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Sketch of the proof. Let n be the outward normal vector field to the boundary 0C. If the
boundary is C*°-smooth then so is the vector field n. Consider a map v : 9C x [0,1] — V given
by the formula v(z,t) = x +tn,z € 9C,t € [0, 1]. The differential of v at the points of 9C x 0 has
rank n. (Ezercise: prove this.) Hence by the inverse function theorem for a sufficiently small € > 0
the map v is a diffeomorphism of 9C x [0,¢€) onto U \ Int C' for some open neighborhood U D C.
Consider a function F' : 9C x [0,€) — R, defined by the formula

Fla,t) = (1 - 2t> f(2)

€

if t €[0,5) and f(z,t) =0if t € (§,€). Now we can extend f to U by the formula f(y) = Fr~*(y)
if y € U\ C, and setting it to 0 outside U. |

Consider the function
1

f wO,edV

D.(0)

where 1y, is a bump function defined above in (9.1.2). It is supported in the disc D,(0), non-

\I/e = 77[)0,67

negative, and satisfies
V,dV = 1.
D4 (0)

. Given a continuous function f : V' — R we define a function f, : V' — R by the formula

= /f(w —Y)¥s(y)d"y. (11.2.1)
Then
Lemma 11.5. 1. The function f, is C'°°-smooth.

2. For any € > 0 there exists § > 0 such that for all x € C we have |f(x) — f,(x)| < € provided
that o < 4.

Proof. 1. By the change of variable formula we have, replacing the variable y by v =y — x:
= /f(x—y) / f(—u)¥s(z 4+ u)d u—/f U, (2 + u)d"u.
D.(0) De(—z)
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But the expression under the latter integral depends on x C'°°-smoothly as a parameter. Hence, by
the theorem about differentiating integral over a parameter, we conclude that the function f. in
C*°-smooth.

2. Fix some o9 > 0. The function f is uniformly continuous in U,,(C). Hence there exists § > 0

such that z,2" € Uy, (C) and ||z — 2'|| < § we have |f(z) — f(2)| < e. Hence, for o < min(oy, d)
and for z € C we have

fole) - f(@)] = | / F(@— )Wy (y)d"y — / F(@) T (y)dmy| <
D.(0) )

De(0
[ e - s@tay<e [ oy = (11.22)
D(0) Dc(0)

Proof of Theorem Lemma implies that for a sufficiently small o the function g = f,
is the required C'*°-smooth e-approximation of the continuous function f. To prove the second part
of the theorem let us assume that f is already C'°°-smooth on a neighborhood U, B C U C C. Let
us choose a cut-off function op 7 constructed in Lemma and define the required approximation
g by the formula f, + (f — f,)oB.v. [
Theorem [11.3] implies a similar theorem form continuous maps C — R"™ by applying it to all

coordinate functions.

11.3 Homotopy

Let A, B be any 2 subsets of vector spaces V and W, respectively. Two continuous maps fo, f1: A —
B are called homotopic if there exists a continuous map F' : Ax[0,1] — B such that F(z,0) = fo(x)
and F(z,1) = fi(z) for all ¢ € [0, 1]. Notice that the family f; : A — B, t € [0,1], defined by the
formula fi(x) = F(z,t) is a continuous deformation connecting fy and f;. Conversely, any such
continuous deformation { f};c(o,1] provides a homotopy between fy and f1.

Given a subset C' C A, we say that a homotopy {fi}.ejo,1) is fixed over C' if fi(z) = fo(z) for
all z € C and all t € [0, 1].

A set A is called contractible if there exists a point a € A and a homotopy f; : A — A, t € [0,1],
such that f; = Id and fy is a constant map, i.e. fi(x) = x for all x € A and fy(x) = a € A for all

T € A.
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Example 11.6. Any star-shaped domain A in V is contractible. Indeed, assuming that it is star-
shaped with respect to the origin, the required homotopy fr : A — A, t € [0,1], can be defined by the

formula fi(x) =tz, z € A.

Remark 11.7. In what follows we will always assume all homotopies to be smooth. According to
Theorem this is not a serious constraint. Indeed, any continuous map can be C%-approximated
by smooth ones, and any homotopy between smooth maps can be C%-approximated by a smooth

homotopy between the same maps.

Lemma 11.8. Let U C V be an open set, A a compact oriented manifold (possibly with boundary)

and « a smooth closed differential k-form on U. Let fy, f1 : A — U be two maps which are homotopic

A/ fra= A/ fia.

Proof. Let F': A x [0,1] — U be the homotopy map between fy and f;. By assumption da = 0,

relative to the boundary OA. Then

and hence [ F*da = 0. Then, using Stokes’ theorem we have

Ax[0,1]
0= / F*da = / dF*a = / Fra = / F*a+/F*a+/F*a
Ax[0,1] Ax[0,1] O(Ax[0,1]) 0AX[0,1] Ax1 Ax0

where the boundary 9(A x [0,1]) = (A x 1) N (A x 0) N (0A x [0,1]) is oriented by an outward
normal vector field n. Note that n = % on Ax1and n= —% on A x 0, where we denote by ¢
the coordinate corresponding to the factor [0, 1]. First, we notice that F*aly Ax[o,1] = 0 because the

map F is independent of the coordinate ¢, when restricted to dA x [0,1]. Hence [ F*a = 0.
9Ax[0,1]
Consider the inclusion maps A — A x [0, 1] defined by the formulas jo(x) = (,0) and j;(z) = (z, 1).

Note that jg, j1 are diffeomorphisms A — A x 0 and A — A x 1, respectively. Note that the map
j1 preserves the orientation while jy reverses it. We also have F o jo = fo, F o j1 = f1. Hence,

| F*fa= [ ffaand [ F*a=— [ fia. Thus,
Ax1 A Ax0 A

0= / Fra = / F*a—i—/F*a—l—/F*aszfa—!fé*a.

O(Ax[0,1]) 0AX[0,1] Ax1 Ax0
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Lemma 11.9. Let A be an oriented m-dimensional manifold, possibly with boundary. Let Q(A)
denote the space of differential forms on A and Q(A x [0,1]) denote the space of differential forms
on the product A x [0,1]. Let jo,j1 : A — A x [0,1] be the inclusion maps jo(x) = (x,0) € A x [0,1]
and ji(x) = (z,1) € A x [0,1]. Then there exists a linear map K : Q(A x [0,1]) — Q(A) such that

o Ifais ak-form, k=1,...,m then K(«) is a (k — 1)-form;
e do K + Kod=ji—ji ie. for each differential k-form a € QF(A x [0,1] one has dK () +
K(da) = jja — jjo.
Remark 11.10. Note that the first d in the above formula denotes the exterior differential Q¥(A) —

QF(A), while the second one is the exterior differential Q¥(A x [0,1]) — QF(A x [0, 1]).

Proof. Let us write a point in A x [0,1] as (z,t), z € A,t € [0, 1]. To construct K (c«) for a given
a € QF(A x [0,1] we first contract o with the vector field % and then integrate the resultant form
with respect to the t-coordinate. More precisely, note that any k-form « on A x [0, 1] can be written

as a = B(t) + dt Ay(t), t € [0,1], where for each ¢ € [0, 1]
B(t) € QF(4),7(t) € &*1(A).

1
Then 2 Ja = ~(t) and we define K (o) = Of’y(t)dt.
If we choose a local coordinate system (ug,...,um,) on A then y(t) can be written as y(t) =

> hi, i, (t)dui; A - -+ A du;,, and hence
1<ii<-<i<m

1 1
K(a) = / V= Y / B ()t | dug, A A dus,
0 0

1<ig < <icm
Clearly, K is a linear operator QF(A x I) — QF1(A).
Note that if o = B(t) + dt Ay(t) € QF(A x [0,1

We further have
1
K(a) = [ v(t)dt;
/
da = dgyo = dyB(t) + dt A B(t) — dt A dyy(t) = daB(t) + dt A (B(t) — day(t)),
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where we denoted 3(t) := %&t) and I = [0, 1]. Here the notation d 4 stands for exterior differential
on Q(Ax I) and d4 denotes the exterior differential on £2(A). In other words, when we write d 43(t)
we view f(t) as a form on A depending on ¢ as a parameter. We do not write any subscript for d

when there could not be any misunderstanding.

Hence,
1 1
K(do) = [ (B(t) = day(t))dt = B(1) — B(0) = [ dav(t)dt;
/ /
1
d(K (@) = [ dar(tt
/
Therefore,

Theorem 11.11. (PoINCARE’S LEMMA) Let U be a contractible domain in V. Then any closed form
in U is exact. More precisely, let F': U x [0,1] — U be the contraction homotopy to a point a € U,
i.e. F(z,1) =z, F(2,0) =a for allz € U. Then if w a closed k-form in U then

w=dK(F*w),
where K : Q¥ YU x [0,1]) — QF(U) is an operator constructed in Lemma|11.9,

Proof. Consider a contraction homotopy F : U x [0,1] — U. Then F o jo(z) = a € U and
Foji(x) =z for all x € U. Consider an operator K : QU) — Q(U) constructed above. Thus

Kod+do K = j7 — j;-

Let w be a closed k-form on U. Denote v := F*w. Thus « is a k-form on U x [0,1]. Note that
do = dF*w = F*dw =0, jifa = (Foji1)*w =w and jja = (F o jp)*w = 0. Then, using Lemmam

we have

K(da) + dK(a) = dK (o) = jia — joa = w, (11.3.1)
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ie. w=dK(F*w). |

In particular, any closed form is locally exact.

Example 11.12. Let us work out explicitly the formula for a primitive of a closed 1-form in a

star-shaped domain U C R™. We can assume that U is star-shaped with respect to the origin.

n
Let o = ) fidx; be a closed 1-form. Then according to Theorem |11.11| we have a = dF, where

1
F = K(®*«a), where ® : U x [0,1] — U is a contraction homotopy, i.e. ®(x,1) = x, ®(z,1) = 0 for
x € U. ® can be defined by the formula ®(z,t) = tz, z € U,t € [0, 1]. Then

n

o= filtr)d(tz) = > tfi(te)dy; + Y wifi(tx)dt.
1 1

1

Hence,

1 1
o ., .
K(a) :/0th) a :/ (21:$Zfl(tx)> dt.
0 0
Note that this expression coincides with the expression in formula (9.4.1)) in Section

Exercise 11.13. Work out an explicit expression for a primitive of a closed 2-form o = PdyAdz+

Qdz A dx + Rdx A dy on a star-shaped domain U C R3.

Example 11.14. 1. R} = {z1 > 0} C R" is not diffeomorphic to R". Indeed, suppose there exists
such a diffecomorphism f : R} — R™. Denote a := f(0). Without loss of generality we can assume
that a = 0. Then f = f|R1\0 is a diffeomorphism R’} \ 0 — R™ \ 0. But R”} \ 0 is star-shaped with
respect to any point with positive coordinate x;, and hence it is contractible. In particular any
closed form on R} \ 0 is exact. On the other hand, we exhibited above in a closed (n —1)-form

on R™\ 0 which is not exact.

2. BORSUK’S THEOREM: There is no continuous map D™ — D™ which is the identity on 0D™. We
denote here by D™ the unit disc in R™ and by dD" its boundary (n — 1)-sphere.

Proof. Suppose that there is such a map f : D" — 9D". One can assume that f is smooth.
Indeed, according to Theorem [11.3| one can approximate f by a smooth map, keeping it fixed on
the boundary where it is the identity map, and hence smooth. Take the closed non-exact form 6,

from Example on 0D". Then ©,, = f*6, is a closed (n — 1)-form on D™ which coincides with
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0, on OD™. D™ is star-shaped, and therefore ©,, is exact, ©,, = dw. But then 6,, = d(w|gpn) which

is a contradiction. [ ]

3. BROUWER’S FIXED POINT THEOREM: Any continuous map f: D™ — D™ has at least 1 fized point.
Proof. Suppose f : D™ — D™ has no fixed points. Let us define a map F' : D™ — 0D" as follows.
For each z € D™ take a ray r, from the point f(z) which goes through = till it intersects 9D" at a
point which we will denote F'(z). The map is well defined because for any x the points z and f(x)
are distinct. Note also that if z € D" then the ray r, intersects dD™ at the point z, and hence

F(z) = x in this case. But existence of such F' is ruled out by Borsuk’ theorem. |

k-connected manifolds

A subset A C V is called k-connected, k = 0,1,..., if for any m < k any two continuous maps
of discs foy, f1 : D™ — A which coincide along 0D™ are homotopic relative to dD™. Thus, 0-
connectedness is equivalent to path-connectedness. 1-connected submanifolds are also called simply

connected.

Exercise 11.15. Prove that k-connectedness can be equivalently defined as follows: A is k-connected

if any map f: S™ — A, m <k is homotopic to a constant map.

Example 11.16. 1. If A is contractible then it is k-connected for any k. For some classes of
subsets, e.g. submanifolds, the converse is also true (J.H.C Whitehead’s theorem) but this is

a quite deep and non-trivial fact.

2. The n-sphere S™ is (n — 1)-connected but not n-connected. Indeed, to prove that S"~! simply
connected we will use the second definition. Consider a map f : S*¥ — S”. We first notice
that according to Theorem [11.3| we can assume that the map f is smooth. Hence, according
to Corollary Vol,, f(S*) = 0 provided that k < n. In particular, there exists a point
p € S™\ f(S¥). But the complement of a point p in S” is diffeomorphic to S™ vis the
stereographic projection from the point p. But R" is contractible, and hence f is homotopic
to a constant map. On the other hand, the identity map Id : S™ — S™ is not homotopic to

a constant map. Indeed, we know that there exists a closed n-form on S™, say the form 6,
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from Example [11.2} such that [ 6,, # 0. Hence, [ Id*6, # 0. On the other hand if Id were
sn sn

homotopic to a constant map this integral would vanish.
Exercise 11.17. Prove that R"*!\ 0 is (n — 1) — connected but not n-connected.

Proposition 11.18. Let U C V be a m-connected domain. Then for any k < m any closed

differential k-form o in U is ezact.

Proof. We will prove here only the case m = 1. Though the general case is not difficult, it requires
developing certain additional tools. Let « be a closed differential 1-form. Choose a reference point
b € U. By assumption, U is path-connected. Hence, any other point x can be connected to b by
a path v, : [0,1] — U, i.e. 7,(0) = b, 7(1) = x. Let us define the function F' : U — R by the
formula F(z) = [ «. Note that due to the simply-connectedness of the domain U, any § : [0,1] — U
connecting b anZiwx is homotopic to -, relative its ends, and hence according to Lemma we
have [« = [ . Thus the above definition of the function F is independent of the choice of paths
Ve \A}Yé clainr;s that the function F' is differentiable and dF' = a. Note that if the primitive of « exists
than it has to be equal to F' up to an additive constant. But we know that in a sufficiently small
ball Be(a) centered at any point a € U there exists a primitive G of o. Hence, G(z) = F(z)+ const,
and the the differentiability of G implies differentiablity of F' and we have dF = dG = a. |

11.4 Winding and linking numbers

Given a loop 7 : S — R?\ 0 we define its winding number around 0 as the integral
/ d d
1 1 zdy — ydx
o=k foum L [rluzuis

2 T on 2+ 12
S St

where we orient S' as the boundary of the unit disc in R?. For instance, if j : S' < R? is the
inclusion map then w(j) = 1. For the loop -y, parameterized by the map t +— (cosnt,sinnt),t €

[0, 27] we have w(vy,) = n.
Proposition 11.19. 1. For any loop ~y the number w(~y) is an integer.

2. If loops yo,v1 : S* — R%\ 0 are homotopic in R%\ 0 then w(yg) = w(y1).
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Figure 11.1: w(I") = 2.

3. w(y) = n then the loop ~ is homotopic (as a loop in R?\ 0) to the loop (, : [0,1] — R\ 0

given by the formula (,(t) = (cos 2mnt, sin 2wnt).

Proof. 1. Let us define the loop v parametrically in polar coordinates:

r= ’I”(S),d) = ¢(3)? s € [0? 1]7

where r(0) = (1) and ¢(1) = ¢(0) + 2nm. The form 6 in polar coordinates is equal to d¢, and

hence

2. This is an immediate corollary of Proposition [11.8

3. Let us write both loops v and ¢, in polar coordinates. Respectively,we have r = r(t), ¢ = ¢(s)
for v and r = 1, ¢ = 2mns for (,, s € [0, 1]. The condition w(y) = n implies, in view of part 1, that
#(1) = ¢(0) 4+ 2nm. Then the required homotopy =, ¢ € [0, 1], connecting the loops 79 = 7 and
~v1 = (, can be defined by the parametric equations r = (1—t)r(s)+t, ¢ = ¢¢(s) = (1—t)¢(s)+2nwst.
Note that for all ¢ € [0, 1] we have ¢¢(1) = ¢¢(0) + 2nm. Therefore, v, is a loop for all ¢t € [0,1]. W
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Figure 11.2: I(v1,72) = 1.

Given two disjoint loops 7,8 : S' — R3 (i.e. y(s) # 6(t) for any s,t € S') consider a map
F,s: T? — R3\ 0, where T2 = S! x S! is the 2-torus, defined by the formula
Fs(s,t) = 7(s) - 8(0).

Then the number

2 2
1 . 1 « [ xdy ANdz+ ydz A dx + zdx A dy
l(f%é) = E /F’y,503 = 47T/F%6 ( % >
T T

(22 + 9% + 22)
is called the linking number of loops v, d E]
Exercise 11.20. Prove that

1. The number [(7,d) remains unchanged if one continuously deforms the loops v,d keeping

them disjoint;

2. The number [(7, d) is an integer for any disjoint loops 7, ¢;

!This definition of the linking number is due to Carl Friedrich Gauss.
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3. 1(y,0) =1(8,7);

4. Let v(s) = (coss,sins,0),s € [0,2n] and §(t) = (—1 4+ 3 cost,0, sint), t € [0,27]. Then
I(y,6) = 1.

11.5 Properties of k-forms on k-dimensional manifolds

A k-form « on k-dimensional submanifold is always closed. Indeed, da is a (k 4 1)-form and hence

it is identically 0 on a k-dimensional manifold.

Remark 11.21. Given a k-dimensional submanifold A € V, and a k-form « on V, the differential

dza does not need to vanish at a point » € A. However, day|7, 4y does vanish.

The following theorem is the main result of this section.

Theorem 11.22. Let A C V be an orientable compact connected k-dimensional submanifold,

possibly with boundary, and o a differential k-form on A.

1. Suppose that 0A # &. Then « is exact, i.e. there exists a (k — 1)-form B on A such that
dg = a.

2. Suppose that A is closed, i.e. DA = @. Then « is exact if and only if [« =0.
A
To prove Theorem we will need a few lemmas.
Lemma 11.23. Let I* be the k-dimensional cube {—1 < z; <1, j=1,...,k}.
1. Let « be a differential k-form on I* such that
Supp(a) N (O x IF=1uo,1] x 8[’“*1) =0.

Then there exists a (k—1)-form B such that dB = o and such that Supp(8)N (-1 x IF"1U[-1,1] x OI"1) =

.

2. Let a be a differential k-form on I* such that Supp(«) C Int I* and | =0. Then there exists
Ik
a (k —1)-form B such that d3 = o and Supp(S) C Int I*.
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Proof. We have

a= f(x1,...,z)dry A - A dag,

In the first case of the lemma the function f vanishes on 0 x I*=1 U [~1,1] x I¥~!. We will look

for 8 in the form

5:g(xl,...,a;k)darg/\-~-/\dxk.

Then
Jg

dB = —=(x1,...,xx)dxy Ndzg A -+ N dx.
(91‘1

and hence the equation df = « is equivalent to

0
87;71(1'1, e ,(L‘k) = f(.’El, e ,{Bk).

Hence, if we define
1

g(z1,...,zK) ::/f(u,:cg,...,:vk)du,

-1
then the form 5 = g(x1,...,xg)dxa A - -+ A dxy has the required properties.
The second part of the lemma we will prove here only for the case k = 2. The general case can

be handled similarly by induction over k. We have in this case Supp(f) C IntI? and [ fdS = 0.
12
1
Let us denote h(xg) := [ f(z1,z2)dzi. Note that h(u) = 0 if u is sufficiently close to —1 or 1.
~1
1
According to Fubini’s theorem, [ h(zg)dze = 0. We can assume that f(x1,22) =0 for 21 > 1 —,
“1

u

and hence [ f(z1,...,25-1,t)dt = h(x1,...,24-1) for u € [1 — ¢,1]. Consider any non-negative
~1

C*-function 6 : [1—¢, 1] — R such that §(u) = 1 for u € [I—¢,1—%] and 6(u) = 0 for u € [1—§, 1].

Define a function ¢; : I? — R by the formula

aff(ua x2)du, x1 € [—1,1— €,
g1(z1w2) = {1
h(z2)0(z1),  x1€(1—¢1]

Denote 81 = g1(x1,22)dzs. Then df =« on [—1,1 — €] x [0,1] and dfy = h(x2)0'(x1)dx1 A dxe on
[1 — ¢, 1] x [0,1]. Note that Supp(3;) C Int I%.
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Let us define

0, T € [*1,1*6],

92(21,2) 1= -
0'(x1) flh(u)du, 1 € (1—¢€1]

and denote B2 = ga(z1,22)dr1. Then dfy =0 on [-1,1 — €] x [—1,1] and
dBy = —h(m)ﬁ'(:m)d:rl A dxg

1
on [1—e, 1] x[—1,1]. Note that g2(z1,1) = —6'(z1) [ h(u)du = 0. Taking into account that h(u) =0
1
when w is sufficiently close to —1 or 1 we conclude that h(z1, x2) = 0 near 912, i.e. Supp(32) C Int I2.
Finally, if we define 3 = 31 + 32 then we have d3 = o and Supp(3) C Int I [ |

The following lemma is a special case of the, so-called, tubular neighborhood theorem.

Lemma 11.24. Let A C V be a compact k-dimensional submanifold with boundary. Let ¢ :
[~1,1] — A be an embedding such that ¢(1) € 0A, ¢'(1) L Ty1)(0A) and ¢([0,1)) C Int A.
Then the embedding ¢ can be extended to an embedding ® : [—1,1] x IF~1 — A such that

o O(t,0) = ¢(t), fort € [-1,1], 0 € IF1;
o O(1 x I 1) C 9A, ®([-1,1) x IF¥1) C Int A;
o %—f(l,x) ¢ T(OA) for all x € I* 1.

There are many ways to prove this lemma. We will explain below one of the arguments.
Proof. Step 1. We first construct & — 1 ortonormal vector fields v,..., v along I' = ¢([—1,1])
which are tangent to A and normal to I'. To do that let us denote by N, the normal (k — 1)-
dimensional space N, to T,I" in T, A. Let us observe that in view of compactness of I" there is an
€ > 0 with the following property: for any two points u = ¢(t),u’ = ¢(¢') € T, t,t' € [-1,1], such
that |t — /| < e the orthogonal projection N,, — N, is non-degenerate (i.e. is an isomorphism).
Choose N < i and consider points u; = ¢(t;), where t; = —1 + %,j = 1,...N. Choose any
orthonormal basis v1(0),...,v,(0) € Ny,, parallel transport these vectors to all points of the arc
'y = ¢([-1,t1]), project them orthogonally to the normal spaces N, in these points, and then
orthonormalize the resulted bases via the Gram-Schmidt process. Thus we constructed orthonormal

vector fields v1(t),... vk(t) € Ny, t € [-1,t1]. Now we repeat this procedure beginning with the
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basis v1(t1),...vk(t1) € Ng,) = Ny, and extend the vector fields vy, ..., v to I = ¢([t1,2]).
Continuing this process we will construct the orhonormal vector fields v4, ..., v, along the whole
curve '

STEP 2. Consider a map W : [~1,1] x I¥~! — V given by the formula

k—1
\Ij(tal'lv"ka—l) = ¢(t) —|—O’Z$]I/](t), 0,1, ., Th—1 € [_]—71]a
1

where a small positive number o will be chosen later. The map V¥ is an embedding if ¢ is chosen
small enough Unfortunately the image ¥([—1,1] x I*~1) is not contained in A. We will correct
this in the next step.

STEP 3. Take any point a € A and denote by 7, the orthogonal projection V' — T, A. Let us make
the following additional assumption (in the next step we will show how to get rid of it): there exists
a neighborhood U 3 a = ¢(1) in 0A such that n,(U) C N, C T, A. Given € > 0 let us denote by
B¢(a) the (k — 1)-dimensional ball of radius € in the space N, C T, A. In view of compactness of A
one can choose an € > 0 such that for all points a € I there exists an embedding e, : Bc(a) — A

such that 7, o e, = Id. Then for a sufficiently small o < \/I:TI the map W : [~1,1] x I*1 = A

defined by the formula
U(t,z) = ey 0 U(t,x), t € [~1,1],2 € "

is an embedding with the required properties.

STEP 4 It remains to show how to satisfy the additional condition at the boundary point ¢(1) €
I' N 0A which were imposed above in Step 3. Take the point a = ¢(1) € I' N 0A. Without loss of
generality we can assume that a = 0 € V. Choose an orthonormal basis vy, ...,v, of V such that
v1,...,0; € N, and vy is tangent to I' and pointing inward T'. Let (y1, ..., yn) be the corresponding
cartesian coordinates in V. Then there exists a neighborhood U > a in A which is graphical in

these coordinates and can be given by

yjzej(ylv'”ayk‘)uj:k+17"'7n7EzykZek(yla"'vyk*1)7|yi|§67i:17"'7k_17

2Strictly speaking, the constructed vector fields only piece-wise smooth, because we did not make any special
precautions to ensure smoothness at the points u;,j = 1,..., N —1. This could be corrected via a standard smoothing

procedure.
3Exercise: prove it!
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where all the first partial derivatives of the functions 0, ..., 60, vanish at the origin. Take a C'*°
cut-off function o : [0, 00)] — R which is equal to 1 on [0, 3] and which is supported in [0, 1] (see

Lemma . Consider a map F' given by the formula

[lyll

F(ylv v >yn) = (yla sy Ye—1, Yk — Qk(yh s ,yk_l)O' <€> s Y41, - - ayn)

For a sufficiently small € > 0 this is a diffeomorphism supported in an e-ball in V' centered in the

origin. On the other hand, the manifold A = F(A) satisfies the extra condition of Step 3. [ ]

Lemma 11.25. Let A C V' be a (path)-connected submanifold with a non-empty boundary. Then
for any point a € A there exists an embedding ¢4 : [—1,1] — A such that ¢4(0) = a, ¢4(1) € 0A
and ¢g<1) 1 T¢a(1) (aA)

Sketch of the proof. Because A is path-connected with non-empty boundary, any interior point
can be connected by a path with a boundary point. However, this path need not be an embedding.
First, we perturb this path to make it an immersion ¢ : [—1,1] — A, i.e. a map with non-vanising
derivative. This can be done as follows. As in the proof of the previous lemma we consider a suffi-
ciently small partition of the path, so that two neighboring subdivision points lie in a coordinate
neighborhood. Then we can connect these points by a straight segment in these coordinate neigh-
borhoods. Finally we can smooth the corners via the standard smoothing procedure. Unfortunately
the constructed immersed path ¢ may have self-intersection points. First, one can arrange that
there are only finitely many intersections, and then “cut-out the loops”, i.e. if ¥(t1) = ¢ (t2) for
t; < ta we can consider a new piece-wise smooth path which consists of ¥[_; ;) and ¥|, ;) The
new path has less self-intersection points, and thus continuing by induction we will end with a
piece-wise smooth embedding. It remains to smooth again the corners. |
Proof of Theorem 1. For every point a € A choose an embedding ¢, : [-1,1] — A, as in
Lemma and using Lemma extend ¢, to an embedding ®, : [~1,1] x I*~1 — A such
that

- ®,(t,0) = ¢(t), for t € [-1,1], 0 € TF1;

-0, (1 x IF 1) C A, ®4([—1,1) x I*1) C Int 4;

- 9%4(1,2) ¢ T(DA) for all z € TF1.
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Due to compactness of A we can choose finitely many such embeddings ®; = ®,,, j = 1,..., N,

N
such that |J®;((—1,1] x Int(I*~!) = A. Choose a partition of unity subordinated to this covering
1

K
and split the k-form a as a sum « = Y a;, where each «; is supported in ®;((—1,1] x Int(7%71))
1

for some j = 1,...,N. To simplify the notation we will assume that N = K and each «; is
supported in ®;((—1,1] x Int(7¥71)), j = 1,..., N. Consider the pull-back form &; = ®laj on
I* = [-1,1] x I*~1. According to Lemma 1 there exists a (k—1)-form Bj such that Supp(gj) C
(—1,1] x Int(7*~1) and dﬁj = . Let us transport the form B}- back to A. Namely, set 3; equal to
(@;1)*@- on ®;((—1,1] x Int(I*71)) C A and extend it as 0 elsewhere on A. Then dfS; = a;, and

N N
hence d(}_ ;) = > a; = a.
1 1

2. Choose a point a € A and parameterize a coordinate neighborhood U C A by an embedding
® : I* — A such that ®(0) = a. Take a small closed ball D (0) C I* € R* and denote D = ®(D,(0)).
Then A = A \ Int D is a submanifold with non-empty boundary, and OA = OD. Let us use part
1 of the theorem to construct a form E on A such that d,g = a|g. Let us extent the form B in
any way to a form, still denoted by 5 on the whole submanifold A. Then dg = « + 1 where
Supp(n) € D C Int ®(I*). Note that

[ o= o= o [

D(I¥) A A A

- k
because [« = 0 by our assumption, and [, d3 = 0 by Stokes’ theorem. Thus, [ ®*n = 0, and
A 1

hence, we can apply Lemma 2 to the form ®*n on I* and construct a (k — 1)-form A on
I*1 such that d\ = ®*n and Supp(A) C Int I*. Now we push-forward the form A to A, i.e. take
the form X on A which is equal to (@ 1)*\ on ®(I};) and equal to 0 elsewhere. Finally, we have
d(§+ X) = d§+ 1 = «, and hence § = B+ X is the required primitive of o on A. |

Corollary 11.26. Let A be an oriented compact connected k-dimensional submanifold with non-

empty boundary and o a differential k-form on A from Theorem[11.22. Then for any smooth map

f:A— A such that flga = Id we have
/f*a:/a.
A A

204



Proof. According to Theorem [11.22/1 there exists a form § such that o = df. Then

[ra=[ras=[as=[rs=[o=[a
A A A 0A 0A A

Degree of a map

Consider two closed connected oriented submanifolds A C V, B C W of the same dimension k. Let
w be an n-form on B such that [ w = 1. Given a smooth map f : A — B the integer deg(f) := [ f*w
A

B
is called the degree of the map f.

Proposition 11.27. 1. Given any two k-forms on B such fw = fw we have ff*w = ff*
for any smooth map f: A — B, and thus deg(f) is mdependent of the chozce of the form w
on B with the property [w = 1.
A

2. If the maps f,g: A — B are homotopic then deg(f) = deg(g).

3. Let b € B be a regular value of the map f. Let f~1(b) = {a1,...,aq}. Then

d
deg(f) = Z sign(det D f(a;)).
1

In particular, deg(f) is an integer number.

Proof. The second part follows from Lemma [11.8, To prove the first part, let us write W = w + 7,

where [n = 0. Using Theorem [11.22|2 we conclude that n = dj for some (k — 1)-form  on B.
B

[ro=[ros [ra=[ros [as= [ 1o
A A A A A A
Let us prove the last statement of the theorem. By the inverse function theorem there exists a

Then

neighborhood U 3 b in B and neighborhoods U; 3 ay,...,U; 3 aq in A such that the restrictions
of the map f to the neighborhoods Uy, ..., Uy are diffeomorphisms f|Uj U —=U,j=1,...,d. Let

us consider a form w on B such that Suppw C U and [w = [w = 1. Then
B U

d d
deg(f) :/f*w:Z/f*w:Zsign(deth(aj)),
A Ly, 1
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because according to Theorem 7?7 we have

/f*w = sign(det D f(a;)) /w = sign(det Df(a;)).
Uj

U
foreach j=1,...,d. |

Remark 11.28. Any continuous map f : A — B can be approximated by a homotopic to f smooth
map A — B, and any two such smooth approximations of f are homotopic. Hence this allows us

to define the degree of any continuous map f: A — B.

Exercise 11.29. 1. Let us view R? as C. In particular, we view the unit sphere S* = S1(0) as the

set of complex numbers of modulus 1:
St ={z € C;|z| = 1}.

Consider a map h,, : S — S given by the formula h,(z) = 2", z € S*. Then deg(h,) = n.
2. Let f:S" 1 — S" ! be a map of degree d. Let p+ be the north and south poles of S"*! i.e.
p+ = (0,...,0,£1). Given any point z = (z1,...,2p41) € S™\ {p+,p—} we denote by 7(z) the

point

—

(z1,...,2,) € S

2
x5

HM:

and define a map X f : ™ — S™ by the formula

D+, ifx:pia

Sf@)=1{ [ [
(@f@r(w)),xm) L ifa# pa

Prove that deg(X(f)) = dﬁ

3. Prove that two maps f,g : S™ — S™ are homotopic if and only if they have the same degree.
In particular, any map of degree n is homotopic to the map h,,. (Hint: For n=1 this follows from
Proposition . For n > 1 first prove that any map is homotopic to a suspension.)

4. Give an example of two non-homotopic orientation preserving diffeomorphisms 72 — T2. Note
that the degree of both these maps is 1. Hence, for manifolds, other than spheres, having the same

degree is not sufficient for their homotopy.

4The map Xf is called the suspension of the map f.

206



5. Let v, : S1 — R? be two disjoint loops in R3. Consider a map ﬁ%(; : T? — S? defined by the
formula

ﬁ%(g(s,t) — M7 s,t e St

(s) = o)l
Prove that I(v,d) = deg(ﬁ%(;). Use this to solve Exercise [11.20{4 above.
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