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1 Arnold’s fixed point conjecture

Let (M,ω) be a closed symplectic manifold. Given a function H : M → R the
Hamiltonian vector field XH determined by the Hamiltonian H is defined by the
formula

XH ω = −dH.

Then LXH
ω = 0, and hence the flow generated by XH preserves the symplectic

form ω.
If one has a family of functions Ht : M → R, t ∈ [0, 1], one gets a family

of Hamiltonian vector fields XHt which generate an isotopy ft : M → M which
starts at f0 = Id and defined by the differential equation

dft
dt

(x) = XHt(ft(x)).

The isotopy of this type is called Hamiltonian (flow). It consists of symplectomor-
phisms, f ∗t ω = ω. A diffeomorphism f : M → M is called Hamiltonian if there
exists a Hamiltonian isotopy ft with f0 = Id and f1 = f .

Conjecture 1.1 (Arnold’s fixed points conjecture). Let (M,ω) be a closed sym-
plectic manifold and f : M → M a Hamiltonian diffeomorphism. Then f has at
least as many fixed points, as the minimal number of critical points of a smooth
function ϕ : M → R.

Remark 1.2. In this generality the conjecture is still open. For the case of 2-torus
and other surfaces it was first proven by myself in [3]. For the case of an
n-dimensional torus it was proven by C. Conley and E. Zehnder in [?]. It was
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generalized to other manifolds by the work of many people: M. Gromov ([6]),
A. Floer ([5]), K. Fukaya and K Ono ([7]) and others. It is now known for all
symplectic manifolds, but the lower bound for the manifold is not quite as good
as predicted by Conjecture 1.1.

We note that this minimal number is at least 2 because any function on a closed
manifold has at least two critical points, the minimum and the maximum. In fact,
it is usually larger. For instance, for the 2-dimensional torus this number is 3, if
one allows fixed points to be degenerate, and 4 in the non-degenerate case.

2 Proof of Arnold’s conjecture for the 2-torus

Lemma 2.1. Given a loop γ : S1 →M consider a map F : S1×[0, 1]→M given
by the formula γ(u, t) = ft(γ(u)), u ∈ S1, t ∈ [0, 1]. Then

∫
S1×[0,1]

F ∗ω = 0.

Proof. The tangent space to S1× [0, 1] is generated by the vector fields ∂
∂u

and ∂
∂t

.
We have

∂

∂t
F ∗ω =

∂F

∂t
ω = XHt ω = −dHt.

Hence,

∫
S1×[0,1]

F ∗ω =

1∫
0

(
∂

∂t
F ∗ω

)
dt = −

1∫
0

 ∫
ft(γ)

dHt

 dt = 0,

because the integral of the exact 1-form dHt over a closed curve ft(γ) is equal to
0.

We prove below Arnold’s fixed point conjecture for the 2-torus, but we will
only prove existence of 1 fixed point. A slightly more precise argument allows to
prove existence of at least 3 fixed points. The current proof was first given in [4].

What is remarkable about this proof that it could be given by H. Poincaré. In
fact, the first half of the proof almost precisely follows the first page of Poincaré’s
paper [2].

Theorem 2.2 (C. Conley and E. Zehnder,[1]). Any Hamiltonian diffeomorphism
f of the 2-torus (T 2, ω) = (R2/Z2, dp ∧ dq) must have at least 1 fixed point.
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Proof. We view the torus T 2 as the quotient R2/Z2, i.e. the set of points (p, q) ∈
R2 up to addition of a vector with integer coordinates. Let us denote by π the
projection R2 → T 2. The area form Ω = dp ∧ dq on R2 descends to the an area
form ω on R2, i.e. π∗ω = Ω.

The Hamiltonian isotopy ft : T 2 → T 2 lifts to a Hamiltonian isotopy
Ft : R2 → R2 such that F0 = Id and ϕ ◦ Ft = ft for all t ∈ [0, 1].

We have F (p, q) = (P (p, q), Q(p, q)) and dP ∧ dQ = dp ∧ dq. Let us first
assume that F is C1-close to the identity. Then its graph

ΓF = {(p, q, P,Q)| P = P (p, q), Q = Q(p, q)} ⊂ R4

is graphical with respect to the splitting of R4n into the (q, P )- and (p,Q)-
coordinate subspaces, i.e.

ΓF = {p = p(q, P ), Q = Q(q, P )},

and hence the equation dp ∧ dq = dP ∧ dQ is equivalent to the existence of a
function G(q, P ) such that pdq + QdP = dG. Fixed points p = P,Q = q of F
are zeroes of the 1-form (p−P )dq+(Q−q)dP = d(G−qP ). In other words, fixed
points are exactly the critical points of the function G̃(q, P ) := G(q, P )− qP.

Lemma 2.3. The function G̃ (called a generating function of the canonical
transformationF ) is 1-periodic in variables q, P , i.e. G̃(q+1, P ) = G̃(q, P+1) =

G̃(q, P ).

Proof. Take a path γ in the coordinate plane (p, q) connecting points γ(0) =
(q0, p0) and γ(1) = (q0 + 1, p0). Note that the projection γ̃ := π ◦ γ of this path
to the torus T 2 is a loop. Consider a family of paths δs : [0, 1]→ R4 = R2 × R2,
s ∈ [0, 1], defined by the formula (p, q) = δ(t), (P,Q) = Fs(δ(t)), so that the path
δs lies on the graph ΓFs . Denote (Ps, Qs) := Fs(p0, q0). Then Fs(p0, q0 + 1) =
(Ps, Qs+1). Thus, δs(0) = (p0, q0, Ps, Qs), δs(1) = (p0, q0 +1, Ps, Qs+1). Then
by Stokes’ formula

G̃(q0 + 1, P1)− G̃(q0, P1) =

∫
δ1

dG̃ =

∫
δ1

(p− P )dq + (Q− q)dP.
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But (p− P )dq + (Q− q)dP = pdq − PdQ+ d(P (Q− q)). Hence,

G̃(q0 + 1, P0)− G̃(q0, P0) =

∫
δ1

pdq − PdQ+ d(P (Q− q))

=

∫
γ

pdq −
∫
F◦γ

pdq +

∫
δ1

d(P (Q− q)),

But the latter integral is equal to 0 because the function P (Q− q) is equal to 0 at
the end points of the path δ1. On the other hand,

∫
γ

pdq =
∫
F◦γ

pdq. Indeed, denote

β(s) := (Ps, Qs) β(s) := (Ps, Qs + 1), Then,
∫
β

pdq −
∫
β

pdq. Hence,

∫
γ

pdq −
∫
F◦γ

pdq =

∫
γ

pdq +

∫
β

pdq −
∫
F◦γ

pdq −
∫
β

pdq.

Consider a square A = [0, 1] × [0, 1] and a map Φ : A → R2 defined by the
formula Φ(t, s) = Fs(γ(t)). Then∫

γ

pdq +

∫
β

pdq −
∫
F◦γ

pdq −
∫
β

pdq =

∫
∂A

Φ∗(pdq) =

∫
A

Φ∗(dp ∧ dq).

Denote Φ := π ◦ Φ : A → T 2. Recall that the projection π : R2 → T 2 satisfies
π(p, q) = π(p, q) + 1). Therefore, Φ(0, s) = Φ(1, s) for s ∈ [0, 1]. We have
dp ∧ dq = π∗ω, and hence Φ∗(dp ∧ dq) = Φ

∗
ω. But by Lemma 2.1 we have∫

A

Φ
∗
ω = 0. Hence,

G̃(q0 + 1, P0)− G̃(q0, P0) =

∫
A

Φ∗(dp ∧ dq) =

∫
A

Φ
∗
ω = 0.

We similarly check that G̃(q0, P0 + 1) = wtG(q0, P0).

Thus the function G̃ hence descends to the torus T 2, and hence must have at
least 2 critical points, the maximum and the minimum. In fact, one can show
that it has to have at least 3 critical points. But Its critical points are in 1-1
correspondence with the fixed points of f , and therefore, f has as many fixed
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points. This concludes the proof of Arnold’s conjecture for the 2-torus for the
case when f (and hence F ) is C1-small

Consider now the of the general F . Recall that the Hamiltonian isotopy Ft
connects F0 = Id with F1 = F . For any integer N > 0 we can present F as a
composition F = F̃N ◦ . . . F̃1, where we denote

F̃k = F k
N
F k−1

N
, k = 1, . . . , N.

By taking N sufficiently large we can make all the diffeomorphisms F̃k arbitrarily
C1-small.

We consider below the case N = 2, the general case differs only in the
notation.

As above, we can conclude, that the product Γ := ΓF̃1
× ΓF̃2

⊂ R8 of the
graphs of F̃1 and F̃2 is given by the equations

p1 = p1(q1, P1), Q1 = Q1(q1, P1), p2 = p2(q2, P2), Q2 = Q2(q2, P2).

Furthermore, we have pidqi + QidPi = dGi and the functions G̃i = Gi − qiPi
are Z2-periodic, i = 1, 2. Set G̃(q1, P1, q2, P2) := G1(q1, P1) +G2(q2, P2). Fixed
points of F are in 1-1 correspondence with the intersection Γ ∩ {p2 = P1, Q1 =
q2, p1 = P2, Q2 = q1}, i.e. with the zeroes of the 1-form

α :=(p1 − P2)dq1 + (Q1 − q2)dP1 + (p2 − P1)dq2 + (Q2 − q1)dP2

=dG(q1, q2, P1, P2) + d
(

(P1 − P2)(q1 − q2)
)
.

Changing the variables (q1, q2, P1, P2) 7→ (q1, u1 := q2 − q1, P1, U1 := P2 − P1)
we get

α = d(Ĝ+ u1U1), where Ĝ(q1, u1, P1, U1) := G̃(q1, q1 + u1, P1, P1 + U1).

Similarly to the proof of Lemma 2.3, one can check that the function Ĝ is periodic
with respect to all variables, and in particular, in variables (q1, P1), and hence it
descends to a function

T 2 × R2 = R2/{q1 ∼ q1 + 1, P1 ∼ P1 + 1} → R.

Note also that this function and its derivatives are bounded. Then the following
lemma implies that the function G̃(q1, P1, u1, U1) must have some critical points,
which, as we showed above, corresponds to fixed points of F .
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Lemma 2.4. Let M be a closed manifold, C : Rn → R a non-degenerate
quadratic form, and ϕ : M × Rn → R a smooth function which is bounded and
has bounded 1st derivatives. Then the function ψ(x, y) = ϕ(x, y) + C(y), x ∈
M, y ∈ Rn has at least 1 critical point.

Sketch of the proof. We can assume that C(y) =
k∑
1

y2j −
n∑
k+1

y2j . Suppose that

k 6= 0 (if k = 0 we can change the sign of the function ψ). Consider a map
h : Rk → M × Rn such that h(y1, . . . , yk) = (x0, y1, . . . , yk, 0, . . . , 0) when

||y||2 =
k∑
1

y2j is large enough. Let us denote by H the space of all maps h with

this property. For any h ∈ H the function ψ ◦ h : Rk → R is bounded below
and achieves its minimal value at a point ah ∈ Rk. Indeed, lim

||y||→∞
ψ ◦ h = +∞.

Denote bh = h(ah) ∈ M × Rn. There exists a point b ∈ M × Rn such that
ψ(b) ≥ ψ(bh) for all h ∈ H (why?). Then b is a critical point of ψ (why?).
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