Math 177: Homework N3

Due on Wednesday, May 27

- 1. A particle of mass m is moving in \mathbb{R}^3 in a central field with potential energy U(r). Write its Hamiltonian function and the equation of motion in the canonical coordinates $(r, \phi, \theta, p_r, p_\phi, p_\theta)$ associated with the spherical coordinates coordinates (r, ϕ, θ) .
- 2. Find an area preserving transformation $f: \mathbb{R}^2 \to \mathbb{R}^2$, (P,Q) = f(p,q), if its graph is given by the generating function $F(q,P) = (q+q^3)P$. In other words, the graph of the area preserving map f in $(\mathbb{R}^4 = \mathbb{R}^2 \times \mathbb{R}^2, dp \wedge dq dP \wedge dQ)$ given by the generating function F with respect to the polarization of \mathbb{R}^4 by the coordinate plane (q,P) and (p,Q).
- 3. Poisson bracket $\{f,g\}$ of two functions $f,g:M\to\mathbb{R}$ on a symplectic manifold (M,ω) is a function $M\to\mathbb{R}$ defined by the formula $\{f,g\}=dg(X_f)$, where X_f is the Hamiltonian vector field of the function f, i.e. $X_f \sqcup \omega = -df$. Verify the following properties of the Poisson bracket:

Skew-symmetricity: $\{f,g\} = -\{g,f\};$

Jacobi identity: $\{\{f,g\},h\}+\{\{g,h\},f\}+\{\{h,f\},g\}=0;$

Leibniz rule: $\{f,gh\} = \{f,g\}h + \{f,h\}g$.

4. Suppose that \mathbb{R}^2 is endowed with an area form $\omega = dp \wedge dq$. Let $H_t : \mathbb{R}^2 \to \mathbb{R}$, $t \in [0, 1]$, be a family of smooth functions equal to 0 outside of the unit disc D. Let $X_t := X_{H_t}$ be the

Hamiltonian vector field generated by H_t , i.e. $X_t \, \lrcorner \, \omega = -dH_t$. Let $f_t : \mathbb{R}^2 \to \mathbb{R}^2$ be the flow of area preserving transformations generated by X_t , i.e.

$$\frac{df_t}{dt}(x) = X_t(f_t(x)).$$

Let $z_0 \in \text{Int}D$ be a fixed point of f_1 , i.e. $f_1(z_0) = z_0$. Denote by γ the loop $\gamma : [0,1] \to \mathbb{R}^2$ defined by the formula $\gamma(t) = f_t(z_0), \ t \in [0,1]$. Then the integral $S(z_0) := \int_{\gamma} p dq - H_t dt$ is called *action* of the fixed point z_0 .

Prove that for any path $\delta:[0,1]\to\mathbb{R}^2$ such $\delta(0)\in\mathbb{R}^2\setminus D$ and $\delta(1)=z_0$ one has

$$\int_{\delta} pdq - \int_{f_1(\delta)} pdq = S(z_0).$$

In particular, the integral in the left hand side of the equation is independent of the choice of the path δ , so that the action depends only on f_1 and not on a choice of the Hamiltonian H_t which generates it.

Each problem is 10 points.