Math 177: Homework N2

Due on Wednesday, April 27

1. Consider a differential equation

$$
2 x y^{\prime}-y=\ln y^{\prime} .
$$

Find all the solutions and the discriminant.
2. Find a curve on the plane whose tangent lines form with the coordinate axis triangles of area $2 a^{2}$
3. Prove that the rank of any skew-symmetric bilinear form is even.
4. Let us view \mathbb{C}^{n} as $\mathbb{R}^{2 n}$ with the operator of maltiplication by i. Denote by

- $G L(2 n)$ the group of invertible real linear transformations of $\mathbb{R}^{2 n}$;
- $G L(n, \mathbb{C}) \subset G L(2 n, \mathbb{R})$ the group of invertible complex linear transformation of \mathbb{C}^{n};
- $U(n) \subset G L(n, \mathbb{C})$ the group of unitary transformations of \mathbb{C}^{n}, i.e. transformations preserving the Hermitian form $\sum_{1}^{n} z_{k} \overline{w_{k}}$;
- $S p(2 n) \subset G L(2 n, \mathbb{R})$ the group of symplectic transformations of $\mathbb{R}^{2 n}$, i.e. transformations preserving the symplectic form $\omega=\sum_{1}^{2 n} x_{k} \wedge y_{k}$;
- $S O(2 n) \subset G L(2 n, \mathbb{R})$ the group of orthogonal transformations of $\mathbb{R}^{2 n}$, i.e. transformations which preserves the standard scalar dot-product.

Prove that

$$
S O(2 n) \cap S p(2 n)=G L(n, \mathbb{C}) \cap S O(2 n)=G L(n, \mathbb{C}) \cap S p(2 n)=U(n)
$$

5. Prove that the plane fields given by Pfaffian equations $d z-y d x=0$ and $d z-\frac{1}{2}(x d y-y d x)=$ 0 are diffeomorphic, but the plane fields $d z-\frac{1}{2}(x d y-y d x)=0$ and $d z-\frac{1}{2}(x d y+y d x)=0$ are not.
6. Consider a PDE

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=u-x y .
$$

Solve the Cauchy problem for the initial data $u(2, y)=1+y^{2}$.

Each problem is 10 points.

