Math 177. Geometric Methods in ODE
 Spring 2015

Take-home Midterm Exam
Due on Monday, May 11

1. A particle of mass m moves on the surface of the cone

$$
x^{2}+y^{2}-c z^{2}=0, z \leq 0, \quad c>0
$$

in the constant field of gravity g parallel to the axis of the cone Integrate the equations of motion and describe the trajectories.
2. Prove that a curve which is projectively dual to an ellipse is again an ellipse.
3. In \mathbb{R}^{3} with coordinates (x, y, z) consider a differential one form $\alpha=$ $d z-y d x$. Given any function $K: R^{3} \rightarrow \mathbb{R}$, show that there exists a unique vector field \mathbf{v} which satisfies the following two conditions:

- $\alpha(\mathbf{v})=K ;$
- $L_{\mathbf{v}} \alpha=c \alpha$ for some function $c: \mathbb{R}^{3} \rightarrow \mathbb{R}$,
and find explicitly this vector field.

4. Prove that the following Cauchy problem :

$$
\left(x^{3}-3 x y^{2}\right) \frac{\partial u}{\partial x}+\left(3 x^{2} y-y^{3}\right) \frac{\partial u}{\partial y}=0,\left.\quad u\right|_{x^{2}+y^{2}=2}=\sin y
$$

has no solution in a neighborhood of the point $(1,1)$.
Each problem, including subproblems in 2 is 10 points.

