Math 177. Geometric Methods in ODE
 Spring 2015

Take-home Final Exam
Due on Wednesday, June 3

1. Find explicitly action - angle variables for the mathematical pendulum:

$$
H=\frac{1}{2} p^{2}-\cos q
$$

2. Consider the contact plane field $\xi=\{d z-y d z=0\}$ in \mathbb{R}^{3}. A 1 dimensional submanifold $\Gamma \subset \mathbb{R}^{3}$ is called Legendrian if it is tangent to ξ. Denote by π the projection $(x, y, z) \mapsto(x, y)$. Suppose that the submanifold Γ is connected and closed (i.e. diffeomorphic to a circle). Prove that the projected curve $\pi(\Gamma) \subset \mathbb{R}^{2}$ must have self intersection points.
3. Consider a Lagrangian system in the upper half plane

$$
\{(x, y) ; y>0\} \subset \mathbb{R}^{2}
$$

with the Lagrangian function

$$
L(x, y, \dot{x}, \dot{y})=\frac{\dot{x}^{2}+\dot{y}^{2}}{y^{2}}
$$

Write the equation of motion in the Hamiltonian form, find explicitly all the trajectories and describe qualitatively their behavior.

Each problem is 10 points.

