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1 Motivating the Patching Argument

My main references for this talk were Andrew’s overview notes and Kisin’s paper ”Mod-
uli of Finite Flat Group Schemes.” I also would like to thank Andrew for his help and
letting me incorporate some of his Tex code which saved me time and energy.

Since this is the final lecture in this seminar, we begin by stating the theorem we set
out to prove.

Theorem 1.1. Let F/Q be a totally real number field and let ρ : GF → GL2(Q̄p) be a continuous
representation of its absolute Galois group, with p > 5. Assume that ρ satisfies the following
conditions:

• ρ ramifies at only finitely many places.

• ρ is odd, i.e., det ρ(c) = −1 for all complex conjugations c ∈ GF .

• ρ is potentially crystalline and ordinary at all places above p.

• ρ̄|GF (ζp)
is absolutely irreducible.

• There exists a parallel weight two Hilbert modular form f such that ρf is potentially crys-
talline and ordinary at all places above p and ρ̄ = ρ̄f .

Then there exists a Hilbert modular form g such that ρ = ρg.

As explained in Andrew’s Lecture 18, we can make a solvable totally real base changes
to arrange so that ρ is crystalline and ordinary at all places dividing p and that ρ is Stein-
berg at all places where it is ramified. We are careful to choose a solvable extension pre-
serving the absolute irreducibility condition. Solvable base change ensures that modular-
ity of this new ρ implies modularity of the one we started with. All the other conditions
are preserved. For convenience, we also base change so that the number of real places of
F and the number of Steinberg places of ρ are both even.
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The techniques of level lowering and level raising as discussed in Akshay’s most re-
cent talk allows us find a new Hilbert modular form f ′ with the same reduction mod p
whose level exactly matches with ρ, that is, f ′ is ramified only where ρ is Steinberg and is
Steinberg there, and further f ′ is ordinary at all places dividing p. Some further reductions
are discussed in Andrew’s notes to get ourselves to the following situation:

Theorem 1.2. We have a representation

ρ̄ : GF → GL2(k)

where k is a finite field of characteristic p, a finite set St of places of F away from p and a modular
representation ρf lifting ρ̄. Let Sp denote the places of F above p. We assume the following
hypotheses:

(A1) ρf is crystalline and ordinary at all places in Sp, Steinberg at all places in St and unramified
at all other places.

(A2) det ρf = χp.

(A3) ρ̄|GF (ζp)
is absolutely irreducible.

(A4) ρ̄|GFv is trivial for v ∈ Sp ∪ St.

(A5) F has even degree over Q and St has even cardinailty.

Then ρ is modular.

As we go through the patching argument, the question may arise: why would one
think to do it this way? The argument feels very unnatural. The best I can do is to
point to similar argument from Iwasawa theory which arose much more naturally and
undoubtably inspired this one. If you are unfamiliar with Iwasawa theory or not inter-
ested, you may skip to the next section.

Everything I say can be found in Washington’s book Cyclotomic Fields in much more
detail. The important first case in Iwasawa theory is the study of the p-part of the class
group of the cyclotomic fields Q(ζpn) = Kn. Let Mn be the p-part of the class group Kn.
One first observes that Mn comes with an action of Gal(Kn/Q). For our brief discussion,
the relevant action is that of Gal(Kn/K1) which is a cyclic group of order pn−1. Further-
more, we think of Gal(Kn/K1) as a quotient of Γ = Gal(K∞/K1). So that Γ acts on all the
Mn’s.

Now, there exists maps of abelian groups

Mn+1 →Mn.

One can think interpret this map as norm map Kn+1/Kn either at the level of ideal class
groups or at the level of ideles. Or an alternative description exists in terms of Hilbert
class fields. It is not hard to show the map is both surjective and Γ-equivariant.
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Each Mn is an abelian p-group with the structure of a Zp[Γ/Γpn−1
]-module. Hence the

projective limit
M∞ := lim

←
Mn

is naturally a module over the completed group ring

lim
←

Zp[Γ/Γpn−1

] = Zp[[Γ]] ∼= Zp[[T ]]

the last isomorphism being given by sending a topological generator for Γ to 1 + T .
The value of this limiting process is that while the Mn themselves may be very mys-

terious, there is a nice structure theory for Zp[[T ]]-modules which can be applied to M∞.
Knowing this and the fact that Mn can be recovered as quotient of M∞ by an augmen-
tation ideal, allows one to derive strong results about how |Mn| grows as we go up the
tower.

Idea of the Proof: As both Mike and Sam have discussed, given a set of Taylor-Wiles
primesQ, the corresponding deformation ring and space of modular forms have an action
of O[∆Q]. The naive idea would be to take a limit where the Taylor-Wiles sets become
congruent to 1 modulo higher and higher powers of p. The limiting ”deformation ring”
and ”space of forms” then become modules over a power series in |Q| variables. One
could then use commutative algebras results which only work over domains to deduce
that R = T .

One big problem not present in the Iwasawa setup is that these TW-sets have abso-
lutely no relationship to each other. There will be no obvious maps from Mn+1 to Mn, and
this will lead to the ”miracle” that is patching argument. While the Iwasawa construction
moves vertically, the Taylor-Wiles construction is ”horizontal” one and will involve many
more choices, but nevertheless, in the end, it works and we can recover facts about our
original R and T in exactly the same way one does in Iwasawa theory.

2 Setup/Recollection of Previous Results

There is unfortunately a huge amount of notation to set up here so let’s get started.

2.1 Deformation Rings

All our deformation rings will be algebras over O which is the ring of integers of its
fraction field E, a p-adic field. We will denote the residue field of O by F and assume the
ρ̄ is representation over F.

In this section, we add in the framings we need and recall the necessary dimension
formulas.

Let R̃� be the universal deformation ring of ρ̄ unramified outside Sp∪St together with
framings at each place in Sp ∪ St. The essential thing is that R̃� is naturally an algebra
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over the universal local framed deformation ring R̃v of ρ̄|GFv for all v ∈ Sp ∪ St. All our
local deformation rings will be framed so I leave off the box.

The functor of forgetting the framings makes R̃� an algebra over the plain old global
deformation ring R̃ which exists since ρ̄ is absolutely irreducible.

We now state the first important dimension formula which was discussed in the fall:

(R1) R̃� is smooth over R̃ of relative dimension j = 4|Sp ∪ St| − 1.

Note that we need these framings at v ∈ Sp ∪ St because otherwise the local deforma-
tion rings may not be representable. In fact, as Andrew points out in his overview we can
actually assume that ρ̄|GFv is trivial.

Now let Rv be the quotient of R̃v which represents the crystalline-ordinary (respec-
tively Steinberg component) of the local deformation ring at v ∈ Sp ∪ St as discussed in
Rebecca and Brian’s (Corollary 4.3) talks earlier this quarter.

Set B̃ = ⊗̂v∈St∪SpR̃v and B = ⊗̂v∈St∪SpRv, and note that B is a quotient of B̃.
The relevant properties of the Rv are

• Rv is a flat O-algebra (also complete local with residue field F).

• Rv is a domain (i.e. Spec Rv is connected).

• Rv[1/p] is a regular E-algebra.

• Rv has relative dimension 3 for v ∈ St and 3 + [Fv : Qp] for v ∈ Sp over O.

These were all discussed or proved in previous lectures except I believe the dimension
formula which was only discussed for Rv[1/p] but should be in the notes. For later appli-
cations, we will also want to know that Rv has the same dimension at all maximal ideals.
This is Lemma 4.6 in Brian’s notes from this quarter.

Proposition 2.1. (B1) B is a flat O-algebra (also complete local with residue field F).

(B2) B is a domain of relative dimension 3|Sp ∪ St|+ [F : Q] over O.

(B3) B[1/p] is a regular E-algebra.

Proof. Since we can build B up one step at a time, for simplicity, let R1 and R2 complete
local O-algebras that are domains and which become formally smooth after inverting p.
Because the formation of the local deformation rings commutes with any finite extension
O′ of O, we can further assume that same properties hold for Ri ⊗O O′.

Let A = R1⊗̂R2. For (B1), it suffices to show that A if flat over R1 since R1 is flat over
O. Note that R1 → A is a local map of complete local Noetherian rings. By Prop 5.1,
it suffices to show that A/mn

1A is flat over R1/m
n
1 where m1 is the maximal ideal of R1.

However, once you quotient by mn
1 the completed tensor product goes away and we get

A/mn
1A
∼= R1/m

n
1 ⊗O R2

4



which is clearly flat over R1/m
n
1 since R2 is flat over O.

Since A is O-flat, it is p-torsion free and so A ↪→ A[1/p]. Thus for (B2) and (B3), it suf-
fices to show A[1/p] is a regular domain. Intuitively, one might think of Ri[1/p] as being
bounded functions on the corresponding rigid analytic space which we will call Xi. This
is not quite true, but in any case, if it were, then A[1/p] would be bounded functions on
the rigid analytic product space X1 × X2. And we are reduced to the statement that the
product of smooth spaces is smooth and product of geometrically connected is geomet-
rically connected. This motivates why one might believe modulo lots of technical details
that it would be true. Now I give the more hands-on algebraic proof.

Let X1 = Spec R1[1/p], X2 = Spec R2[1/p], and X = Spec A[1/p]. The rough idea is that
while X is very far from being the product of X1 and X2, it looks like a product at the
level of MaxSpec and this turns out to be enough. This is made precise in Lemma 5.2.

Recall also the following essential facts from Brian’s lecture ”Generic Fibers of Defor-
mation Rings”:

1. A[1/p], R1[1/p], R2[1/p] are all Noetherian and Jacobsen rings. In particular, their
closed points are dense in their spectrum.

2. All maximal ideal of A[1/p], R1[1/p], R2[1/p] have a residue field a finite extension of
E.

3. Under any homomorphism Ri[1/p]→ E ′ where E ′ is finite extension of E, Ri lands
in the ring of integers of E ′.

Regularity (B3) for Noetherian ring over a field can be checked by a functorial criterion
on Artin local E-algebras (see Remark 2.3 in Lecture 21). Thus, it follows immediately
from Lemma 5.2. Knowing regularity, we get the dimension count by applying Lemma
5.2 to the dual numbers over E. It remains to show the X is connected.

There are natural projections πi : X → Xi given by the evident ring inclusions. Fur-
ther, given any rational point x ∈ X2(E), we get a section sx : X1 → X . Our point x
corresponds to a map R2[1/p]→ E which from fact (3), gives rise to a map

R2 → O

which induces a map
R1⊗̂OR2 → R1

which after inverting p yields sx. Note that by construction sx is a closed immersion onto
the fiber π−1

2 (x).
We can now showX is irreducible. Assume that U and V were two disjoint non-empty

open subsets of X . After extending the field if necessary, we can assume U and V contain
rational points u and v. Let su and sv be sections passing through u and v respectively.
Since X1 is irreducible, s−1

u (U) ∩ s−1
v (V ) is non-empty. Again extending the field, we can

assume it contains a rational point y. Consider the fiber Xy = π−1
1 (y). Both U and V

intersect Xy, a closed subset of X . By remark above, Xy is the image of some section sy

and hence irreducible because X2 is.
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The universal deformation ring for ρ̄ unramified outside Sp ∪ St, crystalline and ordi-
nary in Sp, and Steinberg in St with local framings is given by

R� = R̃�⊗̂B̃B.

Intuitively, one should just think the B is gotten from B̃ by the univeral equations forcing
the desired local properties and all that we are doing here is just applying those universal
conditions to the global deformation ring.

Proposition 2.2. Let

g = dim(ker(H1(GFSp∪St
, ad0)→ ⊕v∈Sp∪StH

1(GFv , ad0))+
∑

v∈Sp∪St

dimH0(Fv, ad)−dimH0(GFSp∪St
, ad)

(1)
Then, R� can be written as a quotient of B[[x1, . . . , xg]].

Proof. The quantity g is exactly the number of generators of R̃ over B̃. This can be shown
by a slight modification (to take into account framings) of the argument given by Samit in
Lecture 6. Taking any presentation for R̃ over B̃ and then tensoring with B over B̃ gives
the desired presentation.

2.2 Taylor-Wiles Sets

Just as in Mike’s lecture, a TW set of primes is a setQ of places of F satisfying the following
conditions:

• Q is disjoint from Sp and St.

• N(v) ≡ 1 (mod p) for all v ∈ Q.

• The eigenvalues of ρ̄(Frobv) are distinct and belong to k.

• The map
H1(GFSp∪St∪Q

, ad0(ρ̄)(1))→ ⊕v∈QH
1(Fv, ad0(ρ̄)(1))

is an isomorphism.

Note that the last conditions implies that TW-sets always have the same size h.
Given a TW-set Q, we define R�

Q to be the universal deformations ring unramified
outside Sp ∪ St ∪ Q which is ord-cryst at Sp and Steinberg at St and with local framings
at Sp ∪St but not at Q. So R�

Q is exactly the same as R� except we allow ramification now
at the auxiliary set Q. Note that there exists a natural map ϕQ : R�

Q → R� since R� is the
unramified at Q quotient of R�

Q. We now recall a series of important properties of these
R�

Q.

(Q1) All the conditions together combined with a duality result for Selmer groups imply
R�

Q is a quotient of B[[x1, . . . , xg]] just as R� is.
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(Q2) R�
Q is an algebra over the group ringO[∆Q], where ∆Q is the maximal pro-p quotient

of
∏

v∈QOv.

(Q3) The kernel of ϕQ is the augmentation ideal aQR
�
Q where aQ is the augmentation ideal

of O[∆Q].

Let me say a word or two about these results. (Q2) involves a choice of root of the
characteristic polynomial of Frobv for each v ∈ Q or equivalently a choice of one of the
two univeral tame characters mapping Iv into R�,×

Q . We will resolve this ambiguity by
including the choice in our data below. Since the action ofO[∆Q] is exactly the ”univeral”
action of inertia, the unramified at Q quotient is given by the co-invariants under the ∆Q

action, that is,
R� ∼= R�

Q/ < g − 1 > RQ

where < g − 1 > is ideal generated by running over all g ∈ ∆Q. This gives (Q3).

Definition 2.3. A TW-datum of depth n is a TW-set Qn together with a choice of root αv

of the characterstic polynomial of ρ̄(Frobv) for each v ∈ Qn and such that for all v ∈ Qn,
Nv ≡ 1 mod pn.

Mike showed in Lecture 24 the existence of TW-datum for any depth n given our
assumptions on ρ̄. For each n ≥ 1, we fix once and for all a TW-datum Qn of depth n. The
end result being the existence of R�

Qn
together with anO[∆Qn ] structure. The condition on

the norm of v ∈ Qn forces ∆Qn to grow with n.
Given (Q1), we now fix a surjection

B[[x1, . . . , xg]]→ R�
Qn

for all Qn.
R�

Qn
is an algebra over O[∆Qn ] but choosing framing variables (i.e RQn [[y1, . . . , yj]] ∼=

R�
Qn

), we can make R�
Qn

an algebra over O[[y1, . . . , yj]][∆Qn ]. Choosing generators for the
cyclic factors of ∆Qn , we get a homomorphism

γn : O[[y1, . . . , yj, T1, . . . , Th]]→ R�
Qn

where the kernel of γn contains (Ti + 1)pni − 1 for some ni ≥ n.
The following key formula says that B[[x1, . . . , xg]] and O[[y1, . . . , yj, T1, . . . , Th]] have

the same dimension.

Proposition 2.4. Let g, h, j be defined as above with g generating global over local, h being size
of TW-set, and j generating framed global over global. Then,

h+ j + 1 = dimB + g.
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Proof. In the end, we will only need an inequality (≥). However, in this case, we know
equality and so we might as well prove it. We have

h+ j − g = h+ (4|Sp ∪ St| − 1)− (h− [F : Q] + |Sp ∪ St| − 1)

by (R1) and Proposition 1. Simplifying we get

h+ j − g = [F : Q] + 3|Sp ∪ St| = dimB − 1.

2.3 Hecke Modules

We now turn to the modular forms side. Let D be the unique quaternion algebra over F
ramifying exactly at all infinite places and all places in St. Jacquet-Langlands tells us that
any modular form f which could satisfy ρ = ρf would come from a form on D. Thus, we
lose nothing by working on D where certain things are much simpler.

Recall the following key result which Sam discussed last week:

Proposition 2.5. Given a TW-datum Q of any depth, there exists a level U and direct summand
MQ of the space of automorphic forms S(U) on D which is a Hecke-stable submodule such that the
deformation ring R̃Q acts via a natural map R̃Q → TQ. R̃Q comes with a O[∆Q] structure which
induces an action on MQ. MQ is a finite free O[∆Q]-module. Furthermore, M = MQ/aMQ.

Let MQn be the space of modular forms associated to our TW-datum Qn.
It is a small technical point, but we have to pass to a framed version of MQn to make

the argument work. We use our chosen presentation

R̃Qn [[y1, . . . , yj]] � R̃�
Qn

which is a map of O[∆Q]-algebras. Define

M�
Q := MQ ⊗R̃Qn

R̃�
Qn

and similarly for M .

Proposition 2.6 (H1). Using theO[[y1, . . . , yj]]-algebra structure coming from the framing,M�
Qn

is a finite free over O[[y1, . . . , yj]][∆Qn ] and M2 = M2
Qn
/aM2

Qn
.

Proof. Consider the following diagram:

O[[y1, . . . , yj]][∆Qn ] // R̃�
Qn

O[∆Qn ] //

OO

R̃Qn

OO

which one can show is a Cartesian square by considering the chosen presentation of the
unframed over the framed. Further, the vertical arrows are faithfully flat. The first state-
ment follows from flat base change; the second from the fact that quotients commute with
flat extension.
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3 Passing to the Limit

We recall now where we are headed.
A priori, we only started with a surjective map of O-algebras

ϕ : R̃→ T

where T is some Hecke algebra acting faithfully on M a space of modular forms. R̃ is the
deformation ring with no local conditions. We can pass to the framed version of this map:

ϕ� : R̃� → T�

acting on M�. By how we chose M� as a space of modular forms on a quaternion algebra
ϕ� will factor through the deformation ring with local conditions to give a map:

ϕ′ : R� → T�.

We will show this map is an isomorphism after inverting p. Technical Aside: To make
everything work on the automorphic side one has to allow ramification at an auxiliary
prime, this may cause the map ϕ′ not to be surjective and so this has to be dealt with, but
we won’t worry about it here.

Observe that to show ϕ′ is injective, it suffices to show that R� acts faithfully on M�.
Hence we forget T and focus on M�. We prove the following theorem:

Theorem 3.1. The module M�[1/p] is a finite projective (hence faithful) module over R�[1/p].
Further, R� is finite over O[[y1, . . . , yj]].

Corollary 1. The map
ϕ′[1/p] : R�[1/p]→ T�[1/p]

is an isomorphism.

Note that by (H1) and (Q3) and some compatibilities, we can recover the action of R�

on M� from any (R�
Qn
,M�

Qn
). This is the strategy we employ.

For each integer n ≥ 1, with all the choices we have made we get a diagram:

O[[y1, . . . , yj, T1, . . . , Th]]

((QQQQQQQQQQQQQQQ

B[[x1, . . . , xg]] // // R�
Qn M�

Qn .
<<

There is absolutely no a priori relationship between the diagrams for different n. How-
ever, for the sake of exposition, assume there existed compatible maps between the dia-
grams. Once we explain the patching technique the same argument will go through.
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Set R∞ = lim←R
�
Qn

and M∞ = lim←R
�
Qn

. We get the following diagram:

A = O[[y1, . . . , yj, T1, . . . , Th]]

))SSSSSSSSSSSSSSSSS

��
D = B[[x1, . . . , xg]] // // R∞ M∞.

55

where we pick a lift of the A-algebra structure on R∞ to D, which we can do since its a
power series ring.

Note that M∞ is finite free over A. At each finite level, M�
Qn

was finite free over
O[[y1, . . . , yj]][∆Qn ], but in the limit, because we demanded higher and higher congru-
ences for ∆Qn , we get freeness over the power series ring A.

Proposition 3.2. Let ψ : A → D be a map of domains of the same dimension and let V be a
D-module which is finite free as an A-module. Then, ψ is finite and if A and D are regular then V
is a projective D-module.

Proof of Theorem 3.1. We assume the proposition and deduce the theorem as a corollary
(modulo actually constructing compatible maps). Both A and D from the diagram above
are clearly domains. Proposition 2.4 tells us they have the same dimension.

Setting V = M∞ first, we get that the mapA→ B[[x1, . . . , xg]] is finite. SinceB[[x1, . . . , xg]]
surjects onto R∞, we get that R∞ is finite over A. This remains true after quotienting both
sides by the augmentation ideal a to get back down to R�.

A is already regular but D may not be. However, (B3) says that

D[1/p] = B[[x1, . . . , xg]][1/p] = (B⊗̂OO[[x1, . . . , xg]])[1/p]

is regular. The second part of the proposition applies toA[1/p], D[1/p],M∞[1/p] soM∞[1/p]
is projective over D[1/p] hence faithful. Since D[1/p] acts through R∞[1/p] the map be-
tween them must be injective, hence an isomorphism.

Thus, M∞[1/p] is projective over R∞[1/p] and this property descends through the quo-
tient by a to (R�[1/p],M�[1/p]).

Proof of Prop 3.2. Each d ∈ D acts on V and that action commutes with the action of A.
This gives a map

D → EndA(V ).

Let D′ be the image of this map.

D //

$$ $$IIIIIIIIII EndA(V )

A

OO

finite
// D′

?�

OO
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It’s clear that D′ is finite over A so dimD′ = dimA = dimD. But D is a domain so any
proper quotient of D has strictly smaller dimension so D′ = D, and hence D is finite over
A.

Now, we recall the Auslander-Buchsbaum Theorem (CRT Th’m 19.1): Let R be local
Noetherian ring and M be finite module over R. Assume M has finite projective dimen-
sion. Then,

pdR(M) + depth(M) = depth(R).

Assume A and D regular so that V has finite projective dimension over D. To show V is
projective, it suffices to show the inequality

depth(V ) ≥ depth(D) = dim(D).

Take any regular sequence a1, . . . , adim(A) for V over A. The images of these in D form a
regular sequence for V over D so we are done.

4 Patching Datum

The key idea in patching datum is that the deformation rings and auxiliary rings are
determined by their finite artinian quotients. This leads to a pigeonhole argument to find
compatible maps between diagrams.

We unfortunately begin with more notation:

• m(n)
A is the ideal generated by nth powers for any complete local ring A

• Mn := M�
Qn
,M0 := M�, Rn := R�

Qn
, R0 := R�

• s = rank of Mn over O[[x1, . . . , xj]][∆Qn ] = O[[x1, . . . , xj, T1, . . . , Th]]/bn

• rm := smpm(h+ j)

• cm := (πm
E , x

pm

1 , . . . , xpm

j , (T1 + 1)pm − 1, . . . , (Th + 1)pm − 1)

Remark 4.1. For m ≤ n, we have an inclusion of ideals bn ⊂ cm. This is simply because for
k ≥ m, (Ti + 1)pk − 1 is divisible by (Ti + 1)pm − 1.

Definition 4.2. A patching datum (D,L) of level m consists of:

1. A complete local noetherian ring D which is a B-algebra and such that m(rm)
D = 0

together with a D-module L which is finite free over O[[x1, . . . , xj, T1, . . . , Th]]/cm of
rank s;

2. A sequence of maps of complete local O-algebras

O[[x1, . . . , xj, T1, . . . , Th]]/cm → D → R0/(cmR0 +m
(rm)
R0

)

where the second map is a map of B-algebras;
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3. A surjection B[[y1, . . . , yg]] � D;

4. And a surjection of B[[y1, . . . , yg]]-modules

L � M0/cmM0.

This definition may seem arbitrary at first. However, the following two key properties
illustrate the relevance of the definition.

Proposition 4.3. For any n ≥ m, we can construct a patching datum (Dm,n, Lm,n) of level m
out of (Rn,Mn) by taking

Dm,n = Rn/(cmRn +m
(rm)
Rn

)Lm,n = Mn/cmMn.

For each fixed level m, this yields an infinite sequence of patching datum, one for each n ≥ m.

Proof. First, Dm,n is quotient of Rn and so is a complete local Noetherian ring which in-
herits a B-algebra structure from Rn as well as a surjection

B[[y1, . . . , yg]] � Dm,n

which we fixed earlier for Rn.
The desired sequence of maps comes from reducing

O[[x1, . . . , xj, T1, . . . , Th]]→ Rn → R0

modulo cm, (cmRn +m
(rm)
Rn

), and (cmR0 +m
(rm)
R0

) respectively.
Input (H1) tells us theMn is finite free overO[[x1, . . . , xj, T1, . . . , Th]]/bn. Since bn ⊂ cm,

Lm,n = Mn/cmMn is finite free over O[[x1, . . . , xj, T1, . . . , Th]]/cm of the same rank. The
surjective map

Lm,n � M0/cmM0

comes from reducing the map Mn � M0 modulo cm.
It turns out the one non-trivial check is that Lm,n is actually a module over Dm,n. Since

Mn is an Rn-module Lm,n = Mn/cmMn is an Rn/cmRn - module. It suffices to show that
m

(rm)
Rn

acts trivially on Mn/cmMn.
Let a ∈ mRn then a acts on Mn = M�

Qn
via the Hecke algebra T�

Qn
. Consider the action

of a on the quotient

Mn/(πE, x1, . . . , xj, T1, . . . , Th)Mn = M0/(πE, x1, . . . , xj)M0

which is a finite F vector space of rank s. Since a lies in the maximal ideal of the Hecke
algebra it acts as a nilpotent endomorphism hence

asMn ⊂ (πE, x1, . . . , xj, T1, . . . , Th)Mn.

12



A standard pigeonhole argument implies that

aspm(h+j)Mn ⊂ (πE, x
pm

1 , . . . , xpm

j , T pm

1 , . . . , T pm

h )Mn.

Raising to m, to get necessary power of πE , in there, we conclude that

aspm(h+j)mMn ⊂ cmMn.

If you are struggling like me to keep track of all the exponents, the important point is that
there is a fixed power of a which only depends on m which lands you in cmMn. This is
not hard to see once you have asMn ⊂ (πE, x1, . . . , xj, T1, . . . , Th)Mn.

Proposition 4.4. There exist finitely many isomorphism classes of patching datum of level m.

Proof. The number of elements in D is bounded above by the size of

B[[y1, . . . , yg]]/m
(rm)
B[[y1,...,yg ]]

.

Also, L is free over finite ring. Its not hard to see from here that there are finitely many
ways of putting the various structures on (D,L).

Finally, we come to the salvage for our earlier passing to the limit argument. Consider
the following arrangement of the data:
(D1,1, L1,1)

(D1,2, L1,2) (D2,2, L2,2)

(D1,3, L1,3) (D2,3, L2,3) (D3,3, L3,3)

(D1,4, L1,4) (D2,4, L2,4) (D3,4, L3,4) (D4,4, L4,4)

(D1,5, L1,5) (D2,5, L2,5) (D3,5, L3,5) (D4,5, L4,5) (D5,5, L5,5)

(D1,6, L1,6) (D2,6, L2,6) (D3,6, L3,6) (D4,6, L4,6) (D5,6, L5,6) (D6,6, L6,6)

The columns correspond to patching datum of increasing levels. In the first column,
we can choose a infinite subsequence of isomorphic patching datum of level 1. Call it
(D1, L1). In the second column consider the subsequence already chosen and pick a sub-
subsequence all of whose entries at level 2 are isomorphic. Call it (D2, L2). Repeating this
process, we get a sequence (Di, Li) of patching datum of level i such that the reduction to
a lower level (D̃i, L̃i) ∼= (Di−1, Li−1).

13



Taking the inverse limit, we get a pair (D∞, L∞) which one checks has the same prop-
erties as the R∞,M∞ considered in the previous section. By this remarkable process, we
manage to piece together seemingly disconnected pieces of information to build a tower
which with some clever commutative algebra proves our modularity lifting theorem.

5 Appendix A: Algebra Lemmas

Proposition 5.1. LetR→ R′ be a local homomorphism of complete local Noetherian rings. Then,
R′ is flat over R if and only if R′/mnR′ is flat over R/mnR for n ≥ 1.

Proof. The slight difficulty here is that we are not assuming R′ is finite type over R. The
forward implication is clear. We can check flatness on finite type modules so assume

0→ K ↪→M

is an injective map of finite type R-modules. To check that

K ⊗R R
′ →M ⊗R R

′

is injective, we would like to use that

K ⊗R R
′ ⊗R R/m

nR→M ⊗R R
′ ⊗R R/m

n

is exact because its isomorphic to

K/mnK ⊗R/mnR R
′/mnR′ →M/mnM ⊗R/mnR R

′/mnR′.

The injectivity of the unquotiented map is thus equivalent to the statement that

∩mn(K ⊗R R
′) = 0

i.e. that V = K ⊗R R
′ is separated as an R-module. Since K finite-type, V is finite-type

as a R′ module so standard Nakayama says that for any ideal I ⊂ R′ contained in the
maximal ideal ∩InV = 0. Since the homomorphism is local mR′ ⊂ mR′ .

Lemma 5.2. Let R1 and R2 be complete local Noetherian O-algebras. Let E be the fraction field
of O and A be any local Artinian E-algebra. Then,

Ψ : HomE(R1⊗̂OR2[1/p], A)→ HomE(R1[1/p], A)× HomE(R2[1/p], A)

is a bijection.

Proof. Since p is invertible in A, we get

HomE(R1⊗̂OR2[1/p], A) = HomO(R1⊗̂OR2, A).
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Before completing, we have

HomO(R1 ⊗O R2, A) = HomO(R1, A)× HomO(R2, A)

so the only question is does a homomorphism f : R1⊗OR2 → A extend to the completion.
If it does, it does so uniquely.

Write R1
∼= O[[x1, . . . , xn]]/(g1, . . . , gr) and R2

∼= O[[y1, . . . , ym]]/(h1, . . . , hs). Let f1, f2

be the induced maps R1 → A,R2 → A respectively. Now, A has both a reduction map
A → E and section E → A. We know from Brian’s Lecture 6 that under the reduction
maps f1(xi) and f2(yj) map to elements di, ej respectively in the maximal ideal ofO. Con-
sidering di and ej as elements of A under the section map, we see that f1(xi − di) ∈ mA

and similarly f2(yj − ej) ∈ mA.
Now, let k be an integer such that mk

A = 0. Then, its clear that

(x1 − d1, . . . , xr − dr)
k ⊂ ker f1 and (y1 − e1, . . . , ys − es)

k ⊂ ker f2.

Hence, the morphism f factors through R1/(x1− d1, . . . , xr − dr)
k⊗O R2/(y1− e1, . . . , ys−

es)
k. Both quotients, however, are now polynomial rings over O so the completed ten-

sor product is the same as the ordinary tensor product and so f trivially extends to the
completion.
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