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1. Introduction

In our seminar we have been working towards a modularity lifting theorem. Recall that such a theorem
allows one (under suitable hypotheses) to deduce the modularity of a p-adic Galois representation from that
of the corresponding mod p representation. This is a wonderful theorem, but it is not immediately apparent
how it can be applied: when does one know that the residual representation is modular?

One example where residual modularity is known is the following: a theorem of Langlands and Tunnel
states that any Galois representation (of any number field) into GL2(F3) is modular. Their result is specific
to F3 and does not apply to representations valued in other finite fields (except perhaps F2?): the key point
is that GL2(F3) is solvable. Modularity lifting thus allows one to conclude (under appropriate hypotheses)
that representations into GL2(Z3) are modular. Wiles’ original application of modularity lifting to elliptic
curves used this line of reasoning.

For finite fields other than F3 (and maybe F2) there is no analogue of the Langlands–Tunnel theorem: the
finite groups GL2(Fq) are typically not solvable. However, Taylor [Tay], [Tay2] partially found a way around
this problem: he observed, using a result of Moret-Bailly, that any odd residual representation of a totally real
field F becomes modular after passing to a finite extension of F ; that is, odd residual representations of F are
potentially modular. Using modularity lifting, one can conclude that many p-adic are potentially modular
as well. Typically, one cannot deduce modularity from potential modularity. Nonetheless, many of the
nice properties of modular p-adic representations can be established for potentially modular representations
as well: they satisfy the Weil bounds, their L-functions admit meromorphic continuation and satisfy a
functional equation, they often can be realized in the Tate module of an abelian variety and they fit into
compatible systems. We prove the final of these results.

As if these consequences of potential modularity were not impressive enough, Khare and Wintenberger
[KW] went even farther: they proved that every irreducible odd residual representation of GQ is modular,
a result first conjectured by Serre. To do this, they first showed — using potential modularity — that any
mod p representation admits a nice p-adic lift. This lift (by one of the corollaries of potential modularity)
fits into a compatible system. To prove the modularity of the original mod p representation, it suffices (by
modularity lifting, and basic properties of compatible systems) to prove the modularity of the reduction
of any of the `-adic representations in the system. This permits the possibility of an inductive argument,
which turns out to be quite subtle but possible. The base cases of the induction had been previously proved
by Serre and Tate; these results are specific to Q and is one reason that this sort of result has not been
extended to other fields.
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As indicated, the results presented here are mainly due to Taylor, Khare and Wintenberger, building on
the modularity lifting theorems of Wiles and Kisin (though many other people contributed along the way).
I learned most of these arguments by writing a paper [Sno] that extends them a small amount. Some of
these notes are taken directly from that paper.

2. Review of compatible systems

In this section we provide a brief review of compatible systems and some of their most basic properties.

2.1. Compatible systems with rational coefficients. Let F be a number field. An n-dimensional
compatible system of GF with coefficients in Q is a family {ρ`} indexed by the set of rational prime numbers
` (or possibly some subset thereof) where ρ` : GF → GLn(Q`) is a continuous representation, such that the
following conditions hold:

• There exists a finite set S of places of F such that each ρ` is unramified outside S ∪ S`. Here S`
denotes the set of places of F above `.

• For each place v of F not in S there exists a polynomial pv ∈ Q[t] such that: for any prime ` and
any place v 6∈ S ∪ S` the characteristic polynomial of ρ`(Frobv) is pv.

In words: the ρ` have uniform ramification properties and the characteristic polynomial of Frobv is inde-
pendent of `.

Example 1. Let f be a Hilbert modular form over F whose Hecke eigenvalues are rational numbers. For
each rational prime ` we have a Galios representation ρ` : GF → GL2(Q`). The collection of these Galois
representations forms a compatible system. The set S can be taken to be the set of primes dividing the level
of f , while pv can be taken to be t2 − avt+ av,v where av and av,v are the Tv and Tv,v eigenvalues of f .

Example 2. Let E be an elliptic curve over F . Let ρ` be the representation of GF on the `th Tate module
of E (tensored with Q`). Then the collection of these Galois representations forms a two-dimensional
compatible system. The set S can be taken to be the set of places of F where E has bad reduction. We
have pv(t) = t2 − avt + N v, where N v + 1 − av is the number of points of the reduction of E at v with
coefficients in the residue field of v. Of course, one can replace E with a higher dimensional abelian variety.

Example 3. Let X be a smooth projective variety over a number field F . Let ρ` be the representation of GF
on the étale cohomology Hi(XF ,Q`), for some fixed i. Then the collection of these Galois representations
forms a compatible system. The set S can be taken to be the set of primes where X does not have good
reduction. Here, we say that X has good reduction at a place v if there exists a smooth projective scheme
X /OFv

whose generic fiber is isomorphic to X. The polynomials pv comes from certain pieces of the zeta
function of X (which is by definition independent of `); to find these pieces, the Riemann hypothesis (proved
by Deligne) is needed. When X is an abelian variety, this example is more or less the same as the previous
one.

Remark 4. Since the compatibility condition is in terms of characteristic polynomials, it is not good at detect-
ing extensions: if {ρ`} is a compatible system then so too is {ρss

` } where ρss denotes the semi-simplification
of ρ. The converse is not quite true since the ramification of ρ` cannot be controlled in terms of that of ρss

` .
We say that a compatible system is semi-simple if all of its members are.

2.2. Compatible systems with general coefficients. As suggested by the terminology of the previous
section, there is a more general notion of compatible system. Let K be a number field. Then an n-
dimensional compatible system of GF with coefficients in K is a family {ρw} indexed by the set of finite
places w of K (or possibly some subset thereof) where ρw : GF → GLn(Kw) is a continuous representation,
such that conditions analogous to those given in the K = Q case hold. The polynomial pv will now have
coefficients in K.

Example 5. Let f be a Hilbert modular form over F whose Hecke eigenvalues generate the number field
K. Then for each place w of K we have a Galois representation ρw : GF → GL2(Kw), and these form a
compatible system. The description of S and pv are as in Example 1.

Example 6. A GL2(K)-type abelian variety is an abelian variety A/F of dimension [K : Q] equipped with an
injection OK → End(A). This implies that T`A⊗Q` is a free K⊗Q` module of rank two. Decomposing this
module into its pieces (corresponding to how ` splits in K), gives a two dimensional Galois representation
GF → GL2(Kw) for each finite place w of K. These form a compatible system.
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2.3. Properties of compatible systems. The Chebotarev density theorem immediately yields the fol-
lowing result:

Proposition 7. Let {ρw} and {ρ′w} be two semi-simple compatible systems of GF with coefficients in the
same field K. Assume there is some place w0 of K such that ρw0 and ρ′w0

are isomorphic. Then ρw and ρ′w
are isomorphic for all w.

As a corollary, we obtain the following, which we will use constantly:

Proposition 8. Let {ρw} be a two-dimensional compatible system of semi-simple representations of GF
with coefficients in K, and let w1 and w2 be two places of K. Then ρw1 is modular if and only if ρw2 is. In
particular, if any member of a compatible system is modular then all members are.

Proof. This follows from the previous proposition since modular representations always come in compatible
systems; see Example 5. �

3. Potential modularity

In this section, we sketch give a sketch of Taylor’s potential modularity. The original arguments are in
the papers [Tay] and [Tay2]. The basic idea is as follows. We are given a two dimensional mod p Galois
representation ρ of GF , where F is totally real, which we want to show is potentially modular. We find
a two dimensional `-adic Galois representation σ, which we know to modular. This new representation is
completely independent of ρ. However, using a very general theorem of Moret-Bailly, we show that there is
a GL2-type abelian variety A over some finite extension F ′/F whose mod ` representation is σ|F ′ and whose
mod p representation is ρ|F ′ . Modularity lifting implies that the `-adic representation of A is modular.
General properties of compatible systems then give the modularity of the p-adic representation of A, and
thus of the mod p representation ρ|F ′ as well.

We now make this precise. We begin by recalling the theorem of Moret-Bailly [MB]:

Theorem 9 (Moret-Bailly). Let X be a smooth geometrically irreducible variety over a number field F . Let
S be a finite set of places of F and for each v ∈ S let Lv/Fv be a finite Galois extension and let Uv ⊂ X(Fv)
be a non-empty open subset (for the v-adic topology). Then there exists a finite Galois extension F ′/F which
splits over each Lv (i.e., F ′ ⊗F Lv is a direct product of Lv’s) and a point x ∈ X(F ′) such that the image
of x in X(Lv) under any map F ′ → Lv belongs to Uv.

Using this result, we deduce the following crucial result, which “links” arbitrary residual representations.

Proposition 10. Let F be a totally real number field and let ρ1 : GF → GL2(Fp) and ρ2 : GF → GL2(F`)
be irreducible odd representations, with p 6= `. Then there exists a finite totally real Galois extension F ′/F
and a two-dimensional compatible system {ρw} of representations of GF ′ with coefficients in some number
field K, such that for some place v1 | p of K the representation ρv1 is equivalent to ρ1 while for some place
v2 | ` the representation ρv2 is equivalent to ρ2. Furthermore, the field F ′/F can be taken to be linearly
disjoint from any given finite extension of F and the system {ρw} can be taken so that ρv1 (resp. ρv2) is
ordinary crystalline at all places over p (resp. `).

Proof. For simplicity we assume that ρ1 and ρ2 take values in GL2(Fp) and GL2(F`) respectively, and that
both have cyclotomic determinant. We give some comments on the general case following the proof.

Let Y/F be the moduli space classifying elliptic curves whose p-torsion is ρ1 and whose `-torsion is ρ2.
More precisely, regard ρ1 and ρ2 as finite étale group schemes G1 and G2 over F . Pick an isomorphism
G1 → G∨1 of G1 with its Cartier dual such that the corresponding pairing G1 × G1 → Gm is symplectic,
which is possible by the assumption on the determinant of ρ1; do the same for G2. For a scheme T/F let
Y (T ) be the groupoid of elliptic curves E/T equipped with isomorphisms E[p]→ (G1)T and E[`]→ (G2)T
such that the Weil pairing on E[p] corresponds to the given pairing on (G1)T , and similarly for `. It is
not difficult to see that Y is representable by a scheme. In fact, the open modular curve Y (p`) of full level
splits into a several connected components over Q and our space Y is a twisted form of any one of these
components. This shows that Y is smooth and geometrically irreducible.

We are now going to apply the theorem of Moret-Bailly. Take S to be the set of infinity places of F and
for v ∈ S let Lv = Fv, the real numbers, and let Uv = Y (Lv). Clearly, Uv is an open subset of Y (Lv). To
apply the theorem we need Y (Fv) to be non-empty. This is the case because the representations ρ1 and ρ2

are odd: if E/Fv is any elliptic curve then E[p] is automatically equivalent to (G1)Fv
, and similarly for E[`].
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Thus any elliptic curve over Fv can be given the additional structure needed to define a point of Y (Fv).
Moret-Bailly now gives a finite totally real Galois extension F ′/F (totally real because it splits over each
Fv for v | ∞) and an elliptic curve E/F ′ such that E[p] = ρ1|F ′ and E[`] = ρ2|F ′ . The compatible system
can now be taken to be the Tate modules of E.

We now show that E may be taken to be ordinary crystalline at all places above `. (The arguments at
p are identical, and can be carried out simultaneously.) Add to S all the places of F above `. Fix for the
moment a place v of F over `. Let Uv be the subset of Y (F v) consisting of elliptic curves with good ordinary
reduction. This is clearly a non-empty set, since there exist elliptic curves with good ordinary reduction, and
these can be given arbitrary level structure over F v. We now show that it is open. Let j : Y (F v)→ F v be
the j-invariant; it is a continuous function for the v-adic topology. The subset V of Y (F v) where the elliptic
curve has good reduction consists of those curves for which j is integral; it is therefore open. The subset
of V where the elliptic curve has ordinary reduction is open, since this only depends upon the reduction
of the curve: if E and E′ are two curves whose j-invariants are v-adically close then they have the same
reduction, and so one is ordinary if and only if the other is. This shows that Uv is open. Let Lv/Fv be any
Galois extension such that Uv ∩ Y (Lv) is non-empty, and take Uv to be this intersection. We now apply
Moret-Bailly as before. The elliptic curve E/F ′ that we produce has good ordinary reduction at all places
over ` by the construction of the sets Uv, and so the Tate module ρv2 is ordinary crystalline at all places
over `.

Finally, we show that F ′/F can be taken linearly disjoint from any given finite extension of F . Thus let
M/F be a finite extension, which we can and do assume to be Galois. Observe that Y (Fv) is non-empty for
all sufficiently large v: indeed, if v is sufficiently large then Y will be smooth at v and its reduction will have
rational points by the Weil bounds; smoothness allows us to lift these mod v points to OFv

points. Let S′ be
a finite collection of finite places of F satisfying the following conditions: (1) for each v ∈ S′ the set Y (Fv)
is non-empty; (2) no place of S′ lies over p or `; and (3) no place of S′ ramifies in M ; (4) the elements Frobv
with v ∈ S′ generate the finite group Gal(M/F ). We now again modify the Moret-Bailly set-up. We add
the set S′ to the set S, and for v ∈ S′ we take Lv = Fv and Uv = Y (Fv). The field F ′/F that Moret-Bailly
produces splits at all elements of S′ and is therefore linearly disjoint from M . �

Remark 11. In the above proof we assume that ρ1 and ρ2 had cyclotomic determinant and were valued in
the prime field. The first of these conditions is straightforward to relax by passing to an appropriate finite
extension of F and twisting. To remove the second assumption one proceeds as follows. Pick a number field
K which is sufficiently large so that ρ1 can be regarded as taking values in the residue field of K at some
place above p, and similarly for `. Then, instead of considering moduli spaces of elliptic curves, consider
moduli spaces of GL2(K)-type abelian varieties. The theory of these moduli spaces is developed in [Rap].

Remark 12. In the previous theorem we required that ρ1 and ρ2 be irreducible. This is not really needed,
but we included since we have defined compatible systems to be rational objects, and so one can typically
only form the semi-simplification of their reductions.

We now produce a large supply of “universally” modular Galois representations.

Proposition 13. Let F be a totally real field and ` a prime number. There exists a Galois representation
σ : GF → GL2(Q`) satisfying the following conditions:

(a) σ is modular.
(b) σ is ordinary and crystalline at all places above `.
(c) σ|F (ζ`) is (absolutely) irreducible.

Furthermore, these conditions hold after restricting σ to any finite totally real extension of F .

Proof. An exercise in class field theory allows one to produce an imaginary quadratic extension E/F and
a character ψ : GE → Q

×
` such that the representation σ = IndFE(ψ) satisfies conditions (b) and (c) of the

proposition. (One picks E to split at all places of F above `. If v | ` is a place of F and w1 and w2 the two
places of E above F then one takes ψ so that ψ|Ew1

is finitely ramified and ψ|Ew2
differs from the cyclotomic

character by a finitely ramified character.) A theorem of Hecke states that σ is modular. If F ′/F is a finite
extension then σ|F ′ = IndF

′

EF ′(ψ|F ′) and the same arguments apply. �

We can now prove potential modularity for residual representations:
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Theorem 14. Let F be a totally real field and let ρ : GF → GL2(Fp) be an odd representation such that
ρ|F (ζp) is (absolutely) irreducible. Then there exists a finite totally real Galois extension F ′/F , which can
be taken to be linearly disjoint from any finite extension of F , such that ρ|F ′ is modular. Furthermore, the
modular form can be taken to be ordinary at all places of F ′ above p and of level prime to p.

Proof. Let σ be as in Proposition 13, where ` can be any prime different from p (and maybe larger than
5). By Proposition 10, we can find a finite extension F ′/F , linearly disjoint from whatever we want, a
compatible system {ρw} of representations of GF ′ with coefficients in some number field K and two places
v1 | p and v2 | ` of K such that: (1) ρv1 is ordinary crystalline at all places above p and its reduction is
equivalent to ρ; (2) ρv2 is ordinary crystalline at all places above ` and its reduction is equivalent to σ. The
modularity lifting theorem that we have proved now establishes that ρv2 itself is modular. By compatibility,
ρv1 is modular (see Proposition 8), and thus ρ is as well. Since ρv1 is ordinary crystalline at all places above
p, the modular form giving rise to it has prime to p level and is ordinary at all places above p. �

We can now prove potential modularity for p-adic representations:

Theorem 15. Let F be a totally real field, let p > 5 be a prime and let ρ : GF → GL2(Qp) be a continuous
representation satisfying the following conditions:

(A1) ρ is odd.
(A2) ρ ramifies at only finitely many places.
(A3) ρ|F (ζp) is (absolutely) irreducible.
(A4) ρ is ordinary crystalline at all places above p.

Then there exists a finite totally real Galois extension F ′/F , which can be taken to be linearly disjoint from
any given finite extension of F , such that ρ|F ′ is modular.

Proof. By the previous theorem, we can find a finite extension F ′/F such that ρ|F ′ comes from a modular
form which is ordinary crystalline at all places above p. The modularity lifting theorem we have proved
gives the modularity of ρ|F ′ . �

Remark 16. Condition (A4) be relaxed if one is willing to use more general modularity lifting theorems.
However, (A1)–(A3) are essential to the method of proof.

Remark 17. This clause about being able to produce the field F ′ so that it is linearly disjoint from a given
extension of F is often used to make F ′ linearly disjoint from the kernel of ρ. This implies that ρ and ρ|F ′

have the same image. Thus ρ|F ′ will still be irreducible.

4. Putting representations into compatible systems

We now use potential modularity to put p-adic representations in compatible systems. I learned the proof
of this result from a lecture given by Taylor at the Summer School on Serre’s Conjecture held at Luminy
in 2007. Taylor attributed the proof to Dieulefait; a sketch of the argument can be found in [Die, §3.2].
However, I have not found a detailed proof in the literature.

Proposition 18. Let F be a totally real field, let p > 5 be a prime and let ρ : GF → GL2(Qp) be a
continuous representation satisfying (A1)–(A4). Then there exists a compatible system {ρw} of GF with
coefficients in some number field K such that for some place v0 of K the representation ρv0 is equivalent to
ρ.

Proof. Apply Theorem 15 to produce a finite Galois totally real extension F ′/F linearly disjoint from ker ρ
and a modular form f over F ′ such that ρ|F ′ = ρf (we regard the coefficient field of f as being embedded in
Qp). Let I be the set of fields F ′′ which are intermediate to F ′ and F and for which Gal(F ′/F ′′) is solvable.
For i ∈ I we write Fi for the corresponding field. For each i we can use solvable descent to find a modular
form fi such that ρ|Fi

= ρfi
. Let Ki denote the field of coefficients of fi, which we regard as being embedded

in Qp. Let K be a number field which is Galois over Q, into which each Ki embeds and which contains
all roots of unity of order [F ′ : F ]. Fix an embedding K → Qp and embeddings Ki → K such that the
composite Ki → K → Qp is the given embedding. Let v0 be the place of K determined by the embedding
K → Qp. For each place v of K and each i ∈ I we have a representation ri,v : GFi

→ GL2(Kv) associated
to the modular form fi. It is absolutely irreducible. Note that after composing ri,v0 with the embedding
GL2(Kv0)→ GL2(Qp) we obtain ρ|GFi

.
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By Brauer’s theorem, we can write

1 =
∑
i∈I

ni IndGal(F ′/F )
Gal(F ′/Fi)

(χi)

where the ni are integers (possibly negative) and the χi are characters of Gal(F ′/Fi) valued in K×. (Here we
use the fact that K contains all roots of unity of order [F ′ : F ].) This equality is taken in the Grothendieck
group of representations of Gal(F ′/F ) over K. Note that by taking the dimension of each side we find∑
ni[Fi : F ] = 1.
Let v be a place of K. For a number field M write CM,v for the category of semi-simple continuous

representations of GM on finite dimensional Kv-vector spaces. The category CM,v is a semi-simple abelian
category. We let K(CM,v) be its Grothendieck group. It is the free abelian category on the set of irreducible
continuous representations of GM on Kv-vector spaces. We let (, ) be the integer valued pairing on K(CM,v)
given by (A,B) = dimKv

Hom(A,B). This is well-defined because CM,v is semi-simple. It is symmetric. If
M ′/M is a finite extension then we have adjoint functors IndMM ′ : CM ′,v → CM,v and ResMM ′ : CM,v → CM ′,v.
(One must check, of course, that induction and restriction preserve semi-simplicity — we leave this to the
reader.) These functors induce maps on the K-groups which are adjoint with respect to (, ). If M1 and M2

are two extensions of M and r1 belongs to CM1,v and r2 belongs to CM2,v then we have the formula

(1) (IndMM1
(r1), IndMM2

(r2)) =
∑
g∈S

(ResM
g
1

Mg
1M2

(rg1),ResM2
Mg

1M2
(r2))

where S is a set of representatives for GM1\GM/GM2 , Mg
1 is the field determined by gGM1g

−1 and rg1 is the
representation of gGM1g

−1 given by x 7→ r1(g−1xg). This formula is gotten by using Frobenius reciprocity
and Mackey’s formula.

Define
ρv =

∑
i∈I

ni IndFFi
(ri,v ⊗ χi),

which is regarded as an element of K(CF,v). We now show that each ρv is (the class of) an absolutely
irreducible two dimensional representation. To begin with, we have

ρv0 ⊗Kv0
Qp =

∑
i∈I

ni IndFFi
((ri,v0 ⊗Kv0

Qp)⊗K χi)

=
∑
i∈I

ni IndFFi
((ρ|Fi

)⊗K χi)

=
[∑
i∈I

ni IndFFi
(χi)

]
⊗K ρ

=ρ

This shows that ρv0 is (the class of) an absolutely irreducible representation.
Now let v be an arbitrary finite place of K. We have

(ρv, ρv) =
∑
i,j∈I

ninj(IndFFi
(ri,v ⊗ χi), IndFFj

(rj,v ⊗ χj))

=
∑
i,j∈I

∑
g∈Sij

ninj(ResF
g
i

F g
i Fj

((ri,v ⊗ χi)g),ResFj

F g
i Fj

(rj,v ⊗ χj))

where we have used (1). Here Sij is a set of representatives for GF1\GF /GF2 . The representation ri,v|F ′ is
the representation coming from the form f ′ and so is absolutely irreducible. It follows that the restriction of
ri,v to any subfield of F ′ is absolutely irreducible. Thus the representations occurring in the pairing in the
second line above are irreducible. It follows that the pairing is then either 1 or 0 if the representations are
isomorphic or not. Therefore, if let δv,i,j,g be 1 or 0 according to whether ResF

g
i

F g
i F2

(ri,v ⊗ χi)g is isomorphic

to ResFj

F g
i F2

(rj,v ⊗ χj) then we find

(ρv, ρv) =
∑
i,j∈I

∑
g∈Sij

ninjδv,i,j,g.
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Now, the {ri,v}v and the {rj,v}v form a compatible system. It follows that δv,i,j,g is independent of v. The
above formula thus gives

(ρv, ρv) = (ρv′ , ρv′)

if v′ is another place of K. Taking v′ = v0 and using that ρv0 is an absolutely irreducible representation gives
(ρv, ρv) = 1. Now, if we write ρv =

∑
miπi where mi ∈ Z and the πi are mutually non-isomorphic irreducible

representations then we have (ρv, ρv) =
∑
m2
i (πi, πi). Since the terms are all non-negative integers and the

sum is 1, we find ρv = ±π with (π, π) = 1. Thus π is an absolutely irreducible representation. Now,
dim ρv = 2 since each ri,v is two dimensional and

∑
ni[Fi : F ] = 1. Since dimπ is non-negative, we must

have ρv = π. This proves that ρv is the class of an absolutely irreducible representation.
Of course, it must be shown that the ρv actually form a compatible system! This is fairly easy after what

we have done, and we leave this task to the reader. �

Remark 19. The compatible system constructed above is in fact strongly compatible. For a discussion of
this, see [Tay, Theorem 6.6].

5. Lifting residual representations

We now show that one can lift most residual representations to characteristic zero representations.

Proposition 20. Let F be a totally real field, p > 5 a prime and ρ : GF → GL2(Fp) an odd representation
such that ρ|F (ζp) is (absolutely) irreducible. Assume that for each plave v | p of F the representation ρ|Fv

admits a lift to Zp which is ordinary crystalline. Then there exists a continuous representation ρ : GF →
GL2(Qp) satisfying (A1)–(A4) lifting ρ. One can take ρ to be unramified at the same places where ρ is
unramified (excluding places above p).

Proof. Let S be the set of primes away from p at which ρ ramifies and let Sp denote the set of primes above
p. For v ∈ S ∪ Sp we have the universal framed deformation ring R�

v of ρ|Fv
. For v ∈ Sp we let R†v be the

quotient of R�
v parameterizing ordinary crystalline representations, in the same manner as we have done

before. The ring R†v is non-zero since we have assumed that ρ|Fv
admits an ordinary crystalline lift. Our

previous work therefore shows that it is O-flat and has relative dimension dimension is 3 + [Fv : Qp] over O.
For v ∈ S we pick a non-zero O-flat quotient R†v of R�

v of relative dimension 3 over O. It takes a little bit
of work to show that such a quotient exists, but it is not very hard. (The calculations appear in [Sno], and
they probably are also somewhere in [KW].) We let B̃ (resp. B) be the completed tensor product of the R�

v

(resp. R†v) for v ∈ S ∪ Sp. We let R� be the universal framed deformation ring for ρ unramified outside of
S. We put R† = R� ⊗ eB B and let R‡ be the unframed version of R†.

Now, we have a presentation for R� over B̃ [Ki, Prop. 4.1.5]:

R� = B̃Jx1, . . . , xr+n−1K/(f1, . . . , fr+s)

where s =
∑
v|∞ dimH0(Fv, ad◦ ρ), n is the cardinality of S ∪ Sp and r is some non-negative integer.

Tensoring this over B̃ with B gives

R† = BJx1, . . . , xr+n−1K/(f1, . . . , fr+s)

Now, since ρ is odd, we have s = [F : Q]. On the other hand, the dimension of B is [F : Q] + 3n + 1. We
conclude that R† has dimension at least 4n. Since R† is a power series ring over R‡ in 4n− 1 variables, we
find that R‡ has dimension at least 1.

Let F ′/F be a finite totally real extension over which ρ becomes modular, by an ordinary modular form
of level prime to p. We can then define deformation rings for ρ|F ′ analgous to the ones we have defined for
ρ. We will denote these rings with an overline. There is a natural map R → R (the universal unframed
deformation rings unramified outside of S), which is easily verified to be a finite map of rings. It follows that
the induced map R

‡ → R‡ is finite as well. Now, to establish our modularity lifting theorem we identified
R
‡
[1/p] with a Hecke algebra using a patching argument. Out of this argument we obtained another piece of

information: that R
‡

itself, without p inverted, is finite over O. (Actually, we did not quite use the ring R
‡
,

we needed to make a slight modification of the local deformation ring at p. Nonetheless, the same argument
establishes the finiteness of R

‡
.) We now conclude that R‡ itself is finite over O.
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We have thus show that R‡ is finite over O and has Krull dimension at least one. These two properties
imply that R‡ cannot consist soley of p-power torsion. Therefore R‡[1/p] is non-zero, and so there exists
some homomorphism R‡ → Qp. The corresponding deformation is the representation ρ that we are required
to produce. �

Remark 21. One can still prove that ρ admits a nice lift without the assumption that ρ|Fv
admit an ordinary

crystalline lift for each v | p. Of course, without this assumption the resulting lift cannot be assured to
be ordinary. Not surprisingly, this more general statement makes use of more general modularity lifting
theorems.

6. Remarks on Serre’s conjecture

Recall Serre’s conjecture:

Conjecture 22. Any odd semi-simple representation ρ : GQ → GL2(Fp) is modular.

When ρ is reducible it is easy to see that it is easy to see that ρ is modular. This is very far from the case
when ρ is irreducible. However, Khare and Wintenberger proved this a few years ago. We now give some
idea of the proof.

To begin with, Serre made a stronger conjecture, specifying the optimal weight and level of a modular
form giving rise to ρ. (See Akshay’s talk for more details along these lines.) The level N(ρ) is just the
prime-to-p Artin conductor of ρ. Thus is N(ρ) always prime to p, and ` | N(ρ) if and only if ρ is ramified at
`. The weight k(ρ) is more complicated to define, but it can be bounded in terms of p. It is known that if ρ is
modular then it is modular of this optimal weight and level. Furthermore, the work we have done in §4 and
§5 can be generalized to show that ρ lifts to a strongly compatible system of weight k(ρ) and conductor N(ρ).
This uses more advanced modularity lifting theorems. (The weight of a p-adic representation is defined using
p-adic Hodge theory. The conductor of a p-adic representation is a product of the usual prime-to-p part
together with a p-part coming from p-adic Hodge theory. If {ρ`} is a strongly compatible system then all
the ρ` have the same weight and conductor.)

We begin by discussing the level one case of Serre’s conjecture. We have the following result:

Proposition 23 (Serre, Tate). Conjecture 22 holds if N(ρ) = 1 and p = 2 or p = 3.

The p = 2 case is due to Tate, the p = 3 case to Serre. In fact, there are no cusp forms of level 1 and small
weight, so the above proposition is really saying that there are no irreducible representations GQ → GL2(Fp)
ramified only at p for p = 2, 3.

This result allows one to try to attempt an inductive argument. Let ρ : GQ → GL2(Fp) have N(ρ) = 1.
Lift ρ to a compatible system {ρ`} of conductor 1 and weight k = k(ρ). By the above result, we know
that the reduction of ρ3 is modular. We would like to use a modularity lifting theorem to conclude that
ρ3 is modular. Of course, this is going to require a more powerful modularity lifting theorem than we have
discussed. Such theorems do exist (and can handle, for instance, the fact that ρ3 will be reducible), but
they are not completely unconditional: the weight has to be small compared to p. Thus if one is going to
apply a modularity lifting theorem in characteristic 3 the weight has to be quite small (maybe 3 or 4). Our
compatible system {ρ`} can have arbitrarily large weight, so this is a real problem! (One might think to
try to lift our original ρ to a small weight p-adic representation unramified outside of p, and then put this
in a compatible system. This is possible, but the small weight p-adic representation will typically have a
conductor at p; this means that the 3-adic representation will ramify at p and we can no longer use the
theorems of Serre and Tate.)

To get around this problem, Khare (who proved the level one case before he and Wintenberger established
the general case) employs an inductive argument on the weight and the prime. I do not know the details of
how this works, so I cannot explain it.

Now consider the general case, whereN(ρ) is no longer assumed to be 1. The proof of Khare–Wintenberger
is again an induction, but now the level is considered as well. Here is one way the level can be cut down:
lift ρ to a compatible system {ρ`}. Say ` | N(ρ). Then look at ρ`. By definition, its Serre-level is prime to
`. If we were just inducting on the level, then we could assume that ρ` were modular (since it has smaller
level than ρ). Of course, we would then like to conclude that ρ` is modular as well. However, the available
modularity lifting theorems may not be strong enough for us to make this deduction — for instance, the
weight could be too larger compared to `. I think the argument of Khare–Wintenberger runs induction on
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several things at once to get around this sort of issue. Again, I do not know the details, so I will leave it at
that.
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