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1 Introduction/Motivation

Recall that our ultimate goal is to prove a modularity lifting theorem (stated in Andrew’s
talk “Overview of the Taylor-Wiles method”), which we have reduced to showing an R = T
theorem. That is, we have a surjection from a deformation ring R ′ to a Hecke algebra Tm,
and we want to prove it is an isomorphism.

Brandon will prove this next time. The idea of the proof – the patching argument – is
to use framed versions R�

n of the rings RQn . Here the Qn form a Taylor-Wiles system; Mike
established the existence of such last time. These each live over R�

0 (which is very close to
the R ′ we care about):

R�
n � R�

0 .

On the T side we will have certain modified Hecke algebras T�
n which I will describe later.

We’ll construct maps R�
n � T�

n lifting R�
0 → T�

0 , and certain R�
n -modules M�

n . By a
pigeonhole principle sort of thing, we’ll be able to pass to an inverse limit

R�∞ � T�∞.
We’ll have an inverse limit M�∞. We’ll be able to show that M�∞[ 1

p
] is a faithful R�∞[ 1

p
]-

module, and some other nice things. Then we’ll deduce that this faithfulness must have
been true at level 0, where the R�

0 [ 1
p
]-action was through (a framed version of) our map

R ′ → Tm, which we can therefore conclude is injective, hence an isomorphism.
Phew! This argument is clearly a technological marvel on par with my iPhone. For such

a thing to work, we need precise control over what happens on each level n as we go up the
tower. Specifically, Brandon will need to show that a certain collection of rings and moduled
cooked up from the R�

n and M�
n form a “patching datum”, meaning that they satisfy a

collection of technical axioms that make the patching argument go through.
The goal of this talk is two-fold. One thing I need to do is define the relevant Hecke

algebras T�
n and modules M�

n . To ruin the surprise, the module M�
n will arise from a space

of modular forms (which remember, are just functions on a finite set because we cleverly
set things up that way) of suitable level, depending on the Taylow-Wiles set of primes Qn.
The other thing I need to do is show that the modules M�

n satisfy nice properties, so that
Brandon can show that this his patching data are actually patching data. So this is all really
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an expansion of section 4 of the notes from Andrew’s overview talk, if you’re following along
at home.

Remark 1.0.1. Although ultimately we’ll use framed stuff for patching, mostly we’ll deal
with unframed stuff in this talk.

2 Setup and statment of what we’re going prove

Throughout, O is the ring of integers of a p-adic field with residue field k (where ρ lives).
Recall that the quaternion algebra D is ramified exactly at the places St and all the

archimedean places. Let’s fix some notation. For a compact open subgroup U ⊂ (D⊗FAf
F)
×

set
X(U) = D×\(D⊗F Af

F)
×/(U · (Af

F)
×).

Let
S(U) = Functions(X(U),O).

This is the space of automorphic forms on D× of weight 2 and level U. Let the bad primes
for U be

Σ(U) = Sp ∪ St ∪ {v|∞} ∪ {v : Uv is non-maximal},

and define the Hecke algebra T(U) to be the O-subalgebra of End(S(U)) generated by the
Tv for v 6∈ Σ(U). (It comes from the double coset Uv

(
1 0
0 $v

)
Uv.)

Now let’s fix the “ground level” U◦ ⊂ (Af
F ⊗ D)× [a compact open subgroup] for the

construction. Picking up on a technical point Andrew mentioned, which will be relevant
today, we need to choose a huge prime vaux which has nothing to do with anything. In other
words it should be outside of St ∪ Sp ∪ {v|∞} ∪

⋃
n≥1Qn. We can certainly arrange this

because, for example, all the primes in the Qns satisfy Nv ≡ 1mod p. Now take U◦ to be
the maximal compact for all places v 6= vaux; we will specify U◦vaux

later.
Let T = T(U◦)

Recall that we have a modular lift ρf of our residual representation ρ which satisfies a
bunch of nice properties. Via Jacquet-Langlands and our assumptions on ρf, the Hilbert
modular form f gives rise to an element of S(U◦) which is an eigenform for T, and hence we
get a map T→ O. Set m to be the unique maximal ideal of T containing the kernel of this
map.

Now let Q be a Taylor-Wiles set of primes (disjoint from vaux). Let RQ be what it was
in Mike’s talk, with the additional caveat that we permit ramification at vaux. Thus

RQ = R̃⊗B0
B

where R̃ is the universal global deformation ring of ρ with determinant χp, unramified outside
St∪ Sp ∪Q∪ {vaux}; the ring B0 is the product of the universal local deformation rings with
the right determinant, at the places in St ∪ Sp; the modification B is the product of the
universal Steinberg deformation rings at places in St, and “suitably modified” universal
ord-cryst deformation rings at places in Sp.

Recall that the universal deformation

ρQ : GF → GL2(RQ)
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when restricted to GFw for w ∈ Q, has the form(
η1 0
0 η2

)
for tamely ramified characters ηi. As Mike discussed, via class field theory, this endows RQ
with the structure of an O[∆Q]-algebra; here ∆Q is the product (over the primes v ∈ Q) of
the maximal p-power quotients of the cyclic groups (OFv/pv)

×. So

O[∆Q] ≈ O[[y1, . . . , yh]]

((y1 + 1)p
a1 − 1, . . . , (yh + 1)p

ah − 1)
,

where h = #Q and the ai are integers ≥ 1, and in fact ≥ n if Q = Qn is part of a Taylor-
Wiles system. Note that O[∆Q] is a local ring, with maximal ideal 〈p, y1, . . . , yh〉, because
all the y1 + 1 have p-power order, i.e. because ∆Q is a p-group. We’ll use this fact later.

Moreover this O[∆Q]-algebra structure on RQ is essentially canonically determined by Q,
as long as we include in the data of Q a choice of one of the two distinct eigenvalues of
ρ(Frobv) for each v ∈ Q; this lets us pick out one of the characters ηi comprising GF →
GL2(RQ) to be “η1”, to which we can then apply class field theory and get the map ∆Q → R×Q
as Mike explained. Call this distinguished eigenvalue αv ∈ k.

We let aQ C O[∆Q] be the augmentation ideal – recall that in any group ring A[G],
this is the kernel of the map A[G]→ A which sends each g ∈ G to 1. This ideal will show up
later, in relating the modules M�

n to M�
0 . In the presentation above, it is generated by the

yis, one for each element of the TW set Q. For now, let’s see how RQ is related to R∅ = R ′.

Lemma 2.0.2. The canonical map RQ → R∅ is surjective with kernel aQRQ.

Proof. We show that GF → GL2(RQ)→ GL2(RQ/aQ) is universal for the appropriate defor-
mation problem. Fix a deformation ρA : GF → GL2(A) of ρ, which is ordinary-crystalline
at places over p, Steinberg at places in St, and ramified only in St ∪ Sp ∪ {vaux}. Then we
certainly get a map ϕA : RQ → A such that ϕA ◦ ρQ = ρA. But since ρA is unramified at
any w ∈ Q, when composed with ϕA the distinguished character η1,w is trivial on inertia.
Thus if ∆w is the maximal p-power quotient of (OFw/pw)× and δ : ∆Q → R×Q the map Mike
discussed, we have ϕA ◦ δ(σ) = 1 for all σ ∈ ∆w. This holds for all w ∈ Q, so the ele-
ments 1− δ(σ) for σ ∈ ∆Q are all killed by ϕA. These elements generate the augmentation
ideal aQ, so ϕA factors through RQ/aQRQ. But if ϕ : RQ/aQRQ → A were another map
lifting ρA, then the composition of ϕ with the projection from RQ would have to agree with
ϕA by universality of RQ. Since said projection is, of course, surjective, this shows that
(RQ/aQRQ, ρQmod aQ) is universal for the type of deformations we want.

The lemma shows that we know exactly how to relate RQ to its level zero version R∅.
For patching, we now want to set certain RQ-modules MQ of automorphic forms, which will
be free over O[∆Q] and related to M∅ in the same manner as the lemma.

For this we need to specify some new compact open subgroups UQ ⊂ VQ ⊂ U◦, by
shrinking (physically speaking) the level at w ∈ Q. These will all agree except for those
w ∈ Q. For w ∈ Q set VQ,w to be the Iwahori Iw:

VQ,w = Iw = {( a bc d ) ∈ GL2(OFw) : c ∈ pw} .

3



Set
UQ,w =

{
( a bc d ) ∈ GL2(OFw) : c ∈ pw, d = a−1 ∈ ∆w

}
,

i.e. the image of ad−1mod pw should map to 1 in the maximal p-power quotient, for all
w ∈ Q.

The following is clear.

Lemma 2.0.3. UQ is normal in VQ, and VQ/UQ = ∆Q.

This means that the induced map of sets X(UQ) → X(VQ) “wants to be” a ∆Q-torsor.
The role of the auxiliary prime vaux will be to ensure that this is the case, as will be discussed
below. This Galois property of the aforementioned cover will then be used to show that the
module MQ we shall define next, is actually O[∆Q]-free.

Now we have Hecke algebras T(VQ) and T(UQ), which, as we have defined them, contain
only T -operators for places away from St∪Sp∪ {v|∞}∪Q∪ {vaux} and nothing else. We also
want some U-operators for places in Q. So set

T(UQ)+ = 〈T(UQ), {Uw : w ∈ Q}〉 ⊂ End(S(UQ)),

T(VQ)+ = 〈T(VQ), {Uw : w ∈ Q}〉 ⊂ End(S(VQ)).

(Note that we’ve avoided notational ambiguity, since theUw is distinct from thew-component
of the level zero compact open subgroup U◦w. Still, I’m sorry that they look so similar.)

I’ll remind you that the Uw operator is given by the Iwahori-double coset

Iw
(
$w 0
0 1

)
Iw.

Now let us define some ideals in Hecke algebras. As before we set m[= m∅ = m◦] to
be the maximal ideal of T = T(U◦) containing the kernel of the eigenvalue map for the
automorphic form on (D ⊗Af

F)
× corresponding to our modular form f. There is a natural

map T(VQ)→ T sending the T -operators to themselves; set mQ to be the contraction of m

along this homomorphism. This is a maximal ideal of T(VQ). Now set nQ to be the ideal
of T(VQ)+ generated by mQ plus Uw − α̃w for all w ∈ Q, where α̃w is any lift of αw ∈ k to
O ⊂ T(VQ)+. Similarly we have a map T(UQ)+ → T(VQ)+. So we can contract nQ to get
an ideal m+

Q of T(UQ)+.
Here is the picture:

mQ C T(VQ)

uullllllllllllll

((QQQQQQQQQQQQQ
m+
Q C T(UQ)+

vvlllllllllllll

m∅ C T(V∅) = T nQ C T(VQ)+

Now nQ is clearly maximal, provided it is not the unit ideal. (We’re just setting all the
generators equal to constants.) Why isn’t it the unit ideal? In fact, this will come out of
what we ultimately prove about S(VQ)nQ

, effectively that there is a modular form of level
VQ with action of the Hecke algebra T(VQ)+ specified by nQ, so the quotient T(VQ)+/nQ is
not the zero ring.
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Remark 2.0.4. As Andrew explained to me, this can also be seen directly, as follows. (I’m
kind of confused about this, and I couldn’t really work out the details, but it shouldn’t be
too important for what follows...) Take a modular form f on D of level U◦, hence level 1
at some w ∈ Q. Then f and

(
1 0
0 $w

)
f span the space of forms where we ramp up to Γ0

(Iwahori) level at w. We need to check that the Uw operator has an eigenvector in this
space of forms, with eigenvalue matching our chosen lift α̃w. Since f has level 1 at w, the
corresponding automorphic representation is unramified principle series at w, i.e. it is of
the form V = π(µ, ν) = {ϕ : GL2(Fw) → C : ϕ(( a ∗b )g) = µ(a)ν(b)|a/b|

1/2
w f(g)} for some

unramified characters µ, ν : F×w → C×. The dimension of the spherical fixed vectors in V is
1; this space is spanned by f itself Then f and ( 1 $w

) f span the Iwahori fixed vectors VIw .
The Uw operator is given by the double coset

Iw ($w
1 ) Iw =

∐
x∈(OFw/pw)

(
$w ex

1

)
Iw.

Using this decomposition and the basis of indicator functions for the two cells in

G = GL2(Fw) = B t B ( 1
1 ) Iw, (B = borel)

one can compute the action of Uw explicitly. The eigenvalues should be µ($w), ν($w), one
of which should match α̃w somehow (?).

So we have a maximal ideal m+
Q in T(UQ)+. We will localize at this to define the rings of

Hecke operators TQ and modules of automorphic forms MQ which we will use for patching:
set

TQ = T(UQ)+
m+

Q
, MQ = S(UQ)m+

Q
.

There is a natural Galois representation GF → GL2(TQ) which induces a surjection RQ �
TQ, and hence an RQ-module structure on MQ (which is naturally a TQ-module). Since RQ
is an O[∆Q]-algebra, this makes MQ an O[∆Q]-module as well.

Now we can state our main results.

Theorem 2.0.5. The module MQ is O[∆Q]-free. Moreover,

MQ/aQMQ
∼= M∅.

This should imply more or less directly that certain quotients of appropriate framed
versions M�

Qn
of the MQns form a “patching datum”.

3 Proof of Main Theorem

To prove the first part of the theorem (freeness of MQ over O[∆Q]), we will argue sort of
topologically. We will show that the action on O[∆Q] on MQ via the map O[∆Q] → RQ →
TQ ⊂ End(MQ), agrees with another action which is a bit easier to understand. Specifically,
we will show that the map of double coset spaces

X(UQ)→ X(VQ)

is a Galois cover with deck group ∆Q = VQ/UQ, and deduce from this that ∆Q acts freely
on MQ.
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Remark 3.0.6. If you look in DDT for the proof of the analgous freeness assertion in their
setup (Thm 4.16), you’ll see that they invoke the fact that a certain map of modular curves
corresponding to an inclusion of congruence subgroups, is unramified, and they proceed using
Riemann-Hurwitz. Our strategy here is thus sort of similar to theirs.

To ensure that said map is a Galois cover, i.e. a ∆Q-torsor, we need to specify the group
level U◦ at the auxiliary prime vaux I mentioned earlier. Essentially, by adding enough level
at that place, we can ensure that the “stackiness” – the order of the automorphism group
NUQ,x for various x ∈ X(UQ) – is prime to p, hence prime to the index #∆Q = [VQ : UQ],
for all x. This is what we turn to now.

3.1 The smallness condition and vaux

First let us relate the VQ/UQ = ∆Q action on the fibers of X(UQ)→ X(VQ), to the amount
of stackiness. This requires a bit of group theory.

3.1.1 Some group theory

First note the following trivial fact.

Lemma 3.1.1. Suppose we have subgroups A,B,C of a group G, and suppose C C B. Then
(A∩B)/(A∩C) is naturally a subgroup of B/C via (A∩B)/(A∩C) ↪→ B/(A∩C)� B/C.

Lemma 3.1.2. Suppose we have groups and subgroups

K ′ C K ⊂ G ⊃ H.

Consider the obvious map of double coset spaces

π : H\G/K ′ � H\G/K.

Let S(g0) be the fiber π−1(Hg0K). Set J(g0) = (K∩g−1
0 Hg0)/(K

′∩g−1
0 Hg0). By the previous

lemma we can regard J(g0) as a subgroup of K/K ′. Then S(g0) is naturally in bijection with
the left coset space J(g0)\(K/K ′).

Proof. Define α : J(g0)\(K/K ′)→ S(g0) by

α : J(g0) · (kK ′) 7→ Hg0kK
′.

We can see α is a well-defined map of sets as follows. If J(g0) · (k1K ′) = J(g0) · (k2K ′)
then there exists j ∈ J ⊂ K/K ′ such that j(k1K

′) = k2K
′. Now j = k(K ′ ∩ g−1

0 Hg0) for some
k ∈ K∩g−1

0 Hg0. Say k = g−1
0 hg0. The map of the previous lemma regards j as an element of

K/K ′ as the coset kK ′. The condition j(k1K
′) = k2K

′ says that kk1K
′ = k2K

′. So k2 = kk1k
′

for some k ′ ∈ K ′. Now α(J(g0) · (k1K ′)) = Hg0k1K
′ while α(J(g0) · (k2K ′)) = Hg0k2K

′.
So we must show these agree. But Hg0k2K

′ = Hg0kk1k
′K ′ = Hg0(g

−1
0 hg0)k1k

′)K ′ =

Hhg0k1k
′K ′ = Hg0k1K

′, so they do.
Conversely, define β : S(g0) → J(g0)\(K/K ′) by Hg0kK

′ 7→ J(g0)(kK
′). Again, we

must check this is well-defined. If Hg0k1K
′ = Hg0k2K

′ then g0k1 = hg0k2k
′ for some
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h ∈ H, k ′ ∈ K ′. so k1 = g−1
0 hg0k2k

′. In particular this means g−1
0 hg0 ∈ K ∩ g−1

0 hg0. Call
this element k. So we need to show that J(g0)(k2K

′) = J(g0)(kk2k
′K ′). Clearly we can

ignore the k ′. We leave to the reader to check that kk2K
′ = (k(K ′ ∩ g−1

0 Hg0)) · (k2K ′) when
we regard k(K ′ ∩ g−1

0 Hg0) ∈ J as an element of K/K ′. So kk2k
′K ′ = kk2K

′ is a translate of
k2K

′ on the left by an element of J(g0), so we win.
Finally, it is clear that α and β are mutually inverse bijections.

Remark 3.1.3. Note that the lemma identifies S(g0) with J(g0)\(K/K ′) note merely as sets,
but as (K/K ′)-sets. Hence to prove that H\G/K ′ → H\G/K is a K/K ′-torsor, it suffices to
ensure that J(g0) vanishes for all g0 ∈ G.

3.1.2 Application to our setup

In our setup, the previous lemma identifies the fiber of X(UQ)→ X(VQ) over D×xVQ(Af
F)
×

as a ∆Q-set with the quotient

(VQ · (Af
F)
×)/(UQ · (Af

F)
×)

(x−1D×x ∩ VQ · (Af
F)
×)/(x−1D×x ∩UQ · (Af

F)
×)
.

(We think of this quotient as a space of left-cosets of the denominator.) We’d like to show
the denominator is trivial, so that this is simply the quotient

VQ(Af
F)
×/UQ(Af

F)
× = VQ/UQ = ∆Q,

so the action on fibers is simply transitive as required.
Now the denominator is itself a quotient of

x−1D×x ∩ VQ(Af
F)
×

x−1D×x ∩ (Af
F)
× .

The denominator of the latter is simply F×.
So we want to ensure that

(x−1D×x ∩ VQ(Af
F)
×)/F× = {1}.

Since VQ ⊂ U◦, we can simply impose conditions on the ground level U◦ so that

G := (x−1D×x ∩U◦(Af
F)
×)/F× = {1}.

Now x−1D×x is discrete, and U◦(Af
F)
×/F× is compact. (Because U◦ is compact, and the

finite part of the idéle class group is compact.) So this is a finite group.
Now choose vaux lying over some prime `aux ≥ 5, sufficiently large so that vaux is unram-

ified for both F and D (and is outside St ∪ Sp). Set

U◦vaux
= {m ∈ GL2(OFvaux

) : m ≡ 1mod pvaux}.

Observe that U◦vaux
is pro-`aux.

Proposition 3.1.4. GL2(Fvaux) has no elements of order `aux.
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This is because Fvaux is an unramified extension of Q`aux , so it does not contain `aux roots
of unity. But if M ∈ GL2(Fvaux) had order `aux, it would have an `aux root of unity as an
eigenvalue, lying in some quadratic extension of Fvaux . But for `aux ≥ 5, [Fvaux(µ`x) : Fvaux ]

cannot be two.
By the proposition, it follows that D× has no elements of `aux-power order, since D× ↪→

(D ⊗F Fvaux)
× ≈ GL2(Fvaux) as vaux splits D. Since the finite group G we want to show is

trivial is a subquotient of (a conjugate of) D×, we know that its order is thus prime to `aux.
To prove it is trivial, we will show our group G is an `aux-group.
So suppose g ∈ G had order n prime to `aux. Fix a representative g ∈ x−1D×x∩U◦(Af

F)
×.

Consider the vaux component gvaux . Inside (D⊗F Fvaux)
×, gvaux sits in the subgroup

x−1
vaux

D×xvaux ∩U◦vaux
F×vaux

⊂ (D⊗ Fvaux)
× ≈ GL2(Fvaux).

Write gvaux = uj as product of something in U◦vaux
and someting in F×vaux

(here j stands for
“idele”) Now (uj)n = unjn ∈ F×, so un ∈ F×vaux

. Thus the image of u in U◦vaux
/U◦vaux

∩ F×vaux

has order prime to `aux. But this group is pro-`aux, being a quotient of U◦vaux
, and hence

u = 1. Thus gvaux ∈ F×vaux
∩ x−1

vaux
D×xvaux . In particular, gvaux commutes with xvaux , so

gvaux ∈ F×vaux
∩D× = F×. This shows that in fact g ∈ F× so g = 1 ∈ G as desired.

3.2 Proof of freeness

OK great, so now we have seen that X(UQ) → X(VQ) is a ∆Q-torsor, provided we impose
“principal congruence subgroup” level in U◦ at a well-chosen place vaux. In particular, this
shows that X(UQ) is (non-canonically) the same as X(VQ)×∆Q. So S(UQ) = S(VQ)⊗OO[∆Q].
Since S(VQ) is O-finite free, this means that S(UQ) is O[∆Q]-finite free. (That is, with the
action of O[∆Q] as deck transformations of X(UQ).)

Now the localization MQ = S(UQ)m+
Q

is a summand of S(UQ) as a TQ-module. (This

is because TQ is finite semilocal over the p-adically complete ring O.) So provided we
know that the deck transformation action of O[∆Q] agrees with the action coming from
the homomorphism

O[∆Q]→ RQ → TQ ⊂ End(MQ)

this shows that that MQ is a summand of a finite free O[∆Q]-module. Since O[∆Q] is local,
that would force MQ to be O[∆Q]-free. (Projective = flat = locally free = free, for finitely
generated modules over a local Noetherian ring.)

Thus we are reduced to showing that these two actions of the “diamond operators” ∆Q
agree. For this we will need to know the following.

Lemma 3.2.1. The Hecke algebra TQ is reduced.

Proof. (FIXME: Cf. Taylor Cor. 1.8(3) in “On the Meromorphic Continuation...”)
The rough idea is the following. It suffices to consider the generic fiber of the Hecke

algebra, i.e. to consider the space of forms after inverting p in our coefficients. Reducedness
of the Hecke algebra says that eigenforms are determined by their Hecke eigenvalues at all
but finitely many places. This is because we defined the Hecke ring as subring of the endo-
morphisms of the module of module forms; consequently the modular forms are faithful over
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the Hecke algebra. Thus if some local quotient of the Hecke algebra is not a field, the cor-
responding quotient module of modular forms will have positive dimension. This translates
directly to the existence of several eigenforms with exactly the same Hecke eigenvalues for
almost all places.

So to prove reducedness, it’s enough to check that in our situation, the Hecke eigenvalues
are actually determined by the corresponding Galois representation which we know (huh?!?),
which is determined by the knowledge of what’s happening at all but finitely many places.

By the lemma, the module MQ is spanned by Hecke eigenforms f ∈ S(UQ)m+
Q

= MQ,

corresponding to the various irreducible components TQ/p (p a minimal prime) of TQ. So for
each f (i.e. for each minimal p) we have two actions of ∆Q on MQ/pMQ:

• The one coming from the ∆Q = VQ/UQ action on X(UQ);

• and the one coming from the morphisms

O[∆Q]→ RQ → TQ → TQ/p.

If we know these agree, for each f, then it follows that the two actions of ∆Q on all of
MQ agree. So fix such an f. Let π be the representation of (D ⊗F Af

F)
× generated by f,

after tensoring with E = Frac(O). Fix one of the TW primes w ∈ Q, and consider the
local component πw of π at w. Now f itself is a UQ,w-fixed vector. (I’ll remind you that
UQ,w = {( a bc d ) ∈ GL2(OFw) : c ≡ 0 mod $w, ad

−1 = 1 ∈ ∆Q}. This is like Γ1(w), sort of.)
Moreover we know how the Hecke operator Uw (sorry for the notation!) acts on f: as a
lift of one of the eigenvalues of ρ(Frobw), which are distinct, and whose product is equal
to Nw ≡ 1mod p, because w is a Taylor-Wiles prime. These stringent conditions on the
action of Uw rule out the possibility that πw is Steinberg, but I am not sure why. Now by a
classification result, this implies that πw is in fact a tamely ramified principal series

πw = π(µ, ν), µ, ν : F×v → C× tame.

Now ∆Q = VQ/UQ acts on the right (in the way we like) on

D×\(D⊗Af
F)
×

by translation by a representative for the coset vUQ ∈ ∆Q. This induces an action of the

w-part ∆w = maximal p-power quotient of (OFw/$w)× of ∆Q, on the invariants π
UQ,w
w .

Moreover, if we write

πw = π(µ, ν) = {ϕ : GL2(Fw)→ C | ϕ(( a ∗b )g) = µ(a)ν(b)|a/b|1/2ϕ(g)}

as a space of functions on D×w, this action of ∆w agrees by definition with the usual (= right
regular) action of

{〈x〉 = ( ex
1 ) : x ∈ ∆w, x̃ a lift to OFw} ⊂ {〈x〉 : x ∈ (OFw/$w)×}.

(We really only care about these diamond operators for x ∈ ∆w, but they make perfect sense
for any x ∈ (OFw/$w)×.)

“The following lemma is well-known”:

9



Lemma 3.2.2 (Similar to Taylor, “On the meromorphic continuation...”, Lemma 1.6). If µ
and ν are tame, then π(µ, ν)UQ,w is two dimensional, with a basis eµ, eν of Uw-eigenvectors,
such that

Uweµ = µ($w)eµ, Uweν = ν($w)eν,
1

and the diamond operators act by

〈x〉eµ = µ(x̃)eµ, 〈x〉eν = ν(x̃)eν, (x ∈ (OFw/$w)×).

(Does anyone know a real reference? Probably it’s not too hard prove; it should just be
some explicit computation.)

Now f is a Uw-eigenvector with eigenvalue α̃w, by the way we set things up, so we can

say that µ is determined by αw plus the action of ∆w on π
UQ,w
w .

Local Langlands implies that

ρf,p : GF → GL2(Qp)

corresponding to π = πf, satisfies
ρf,p|GFw

∼ ( µ ν )

where µ, ν are the Galois characters corresponding to µ, ν via class field theory. 2 But this
representation is precisely the one we know as

GFw → GL2(RQ)→ GL2(TQ)→ GL2(TQ/p)→ GL2(Qp).

So the action of the diamond operators 〈x〉 for x ∈ ∆w act on f by the values of the character
µ(x̃), agrees with action of x via the value of the character “η1(x̃)” we picked out when
originally defining O[∆Q]→ RQ.

This essentially proves the desired compatibility between the two actions, modulo all the
details I’ve omitted or gotten wrong. Therefore we have completed the proof of the freeness
of MQ over O[∆Q].

3.3 Proof of relation of level Q with level ∅
The remaining part of the theorem is the “moreover”, namely:

MQ/aQMQ
∼= M∅.

The key ingredient in the proof of the “moreover” will be the following.

Proposition 3.3.1. There is an isomorphism

M∅ := S(U◦)m
∼→ S(VQ)nQ

.

1This may not be quite right...
2Clearly I’ve been sloppy somewhere regarding Qp and C....
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Assuming the proposition, let us deduce what we want. By the proposition, it is sufficient
to prove that

MQ/aQMQ
∼= S(VQ)nQ

,

since the latter is the same as M∅. Since we’ve already “shown” that the two ∆Q actions are
the same, we may as well compute the ∆Q-coinvariants of MQ, namely MQ/aQMQ, using
the description of MQ as O-valued functions “upstairs” in the ∆Q torsor

X(UQ)
∆Q

� X(VQ).

But with this description, it is more or less obvious that the desired isomorphism holds: we
have (non-canonically) that

S(UQ) = S(VQ)⊗O O[∆Q]

so
S(UQ)∆Q

= S(VQ).

Since quotients commute with localization, the same equality holds when we localize at m+
Q,

resp. nQ.
It remains only to prove the relationship between S(VQ)nQ

and S(U◦)m.

4 Proof of Proposition

We will prove the proposition by induction on the size of the TW-set Q, reducing to the
case when Q = {w} is a singleton.

This argument is due to Andrew, the basic outline being from Taylor’s “On the mero-
morphic continuation...” paper (Lemma 2.2).

4.1 Inductive setup

Specifically, let V be any compact open subgroup of U◦. Let Φ : T(V)→ k be a homomor-

phism with kernel m, and let Φ̃ : T(V)→ O be any set-theoretic lift. Let w be a TW prime,
meaning the following.

a) w 6∈ Σ(V) (which, recall, is just the bad set of places: Sp∪St∪{v|∞}∪{v : Vv nonmaximal}).
In practice, i.e. for our inductive argument, this means w is nonarchimedean and out-
side Sp ∪ St and the TW primes we already added.

b) Nw = 1mod p.

c) X2 −Φ(Tw)X+ Nw has distinct roots α,β ∈ k.

By Hensel’s lemma, we obtain a factorization in T(V)m[X]:

X2 − TwX+ Nw = (X−A)(X− B)

where Φ(A) = α,Φ(B) = β.
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Now let V ′ be the compact open subgroup of V obtained by replacing Vw = GL2(OFw)

with V ′w = Iw the Iwahori. Let Uw be the Hecke operator on S(V ′) given by Iw ($w
1 ) Iw as

before. Let T(V ′)+ be the subalgebra of End(S(V ′)) generated by T(V ′) and Uw. Let m ′

be the ideal of T(V ′)+ generated by p, Tv − Φ̃(Tv) for v 6∈ Σ(V ′), and Uw − α̃.

Proposition 4.1.1 (Induction step). There is an isomorphism

η : S(V)m → S(V ′)m ′

given by
f 7→ Af− ( 1 $w

) f.

Granting this, the proof of the main theorem is complete. For using this induction step,
we can build a chain of isomorphisms from S(U◦)m to S(VQ)m+

Q
by adding the Taylow-Wiles

primes w ∈ Q one at a time, invoking the induction step each time.

4.2 Proof of induction step

4.2.1 Well-definedness of η

Note that a priori it is not clear that η lands in the localization S(V ′)m ′ . (Recall that
T(V ′)m ′ is semilocal and finite over O, hence a direct sum of its localizations at its maximal
ideals, so in particular we can regard those localizations as subs rather than quotients.)
We can characterize S(V ′)m ′ as precisely the T(V ′)+-submodule of S(V ′) on which m ′ acts
topologically nilpotently. (Also, S(V)m ⊂ S(V) is characterized similarly.) As a first step,
let us use this characterization to show that η actually lands where we want it to.

The following is a consequence of explicit computations done with double cosets.

Lemma 4.2.1. The identities

Twf = Uwf+ ( 1 $w
) f, Uw ( 1 $w

) f = Nw · f

hold for any f ∈ S(V).

As a consequence we have

Lemma 4.2.2. Uw ◦ η = η ◦A.

Proof. Using the previous lemma, we can expand

Uwη(f) = Tw(Af) − ( 1 $w
) (Af) − Nw · f.

Since A is a root of X2 − TwX+ Nw ∈ T(V)m[X], we have

A2 = TwA− Nw.

Hence
η(Af) = A2f− ( 1 $w

) (Af) = TwA− Nw · f− ( 1 $w
) (Af) = Uwη(f).
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Now we deduce that η is well-defined. We need to show that p, Tv− Φ̃(Tv) for v 6∈ Σ(V ′),
and Uw − α̃ all act topologically nilpotently on η(f) for any f ∈ S(V)m.

For p this is clear.
For Tv−Φ̃(Tv), one checks that Tv commutes with η. It is clear that Tv commutes with A,

since T(V) is commutative. It is maybe not so obvious that T(V) commutes with the right
regular action of ( 1 $w

); that follows from a calculation with the appropriate double coset.

Consequently the topological nilpotence of Tv − Φ̃(Tv) on η(f) follows from the topological
nilpotence of the same operator acting on f ∈ S(V)m.

Finally, by the previous lemma we have (Uw − α̃)(ηf) = η(A − α̃)(f). But this is
topologically nilpotent since f is in S(V)m, hence A− α̃, acts topologically nilpotently on f.

[FIXME: Explain the last sentence.]

4.2.2 Aside: the “integration pairing” on X(U)

Next we will show that η is injective. To do so, we will make use of an “integration pairing”

〈, 〉U : S(U)⊗ S(U)→ O

for any U ⊂ U◦. This is defined by

〈f, g〉U =
∑
x∈X(U)

f(x)g(x).

It is just the “L2 inner product” with respect to the counting measure on X(U).
As I think Akshay mentioned several lectures ago, in principle we should use a different

measure: we should weight a point x by the amount of “stackiness” of X(U) at x:

NU,x = [x−1D×x ∩U · (Af
F)
× : F×].

But we arranged U◦ so that NU,x is automatically 1.

4.2.3 Injectivity

Lemma 4.2.3. For f, g ∈ S(V), we have

〈f, Twg〉V = 〈f, ( 1 $w
)g〉V ′ .

Proof. An explicit computation with double cosets, which we omit.

Lemma 4.2.4. Let π : S(V ′) → S(V) be the adjoint to the inclusion S(V) ↪→ S(V ′). Then
the composition

S(V)m
η→ S(V ′)m ′

π→ S(V)m

equals Nw ·A− B.

Proof. A similar argument to what we did above using topological nilpotence shows that the
composition above is well-defined, i.e. lands in S(V)m. It uses the fact that the adjoint π
respects the action of the Tvs.
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Now fix g ∈ S(V). The adjoint π(η(g)) is characterized by

〈f, π(η(g))〉V = 〈f, η(g)〉V ′ , ∀f ∈ S(V).

So
〈f, πη(g)〉V = 〈f, ηg〉V ′ = 〈f,Ag− ( 1 $w

)g〉V ′ .

Now
〈f,Ag〉V ′ =

∑
x∈X(V ′)

f(x)(Ag)(x) =
∑
y∈X(V)

∑
X(V ′)3x7→y f(x)(Ag)(x)

= [V : V ′]
∑
y∈X(V)

f(y)(Ag)(y) = [V : V ′]〈f,Ag〉V .

On the other hand by the last lemma

〈f, ( 1 $w
)g〉V ′ = 〈f, Twg〉V .

So we see
〈f, πηg〉V = 〈f, [U : U ′]Ag− Twg〉U.

This shows that πηg = ([U : U ′]A − Tw)g. But [U : U ′] = #P1(k(w)) = Nw + 1, so
πηg = (Nw ·A+A− (A+ B))g = (NwA− B)g.

To conclude that η is injective, by the last lemma it suffices to show that Nw ·A− B is
a unit. We just need to show it is not in m. But Nw = 1mod p, so

Nw ·A− B ≡ α− βmod m,

and this is nonzero because α and β were assumed distinct.
So we crucially used the fact that we are at a TW-prime!

4.2.4 Cokernel is torsion-free

In fact, the last proof gives us a bit more. If we scale π by the inver of NwA− B, we get a
genuine section of η. So the image of η is a summand of S(V ′)m ′ , and hence the cokernel of
η is torsion free.

4.2.5 Surjectivity

It remains to prove that η is surjective.
The first key point is to show that S(V ′)m ′ (and hence the image of η) is contained in the

space of old-forms, i.e. those coming from S(V) either by the inclusion or by f 7→ ( 1 $w
) f.

Call this space Old(V ′).

Lemma 4.2.5. S(V ′)m ′ ⊂ Old(V ′).
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Proof. This is a representation theoretic argument, which I sketch, following Andrew’s
writeup of it.

Fix f ∈ S(V ′)m ′ . After tensoring with E = Frac(O), f generates an automorphic repre-
sentation of (D ⊗Af

F)
×, perhaps reducible, say π =

⊕
π(i). We can decompose f =

∑
f(i)

according to this decomposition. The component f(i) is an Iw-fixed vector in π
(i)
w , for each

i. By the representation theory of GL2(Fw), this forces π
(i)
w to be an irreducible unramified

principle series, or a “special representation with trivial central character”.
The latter case will be ruled out the fact that since f ∈ S(V ′)m ′ , we know how the

Uw operator acts on it. Indeed, Uw acts on the Iwahori invariants (π
(i)
w )Iw of a special

representation π
(i)
w by ±1. In the special case, the Iwahori fixed vectors are 1-dimensional,

so they are spanned by f(i). So Uw acts on f(i) by ±1. Thus Uw ± 1 acts topologicaly
nilpotently on f(i). Now αβ = Nw = 1mod p. Since α 6= β, it cannot be the case that
α = ±1 ∈ k. So since Uw ± 1 acts topologically nilpotently on f(i), Uw − α̃ cannot, as the
difference α̃ ± 1 acts invertibly. This holds for each i, so Uw − α̃ cannot act topologically
nilpotently on f. But this contradicts the fact that f ∈ S(U ′)m ′ .

It follows that each π
(i)
w is an irreducible unramified principle series. This means the

spherical fixed vectors are one-dimensional – spanned by sph, say – and the Iwahori fixed
vectors are spanned by

sph, ( 1 $w
) · sph.

These are all oldforms. In particular, the Iwahori fixed vector f(i) is in Old(V ′). So the
linear combination f =

∑
f(i) is in Old(V ′) too.

But in fact we want more: we want im(η) to be in the old-forms coming from S(V)m!.
Call this space Oldm(V ′). It’s now convenient to introduce some notation: write F for the
level-raising map

S(V)⊕ S(V)→ S(V ′)

(f1, f2) 7→ f1 + ( 1 $w
) f2.

Lemma 4.2.6. S(V ′)m ′ ⊂ Oldm(V ′) = F(S(V)⊕2m ).

Proof. F respects the action of T(V ′). This implies that for any maximal ideal n of T(V ′),
we have F(S(V)⊕2n ) ⊂ S(V ′)n and F−1(S(V ′)n) = S(V)⊕2n .

Apply this with n = m0, the maximal ideal of T(V ′) generated by the Tv − Φ̃(Tv) for
v 6∈ Σ(V ′). By definition, S(V ′)m ′ ⊂ S(V ′)m0

. By the last lemma,

F(S(V)⊕2) ⊃ S(V ′)m ′ ,

so
S(V ′)m ′ ⊂ S(V ′)m0

⊂ F(F−1(S(V ′)m0
)) = F(S(V)⊕2m0

).

But by multiplicity one, S(V)m0
= S(V)m, since the only difference between m0 and m is the

presence of the single Hecke operator Tw − Φ̃(Tw).

An easy computation shows:

Lemma 4.2.7. UwF
(
f1
f2

)
= F

(
T Nw

−1 0

) (
f1
f2

)
.
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Lemma 4.2.8. S(V)⊕2m is the direct sum of submodules A = {(Af,−f) : f ∈ S(U)m} and
B = {(Bf,−f) : f ∈ S(U)m}. Moreover we have(

Tw Nw
−1 0

)
a = Aa, a ∈ A(

Tw Nw
−1

)
b = Bb, b ∈ B.

Proof. We compute
TwAf− Nwf = A2f

by a previous calculation. So(
Tw Nw
−1 0

) (
Af
−f

)
=
(
A2f
−Af

)
= A

(
Af
−f

)
.

The computation for B is similar. The decomposition S(V)⊕2m = A ⊕ B is true because the
determinant of the “change of basis matrix” is

det
(
A B
−1 −1

)
= A− B ≡ α− β 6= 0mod m

which is a unit in T(V)m.

Lemma 4.2.9. F restricts to a surjection A� S(V ′)m ′ .

Proof. For a ∈ A, b ∈ B, the last lemmas show

UwF(a+ b) = F
(
Tw Nw
−1 0

)
(a+ b) = F(Aa+ Bb).

So
(Uw − α̃)F(a+ b) = F((A− α̃)a+ (B− α̃)b).

Iterating this gives

(Uw − α̃)nF(a+ b) = F((A− α̃)na+ (B− α̃)nb).

As n → ∞ this goes to (B − α̃)nF(x ′), since A − α̃ is topologically nilpotent on S(V)m.
But B− α̃ is invertible. Consequently if Uw − α̃ is topologically nilpotent on F(a+ b), then
F(b) = 0. We know that S(V ′)m ′ ⊂ F(A⊕B), so this implies that in fact S(V ′)m ′ ⊂ F(A).

Finally we can prove the surjectivity of η. For η(f) = F(a) where a = (Af,−f) ∈ S(V)⊕2m .
Since everything in S(V ′)m ′ is of the form F(a) for some a, by the last lemma, and since
every a ∈ A is of the form (Af,−f) for some f ∈ S(V)m, we are done.
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